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PERIODIC SOLUTIONS OF NON-LINEAR EVOLUTION
EQUATIONS IN BANACH SPACES

BUI AN TON

In this paper the theory of Browder [2] and of Lions [3] on periodic solutions
of non-linear evolution equations in Banach spaces is put in a more general
framework so as to include the Navier-Stokes equations and their variants.

An abstract existence theorem is proved in § 1. Applications are given in § 2.
The existence of periodic solutions of the Navier-Stokes equations without
any restriction on the dimension of the space domain is established. Application
of the abstract theorem to the following problem is given:

(D;ue — Auc+ D u;Due+ 3(divudu. + grad pe = f onG X [0, TT;
=1

div(u) = —pe - ¢ u(x,t) =0 ondG X [0, T];
I\ ue(x,0) = u(x,T) ongG.

1. Let H be a Hilbert space and (.,.)g the inner product in H. Let V and W
be two reflexive separable Banach spaces with W C V C H. W is dense
in 7 and V is dense in H. The natural injection mappings of W into ¥ and
of V into H are compact.

Let T™* be the dual of ¥ and {.,.} the pairing between V and V*. The
pairing between W and its dual W* is denoted by (.,.).

Consider the Banach space F = L?(0,7; V) of equivalence classes of
functions % (¢) from [0, 7] to V with the norm:

H%HF={‘LTH%G)H’%’dt}w, 2<p <.

{(.,.) is the pairing between F and its dual F*. Let ¥ = L7(0, 7"; W) with
2 £ p <r <o and let ((.,.)) be the pairing between ¥ and its dual Y*.
Thus («,9) = [§ (u,v)gdt if w € L?(0, T;H) and v is in F. Similarly
for ((.,.)).
Set X = FNL®(0,T;H). We shall say that #, —# weakly in X if
u, — # weakly in F and u, — # in the weak-star topology of L*(0, T'; H).
In this paper we consider non-linear operators 4 mapping X and YV into
Y* and satisfying the following assumption.

Assumption (I). (1) A s continuous from line segments in X to the weak™*
topology of Y*.
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(ii) Let u, — u weakly in X, u, in ¥, u,(0) = u,(T); u,’ — u’ weakly in Y*,
Au, — g weakly in Y* with g + u' in F* and

lim sup Re ((#," + Au,, u,)) < Re(g + o', u).

Then Au = g.
Gii) If u, — u weakly in Y and w,’ — u' weakly in Y*, then Au, — Au
weakly in Y* and ((Au,, u,)) — ((Au, u)).

We have shown in [7] that all the semi-monotone operators considered by
Browder [2] and by Lions [3] as well as all the weakly continuous operators
from F into F* satisfy Assumption (I).

The main result of this paper is the following theorem.

THEOREM 1. Let A be a non-linear operator mapping X and Y into Y* and
satisfying Assumption (1). Suppose further thas:
(i) A maps bounded sets of X and of Y into bounded sets of YV*;
(i) Re((Au,u)) = c(||lu||z)||u||rfor all win VY, c(r) is a positive continuous
Sfunction with ¢(r) — 4+ asr — 4 0;
(iii) Re(Au, u) = 0 for all u in Y and for almost all t in [0, T);
(iv) There exists a positive continuous function ¢ (r) such that:

Re((Au,u)) £ o(||ullr) for alluin Y.
Then for each f in F*, there exists u in X with v’ in Y* such that:
uw + Au = f, u(0) = u(T).
Theorem 1 will be derived from the following result.
THEOREM 2. Let J be the duality mapping from Y into Y* associated with the
gauge function Y (s) = s™71. Suppose that all the hypotheses of Theorem 1 are

satisfied. Then for each ¢,0 < ¢ < 1, and for each f in F*, there exists u.in YV
with u 1 Y* such that:

ud + eJu. + Au. = f, ue(0) = u (7).

Moreover, ||ud|r + €l|luelv” + |||y + |te| zo0.r.n S M. M is a constant
independent of e.

Proof of Theorem 1 using Theorem 2. Since Y is a reflexive Banach space,
by taking an equivalent norm if necessary, we may assume that Y* is strictly
convex. It is well known that the duality mapping J from Y into Y* associated
with the gauge function ¢ (s) exists. Since Y* is strictly convex, J is uniquely
defined.

From the weak compactness of the unit ball in a reflexive Banach space,
we have by taking a subsequence if necessary:

u. — u weakly in F, u. — u in the weak® topology of L*(0, T'; H),
u — u’ weakly in Y* and €/"u. — 0 weakly in ¥ as e — 0.
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Since the natural injection mapping of V into W* is compact, it follows then
that u#.(t) — u(t) > 0 in W* for all ¢t in [0, T]. But %#.(0) = u.(T), thus
u(0) = u(T).

By hypothesis, 4 maps bounded sets of X into bounded sets of ¥*, hence
Au.— g weakly in Y* as e — 0.

On the other hand, ¢||Ju |y = ¢|luly™* — 0 as e — 0. Therefore
lim sup Re((u + Au, u.)) < Re(f, u) = Re(g + «', u). It follows from
Assumption (I) that Au = g.

Proof of Theorem 2. 1t is well known that the duality mapping J is monotone
from Y into Y* and is continuous from the strong topology of Y to the weak
topology of V*.

Foru,vin V,let L(u,v) = Au + eJv. Then L maps bounded setsof ¥V X ¥
into bounded sets of Y*. Moreover, L («, -) is monotone and is continuous from
line segments in ¥ to the weak topology of Y*. It is also clear that L (u, u)
is coercive.

If u, > u weakly in Y and u,” — «’ weakly in Y*, then it follows from
Assumption (I) that Au, — Au weakly in Y* and ((Auy, 1)) — ((Au, u)).
Therefore ((L (1, ¢), ux)) = ((L(u, ¢),u)) and ((L (s, ¢),2)) = ((L (%, ¢),7))
for any ¢, v in V.

It follows from [3] that there exist %, in ¥, . in Y* such that

u + eJue+ Au. = f, u(0) = u (7).

We easily obtain ||ue||r + €||ue||y” £ M. M is independent of e.

It remains to show that %, is uniformly bounded in L*(0, T'; H). It is the
crucial part of the theorem and indeed of the paper.

First, we show that ||#.(0)||# is uniformly bounded. Let § € C'(0, T') and
0(T) =0, 6(0) =1. Set v, = 0u.. Then v/ + Ju.+ 0Au. = 0f + 6'u..
Hence:

Hive Oz = 3[|uc0)]]z

T
< Ref {—o{f, u — 0'0‘|1L5|[12; + 0°(Ju., ue) + 0% (Au., u)} dt.
0

Since by hypothesis Re((Aue, #e)) < o(||ud|r) for u. in ¥, we obtain
Reff 62(Aus, ue) dt < K o(|ludlr) = C.
Thus %||u.(0)]|7 < C. The different constants are all independent of e.
Using a remark as in [7], we show that

llu®)lF £ C(|lue(O)||lz + 1) for tin [0, T].
Indeed,

ue®Il = |2 + 2 Re fo () ul) dt.
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Thus
Tt
@l = [0l +2Re [ (f = Au = eJuq ) ds
0

=< JueO)llz + 2 || flle*llueel e — Reﬁt e(Jue, 1) di,

since by hypothesis Re(4u., #.) = 0 for almost all ¢ in [0, T]. Thus

e < NlucO)lz + 211 fllelludie + 2€l|Tud [yl v
ClueO)lz + lludlr + ellud]y’) < M.

I\

M is independent of ¢ and of e.
The theorem is proved.

2. We now give some applications of Theorem 1 to the study of periodic
solutions of strongly non-linear parabolic equations.
Let G be a bounded open subset of R* with a smooth boundary 0G. The

points of G will be denoted by x = (x1,...,x%,). Set D; = 4! 9/dx,,
j=1,...,n For each n-tuple @ = (a1, ...,a,) of non-negative integers,
we write:

n n
D*=1] D5 with|a] =2, ay
j=1 j=1

The points of E! will be denoted by ¢ and differentiation in ¢ by D,. Let k
be a positive integer. By functions we mean k-vector-valued functions
u = (41, ...,u;) where each u;is a real-valued function on Goron G X [0, T'].

W*?(G) is the Banach space

WE2(G) = {u: u in L?(G), D*u in L?(G), |a| < &}

with the norm

. ' _ . \(llp
Wllp = {2 1Dl E0f + 1<p<w.

(I) Periodic solutions of strongly non-linear parabolic equations. The existence
of periodic solutions of the strongly non-linear parabolic equations considered
by Lions [3] may be established by applying Theorem 1 and the remark
following Assumption (I).

(IT) Periodic solutions of the Navier-Stokes equations. Let

S ={g: pin C7 (G); div ¢ = 0}.

H, V, W are the completion of S in the L2(G)-norm, the (||-||1,2)-norm, and
the (||*||m.«)-norm, respectively, where m = 1 4 [n/4].

Then W C VCH. Wis dense in VV and V is dense in H. The natural
injection mappings of W into V and of V into H are compact since G is
bounded.
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Take Y to be the Banach space ¥ = L4(0,7; W) and F = L2(0,T; V).
Consider the problem:

rD,u — Au -I—Zluiju +gradp=f onG X [0,7T];
j=

divz =0o0onG X [0, T] u(x,t) = 0on dG X [0, T];
u(x,0) = u(x,T) onG.

THEOREM 3. For each f in L*(0, T'; V*), there exists u in L2(0, T; V) and in
L*(0, T; H) with v’ in L2(0, T; W*) such that

~eN+L [ wpmois+ % [ Ou D= 5,0
for all ¢ in Y with ¢’ in Y* and ¢(0) = (7).
Proof. From the Sobolev embedding theorem we have:
W C C(cl G).

The natural injection mapping of W into C(cl G) is continuous.
Let

n

T
a(u,v) = j;l j; { (D jux, D jor)er + (u;D juy, vi)g} dt,
where u is in X = L2(0,7; V)N L*0,7T;H) and v in Y. a(u,v) is well-
defined and, moreover, continuous, linear invon Y. Hence a (#, v) = ((4du, v)).

To prove the theorem, we shall apply Theorem 1.

We check that A satisfies all the hypotheses of Assumption (I). Suppose
that u, — u weakly in X and #,” — #»’ weakly in Y*. Since the natural injec-
tion mapping of V into H is compact, it follows from a result of Aubin [1]
that u, — » in L2(0, T'; H).

An easy argument, using the Lebesgue convergence theorem yields:
Au, — Au weakly in V*,

It remains to verify part (iii) of Assumption (I). Suppose that u, — u
weakly in ¥ and #,” — #’ weakly in Y*. Since the natural injection mapping
of W into V is compact, it follows from [1] again that u, — u in L*(0, T'; V).
Hence

HunDun - uDu“lﬁ(o,T_-H)
< Cllu||vl||un — || 240,20 + ||Dt — Du|| zso,7n} =0 asn— 4.
It follows that Au, — Au in Y*.
To apply Theorem 1, it suffices to check part (iv) of the hypotheses of

Theorem 1.
Foruin Y,

n T
a(u,u) = ((Au,n)) = ;1 fo (D jur, Djuz)g dt < Cllu|3.
=
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Applying Theorem 1, we obtain % in X with %’ in ¥* such that
u + Au = f, u(0) = u(T).

Since ||4u| 20,0 = M{|lullr + [[u]l 2=, 7 ||ull#}, we have u” = f — Au
in L2(0, T; W*).

The theorem is proved.

The existence of periodic solutions of the Navier-Stokes equations without
any restriction on the dimension of the space domain was shown by Prouse (5]
when f is periodic in time and by Lions [4] for f in L2(0, T"; V*). Lions solved
the initial-value problem in a finite-dimensional space, then used a fixed-point
theorem (in order to obtain a uniform estimate in L*(0, 7'; H) of the approx-
imate solutions) to show the existence of periodic solutions in finite-dimensional
subspaces. Finally by going to the limit, the approximate solutions are shown
to converge weakly in L2(0, 7°; V) to a periodic solution of the Navier-Stokes
equations.

(III) Periodic solutions of an equation considered by Temam [6]. Consider
the problem:

Dy, — Au, —I-z_llujeDjue + $divu)ue+ grad p.=f onG X [0,T];

div(ue) = —pe - ¢ ue(x,t) =0 ondG X [0, T];
ue(x,0) = u(x,T) onG.

The initial-value problem for the above equation was studied by Temam
in [6] when » = 2, 3.

Let H be the Hilbert space L?(G) and V, W the completion of C¥(G) with
respect to the (||:|[1,2)-norm and the (||-||n,4)-norm, respectively, with
m =1+ [n/4].

Take F = L2(0,T; V) and Y = L*(0, T; W) with X = FNL*(0, T; H).
Let

n

T T
ac(u,v;w) =y, f f D - Dw dxdt + f f 1 div(u) div(w) dxdt
j=1 <0 e} 0 G

n T J
—I—% > J J u; Dy« wp — vy + Djwy) dxdt, #,vinX and win Y.
Jik=1 0 G

ae(u, v; w) is well-defined and a.(u, u;v) = ((4du,v)) for  in X and vin V.

THEOREM 4. For each f in F* and for ¢,0 < e < 1, there exists u. in X with
ue i L2(0, T'; W*) such that

u +Aaue = f, ue(0) = u(T).

Moreover |[ulr + llud|ze 0.z + ¢HIdiv@ollzzcoxwo,m + llud|ly < M.
M 1is a constant independent of e.
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Proof. An argument as in the proof of Theorem 3 shows that 4. satisfies
all the hypotheses of Theorem 1. It follows from Theorem 2 that there exists
Uen in YV with ., in ¥Y* such that:

uf"l’ + nJue, + Aéuen = f, u“,(()) = uf"l(z‘)7 0<y< 1.

It is easy to see that

””enHF + "’I””ﬂl”Yl1 + fwélIdiv(ueﬂ)“LQ(Gx(o,T)) = M.

M is a constant independent of both ¢ and 7.

An argument exactly as in the proof of Theorem 2 yields: ||u,(0)||lz = M
and ||ue,(t)||g £ C(L + ||uey(0)||x) £ M. M and C are constants independent
of ¢ 1, t.

Thus ||tben]| 2= 0,70 = M and hence ||| 220, 7m0 = M.

Let # — 0; then from the weak compactness of the unit ball in a reflexive
Banach space, we obtain #., — #. weakly in F. Theorem 1 shows that #, is
a solution of #/ + Au. = f with #.(0) = u(T). All the other assertions of
the theorem are trivial to verify.

THEOREM 5. Let u. be a solutton of u' + Aae = f, ue(0) = u () of
Theorem 4. Then as e — 0, u. — u weakly in F and u ts a solution of u' + Au = f,
u(0) = u(T) of Theorem 3.

Proof. From the weak compactness of the unit ball in a reflexive Banach
space, we obtain by taking a subsequence if necessary:

we — u weakly in F, u. — u in the weak™ topology of L™(0, T'; H),
u — u' weakly in L2(0, T; W*) and div(z.) —» 0in L2(G X (0, T)) as e — 0.
Since the injection mapping of V into H is compact, it follows from [1] that

ue—uin L2(0, T'; H) as e — 0.
From above, we have div(u.) — div(x) weakly in L2(G X (0, 7)) and thus

div(u) = 0.
On the other hand, as in the proof on Theorem 1, we could show that
u(0) = u(1).

It remains to show that 4 #. — Au weakly in ¥Y*. The proof is easy and
is therefore omitted.
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