Design Science

Mapping the types of modularity in
open-source hardware

1 . N 2)3
Kosmas Gavras ““" and Vasilis Kostakis

' Department of Architectural Technology, School of Architecture, National Technical Univer-
sity of Athens, Stournari and Patision 42, 106 82 Athens, Greece

2 Ragnar Nurkse Department of Innovation and Governance, TalTech, Akadeemia tee 3,
12618, Tallinn, Estonia

3 Berkman Klein Center for Internet & Society, Harvard University, 23 Everett Street, Cam-
bridge, MA 02138, USA

Abstract

The importance of intangible code modularity in open-source software, as well as of tangible
product modularity in proprietary hardware, is widely acknowledged. Nevertheless, mod-
ularity in open-source hardware (OSH) remains under-researched. This article first
describes qualitatively different types of modularity based on two OSH case studies and
then quantifies each type of modularity, following a unified network-based approach. The
results are discussed and compared within each case to test the ‘mirroring hypothesis’, and
between cases to evaluate the impact of physical against intangible modularity types. The
ultimate goal is to prompt a discussion into a wide but under-explored subset in OSH.

Key words: open-source hardware, modularity, design modularity, fabrication modularity,
mirroring hypothesis
Received 29 June 2020
Revised 08 May 2021
Accepted 12 May 2021

Corresponding author 1 . |nt|’0ducti0n
K. Gavras
kgavr‘;s@mail.nlua.gr The open-source hardware (OSH) phenomenon is described and distinguished

©The Author(s), 2021, Published by from pr.oprletary hardware by two main constituents. First is the appllcathn of an
Cambridge University Press. Thisis ~ alternative mode of knowledge production and management — best exemplified by
an Open Access article, distributed g pen -source software (OSS) - in the material realm (Shirky 2005; Balka, Raasch, &
under the terms of the Creative . _ .

Commons Attribution- Herstatt 2009; Raasch, Herstatt, & Balka 2009; Li et al. 2017; Boujut 2019). And
NonCommercial-ShareAlike licence second - partly fuelled by the first - is the still-emerging distributed manufacturing

htt, reati { . . .1 ..
f‘;eisecs'e;y'ﬁiff ﬂ? ;S\A?,:ih paradigm that has resulted from the maturation and affordability of digital

permits non-commercial re-use, fabrication technologies (Kostakis et al. 2015; Pearce 2015).

distribution, and reproduction in any .

medium, provided the same The OSH phenomenon can be defined and its degree of openness evaluated
Creative Commons licence is following a number of published approaches (Bonvoisin & Mies 2018; Gavras

included and the original work i . -
included and the original workis 2019; Bonvoisin et al. 2020; Open Source Hardware Association 2020). However,
properly cited. The written

permission of Cambridge University OSH is distinct from other schemas that, by definition, feature limited openness.
Eéf::qg:g; '::_S:;a'”ed for For instance, in open-architecture products, certain parts of the platform and all
basic functions are closed and proprietary, while certain less crucial interfaces are

g‘j; jg’;;’;t:;j;;i@ " open for add-ons from third parties (Koren et al. 2013).

DOI: 10.1017/dsj.2021.11 While the application of modularity in the OSH practice is common (see
‘ Bonarini et al. 2014; Kostakis & Papachristou 2014; WikiHouse 2018a; Open-

m-'(l)cﬁi§l1‘ Society Structures 2019), theoretical approaches are recent and limited (see Gavras 2019;

CAMBRIDGE .

9 UNIVERSITY PRESS ===

CrossMark

(m

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://orcid.org/0000-0002-9657-9605
mailto:kgavras@mail.ntua.gr
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2021.11
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dsj.2021.11&domain=pdf
https://doi.org/10.1017/dsj.2021.11

Design Science

Kostakis 2019; Bonvoisin et al. 2020). Conversely, the OSS literature concerning
modularity dates back to the 1970s (Parnas 1972). Also, the corresponding
literature on proprietary hardware is vast (see the literature review by Bonvoisin
et al. 2016) and well-established (Starr 1965).

For instance, modularity has been the object of extended research in the
automotive industry (Johnson & Broms 2000; Fellini et al. 2004; Pandremenos
et al. 2008; Cabigiosu, Zirpoli, & Camuffo 2013; Albers et al. 2019), as well as the
aircraft (Frigant & Talbot 2005), computer hardware (Baldwin & Clark 2000)
and prefabrication industries (Halman, Voordijk, & Reymen 2008). Modularity
bears the cross-industry benefit of cost reduction due to economies of scale
(Fixson 2007; Hackl et al. 2019). Ulrich (1994) highlights the ease of reverse-
engineering as a negative effect of modularity. Sanchez & Mahoney (1996) argue
that, following a modular product design approach, authority is exercised during
the design of product architecture before component design development
occurs. However, the approach and context of modularity in proprietary hard-
ware often contrasts with basic constituents of the open-source model. In the
open-source model, organisation and authority is bottom-up (Ball & Lewis
2018) as most of the tasks are self-selected by contributors (Boisseau, Omhover,
& Bouchard 2018), and ‘copying’ technical knowledge is a common practice
associated with overall positive impact (Raymond 2000). Moreover, economies
of scale are incompatible with the idea of localised manufacturing (Kostakis et al.
2015).

The distinction between the open-source and proprietary realms has been
evaluated in the OSS literature; MacCormack, Baldwin, & Rusnak (2012) paired
open-source and proprietary software of similar size and function, showing that
the code of OSS is more modular by a factor of six. MacCormack, Baldwin, &
Rusnak’s (2012) finding echoes the ‘mirroring hypothesis’, according to which
product architecture and organisation architecture are dual in structure. Baldwin &
Clark (2002): 5, Baldwin & Clark 2006) articulate the importance of modularity asa
structural constituent of the open-source model, in terms of both product and
organisational architecture:

(i) ‘Modularity makes complexity manageable’ through the decomposition of a
complex task into simpler tasks, and the selection of optimal solutions from a
pool of interchangeable options;

(if) ‘Modularity enables parallel work’ through the division of a monolithic
system into numerous independent modules and

(iii) ‘Modularity is tolerant of uncertainty’. Certain elements of code structure can
be swiftly altered at any time and in potentially unforeseen ways.

This article argues that modularity is applicable to various elements and aspects of
OSH production; from (co)designing and (co)manufacturing to using hardware.
However, our focus is not on how modularity is created, but rather on how
modularity within the OSH realm may manifest as a design practice, an organisa-
tional principle/property or, sometimes, as both. We thus aim to map, assess, and
classify the different types of modularity in OSH.

This article is organised as follows: Section 2 describes the research approach
and method. Section 3 discusses qualitative and quantitative definitions of mod-
ularity. Section 4 outlines five main types of modularity and Section 5 quantita-
tively assesses those types, drawing from the selected cases. Section 6 discusses the

2/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

results of the research and highlights its limitations. Section 7 presents the gist of
the current paper and proposes future directions for research and practice.

2. Research design

2.1. Research scope
We discuss modularity in the OSH framework by:

(i) Articulating a generic, qualitative and quantitative definition of modularity
from the literature. The aim is to describe modularity irrespective of the
subject (e.g., hardware,' community), size or industry (aircraft, automotive or
building).

(if) Tracing a comprehensive modularity typology based on cases and literature,
with an emphasis on the less-explored, intangible side of OSH.

(iii) Quantifying the modularity levels of the selected cases to provide preliminary
evidence regarding, first, the relation of respective or alternative modularity
types between cases, and, second, the relation among modularity types con-
cerning the ‘mirroring hypothesis’ within cases.

2.2. Research significance

The present research is primarily useful in addressing a gap in the OSH literature
regarding conceptualisations of modularity. Some of the existing definitions of
modularity are specific to a certain subject or industry and are thus unhelpful in
terms of a wider understanding of the phenomenon. For example, Emanuel,
Wardoyo, & Istiyanto (2011) present a definition that is exclusively software-
specific; Salvador (2007) conceptualises product family modularity in a way that is
only partially extendable to the single product; Braha & Bar-Yam (2007) conflate
modularity with other properties. Additionally, most quantitative modularity
studies adopt comparative methods concerning software or proprietary hardware.
Comparative methods are useful, but arguably inadequate for evaluating OSH
thoroughly. Consider a structure that is more modular by a factor of six compared
to another: both might be almost nonmodular on an absolute scale. Therefore,
absolute measures of modularity are also indispensable in practice and research.

However, any quantification method is meaningless without a guide on the
actual subjects and types of modularity. To the authors’ knowledge, existing OSH
literature does not cover the classification and assessment of modularity types.
Consequently, our ambition is to set common ground for future research required
in order to understand an unexplored dimension of OSH.

2.3. Research methods

To address the research goals, two methods were used. Regarding the qualitative
aspects of our goals, hybrid instrumental-collective case study research was
employed (Stake 1995). Case selection was based on the authors’ strategy and
background, and excluded mechanical and electronic devices. In-depth analysis of

"Henceforth, for the purpose of clarity, the terms ‘product’ and ‘hardware’ will point to material
artifacts in the proprietary and open-source realms, respectively.

3/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

aless represented OSH subset may offer advances of cross-disciplinary importance
(Papalambros 2015). The first case is OpenStructures (2020), a community of
industrial designers making furniture, as well as other hardware; and the second is
WikiHouse (2020), a community for open-source housing. In terms of the age and
volume of designed hardware, both projects are two of the most mature cases in the
described OSH subset. The first case represents conventional design through
standard computer aided design (CAD) systems, and the second exemplifies a
growing trend of design by coding. Data were collected from project websites and
secondary sources and databases. Direct interpretation (Stake 1995) was used to
process data and to extract new meanings concerning the cases.

For the quantitative aspect of the research, tools and methods from network
science were employed to approach a quantification method. The algorithm for
modularity analysis proposed by Blondel et al. (2008) was used in the
Gephi”® software. Data collection was performed manually from the project’s
website in the case of OpenStructures, and through a custom script made by the
authors in the case of WikiHouse. In the interpretation of the quantitative results,
an axiomatic principle was held that a more modular hardware, ceteris paribus, is a
more open hardware, in analogy with the relevant literature on OSS. However,
modularity and openness in corporate environments are also associated with
product imitations and negative effect on financial turnover (Ulrich 1994; Fixson
& Park 2008).

3. Modularity in the OSH

This section focusses on the criticisms and the emphases of different viewpoints on
modularity. The Section 3.1 articulates generic qualitative definitions of modular-
ity. The second Section 3.2 explores generic quantitative definitions.

3.1. Qualitative definition

According to Persson & Ahlstrém (2006), the term ‘degree of modularity’ describes
the degree of coupling among different modules in a product. Consequently, in the
case that every module can couple with any other module in the system, the
product is highly modular. But the highly coupled product is also highly mono-
lithic, no matter how many parts comprise the product (Figure 1, left). If the
concept of modularity is limited to the simple division of the whole into parts, it
could be inferred that hardware, broadly speaking, has always been modular
(Brusoni & Prencipe 2001). Yet, on the contrary, modularity in OSS does not
simply refer to the division but also to the quality of the division (Raymond 2000).
However, even this definition is imprecise and incomplete, as more than one of the
existing network metrics (e.g., modularity index, clustering coefficient, density,
centrality and degree distribution) refers to qualitative aspects of the division or
coupling of a structure, leading to ambiguity in terminology.

For example, the common use of the qualitative terms ‘loosely coupled’ and
‘tightly coupled’ to describe modular and nonmodular networks, either organisa-
tions or products, is imprecise. Technically, the misconception is expressed by the
association of modularity with the clustering coefficient (see Braha & Bar-Yam

2 .
https://gephi.org/

4/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://gephi.org/
https://doi.org/10.1017/dsj.2021.11

Design Science

<

Figure 1. Left: High degree of coupling within a monolithic structure.” Right: High
actual closed triangles (Col
possible closed triangles olors

clustering coefficient within a monolithic structure. C=

signify actual closed triangles per the black-filled node).”

2007). This is a metric concerning a specific qualitative dimension of coupling.
‘Clustering coefficient [0-1] expresses the incidence of closed triangles among the
nodes of a network. A clustering coefficient value of zero is the equivalent of an
unconnected network, whereas the value of 1 stands for a completely connected
network (Figure 1, right). Obviously, neither value corresponds to a modular
network, which may lie anywhere between the extreme values. Clustering is an
important metric concerning network cohesiveness, but cohesiveness is not
directly related to the property of modularity. Nevertheless, the clustering coeffi-
cient has been associated with certain participatory properties of OSH collabora-
tive networks (Bonvoisin et al. 2018).

Product design literature (Ulrich 1995; Erens & Verhulst 1997) offers a more
focused definition with the following: 100% modularity in design means that one
function is allocated to one single module, while 0% means that all functions are
allocated to different modules. However, this definition misses two important
aspects: extendability beyond products and multi-level organisation. When map-
ping the modularity of a collaborative network, the function-based definition is
obsolete, apart from the special case that the collaborative network is a perfect
‘mirroring’ of the product functions. However, even in product design, function
discretisation is neither always applicable (Ulrich & Seering 1990), nor the sole
known modularisation principle (Bonvoisin et al. 2016). Secondly, in real-world
cases, modularisation is rarely a single-level organisational process. Modules can
be nested in other modules, and so on: a function internally and recursively
contains other functions, coupled in a modular way. The power of nested mod-
ularisation beyond OSS is exemplified in the parable of Hora and Tempus (Simon
1962).

Another example of an over-specialised modularity definition is Salvador’s
(2007) definition for product families, which is built upon the concepts of com-
monality (common parts), separability (separable parts) and combinability (recon-
figurable parts). According to Salvador, the unit of reference is the product family,
but despite that, some of these concepts are also fully or partially transferable to the
single product. However, the concepts of commonality and combinability do not
transfer clearly to the modularity definition of the collaborative network.

*image processing: authors, image source: authors.
4image processing: authors, image source: authors.

5/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Modularity is thus a specific quality of coupling among the components of a
system, whether for hardware or people. Outlining a definition at the intersection of
several realms, modular structure - as simulated by nodes and edges - features a
certain discretisation into modules, characterised by higher internal connectivity
among module nodes, rather than external connectivity among modules (Baldwin
& Clark 2000; Newman & Girvan 2004; Blondel et al. 2008; Jung & Simpson 2016).
Connectivity is more than the mere sum of connections (edges), as outlined in the
following quantitative approach.

3.2. Modularity metrics

Various methods to assess modularity exist (Guo & Gershenson 2003), but none
are universally accepted. Most methods are based on the design structure matrix
(DSM), which is an analytical tool used to simulate the structure of complex
systems (Steward 1981; Eppinger et al. 1994; Sharman, Yassine, & Carlile 2002;
Sosa, Eppinger, & Rowles 2004; Sosa, Eppinger, & Rowles 2007; MacCormack,
Baldwin, & Rusnak 2012). Modularity metrics based on DSMs have been the
subject of extensive research (Huang & Kusiak 1998; Newcomb, Bras, & Rosen
1998; Sosa, Eppinger, & Rowles 2000; Guo & Gershenson 2004; Holttd-Otto & de
Weck 2007; Yu, Yassine, & Goldberg 2007; Holttd-Otto et al. 2012). According to
Baldwin, MacCormack, & Rusnak (2014), modularity methods based on DSMs are
superior to network-based methods. The main advantage of DSM-based methods
is the analysis of directed connections among nodes.

Baldwin, MacCormack, & Rusnak’s (2014) assumption is that technical
systems are always directed. However, in the case of a spatial attachment
interface between hardware modules, the cumulative dependency between mod-
ules is bidirectional and, by extension, undirected. Asikoglu (2012) analysed a set
of electro-mechanical household products and concluded that 85% of them were
composed of directly contacting interfaces. Moreover, our cases feature exclu-
sively spatial attachments, which are not common within either electronic or
mechanical OSH subsets. Therefore, the advantage of DSMs over network-based
methods is less important in hardware, and specifically in the examined OSH
subset.

Collaborative networks, as for social networks in general, are undirected
structures. Designer ‘A’ cannot collaborate with designer ‘B’ without the reverse
being true. To extend the argument, even in software, when function ‘B’ is
dependent on function ‘A’, if the dependent function is radically modified, the
independent one will also have to be modified. Conversely, any modification in any
function, whether dependent or independent, does not automatically transfer to
any other function if the interface remains intact. Hence, the directionality of
DSM-based analysis methods is meaningless in the described context.

Besides directionality, Milev, Muegge, & Weiss (2009) and Jung & Simpson
(2016) have recognised different but important limitations in various DSM-based
metrics. Notable cumulative limitations of the DSM-based metrics (Table 1)
include the following:

(i) Modularity levels are dependent on the size of the analysed object, narrowing
comparative evaluation to structures of equal size and precluding analysis of a
single project in chronological order.

6/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Table 1. Limitations of DSM-based modularity metrics

Limitations
Dependent Binary state of Single
DSM-based on size (i & connections Ignores discrete module
metrics Reference ii) (iii) architecture (iv) metric (v)
Propagation MacCormack,
cost Baldwin, &
Rusnak (2012)
MacCormack, ¢ ¢
Rusnak, &
Baldwin (2006)
Clustered cost MacCormack,
Rusnak, & .

Baldwin (2006)

Relative Milev, Muegge, &
clustered Weiss (2009) .
cost
Module Whitfield, Smith, &
strength Dufty (2002) .
indicator
MS Sosa, Eppinger, &
Rowles (2003) *
MG&G Guo & Gershenson
(2004)
Minimum Yu, Yassine, &
description Goldberg (2007) o
length
MJ&S Jung & Simpson
(2016)

MG&G metric is dependent on number of modules. MJ&S metric is composed from three separate indices arbitrarily weighted.

(if) The absence of fixed value boundaries results in indeterminacy about what is
modular in absolute terms.

(iii) The modelling of the interface is over-simplistic (Binary DSMs). Most DSM
modularity metrics are based on a binary state of connection between ele-
ments which may be connected or unconnected. However, in real-world
hardware, most interfaces are more complicated and feature connections of
varying dependency. Beyond hardware, collaborative networks are shaped
with connections of surprisingly variable weight (Bonvoisin et al. 2018). The
assumption that neither pair of developers has collaborated more than once in
an OSS project, for example, is extremely flattening.

(iv) Calculation of modifiability instead of modularity. The propagation cost
method emphasises dependency among all the nodes of the entire network
rather than network-discrete architecture. While modifiability is one of the
products of modularity, the inverse is not always true.

7/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Modularity = -1 Modularity = 0 Modularity = 1
(almost complete network) (random network) (modular network)

Figure 2. Indicative examples approaching the boundary values of the modularity
index in network science (Newman & Girvan 2004; Blondel et al. 2008).

(v) Calculation of single module modularity rather than that of the entire
architecture.

In network-based methods, the modularity index is clearly defined and used for a
wide range of physical and intangible structures (Newman & Girvan 2004; Blondel
et al. 2008). The modularity index as formulated in network science has rarely been
used in OSS or proprietary hardware (see Paparistodimou et al. 2020) and even less so
in OSH. The modularity index measures the quality of the division, that is, the density
and weight of coupling inside modules compared to that among modules (Newman
2004; Newman & Girvan 2004; Blondel et al. 2008). Modularity is a scalar value
ranging between —1 and 1 (Blondel et al. 2008). The value of —1 expresses the state
where all ‘module’ parts are interconnected within a monolithic system; the 0 value
represents a state of random connectedness lacking any substantial modularisation;
and the value of 1 describes a highly modular system (Figure 2).

The approach proposed for calculating modularity in OSH concentrates the
following advantages, which are critical in comparison to most of the existing
methods (Table 1):

(i) The size-independent metric allows for comparison between different mod-
ularity types of the same projects or similar types between different projects,
or even studying the evolution of a specific modularity type over time.

(ii) The index is an absolute scalar value delineating what is actually modular.

(iii) The evaluation of weighted dependencies is critical in the precise analysis of
connectivity for many subjects relating to modularity, including collaborative
networks.

(iv) The evaluation of inter- and intra-module dependencies leads to a thorough
understanding of the qualitative property of modularity beyond mere divis-
ibility and detected number of modules.

4. Types of modularity in OSH

4.1. Presentation of the cases

Following the qualitative and quantitative generic definitions of modularity above,
this section introduces the selected cases and discusses the types of modularity
observed in practice.

*Image processing: authors, image source: authors.

8/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Figure 3. OpenStructures hardware. From left to right: coat rack, stool and bookcase.®

4.1.1. OpenStructures

The first selected case is OpenStructures, an open-source project for making
modular furniture and other generic hardware (Figure 3). OpenStructures began
in 2006 as a student project at the Institute without Boundaries in Toronto,
Canada. In September 2009, Thomas Lommee, designer and founder, organised
an exhibition showcasing the concept and some initial prototypes, and presented
an open call for the collaborative development of the project. OpenStructures is
self-defined as an open modular system for building hardware, inspired by the
modularity of OSS (OpenStructures 2019).

The centerpiece of the OpenStructures system is the OpenStructures grid, a
shared geometrical grid built up from the superposition of a rectilinear grid, diagrid
and polar grid. The OpenStructures grid is a shared geometric platform for
designing parts and their interfaces, which then can be reassembled in different
combinations to form new hardware. The featured parts are the lowest-order
elements, and usually do not have any functional independence.

In 2019, OpenStructures underwent a major reform, withdrawing most of the
older projects from the online database and adding newer projects and designers.
The former vertical organisation of artifacts as parts, components and structures
was converted to parts that, assembled, comprise apps. In OpenStructures, apps
describe objects, appliances, furniture or any other hardware assembly from two or
more compatible parts. Macroscopically, the restructuring resulted in a greater
level of interaction between designers: in the previous phase most assemblies were
composed of parts from the same designer.

4.1.2. WikiHouse

Our second selected case, WikiHouse, was initiated by a nonprofit foundation in
2011 as ‘an open-source project that re-invents the way we make homes’
(WikiHouse 2018a). Since then, architects, builders and users have been locally

®Source: https://www.openstructures.net/applications, license: OS noncommercial 1.0 (download-
able on June 1st, 2020).

9/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://www.openstructures.net/applications
https://www.openstructures.net/faq?section_id=non-commercial
https://doi.org/10.1017/dsj.2021.11

Design Science

Figure 4. A housing type that can be reconfigured by Wren technology.”

constructing pilot wikihouses all over the world, based on the distribution of digital
fabrication media.

WikiHouse draws a clear parallelisation between OSS and architectural design,
as ‘digital design allows every home to be designed as code; instantly customised to
its site and user’ (WikiHouse 2018b). It is a collaborative project ‘by everyone for
everyone’ (WikiHouse 2018b). WikiHouse is predicated upon the concept ‘Design
Global, Manufacture Local’ (Priavolou & Niaros 2019), in which design is devel-
oped, shared and improved openly and globally, while manufacturing takes place
locally (Kostakis et al. 2015).

WikiHouse’s design knowledge is organised from lower- to higher-order
elements in tools, technologies and types. Types are building typologies, designed
and configured by technologies (Figure 4). Tools are accessories for assembly and
construction, discussion of which is beyond the scope of this article. The most
impactful category of WikiHouse design knowledge is technologies.

The core technology in the WikiHouse ecosystem is known as Wren. Wren is a
design algorithm, developed in a visual programming environment, aiming at two
goals. The first goal is the parametric design and customisation of housing types.
For instance, the user can adjust the outer dimensions (width, length, height and
roof height) of the house, or the number and location of openings (doors and
windows) (Figure 4). Based on the outcome of the first goal, the second is to
automate the production of detailed fabrication data regarding structural chassis
and cladding. In the case of the chassis, the algorithm forms a three-dimensional
(3D) structural frame based on the designed outer shell of the first step. Subse-
quently, that frame is automatically subdivided into indexed interlocking flat-cut
elements (Figure 5).

4.2. Typology of modularity

Before exploring the modularity types observed in the selected cases, we now
introduce our starting point, drawing from the literature on product design and
management studies.

“Source: https://github.com/wikihouseproject/Microhouse, license: CC BY-SA 3.0 (downloadable
on June 1st, 2020).

10/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://github.com/wikihouseproject/Microhouse
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1017/dsj.2021.11

Design Science

Insulation
Soft fill roll or full fill cellulose.

Superbox
18mm structural plywood / 0SB

Pegs ""/
18mm structural plywood / 0SB

A < .
. Y
St ‘ ']
: 3
Connectors ‘ N J) A NS
18mm structural plywood / 0SB o
>

Figure 5. The structural chassis is automatically designed by the Wren algorithm as a three-dimensional
puzzle of interlocking flat elements.®

4.2.1. Modularity types in product design literature
Kostakis (2019:9), building on Baldwin & Clark (2003), distinguishes three types of
modularity pertaining to OSH development:
(i) ‘Modularity in artifact design: It refers to the decomposability of an object into
smaller subsystems that may be designed independently but still function
together as a whole’.

8Source: https://github.com/wikihouseproject/Wren/raw/master/Images/Connectors-01.png,
license: MPL 2.0 (downloadable on June 1st, 2020).

11/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://github.com/wikihouseproject/Wren/raw/master/Images/Connectors-01.png
https://www.mozilla.org/en-US/MPL/2.0/
https://doi.org/10.1017/dsj.2021.11

Design Science

(ii) ‘Modularity in production processes: It refers to the way that the artifact is
produced. Production includes the whole value chain of an artifact, from its
design to its manufacturing and distribution. Modularity in production is
often a result of increased modularity in design (Brusoni & Prencipe 2001).
Modularity in design is connected to the outsourcing of tasks; however, it is
not clear which begets the other (Campagnolo & Camuffo 2010)’.

(iii) ‘Modularity in use: It refers to the possibility that the users may have to mix
and match modules so that the artifact suits their needs as well as their ability
to maintain them’.

Modularity in use is closely related to the ideas of separability and combinability,
which build the concept of product system modularity (Salvador 2007). The
difference lies with the actor: the user or the firm. Modularity in use is also similar
to the concept of open-architecture products by Koren et al. (2013). Fixson (2007:
90) describes another type of modularity related to (ii):

(iv) Modularity in organisation: ‘the term organisation here is intended to include
both intra-firm and inter-firm organisational structures’.

The types described here are also parts, or, better, phases in the Life Phases
Modularisation method developed by Krause et al. (2014). The abovemen-
tioned modularity types are not mutually exclusive and their uncoordinated
combination can lead to conflicts in product development (Greve, Rennpferdt,
& Krause 2020). Greve, Rennpferdt, & Krause (2020) have synthesised a
method to resolve conflicts identified through the Module Process Chart.
Conflicts are resolved by the harmonised amalgamation of the different
modularisations of each phase.

The types described above reveal the strong hegemonic position of product
modularity. Erixon, Von Yxkull, & Arnstrom (1996) define product modularity as
a precondition for modularity in the production process itself. According to
Sanchez & Mahoney (1996), product modularity facilitates design modularity
and organisation modularity. Even the method proposed by Greve, Rennpferdt,
& Krause (2020) to resolve modularisation conflicts is based on the conception of
different physical product modularisations corresponding to each modularity type
or phase. In a holistic hierarchical interpretation, any other type can be modular as
long as the product is modular (Figure 6).

4.2.2. Modularity types derived from the selected OSH cases

In addition to the modularity types determined by the literature, the examination
of the selected cases of the present study reveals new types of modularity, or
redefines existing ones. WikiHouse exemplifies design modularity beyond physical
modules. For instance, the components of the Wren design algorithm defining the
outer form of the housing type do not correspond exclusively to any single physical
module, while their algorithmic structure is potentially modular. Generally, it is
common in the building industry for a function (e.g., waterproofing) to be
distributed across many physical modules (roof, cladding, doors and windows,
etc.). It is also common for a physical module (e.g., a window) not to single-
handedly perform a whole function (daylighting, rainproofing, ventilation and
visibility). An additional example of potential intangible design modularity, and

12/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Production Organization
modularity modularity

Use /

Design < Sanchez & Mahoney Salvador 2007 > Product
modularity 1996 modularity system
modularity

Figure 6. Schematic deployment of modularity types according to their relation in the product design
literature (Erixon, Von Yxkull, & Arnstrém 1996; Sanchez & Mahoney 1996; Salvador 2007).”

one of the most promising plans of the WikiHouse team, is PlanX'’. PlanX is a
beta-version design algorithm that automatically checks conformity with building
regulations for each instance of a given house type. Consequently, intangible design
is a new subject of modularity, bringing OSH closer to the data-driven code
structure of OSS. Intangible design modularity — as defined in this paragraph -
is wider in scope than merely looking at the level of granularity in the information
content of physical modules (Maier, Eckert, & Clarkson 2017).

Next, the compound nature of the Wren algorithm reveals the absence and
importance of another modularity type. For Wren, the processes of conceptual
design and design for fabrication are combined and merged into a single algorithm.
The amalgamation roughly follows the way different modularisation phases are
combined by Greve, Rennpferdt, & Krause (2020) in commercial product develop-
ment. However, any conceptual design can be materialised using numerous different
construction methods: integral, differential, composite or modular (Pahl et al. 2007),
and various fabrication technologies: 3D printers, computerized numerical control
(CNC) routers, traditional mechanical tools, or a combination of them.

For example, the Wren algorithm designs a modular chassis out of structural
frames and transverse elements. Both are composed from smaller CNC flat-cut
plywood panels using a differential construction method (Figure 5). A possible
alternative could be to construct the frames out of solid timber beams, but this
minor alteration would render the whole Wren algorithm useless. More radical
alternatives may include the potential to construct the same conceptual building
plan out of precast or cast-in-situ concrete, or even steel. Each construction method
requires a totally different dataset: watertight 3D models, flat-cut profile drawings
or conventional 2D drawings, sketches and diagrams. Additionally, each of the
construction methods results in different levels of hardware modularity. Hence, the

°Image processing: authors, image source: authors.

Yhttps://www.planx.uk/

13/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://www.planx.uk/
https://doi.org/10.1017/dsj.2021.11

Design Science

(v)
Community
modularity

e~
g >,
/ A Y
\ .
Single

hardware

(ii) ; (iii)
Fabrication |_(¥) | Hardware
modularity macro',.: modularity
strategies

N -
modularity ’,’ ~

ll
1 Family of

A
(1) Physical
! hardware

modules

—
-~

. /
~——”

() subtype O type { % group of types

Figure 7. Modularity typology drawn from practice and literature. Arrows express potential interdependence
and simple lines express succession.'!

disentanglement of design from construction and the simplification of the interface
between them, whenever possible, may allow the end-user or maker to combine
different designs with different construction methods, and vice versa.

Fabrication features a possibility for another modularity type highlighted by the
Wren design algorithm. The Wren design algorithm subdivides structural frames
into smaller components for fabrication. Those components are profiles flat cut
from plywood sheets that come in the standard size of 1220 x 2440 mm. Thus, the
structural chassis is, by default, fabricated using an industrial-grade CNC machine
of similar or greater bed size (i.e., greater than 1220 x 2440 mm). This techno-
logical dependency limits the ‘Design Global, Manufacture Local’ (Kostakis et al.
2015) potential of OSH. Nevertheless, the Wren design algorithm allows the user to
input the available CNC bed size and plywood length, width, and thickness, and
subsequently all fabrication drawings are adjusted automatically. In this example,
the fabrication is modular, as the interfaces between fabrication media, stock
material and fabrication drawings are simple enough to allow independent adjust-
ments. The modularisation of the fabrication process is important, especially in
complex assemblies where a simple modification in one parameter (e.g., panel
thickness) may result in a substantial volume of design work. The content and
target of fabrication modularity are wholly different than modularity in production
processes, because the latter aims to outsource the production of components by
mirroring product modularisation.

Based on the literature and the types contributed by the cases explored above,
we propose the following OSH modularity typology (Figure 7):

(i) Design modularity, which can be based on:

(1) Physical modularisation. The design of the object is decomposed into the
design of separate hardware modules. Physical design modularity is a

11 - .
Image processing: authors, image source: authors.

14/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

prerequisite for hardware modularity. The OpenStructures (2020) project
exemplifies this in featuring custom parts that, assembled, synthesise into
higher-scale objects, called apps.

(2) Intangible modularisation. The design of the object is decomposed into
simpler cognitive tasks that form discrete design modules. Modules are
generic blocks of design knowledge that are potentially reusable. No over-
arching one-to-one correspondence is observed between intangible design
and physical modules. Moreover, intangible design modularisation can
coexist with physical modularisation as well as with non-modular con-
struction methods. The Wren algorithm and PlanX are instances of
intangible design subjected to modularisation. Another example is the
structural analysis of a 3D chassis composed of several physical modules
(columns and beams).

(ii) Fabrication modularity, which denotes the adaptation of each manufacturing
method to varying parameters within the boundaries of the specific method.
The function of the Wren algorithm in modularising fabrication data, CNC
machine capabilities and stock material dimensions has already been dis-
cussed. An example of other manufacturing methods is the customisation of
parts and assembly in relation to the maximum printing volume of each
available 3D printer. In a broader view, fabrication modularity refers to a
design process concerning the final phase of the design: design for fabrication.
However, the incentives are different; intangible design modularity aims to
‘design global’ and fabrication modularity aims to ‘manufacture local’.

(iii) Hardware modularity, which is the outcome of design modularity based on
physical modules. Bonvoisin et al. (2016) completed a systematic literature
review of modularisation principles that may be based on material, function,
service frequency and reusability. Hardware modularity may refer to a single
instance of hardware, or a family of hardware. In the latter case, an ideally highly
modular family features modularity in use. In OSH, hardware modularisation
remains important for many reasons, but not for outsourcing production tasks.

(iv) Macro-modularity, which is the opposite of the harmonisation of different
modularity types in a single project as described by Greve, Rennpferdt, &
Krause (2020). Macro-modularity is actuated at the level of the whole OSH
ecosystem, based on the simplification or standardisation of interfaces among
the different phases of hardware development (e.g., conceptual design and
design for fabrication use). A counterexample is the fusion of conceptual
design and design for fabrication in the Wren algorithm. A potential example
of macro-modularity is the option given to the user or maker to utilise an
alternative fabrication method from another OSH housing project in order to
construct a WikiHouse-designed house.

(v) Community modularity, which addresses the collaborative structure among
contributors, beta testers and users. Community organisation is related to
design and hardware modularisation. However, the direction of causality is
unclear (Colfer & Baldwin 2016). In contrast with the organisation of the firm,
open-source communities are based on voluntary participation, the self-
selection of tasks and a lack of top-down authority. In any case, the measure
of community modularity cannot separate the distributed from the hierar-
chical organisation, as both can be modular (Sarkar & Dong 2011). Further
analysis of network properties reveals node inheritance (Yu & Ramaswamy

15/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

2007) or node centrality (Piccolo, Lehmann, & Maier 2018). Both properties
are distinctive features of hierarchical organisations.

We next draw an initial scheme of interdependencies and independencies among
the modularity types. Hardware modularity cannot exist without physical design
modularity. On the other hand, a design based on intangible modules and fabri-
cation modularity, as described so far, may not necessarily provoke any other type
of physical modularity. According to the ‘mirroring hypothesis’, community
modularity is positively related to design and hardware modularity; however,
further research is required to provide systematic evidence of the same in OSH.
An observation by Bonvoisin et al. (2016) — with greater extensions in OSH - is
that design modularity can be either ex ante or ex post. Ex post modularity approx-
imates the hierarchical division of a whole into parts after the completion of the
design. Ex ante modularity is bottom-up, more susceptible to change, and closer to a
distributed form of organisation. Ex post modularity resembles what Raymond
(2000) describes as a cathedral structure, and ex ante modularity is closer to a bazaar
structure. The modular structure of a bazaar is described by Gentile (2013) as
architecture of additive functionality. Therefore, modularity type and degree aside,
a modularisation strategy may influence modularity magnitude and effectiveness.

5. Quantifying modularity

This section quantifies the types of modularity observed in the selected cases that
were introduced in Section 4.

5.1. OpenStructures

OpenStructures is a mature OSH project that features design modularity (based on
physical modules) and hardware and community modularity. OpenStructures’
network involves 16 designers, 39 apps and 45 unique parts utilised 102 times. The
modularity analysis is performed at four different levels (Table 2) of successively
enhanced abstraction. Our aim is to capture all possible types of modularity, as well
as intermediate conditions that may offer useful meanings.

The first level refers to spatial attachment relations among the parts within a
single app: the one made of the greater number of unique parts (Figure 8). The app
A.563 was selected from two apps consisting of seven unique parts used several
times in each app.

The second level simulates the relation of containment between all apps and
parts. When a part is used to assemble an app, those elements are linked (Figure 9).
This level is an intermediate-hybrid condition situated between the described types
of modularity in OSH, as nodes represent objects of different classes. It is important
to note that only custom parts are taken into consideration at all analysis levels, and
that ready-made modules are excluded.

The third level is that of the family of hardware or the representation of
weighted relations between apps with one or more common parts (Figure 10).

The last level (Figure 11) outlines the relations in the community between
designers; the minimum collaboration act (minimal edge weight) is the indirect
and asynchronous contribution of one designer to an app of another designer.

Beyond the community modularity index, an overview of the community is
meaningful for meta-analysis. Specifically, the distribution of collaboration ‘units’

16/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Table 2. OpenStructures modularity analysis overview

Modularity analysis (Blondel et al. 2008)

Nodes Edges Modularity index [—1,1] Number of modules
Parts of A.563 Physical assembly 0.596 5
linkage between

parts of an app

All apps and parts Drawn between apps 0.770 13
and parts when the
former contains the

latter

All apps Drawn between apps 0.533 11
that share at least
one part

Designers Drawn between 0.112 6

designers: one
designer sharing
his/her part in
another designer’s

app

Figure 8. Left: Parts of App A.563 (modularity index: 0.596). An example of design-hardware modularity in a
single piece of hardware. Node labels stand for part category. Node colors separate the bigger modules.'”
Right: App A.563. Coat Rack."?

BSource: https://openstructures.net/apps/a563, license: OS non-commercial 1.0 (downloadable on
December 12th, 2019).

17/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://openstructures.net/apps/a563
https://www.openstructures.net/faq?section_id=non-commercial
https://doi.org/10.1017/dsj.2021.11

Design Science

5 5

Figure 9. Apps-Parts network (Modularity index: 0.770). The analysis refers to an intermediate-hybrid
condition between described types of modularity in open-source hardware (OSH), as nodes represent objects
of different classes. Big nodes represent the Apps; small nodes represent the contained Parts. Node labels are
unique identifiers of designers’ names. Node colors separate the bigger modules.'*

among designers (Table 3) is a useful, though not absolute, indicator of ex ante or
ex post modularisation strategies. The distribution of Table 3 concerns both
inbound and outbound collaborative ‘units’. Otherwise, the distribution records
both the times that a designer used part(s) designed by others and the times that
others used his/her part(s). Any modularisation strategy, whether ex post or ex
ante, is hard to recognise by the examination of a single artifact. However, when a
part is used in more apps of different designers, initial as well as subsequent

“Data collection, analysis and visualisation: authors, software: Gephi.

18/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Figure 10. Apps-Apps network (Modularity index: 0.533). An example of family of hardware modularity.
Edge weight represents the number (one or more) of parts in common. Node labels are unique identifiers of
designers’ names. Node colors separate the bigger modules.'”

Figure 11. Designers network (Modularity index: 0.112). An example of community
modularity. Edge weight represents the number of contributions of one designer to
another designer’s Apps. Node labels are unique identifiers of designers’ names.
Node colors separate the bigger modules (communities).'®

®Data collection, analysis and visualisation: authors, software: Gephi.
*Data collection, analysis and visualisation: authors, software: Gephi.

19/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

Table 3. Distribution of cumulative (inbound and outbound) collaboration ‘units’ among designers

[=)
|
s

n
|

=S
|
L

(3o
|

Designers in absolute numbers
[L)
| |
® ;
°
"R .
P 1

<
|

T ' T T T T T i T T
0 1 2 3 4 5 6 7 8 9

Cumulative number of designer's collaborative "units"

modularisations are more likely to be ex ante strategies. The meaning of the
distribution will be discussed further in Section 6.1.2 (ii).

5.2. WikiHouse (Wren)

The Wren algorithm is the core of the WikiHouse project, as well as a characteristic
example of intangible design modularity and fabrication modularity. The Wren
visual programming script consists of 1086 nodes representing design compo-
nents, either single or clustered, and 1618 relations (edges) between them. Also,
despite the fact that WikiHouse is the result of cooperative efforts in general,
according to the GitHub repository'” and the current authors’ personal commu-
nication, the Wren script was developed by a single designer-programmer.

The modularity analysis of the Wren algorithm (Table 4 and Figure 12) is
performed at the level of design components, marking their explicitly presented
interrelation (Figure 13). In terms of simplicity, the script, which was created by the
authors to automatically collect the required data, recognises the clustered design
components as single-node design components. Clusters are like global functions
in programming, capable of being infinitely reused in a programme.

Irrespective of cluster organisation, most design components are grouped by
the developer in coloured bounding rectangles (Figure 13) for the purposes of
clarity. While this kind of grouping does not imply any functional consequences,
groups are indicative of the developer’s notion of design modules. To that end, a
second level of analysis was performed (Figure 14) to juxtapose the developer’s

17hllps://gith ub.com/wikihouseproject/Wren/blob/master/WikiHouse_ WREN_(v4.3).gh

20/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://github.com/wikihouseproject/Wren/blob/master/WikiHouse_WREN_(v4.3).gh
https://doi.org/10.1017/dsj.2021.11

Design Science

Table 4. Wren modularity analysis overview

Modularity analysis (Blondel et al. 2008)

Nodes Edges Modularity index [—1,1] Number of modules

Design components Drawn between the 0.763 35
output of one
component and the
input of another

>y N @ o

Lot e 4’

'GL.@‘ @78_”'/4-- e
gt

]

@@

¢ ®

Figure 12. The modules of the Wren design algorithm. Nodes represent design components. Node colors
separate the bigger modules.'®

8Data collection, analysis and visualisation: authors, software: Gephi.

21/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

procedural phases noted by designer
|

1

— INPUTS LAY OUT SECTION SET OUT SLOTS 2D PROFILE 3D ASSEMBLY DATA EXPORT
=) PROFILE & GRIPS o

CREATE FRAME GRIPS
e — || <—T—group of design components

wervcnrsl e ara vied 25 hey s, sha ating and flose Fanals ence B
e

clustered design components

single-node design components

Figure 13. The Wren algorithm in its native visual programming environment (Grasshopper software). The
magnified call out indicates single components, clustered components and groups of components. There are
more actual connections between design components than the wired connections displayed.'”

LAYOUT SECTION SET OUT SLOTS
INPUTS PROFILE & GRIPS 2D PROFILE 3D ASSEMBLY DATA EXPORT

ekl

Figure 14. Groups of design components (rectangles) and design phases (labels) as set by the Wren developer
to order 1086 design components, compared with the modules (colour) as recognised by the modularity
algorithm in Figure 12.2°

YSource: https://github.com/wikihouseproject/Wren/blob/master/WikiHouse_ WREN_(v4.3).gh,
license: MPL 2.0 (downloadable on June 1st, 2020), edited by the authors.
*Data collection, analysis and visualisation: authors, software: Gephi and Grasshopper.

22/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://github.com/wikihouseproject/Wren/blob/master/WikiHouse_WREN_
https://www.mozilla.org/en-US/MPL/2.0/
https://doi.org/10.1017/dsj.2021.11

Design Science

intended modules (Figure 13) with those detected from the algorithmic modularity
analysis (Figure 12). While no one-to-one coincidence exists between intended-
detected design modules, a certain degree of coincidence above randomness is
observed at the higher level (Figure 14). Also, the detected modules (except cyan-
coloured modules) show a similar coincidence with the procedural design phases
noted by the designer-programmer.

6. Discussion

This section discusses the results presented in Section 5 under the framework
described in Section 2.

6.1. Interpretation of the results

The presented results delineate a wide range of modularity levels: from near
random connectivity (0.112) to fairly modular structures (0.763). According to
Newman & Girvan (2004), most real-world networks lie between 0.3 and 0.7, while
higher values are rare. Therefore, the value of 0.763 corresponds in absolute terms
to a highly modular structure. In general, the performed modularity analysis offers
two different kinds of metrics: the modularity index and the number of modules.

The first metric — described in Section 3 - is not directly affected by the size of
the sample but only by the qualitative attributes of connectivity. An example
regarding the scale-free nature of the modularity index is the relative closeness
between the levels of a single app (0.596) and of Wren (0.763). The former consists
of 22 nodes (parts) and the latter of 1086 nodes (design components). Thus,
different modularity types of the same project can be compared regarding possible
coincidence (the ‘mirroring hypothesis’). Moreover, alternatives (intangible versus
physical) of design modularity, across different projects, can be weighed in regard
to their magnitude.

The number of modules, a secondary metric of modularity analysis, is not scale-
free. Additionally, the number of modules is important as an indicator of the
collaborative potential of each OSH project. According to Benkler (2006), the
greater the number of modules, the greater the potential to attract many contrib-
utors from the community. As outlined in Section 1, the number of modules is also
connected to parallel work and complexity management (Baldwin & Clark 2002),
as well as coordination minimisation (Collopy, Adar, & Papalambros 2020).
However, the number of modules itself is not an adequate metric for assessing
modularity.

Regarding the comparability of modularity types between the cases, two points
should be noted beyond the absolute nature of the modularity index already
analysed. First, the Wren algorithm concerns both the design of a single wikihouse
and a family of wikihouses, proportionate to the OpenStructures family. The
difference lies in the extent and variation of the wikihouse family, which, based
on each user input, is almost infinite. Consequently, the hardware modularity
levels of the output of the Wren algorithm, being either a single wikihouse or a
family of wikihouses, cannot be evaluated without significant assumptions. Sec-
ond, the size of a wikihouse, measured by the number of unique hardware modules,
is similar to the size of A.563 and other OpenStructures apps. Analytically, each
wikihouse features identical but generally custom frames in one direction and

23/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

transverse connectors in the other, with cladding and floor modules between the
frames differentiated only in the case of window or door. To summarise, most
wikihouses consist of approximately six modules in a repeated arrangement. The
difference is that the Wren algorithm includes extra complexity in its intangible
design functions and the subdivision of physical modules into smaller intra-
module components (Figure 5).

6.1.1. Inter-case design modularity levels

Design modularity is the only common modularity type between the cases. The
comparative analysis provides preliminary evidence that intangible design mod-
ularisation is likely to produce more modules than physical design modularisation.
A comparison between Wren and A.563 provides an example of this: both were
designed by a single designer and feature 35 and 5 modules, respectively. Certainly,
turther research is required to compare more pairs of similar size and complexity
before a universal principle can be recognised.

However, intangible design modularisation potentially features increasingly
more modularisation levels compared to the physical modularisation of hardware.
Whether the hardware modularisation strategy is based on material, function,
service frequency or reusability (Bonvoisin et al. 2016), a different but finite upper
limit of modules is anticipated. Conversely, in the case of intangible design
modularisation, the upper limit is potentially more flexible due to the intangible
nature of the design modules. For example, the designer of a wikihouse can keep
adding almost infinite intangible design functions, embedded in a fixed number of
physical modules, whereas s/he faces an upper limit when adding chassis physical
modules for a wikihouse of a specific size.

The comparison between the modularity indices enhances the previously
described outcome in a number of ways. First, the Wren algorithm features greater
design modularity than the A.563 (0.763 versus 0.596). Second, even when compar-
ing the Wren design algorithm with the entire OpenStructures family of hardware,
featuring 102 parts, intangible design modularisation is prevalent (0.763 versus
0.533). These comparisons emphasise the tendency that intangible compared to
physical design modularisation strategies are more effective in yielding more mod-
ules and qualitatively more modular structures. Also, the relative coincidence among
Wren-detected modules and the horizontal (phases) and vertical (groups) ordering
of 1086 design components by the developer is surprising (Figure 14). Even in
complex intangible modularisations, the developer can safely predict actual modules.
Gopsill, Snider, & Hicks (2019) have revealed a significant deviation between
intended and designed modular architectures within CAD environments.

6.1.2. Intra-case modularity levels and the ‘mirroring hypothesis’

Following the comparative evaluation of these cases, we focus on the interrelation
of modularity types in each project independently. Interestingly, for OpenStruc-
tures it may be observed that community modularity is unusually low (0.112), very
close to random connectedness. Community modularity is lower than hardware
modularity, either examined as a single case (0.596) or as a family of hardware
(0.533). Unfortunately, the same comparisons cannot be repeated for Wren. While
WikiHouse consists of a small team based in London, the Wren algorithm was

24/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

created by a single developer. However, in this case the fact that a single developer
produced a highly modular design file (0.763) is surprising.

Consequently, each case features an inverse relation between the levels of
community modularity and the produced modularity either being design or
hardware. Not even a preliminary pattern of correlation among modularity types
was detected. On the contrary, the juxtaposition of the available modularity levels
in each OSH project reveals an interesting but uncommon contradiction relating to
the analogy observed in the software realm, also known as the ‘mirroring hypoth-
esis’ (MacCormack, Baldwin, & Rusnak 2012).

Before expanding on the possible reasoning for the deviation, we note that
MacCormack, Baldwin, & Rusnak (2012) have not tested exactly what is known as
the ‘mirroring hypothesis’ despite a common misunderstanding. First, MacCor-
mack, Baldwin, & Rusnak (2012) axiomatically supposed that firms and OSS
communities are tightly and loosely coupled organisations, respectively, no matter
what the actual or comparative extent of the property is in each case. Next, the
researchers compared proprietary code with OSS in terms of their modifiability,
proving that OSS is more ‘modular’ by a factor of six. Therefore, no quantified
modularity mirroring exists between the examined software and the community. It
is likely that the lack of a unified qualitative and quantitative definition of
modularity, as well as the limitations of utilised metrics — outlined in Section 3 -
has resulted in the vagueness and ambiguity described above.

Regarding our cases, possible explanations for the deviation among modularity
types include the following:

(i) The ‘mirroring hypothesis’ is inaccurate near extreme values and boundary
conditions, as in the case of a single designer or developer.

(ii) Ex post modularisation strategies may result in modular hardware or families
of hardware, yet also monolithic collaboration networks. Top-down modu-
larised hardware may be highly modular, but such modules are less useful
(closed) in another designer’s hardware. Consider the example of the cathe-
dral and the bazaar: one can approximately build both out of cellular Lego
bricks, but one can build only the cathedral out of pinnacles, triforiums and
buttresses. The potential interoperability of modules in practice is not pre-
dicted or captured by the modularity metrics. In OpenStructures, the assump-
tion of ex post modularisation strategies is supported to some extent by the
analysis performed. A considerable portion of the designers (4/16) have not
collaborated with anyone, and few (6/16) have collaborated with more than
one (Figure 11 and Table 3). At the level of parts, almost half of the parts
(20/45) have not been reused in another designer’s app (Figure 9), and very
few have been reused in three or more designers’ apps (Figure 10).

(iii) Asynchronous and distance-based collaboration as well as the self-selection of
tasks may be critical for community modularity to emerge. According to the
OpenStructures website (2020), the design of a significant portion of hard-
ware had been commissioned by museums, galleries or even the OpenStruc-
tures studio itself, revealing a top-down organisation of tasks. Also, the
monolithic and well-connected core of designers (Figure 11) is located mainly
in Brussels (the base of the OpenStructures studio) and nearby cities. In
contrast, designers from Ramallah or Taipei are less well connected to the
central core.

25/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

(iv) Beyond all other parameters, design modularity may also depend on the
design tool. Visual programming - in the case of Wren — may provoke more
modular design than conventional CAD or other design tools. Beeker L,
Pringle, & Pearce (2018) and Oberloier & Pearce (2018) report that the
parametric nature of the code leads to easily customisable designs. For Wren,
the integral distribution of detected modules in procedural phases (Figure 14)
highlights that algorithmic design, due to its inherently procedural nature, is
closer to an inherently modular structure. In contrast, sketching is a highly
nonmodular knowledge structuration process (Brun, Le Masson, & Weil
2016). Bonvoisin et al. (2018) have reported significantly lower distributed
collaboration based on CAD files compared with other design documentation
in OSH. Even in software, the programming paradigm (procedural or object-
oriented language) affects code structure (Baldwin, MacCormack, & Rusnak
2014). The Million Penguins collaborative writing project forms a counter-
example (Shirky 2005), indicating that the open-source model cannot be
applied to any creative realm without first transforming each conventional
workflow (Troxler 2019).

6.2. Limitations

Most limitations in the present article stem from the type of research adopted. The
case studies analysed here offer a plethora of useful and detailed insights, but results
cannot be safely generalised without further systematic investigation. As the OSH
realm is still immature, the selection of the sample is crucial for any future
systematic research.

Additionally, the unconditional positive impact of modularity levels on OSH
development was an axiomatic assumption in this article. In proprietary hardware,
optimal modularity is considered preferable to maximum modularity. In contrast
with OSH and OSS, in the proprietary realm modularity is a tool to manage limited
resources efficiently (Colfer & Baldwin 2016). Further research is required to
investigate the potential drawbacks of high modularity levels in OSH development.

A limitation concerning OpenStructures is that the app design files were
unavailable. The only available design files were the CAD files for single parts.
Therefore, at the lowest analysis level, that of the selected single app A.563, the
detection of dependencies among parts was based on spatial attachment relations
interpreted from photographic documentation. The relative simplicity of the
artifact and the absence of other dependencies (apart from spatial) among modules
ensured the accuracy of data collection and analysis. Even if the app design files
were available, dependencies between CAD entities (lines, arcs, solids or other) are
rarely explicit. Regarding the levels of family of hardware and community analysis,
data collection was restricted to the relations of containment between apps and
parts as explicitly recorded on the project website (OpenStructures 2019). Explicit
relations may not cover the full range of engagement among designers, as described
by Kohtala, Hyysalo, & Whalen (2019).

A less important limitation concerns the recognition of clustered design
components as single-node design components in the Wren case. The simplifica-
tion of the script that collects connectivity data was rated as more important than
accuracy loss. As there are 9 clustered design components in a total of 1086 design
components (translating to less than 1%), the accuracy loss is acceptably low.

26/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

7. Conclusions

The application of an open-source approach to hardware inaugurates a new
research field regarding modularity. This article critically discussed widely used
definitions of modularity to argue that proprietary hardware and OSH are phe-
nomena with distinct motives and theoretical frameworks. First, we provided a
qualitative and quantitative framework to assess modularity in OSH, drawing
mainly from the literature of network science. Second, we presented a tentative
classification of modularity types, attempting to address the full range of OSH
development. Interestingly, intangible design, fabrication and macro modularity
types are unique in the OSH realm and are presented and defined herein, to our
knowledge, for the first time. Such a framework and classification may be integral
for future systematic research in OSH modularity. Moreover, our quantitative
analysis introduced preliminary evidence to argue that intangible design modular-
isation is more effective than exclusively physical modularisation strategies. Our
final remark is that the ‘mirroring hypothesis’ is not a universal pattern in OSH.
The selection of design tools as well as the modularisation strategy (ex ante or ex
post) may affect the levels of modularity types.

It would be interesting to explore whether other network structural properties
such as hierarchy counteract or enhance the impact of modularity. Existing
approaches in literature (Baldwin, MacCormack, & Rusnak 2014), which correlate
modularity with hierarchy, have implemented arbitrary thresholds in order to
classify structures. Therefore, the quantification methodology and the meaning of
other structural metrics (hierarchy, commonality and combinability, among
others) in each OSH modularity type is a promising research topic per se. Another
promising direction is the mapping of modularity levels along the phases of the
development of successful OSH projects. As even the larger projects begin locally
with a small team, the recognition of a common pattern may reveal the stages by
which quantitative change provokes or requires qualitative reform. By mapping the
different types of modularity in OSH, we hope that this paper may prompt a
discussion into a wide but less-explored subset in OSH and beyond.

Glossary

CAD Computer Aided Design

CNC Computerized Numerical Control
DSM Design Structure Matrix

OSH Open-Source Hardware

OSS Open-Source Software

Acknowledgements

Network analyses and visualisations were generated with the free and open-source
Gephi software. We thank three anonymous reviewers whose comments/sugges-
tions helped improve and clarify this manuscript. V.K. acknowledges funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant No. 802512). Authors acknowledge
financial support from the Hellenic Academic Libraries Link (HEAL) regarding
article processing charge (APC).

27/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.11

Design Science

References

Albers, A., Bursac, N., Scherer, H., Birk, C., Powelske, J. & Muschik, S. 2019 Model-based
systems engineering in modular design. Design Science 5 (el7), 1-33; doi:10.1017/
dsj.2019.15.

Asikoglu, O. 2012 A new method for evaluating design dependencies in product architectures
(PhD Thesis). Department of Industrial and Manufacturing Engineering, The Penn-
sylvania State University.

Baldwin, C. Y. & Clark, K. B. 2000 Design Rules, Volume 1: The Power of Modularity. MIT
Press.

Baldwin, C. Y. & Clark, K. B. 2002 The option value of modularity in design: An example
from Design rules, volume 1: The power of modularity. Harvard NOM Working Paper
No. 02-13, Harvard Business School Working Paper No. 02-078, pp. 1-15; doi:10.2139/
ssrn.312404.

Baldwin, C. Y. & Clark, K. B. 2003 Managing in an age of modularity. In Managing in the
Modular Age: Architectures, Networks, and Organizations (ed. R. Garud, A. Kumar-
aswamy & R. Langlois), pp. 84-93. Blackwell Publishers.

Baldwin, C. Y. & Clark, K. B. 2006 The architecture of participation: Does code architecture
mitigate free riding in the open source development model? Management Science 52 (7),
1116-1127; doi:10.1287/mnsc.1060.0546.

Baldwin, C. Y., MacCormack, A. & Rusnak, J. 2014 Hidden structure: Using network
methods to map system architecture. Research Policy 43 (8), 1381-1397; doi:10.1016/j.
respol.2014.05.004.

Balka, K., Raasch, C. & Herstatt, C. 2009 Open source enters the world of atoms: A
statistical analysis of open design. First Monday 14 (11); doi:10.5210/fm.v14i11.2670.

Ball, Z. & Lewis, K. 2018 Observing network characteristics in mass collaboration design
projects. Design Science 4 (e4), 1-31; doi:10.1017/dsj.2017.26.

Beeker L, Y., Pringle, A. & Pearce, J. 2018 Open-source parametric 3-d printed slot die
system for thin film semiconductor processing. Additive Manufacturing 20, 90-100; doi:
10.1016/j.addma.2017.12.004.

Benkler, Y. 2006 The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. 2008 Fast unfolding of
communities in large networks. Statistical Mechanics Theory and Experiment 2008 (10),
1-12; doi:10.1088/1742-5468/2008/10/P10008.

Boisseau, E., Omhover, J.-F. & Bouchard, C. 2018 Open-design: A state of the art review.
Design Science 4 (e3), 1-44; doi:10.1017/dsj.2017.25.

Bonarini, A., Matteucci, M., Migliavacca, M. & Rizzi, D. 2014 R2P: An open source
hardware and software modular approach to robot prototyping. Robotics and Auton-
omous Systems 62 (7), 1073-1084; doi:10.1016/j.robot.2013.08.009.

Bonvoisin, J., Buchert, T., Preidel, M. & Stark, R. 2018 How participative is open source
hardware? Insights from online repository mining. Design Science 4 (e19), 1-31; doi:
10.1017/dsj.2018.15.

Bonvoisin, J., Halstenberg, F., Buchert, T. & Stark, R. 2016 A systematic literature review
on modular product design. Engineering Design 27 (7), 488-514; doi:
10.1080/09544828.2016.1166482.

Bonvoisin, J. & Mies, R. 2018 Measuring openness in open source hardware with the open-
o-meter. Procedia CIRP 78, 388-393; doi:10.1016/j.procir.2018.08.306.

Bonvoisin, J., Molloy, J., Haeuer, M. & Wenzel, T. 2020 Standardisation of practices in
open source hardware. Open Hardware 4 (1), 1-11; doi:10.5334/joh.22.

28/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.15
https://doi.org/10.1017/dsj.2019.15
https://doi.org/10.2139/ssrn.312404
https://doi.org/10.2139/ssrn.312404
https://doi.org/10.1287/mnsc.1060.0546
https://doi.org/10.1016/j.respol.2014.05.004
https://doi.org/10.1016/j.respol.2014.05.004
https://doi.org/10.5210/fm.v14i11.2670
https://doi.org/10.1017/dsj.2017.26
https://doi.org/10.1016/j.addma.2017.12.004
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1017/dsj.2017.25
https://doi.org/10.1016/j.robot.2013.08.009
https://doi.org/10.1017/dsj.2018.15
https://doi.org/10.1080/09544828.2016.1166482
https://doi.org/10.1016/j.procir.2018.08.306
https://doi.org/10.5334/joh.22
https://doi.org/10.1017/dsj.2021.11

Design Science

Boujut, J.-F. 2019 The emerging phenomenon of open source hardware design. In JAIST
World Conference (JWC2019) Advanced Design Creativity Track. Kanasawa: Japan.

Braha, D. & Bar-Yam, Y. 2007 The statistical mechanics of complex product development:
Empirical and analytical results. Management Science 53 (7), 1127-1145; doi:10.1287/
mnsc.1060.0617.

Brun, J., Le Masson, P. & Weil, B. 2016 Designing with sketches: The generative effects of
knowledge preordering. Design Science 2 (el3), 1-26; doi:10.1017/dsj.2016.13.

Brusoni, S. & Prencipe, A. 2001 Unpacking the black box of modularity: Technologies,
products and organizations. Industrial and Corporate Change 10 (1), 179-205; doi:
10.1093/icc/10.1.179.

Cabigiosu, A., Zirpoli, F. & Camuffo, A. 2013 Modularity, interfaces definition and the
integration of external sources of innovation in the automotive industry. Research Policy
42 (3), 662-675; doi:10.1016/j.respol.2012.09.002.

Campagnolo, D. & Camuffo, A. 2010 The concept of modularity in management studies: A
literature review. Management Review 12 (3), 259-283; doi:10.1111/j.1468-
2370.2009.00260.x.

Colfer, L. J. & Baldwin, C. Y. 2016 The mirroring hypothesis: Theory, evidence, and
exceptions. Industrial and Corporate Change 25 (5), 709-738; doi:10.1093/icc/dtw027.

Collopy, A. X., Adar, E. & Papalambros, P. Y. 2020 On the use of coordination strategies in
complex engineered system design projects. Design Science 6 (e32), 1-43; doi:10.1017/
dsj.2020.29.

Emanuel, A. W. R., Wardoyo, R. & Istiyanto, J. E. 2011 Modularity index metrics for java-
based open source software projects. Advanced Computer Science and Applications
(ITACSA) 2 (11), 52-58; doi:10.14569/[JACSA.2011.021109.

Eppinger, S. D., Whitney, D. E., Smith, R. P. & Gebala, D. A. 1994 A model-based method
for organizing tasks in product development. Research in Engineering Design 6 (1), 1-13;
doi:10.1007/BF01588087.

Erens, F. & Verhulst, K. 1997 Architectures for product families. Computers in Industry 33
(2-3), 165-178; doi:10.1016/S0166-3615(97)00022-5.

Erixon, G., Von Yxkull, A. & Arnstrém, A. 1996 Modularity — The basis for product and
factory reengineering. CIRP Annals 45 (1), 1-6; doi:10.1016/S0007-8506(07)63005-4.

Fellini, R., Kokkolaras, M., Michelena, N., Papalambros, P., Perez-Duarte, A., Saitou, K.
& Fenyes, P. 2004 A sensitivity-based commonality strategy for family products of mild
variation, with application to automotive body structures. Structural and Multidisci-
plinary Optimization 27, 89-96; doi:10.1007/s00158-003-0356-x.

Fixson, S. K. 2007 Modularity and commonality research: Past developments and future
opportunities. Concurrent Engineering 15 (2), 85-111;doi:10.1177/1063293X07078935.

Fixson, S. K. & Park, J.-K. 2008 The power of integrality: Linkages between product
architecture, innovation, and industry structure. Research Policy 37 (8), 1296-1316; doi:
10.1016/j.respol.2008.04.026.

Frigant, V. & Talbot, D. 2005 Technological determinism and modularity: Lessons from a
comparison between aircraft and auto industries in Europe. Industry and Innovation 12,
337-355; doi:10.1080/13662710500195934.

Gavras, K. 2019 Open source beyond software: Re-invent open design on the common’s
ground. Peer Production 13, http://peerproduction.net/editsuite/issues/issue-13-open/
peer-reviewed-papers/open-source-beyond-software/.

Gentile, P. D. 2013 Theory of modularity, a hypothesis. Procedia Computer Science 20,
203-209; doi:10.1016/j.procs.2013.09.262.

29/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1287/mnsc.1060.0617
https://doi.org/10.1287/mnsc.1060.0617
https://doi.org/10.1017/dsj.2016.13
https://doi.org/10.1093/icc/10.1.179
https://doi.org/10.1016/j.respol.2012.09.002
https://doi.org/10.1111/j.1468-2370.2009.00260.x
https://doi.org/10.1111/j.1468-2370.2009.00260.x
https://doi.org/10.1093/icc/dtw027
https://doi.org/10.1017/dsj.2020.29
https://doi.org/10.1017/dsj.2020.29
https://doi.org/10.14569/IJACSA.2011.021109
https://doi.org/10.1007/BF01588087
https://doi.org/10.1016/S0166-3615(97)00022-5
https://doi.org/10.1016/S0007-8506(07)63005-4
https://doi.org/10.1007/s00158-003-0356-x
https://doi.org/10.1177/1063293X07078935
https://doi.org/10.1016/j.respol.2008.04.026
https://doi.org/10.1080/13662710500195934
http://peerproduction.net/editsuite/issues/issue-13-open/peer-reviewed-papers/open-source-beyond-software/
http://peerproduction.net/editsuite/issues/issue-13-open/peer-reviewed-papers/open-source-beyond-software/
https://doi.org/10.1016/j.procs.2013.09.262
https://doi.org/10.1017/dsj.2021.11

Design Science

Gopsill, J. A., Snider, C. & Hicks, B. J. 2019 The emergent structures in digital engineering
work: What can we learn from dynamic DSMs of near-identical systems design projects?
Design Science 5 (€28), 1-29; doi:10.1017/ds}.2019.20.

Greve, E., Rennpferdt, C. & Krause, D. 2020 Harmonizing cross-departmental perspec-
tives on modular product families. Procedia CIRP 91, 452-457; doi:10.1016/j.pro-
¢ir.2020.02.198.

Guo, F. & Gershenson, J. K. 2003 Comparison of modular measurement methods based on
consistency analysis and sensitivity analysis. In Proceedings of the ASME 2003 Inter-
national Design Engineering Technical Conferences and Computers and Information in
Engineering Conference. 3b: 15th International Conference on Design Theory and
Methodology, Chicago, IL, USA, September 2-6, pp. 393-401. ASME; doi:10.1115/
DETC2003/DTM-48634.

Guo, F. & Gershenson, J. K. 2004 A comparison of modular product design methods based
on improvement and iteration. In Proceedings of the ASME 2004 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. 3a: 16th International Conference on Design Theory and Methodology, Salt
Lake City, UT, USA, September 28-October 2, pp. 261-269. ASME; doi:10.1115/
DETC2004-57396.

Hackl, J., Krause, D., Otto, K., Windheim, M., Moon, S. K., Bursac, N. & Lachmayer, R.
2019 Impact of modularity decisions on a firm’s economic objectives. Mechanical
Design 142 (4), 403-414; doi:10.1115/1.4044914.

Halman, J. I. M., Voordijk, J. T. & Reymen, I. M. M. 2008 Modular approaches in Dutch
house building: An exploratory survey. Housing Studies 23 (5), 781-799; doi:
10.1080/02673030802293208.

Holtta-Otto, K., Chiriac, N. A., Lysy, D. & Suh, E. S. 2012 Comparative analysis of
coupling modularity metrics. Engineering Design 23 (10-11), 790-806; doi:
10.1080/09544828.2012.701728.

Holttd-Otto, K. & de Weck, O. 2007 Degree of modularity in engineering systems and
products with technical and business constraints. Concurrent Engineering 15 (2),
113-126; doi:10.1177/1063293X07078931.

Huang, C.-C. & Kusiak, A. 1998 Modularity in design of products and systems. IEEE
Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans 28 (1),
66-77; doi:10.1109/3468.650323.

Johnson, T. H. & Broms, A. 2000 Profit beyond Measure. The Free Press.

Jung, S. & Simpson, T. W. 2016 New modularity indices for modularity assessment and
clustering of product architecture. Engineering Design 28 (1), 1-22; doi:
10.1080/09544828.2016.1252835.

Kohtala, C., Hyysalo, S. & Whalen, J. 2019 A taxonomy of users’ active design engagement
in the 21st century. Design Studies 67, 27-54; doi:10.1016/j.destud.2019.11.008.

Koren, Y., Hu, S. J., Gu, P. & Shpitalni, M. 2013 Open-architecture products. CIRP Annals
62 (2), 719-729; doi:10.1016/j.cirp.2013.06.001.

Kostakis, V. 2019 How to reap the benefits of the “digital revolution”? Modularity and the
commons. Halduskultuur: The Estonian Journal of Administrative Culture and Digital
Governance 20 (1), 4-19; doi:10.32994/hk.v20i1.228.

Kostakis, V., Niaros, V., Dafermos, G. & Bauwens, M. 2015 Design global, manufacture
local: Exploring the contours of an emerging productive model. Futures 73, 126-135;
doi:10.1016/j.futures.2015.09.001.

Kostakis, V. & Papachristou, M. 2014 Commons-based peer production and digital
fabrication: The case of a reprap-based, lego-built 3d printing-milling machine. Tele-
matics and Informatics 31 (3), 434-443; doi:10.1016/j.tele.2013.09.006.

30/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.20
https://doi.org/10.1016/j.procir.2020.02.198
https://doi.org/10.1016/j.procir.2020.02.198
https://doi.org/10.1115/DETC2003/DTM-48634
https://doi.org/10.1115/DETC2003/DTM-48634
https://doi.org/10.1115/DETC2004-57396
https://doi.org/10.1115/DETC2004-57396
https://doi.org/10.1115/1.4044914
https://doi.org/10.1080/02673030802293208
https://doi.org/10.1080/09544828.2012.701728
https://doi.org/10.1177/1063293X07078931
https://doi.org/10.1109/3468.650323
https://doi.org/10.1080/09544828.2016.1252835
https://doi.org/10.1016/j.destud.2019.11.008
https://doi.org/10.1016/j.cirp.2013.06.001
https://doi.org/10.32994/hk.v20i1.228
https://doi.org/10.1016/j.futures.2015.09.001
https://doi.org/10.1016/j.tele.2013.09.006
https://doi.org/10.1017/dsj.2021.11

Design Science

Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N., Jonas H. & Rettberg R. 2014
Integrated development of modular product families: A methods toolkit. In Advances in
Product Family and Product Platform Design (ed. T. Simpson, J. Jiao, Z. Siddique & K.
Holtta-Otto), pp. 245-269. Springer; doi:10.1007/978-1-4614-7937-6_10.

Li, Z., Seering, W., Ramos, J. D., Yang, M. & Robert, W. D. 2017 Why open source?
Exploring the motivations of using an open model for hardware. In Proceedings of the
ASME 2017 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. 1: 37th Computers and Information in Engi-
neering Conference, Cleveland, OH, USA, August 6-9. ASME; doi:10.1115/DETC2017-
68195.

MacCormack, A., Baldwin, C. Y. & Rusnak, J. 2012 Exploring the duality between product
and organizational architectures: A test of the “mirroring” hypothesis. Research Policy
41, 1309-1324; doi:10.1016/j.respol.2012.04.011.

MacCormack, A., Rusnak, J. & Baldwin, C. Y. 2006 Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Management
Science 52 (7), 1015-1030; doi:10.1287/mnsc.1060.0552.

Maier, J. F., Eckert, C. M. & Clarkson, J. P. 2017 Model granularity in engineering design —
Concepts and framework. Design Science 3 (el), 1-29; doi:10.1017/dsj.2016.16.

Milev, R., Muegge, S. & Weiss, M. 2009 Design evolution of an open source project using an
improved modularity metric. In Open Source Ecosystems: Diverse Communities Inter-
acting (ed. C. Boldyreff, K. Crowston, B. Lundell & A.I. Wasserman), OSS 2009, IFIP
Advances in Information and Communication Technology, 299, pp. 20-33. Springer;
doi:10.1007/978-3-642-02032-2_4.

Newcomb, P. J., Bras, B. & Rosen, D. W. 1998 Implications of modularity on product
design for the life cycle. Mechanical Design 120 (3), 483-490; doi:10.1115/1.2829177.

Newman, M. E. J. 2004 Analysis of weighted networks. Physical Review E 70 (5); doi:
10.1103/PhysRevE.70.056131.

Newman, M. E. J. & Girvan, M. 2004 Finding and evaluating community structure in
networks. Physical Review E 69 (2); doi:10.1103/PhysRevE.69.026113.

Oberloier, S. & Pearce, J. 2018 General design procedure for free and open-source hardware
for scientific equipment. Designs 2 (1), 1-15; doi:10.3390/designs2010002.

Open Source Hardware Association 2020 Open Source Hardware (OSHW) Statement of
Principles 1.0, online document (downloadable on December 10th 2020) http://www.
oshwa.org/definition/.

OpenStructures 2019 Online document (downloadable on December 10th 2020) https://
web.archive.org/web/20190526015049/http://beta.openstructures.net/pages/2,
archived: 26 May 2019.

OpenStructures 2020 Online document (downloadable on December 10th 2020) http://
openstructures.net/.

Pahl, G., Beitz, W., Feldhusen, J. & Grote, K.-H. 2007 Engineering Design: A Systematic
Approach, 3rd edn. Springer.

Pandremenos, J., Paralikas, J., Salonitis, K. & Chryssolouris, G. 2008 Modularity concepts
for the automotive industry: A critical review. CIRP Manufacturing Science and Tech-
nology 1 (3), 148-152; doi:10.1016/j.cirpj.2008.09.012.

Papalambros, P. Y. 2015 Design science: Why, what and how. Design Science 1 (el), 1-38;
doi:10.1017/dsj.2015.1.

Paparistodimou, G., Duffy, A., Whitfield, R. I., Knight, P. & Robb, M. 2020 A network
tool to analyse and improve robustness of system architectures. Design Science 6 (e8),
1-40; doi:10.1017/dsj.2020.6.

31/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1007/978-1-4614-7937-6_10
https://doi.org/10.1115/DETC2017-68195
https://doi.org/10.1115/DETC2017-68195
https://doi.org/10.1016/j.respol.2012.04.011
https://doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1017/dsj.2016.16
https://doi.org/10.1007/978-3-642-02032-2_4
https://doi.org/10.1115/1.2829177
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.3390/designs2010002
http://www.oshwa.org/definition/
http://www.oshwa.org/definition/
https://web.archive.org/web/20190526015049/http://beta.openstructures.net/pages/2
https://web.archive.org/web/20190526015049/http://beta.openstructures.net/pages/2
http://openstructures.net/
http://openstructures.net/
https://doi.org/10.1016/j.cirpj.2008.09.012
https://doi.org/10.1017/dsj.2015.1
https://doi.org/10.1017/dsj.2020.6
https://doi.org/10.1017/dsj.2021.11

Design Science

Parnas, D. L. 1972 On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15 (12), 1053-1058; doi:10.1145/361598.361623.

Pearce, J. M. 2015 Quantifying the value of open source hardware development. Modern
Economy 6, 1-11; doi:10.4236/me.2015.61001.

Persson, M. & Ahlstrom, P. 2006 Managerial issues in modularising complex products.
Technovation 26 (11), 1201-1209; doi:10.1016/j.technovation.2005.09.020.

Piccolo, S. A., Lehmann, S. & Maier, A. 2018 Design process robustness: A bipartite
network analysis reveals the central importance of people. Design Science 4 (el), 1-29;
doi:10.1017/dsj.2017.32.

Priavolou, C. & Niaros, V. 2019 Assessing the openness and conviviality of open source
technology: The case of the wikihouse. Sustainability 11 (17), 1-16; doi:10.3390/
sulll74746.

Raasch, C., Herstatt, C. & Balka, K. 2009 On the open design of tangible goods. R&D
Management 39 (4), 382-393; doi:10.1111/j.1467-9310.2009.00567 x.

Raymond, E. S. 2000 The cathedral and the bazaar, online document (downloadable on
December 10th 2020) http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/.

Salvador, F. 2007 Toward a product system modularity construct: Literature review and
reconceptualization. IEEE Transactions on Engineering Management 54 (2), 219-240;
doi:10.1109/TEM.2007.893996.

Sanchez, R. & Mahoney, J. T. 1996 Modularity, flexibility, and knowledge management in
product and organization design. Strategic Management 17 (S2), 63-76; doi:10.1002/
smj.4250171107.

Sarkar, S. & Dong, A. 2011 Characterizing modularity, hierarchy and module interfacing in
complex design systems. In Proceedings of the ASME 2011 International Design Engi-
neering Technical Conferences and Computers and Information in Engineering Confer-
ence. 9: 23rd International Conference on Design Theory and Methodology; 16th Design
for Manufacturing and the Life Cycle Conference, Washington, DC, USA, August 28-31,
pp- 375-384. ASME; doi:10.1115/DETC2011-47992.

Sharman, D., Yassine, A. & Carlile, P. 2002 Characterizing modular architectures. In
Proceedings of the ASME 2002 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. 4: 14th International
Conference on Design Theory and Methodology, Integrated Systems Design, and Engi-
neering Design and Culture, Montreal, Quebec, Canada, September 29-October
2, pp. 265-278. ASME; doi:10.1115/DETC2002/DTM-34024.

Shirky, C. 2005 Epilogue: Open source outside the domain of software. In Perspectives on

Free and Open Source Software (ed.J. Feller, B. Fitzgerald, S. A. Hissam & K. R. Lakhani),
pp- 483-488. The MIT Press.

Simon, H. A. 1962 The architecture of complexity. Proceedings of the American Philo-
sophical Society 106 (6), 467-482.

Sosa, M., Eppinger, S. & Rowles, C. 2003 Identifying modular and integrative systems and
their impact on design team interactions. Mechanical Design 125 (2), 240-252; doi:
10.1115/1.1564074.

Sosa, M., Eppinger, S. & Rowles, C. 2004 The misalignment of product architecture and
organizational structure in complex product development. Management Science 50 (12),
1674-1689; doi:10.1287/mnsc.1040.0289.

Sosa, M., Eppinger, S. & Rowles, C. 2007 A network approach to define modularity of
components in complex products. Mechanical Design 129 (11), 1118-1129; doi:
10.1115/1.2771182.

32/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1145/361598.361623
https://doi.org/10.4236/me.2015.61001
https://doi.org/10.1016/j.technovation.2005.09.020
https://doi.org/10.1017/dsj.2017.32
https://doi.org/10.3390/su11174746
https://doi.org/10.3390/su11174746
https://doi.org/10.1111/j.1467-9310.2009.00567.x
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://doi.org/10.1109/TEM.2007.893996
https://doi.org/10.1002/smj.4250171107
https://doi.org/10.1002/smj.4250171107
https://doi.org/10.1115/DETC2011-47992
https://doi.org/10.1115/DETC2002/DTM-34024
https://doi.org/10.1115/1.1564074
https://doi.org/10.1287/mnsc.1040.0289
https://doi.org/10.1115/1.2771182
https://doi.org/10.1017/dsj.2021.11

Design Science

Sosa, M. E., Eppinger, S. D. & Rowles, C. M. 2000 Designing modular and integrative
systems. In Proceedings of the ASME 2000 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. 4: 12th Inter-
national Conference on Design Theory and Methodology, Baltimore, Maryland, USA,
September 10-13, pp. 303-312. ASME; doi:10.1115/DETC2000/DTM-14571.

Stake, R. 1995 The Art of Case Study Research. Sage.

Starr, M. K. 1965 Modular production — A new concept. Harvard Business Review 43 (6),
131-142.

Steward, D. V. 1981 The design structure system: A method for managing the design of
complex systems. IEEE Transactions on Engineering Management 28 (3), 71-74; doi:
10.1109/TEM.1981.6448589.

Troxler, P. 2019 Building open design as a commons. In The Critical Makers Reader: (Un)
Learning Technology (ed. L. Bogers & L. Chiappini), pp. 218-226. Institute of Network
Cultures.

Ulrich, K. 1994 Fundamentals of product modularity. In Management of Design (ed. S. Dasu
& C. Eastman), 219-231. Springer; doi:10.1007/978-94-011-1390-8_12.

Ulrich, K. 1995 The role of product architecture in the manufacturing firm. Research Policy
24 (3), 419-440; doi:10.1016/0048-7333(94)00775-3.

Ulrich, K. & Seering, W. P. 1990 Function sharing in mechanical design. Design Studies 11
(4), 223-234; d0i:10.1016/0142-694X(90)90041-A.

Whitfield, R. L., Smith, J. S. & Dufty, A. B. 2002 Identifying component modules. In
Artificial Intelligence in Design 02 (ed. J. S. Gero), pp. 571-592. Springer; doi:
10.1007/978-94-017-0795-4_27.

WikiHouse 2018a About Wikihouse, online document (downloadable on December 10th
2020) https://web.archive.org/web/20180413230102/https://wikihouse.cc/about,
archived: 13 Apr 2018.

WikiHouse 2018b Homepage, online document (downloadable on December 10th 2020).
https://web.archive.org/web/20180212183830/https://wikihouse.cc/, archived: 12 Feb
2018.

WikiHouse 2020 Homepage, online document (downloadable on December 10th 2020).
https://wikihouse.cc/.

Yu, L. & Ramaswamy, S. 2007 Verifying design modularity, hierarchy, and interaction
locality using data clustering techniques. In Proceedings of the 45th Annual Southeast
Regional Conference (ACM-SE 45), pp. 419-424. ACM: New York, NY, USA. http://dx.
doi.org/10.1145/1233341.1233417.

Yu, T.-L., Yassine, A. A. & Goldberg, D. E. 2007 An information theoretic method for
developing modular architectures using genetic algorithms. Research in Engineering
Design 18 (2), 91-109; doi:10.1007/500163-007-0030-1.

33/33

https://doi.org/10.1017/dsj.2021.11 Published online by Cambridge University Press

https://doi.org/10.1115/DETC2000/DTM-14571
https://doi.org/10.1109/TEM.1981.6448589
https://doi.org/10.1007/978-94-011-1390-8_12
https://doi.org/10.1016/0048-7333(94)00775-3
https://doi.org/10.1016/0142-694X(90)90041-A
https://doi.org/10.1007/978-94-017-0795-4_27
https://web.archive.org/web/20180413230102/https:/wikihouse.cc/about
https://web.archive.org/web/20180212183830/https:/wikihouse.cc/
https://wikihouse.cc/
https://doi.org/http://dx.doi.org/10.1145/1233341.1233417
https://doi.org/http://dx.doi.org/10.1145/1233341.1233417
https://doi.org/10.1007/s00163-007-0030-1
https://doi.org/10.1017/dsj.2021.11

	Mapping the types of modularity in open-source hardware
	1. Introduction
	2. Research design
	2.1. Research scope
	2.2. Research significance
	2.3. Research methods

	3. Modularity in the OSH
	3.1. Qualitative definition
	3.2. Modularity metrics

	4. Types of modularity in OSH
	4.1. Presentation of the cases
	4.1.1. OpenStructures
	4.1.2. WikiHouse

	4.2. Typology of modularity
	4.2.1. Modularity types in product design literature
	4.2.2. Modularity types derived from the selected OSH cases

	5. Quantifying modularity
	5.1. OpenStructures
	5.2. WikiHouse (Wren)

	6. Discussion
	6.1. Interpretation of the results
	6.1.1. Inter-case design modularity levels
	6.1.2. Intra-case modularity levels and the ‘mirroring hypothesis’

	6.2. Limitations

	7. Conclusions
	Glossary
	Acknowledgements
	References

