Canad. Math. Bull. Vol. 42 (2), 1999 pp. 231-236

Generating Ideals in Rings of Integer-Valued Polynomials

David E. Rush

Abstract. Let *R* be a one-dimensional locally analytically irreducible Noetherian domain with finite residue fields. In this note it is shown that if *I* is a finitely generated ideal of the ring Int(R) of integer-valued polynomials such that for each $x \in R$ the ideal $I(x) = \{ f(x) \mid f \in I \}$ is strongly *n*-generated, $n \ge 2$, then *I* is *n*-generated, and some variations of this result.

Let *R* be an integral domain with quotient field *K* and let Int(R) be the ring of integervalued polynomials on R. Thus $Int(R) = \{ f \in K[X] \mid f(R) \subseteq R \}$. The ring Int(R)has been much studied since it was considered in the 1919 articles of Ostrowski [10] and Polya [11] for the case that *R* is the ring of integers in an algebraic number field. For example see [2] and the references listed there. In [6] Gilmer and Smith answered a question of Brizolis [1] by showing that in the case that R is the ring Z of rational integers, each finitely generated ideal of Int(R) is generated by two elements. Since Int(Z) is a Prüfer domain [2, Theorem VI.1.7], the finitely generated ideals of Int(R) are invertible. Results showing that each invertible ideal of Int(R) is two-generated for larger classes of one-dimensional domains R were given in [3], [9], [12], [4], [13] and [2, Theorem VIII.4.3]. In this note we give some results on numbers of generators of possibly non-invertible finitely generated ideals of Int(R). In particular, if for example R is local with multiplicity e(R) it follows e(R) + 1 is a uniform bound on the number of elements required to generate any finitely generated ideal I of the two-dimensional non-Noetherian ring Int(R). We say that an ideal I of a ring A is *n*-generated if it can be generated by *n* elements, and strongly *n*-generated if each nonzero element of *I* is a member of an *n*-element generating set for *I*. The ring *A* is said to have the *n*-generator property (strong *n*-generator property) if each finitely generated ideal of *R* is *n*-generated (strongly *n*-generated). It is shown that if *R* is a one-dimensional Noetherian locally analytically irreducible integral domain with finite residue fields, and if I is a finitely generated ideal of Int(R) such that for some integer $n \ge 2$, I(x) is strongly *n*-generated for each $x \in R$, then I is *n*-generated. If in addition R is a semilocal, then I(x)is (n-1)-generated for each $x \in R$ if and only if *I* is strongly *n*-generated. We give some of our results for the ring of integer-valued polynomials in several variables.

1 Preliminary Results

Let *R* be a Noetherian integral domain with quotient field *K*. If *d* is a positive integer we let $\text{Int}(R^{(d)}) = \{f \in K[X_1, \ldots, X_d] \mid f(R^{(d)}) \subseteq R\}$. (We write $S^{(d)}$ for cartesian product to distinguish it from a product of ideals.) We write **X** for (X_1, \ldots, X_d) and **a** for $(a_1, \ldots, d_d) \in R^{(d)}$. An ideal *I* of $\text{Int}(R^{(d)})$ is said to be *unitary* if $I \cap R \neq \{0\}$. Let

Received by the editors July 10, 1997.

AMS subject classification: 13B25, 13F20, 13F05.

[©]Canadian Mathematical Society 1999.

 $I(\mathbf{a}) = \{ f(\mathbf{a}) \mid f \in I \}$. Following [2] we say that $Int(R^{(d)})$ has the almost strong Skolem property if for finitely generated unitary ideals I and J of $Int(R^{(d)})$, $I(\mathbf{a}) = J(\mathbf{a})$ for each $\mathbf{a} \in R^{(d)} \Rightarrow I = J$. Recall that a local ring (R, m) is said to be analytically irreducible if its *m*-adic completion (\hat{R}, \hat{m}) is an integral domain, and a Noetherian domain R is said to be *locally analytically irreducible* if R_m is analytically irreducible for each maximal ideal m of R. The relevance of this property lies in the following theorem:

Theorem 1.1 ([2, Proposition XI.3.8]) If R be a one-dimensional locally analytically irreducible domain with finite residue fields, then Int ($R^{(d)}$) has the almost strong Skolem property.

The following result will be needed later.

Lemma 1.2 ([8, Proposition 4.2]) If R is a zero-dimensional ring and M is a finitely generated R-module such that M_m is n-generated for each maximal ideal m of R, then M is n-generated.

We also need the following simple lemmas which help to clarify the strong *n*-generator hypothesis which is often imposed on the ideals I(x) in what follows. For this we note that only the ideal $\{0\}$ is 0-generated.

Lemma 1.3 Let *I* be a finitely generated ideal of the integral domain *A*, and let $n \in \mathbb{Z}$, $n \ge 1$.

- (1) If I is strongly n-generated and S is a multiplicative subset of A, then IA_S is a strongly n-generated ideal of A_S .
- (2) If A has nonzero Jacobson radical, then I is strongly n-generated if and only if I is (n-1)-generated.

Proof Statement (1) is clear. For (2) let *J* be the Jacobson radical of *R*. For the only if part of (2) first assume n > 1. If $I \neq \{0\}$ is strongly *n*-generated let $\{a_1, \ldots, a_n\}$ be a generating set for *I* with $a_1 \in JI - \{0\}$. Then $I = (a_2, \ldots, a_n)A$ by Nakayama's Lemma. The case n = 1 is similar. The converse implication in (2) is clear.

Lemma 1.4 Let I be a finitely generated ideal of the one-dimensional Noetherian integral domain A and let $n \in \mathbb{Z}$, $n \ge 1$. Consider the following properties of I.

- (1) I is (n-1)-generated.
- (2) I is strongly n-generated.
- (3) IA_m is (n-1)-generated for each maximal ideal m of A.

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$, and if $n \ge 3$, (1), (2) and (3) are equivalent.

Proof That $(1) \Rightarrow (2)$ is clear, and $(2) \Rightarrow (3)$ follows from Lemma 1.3.

The implication (3) \Rightarrow (2) is clear if n = 1. Thus let $n \ge 2$ and let $I \ne \{0\}$ be such that I_m is an (n - 1)-generated ideal of A_m for each maximal ideal m of A. Let $a_1 \in I - \{0\}$. Then I/a_1A is an ideal of A/a_1A which is locally (n - 1)-generated. But since A/a_1A is zero-dimensional, I/a_1A is (n - 1)-generated by Lemma 1.2. Thus a_1 is a member of an n-element generating set for I.

That (3) \Rightarrow (1) if $n \ge 3$ follows from a Theorem of Forster and Swan. For example see [7, p. 108, Corollary 2.14].

232

The proof of the following lemma is the same as that given in the proof of [2, Proposition XI.3.10]. See [2, Proposition VII.1.11] for the one variable case.

Lemma 1.5 Let *R* be a one-dimensional Noetherian domain and *I* a finitely generated unitary ideal of Int ($R^{(d)}$). Then there is a nonzero ideal *J* of *R* such that if $\mathbf{a}, \mathbf{b} \in R^{(d)}$, and $a_i - b_i \in J$ for $i \in \{1, \ldots, d\}$ then $I(\mathbf{a}) = I(\mathbf{b})$.

2 The *n*-Generator Property in Int(*R*)

The following result includes the result [2, Proposition XI.3.10] which gives the case that R is Dedekind (and then n = 2).

Theorem 2.1 Let *R* be a one-dimensional locally analytically irreducible domain with finite residue fields, and let *I* be a finitely generated unitary ideal of $Int(R^{(d)})$. If for some integer $n \ge 2$, $I(\mathbf{x})$ is strongly n-generated for each $\mathbf{x} \in R^{(d)}$, then *I* can be generated by n elements. Moreover, one of the generators may be chosen to be any $r \in I \cap R - \{0\}$.

Proof Let $r \in I \cap R - \{0\}$. It follows from [2, Proposition XI.2.9] that the ring $\operatorname{Int}(R^{(d)})/r(\operatorname{Int}(R))$ is zero-dimensional. Thus by Lemma 1.2 it suffices to show that the ideal $I/r(\operatorname{Int}(R^{(d)}))$ is locally (n-1)-generated. In particular since $\operatorname{Int}(R^{(d)})_S = \operatorname{Int}((R_S)^{(d)})$ for each multiplicative subset S of R [2, Corollary XI.1.8], we may assume R is local. Then by Lemma 1.3, I(x) is (n-1)-generated for each $x \in R$.

By Lemma 1.5 there is a nonzero ideal J of R such that if $\mathbf{a}, \mathbf{b} \in R^{(d)}$, and $a_i - b_i \in J$ for each i then $I(\mathbf{a}) = I(\mathbf{b})$. Since I is finitely generated, we may choose $h_1, \ldots, h_k \in I$ such that for each $\mathbf{x} \in R^{(d)}$, $h_1(\mathbf{x}), \ldots, h_k(\mathbf{x})$ are generators of $I(\mathbf{x})$. We may assume k > n - 1. Let A_1, \ldots, A_e be the subsets of $\{h_1, \ldots, h_k\}$ having cardinality n - 1. If $\mathbf{x} \in R^{(d)}$, then since R is local and $I(\mathbf{x})$ is n-generated, we have $I(\mathbf{x}) = A_i(\mathbf{x})R = (A_i(\mathbf{x}), r)R$ for some $i \in \{1, \ldots, e\}$.

Let $W_i = \{\mathbf{y} \in \hat{R}^{(d)} \mid I(y)\hat{R} = (A_i(\mathbf{y}), r)\hat{R}\}$. We may choose $c \in \mathbb{N}$ such that $m^c \subseteq J$ and such that if $x_i - a_i \in \hat{m}^c$ for each *i* then $h_j(\mathbf{x}) - h_j(\mathbf{a}) \in rR$ for each $j \in \{1, \ldots, e\}$. Then if $\mathbf{x} \in \mathbf{a} + (\hat{m}^c)^{(d)}$ we have $I(\mathbf{x}) = I(\mathbf{a})$ and $(A_i(\mathbf{a}), r)\hat{R} = (A_i(\mathbf{x}), r)\hat{R}$. It follows that W_i is an open and closed subset of $\hat{R}^{(d)}$ for each *i*.

Let $U_1 = W_1$ and for $i \in \{2, ..., e\}$ let $U_i = W_i - (U_1 \cup \cdots \cup U_{i-1})$. The subsets U_i are open and closed in \hat{R} . Let χ_j be the characteristic function of the set U_j for each j. Let t > 0 be such that $m^t \subseteq rR$. Since $Int(R^{(d)})$ is dense in $C(\hat{R}^{(d)}, \hat{R})$ [2, Proposition XI.2.4], there exist $g_j \in Int(R^{(d)})$ such that

$$g_i(\mathbf{x}) - \chi_i(\mathbf{x}) \in \hat{m}^t$$
 for $\mathbf{x} \in \hat{R}^{(d)}$ and $j = 1, \dots, e$.

Let $A_i = \{h_{i1}, \ldots, h_{in-1}\}$, and let $f_j = h_{1j}g_1 + \cdots + h_{ej}g_e$. Then for each $\mathbf{x} \in \hat{R}^{(d)}$ and $j = 1, \ldots, n-1$, we have

$$f_j(\mathbf{x}) = \sum_{i=1}^e h_{ij}(\mathbf{x}) \left[g_i(\mathbf{x}) - \chi_i(\mathbf{x}) \right] + \sum_{i=1}^e h_{ij}(\mathbf{x}) \chi_i(\mathbf{x}).$$

For $\mathbf{x} \in U_s$ this gives $f_j(\mathbf{x}) - h_{sj}(\mathbf{x}) \in m^t \subset rR$. If $\mathbf{x} \in U_s$ we have $I(\mathbf{x}) = (r, A_s(\mathbf{x}))R$. Since $f_j(\mathbf{x}) - h_{sj}(\mathbf{x}) \in rR$, this is $(r, f_1(\mathbf{x}), \ldots, f_{n-1}(\mathbf{x}))R$. Now since $(r, f_1, \ldots, f_{n-1})$ Int (R) and I are unitary, $(r, f_1, \ldots, f_{n-1})$ Int (R) = I by Theorem 1.1.

In the case of integer-valued polynomials in one variable, a standard argument (given in the next proof) shows that it is not necessary to restrict to unitary ideals as was done in the previous Theorem.

Theorem 2.2 Let *R* be a one-dimensional locally analytically irreducible domain with finite residue fields, and let *I* be a finitely generated ideal of Int(R). If I(x) is strongly n-generated for each $x \in R$, $n \ge 2$, then *I* is n-generated. Moreover, one of the generators may be chosen to be any $g \in I$ such that gK[X] = IK[X].

Proof If *I* is not unitary, choose a finite subset *A* of *I* such that $I = A(\operatorname{Int}(R))$. If $g \in I$ is such that IK[X] = gK[X], then $A = gA_1$ for some finite subset A_1 of K[X], and $A_1K[X] = K[X]$. Let $a \in R - \{0\}$ be such that $aA_1 \subseteq R[X]$. Then $aA_1(\operatorname{Int}(R)) = I_1$ is unitary, $gI_1 = aI$ and $I_1(x)$ is strongly *n*-generated since I(x) is. Further, if I_1 is *n*-generated, *I* is also. Thus it suffices to consider the case that *I* is unitary, and $g \in I \cap R$. The result now follows from Theorem 2.1.

Corollary 2.3 Let *R* be a one-dimensional locally analytically irreducible Noetherian domain with finite residue fields. If *R* has the strong *n*-generator property, $n \ge 2$, then Int(*R*) has the *n*-generator property.

Recall that a one-dimensional local Noetherian domain (R, m) has the n-generator property for n = e(R), the multiplicity of R [14, Theorem 3.1.1]. Thus we have the following:

Corollary 2.4 Let R be a one-dimensional locally analytically irreducible Noetherian domain with finite residue fields, and $I \subseteq \text{Int}(\mathbb{R}^{(d)})$ a finitely generated ideal such that $e(\mathbb{R}_m) \leq n$ for each maximal ideal m of R containing $I \cap \mathbb{R}$. If either I is unitary or d = 1, then I can be generated by n + 1 elements.

We end this section by noting that Theorem 2.2 gives, via a result of Gilmer [5], an alternate proof of the following well-known result. See [2, Chapter VI] for an exposition of when Int(R) is Prüfer.

Theorem 2.5 If *R* is a Dedekind domain with finite residue fields, then Int(*R*) is Prüfer.

Proof Since *R* is Dedekind, each ideal of *R* is strongly 2-generated, and thus by Theorem 2.2 each finitely generated ideal of Int(R) is 2-generated. But by [5, Corollary 3], if for some integer *n* each finitely generated ideal of an integral domain *D* is *n*-generated, the integral closure *D'* of *D* is Prüfer. But Int(R) is easily seen to be integrally closed since *R* is [2, Proposition VI]. Thus Int(R) is Prüfer.

3 The Strong *n*-Generator Property in Int(*R*)

We now consider what can be said when the hypothesis of the strong *n*-generator property on the ideals I(x) is weakened to the *n*-generator property. Since the *n*-generator property

trivially implies the strong (n + 1)-generator property, then for R as in Theorem 2.2, if I is a finitely generated ideal of Int(R) such that I(x) is n-generated for each $x \in R$, then by Theorem 2.2 I is (n + 1)-generated. The following result shows that in the case that R is semilocal, Int(R) has the *strong* (n + 1)-generator property. Further, there is a converse.

Theorem 3.1 Let *R* be a semilocal one-dimensional domain which is locally analytically irreducible and has finite residue fields, and let *I* be a finitely generated ideal of Int(R). Then *I* is strongly (n + 1)-generated if and only if I(x) is n-generated for each $x \in R$.

Proof (\Rightarrow) Let $x \in R$. For any $a \in I(x) - \{0\}$ let $f_1 \in I$ be such $a = f_1(x)$. Since I is strongly (n + 1)-generated there exist $f_2, \ldots, f_{n+1} \in I$ such that $I = (f_1, f_2, \ldots, f_{n+1})$. Then $I(x) = (a, f_2(x), \ldots, f_{n+1}(x))R$. Thus I(x) is strongly (n + 1)-generated. Since R is semilocal, it follows from part (2) of Lemma 1.3 that I(x) is n-generated.

(\Leftarrow) As in the proof of Theorem 2.2 we may assume *I* is unitary. Let $g \in I - \{0\}$. To show that *g* is one of n+1 generators let $b \in J(I \cap R) - \{0\}$ where *J* is the Jacobson radical of *R*. By Theorem 2.2 there exist $f_1, \ldots, f_n \in I$ such that $I = (b, f_1, \ldots, f_n)$ Int(*R*). For each $d \in R$ the polynomials $h_i = f_i + bd$ also have the property that $I = (b, h_1, \ldots, h_n)$ Int(*R*). Since *R* is not a field, *R* is infinite, and thus we may choose *d* so that $(g, h_1, \ldots, h_n)K[X] = K[X]$. (In fact if $f_1 \neq 0$ we can choose *d* so that $(g, h_1)K[X] = K[X]$.)

To show $I = (g, h_1, \ldots, h_n)$ Int (R) let $ug + \sum_{i=1}^n v_i h_i = 1$, $u, v_i \in K[X]$. Then for some $c \in R$ we have $cu, cv_i \in R[X]$, and then $(cu)g + \sum_{i=1}^n (cv_i)h_i = c \in I$. Then $I = (b, h_1, \ldots, h_n)$ Int $(R) \subseteq (c, b, h_1, \ldots, h_n)$ Int $(R) \subseteq (g, b, h_1, \ldots, h_n)$ Int $(R) \subseteq I$. Thus $I = (g, b, h_1, \ldots, h_n)$ Int (R). But for each $x \in R$, $I(x) = (g(x), b, h_1(x), \ldots, h_n(x)) R \subseteq II(x) + (g(x), h_1(x), \ldots, h_n(x)) R$. Thus we have $I(x) = (g(x), h_1(x), \ldots, h_n(x)) R$ by Nakayama's Lemma. Since R is locally analytically irreducible, Int (R) has the almost strong Skolem property by Theorem 1.1. Thus since I and (g, h_1, \ldots, h_n) Int(R) are unitary, $I = (g, h_1, \ldots, h_n)$ Int(R).

Corollary 3.2 ([2, Proposition VIII.3.9]) Let *R* be a one-dimensional local domain which is analytically irreducible and has finite residue fields, and let *I* be a finitely generated unitary ideal of Int(R). Then *I* is invertible if and only if I(x) is principal for each $x \in R$.

Proof If I(x) is principal for each $x \in R$, then *I* is strongly 2-generated by Theorem 3.1, and thus locally principal by Lemma 1.3. The converse is clear.

We now have the following counterpart to Corollaries 2.3 and 2.4.

Corollary 3.3 Let R be a one-dimensional locally analytically irreducible semilocal Noetherian domain with finite residue fields and let $n \ge 2$. The following are equivalent:

- (1) $e(R_m) \leq n-1$ for each maximal ideal m of R;
- (2) *R* has the (n-1)-generator property;
- (3) Int(R) has the strong n-generator property.

If instead of the strong *n*-generator hypothesis on the ideals I(x) we have an *n*-generator hypothesis on the localization I_M for each maximal ideal M of Int(R), as occurs when I is invertible, it is easier to bound the generators of I. To illustrate we conclude with a

generalization of [2, Theorem VIII.4.3] which is the case n = 1 of the following result. Although the proof is essentially the same, we include it for the convenience of the reader.

Theorem 3.4 Let R be a one-dimensional Noetherian domain and I a finitely generated ideal of Int (R) such that the ideal I_M of Int (R)_M is n-generated for each maximal ideal M of Int (R). Then I is generated by n + 1-elements, one of which can be chosen to be any element $g \in I$ such that gK[X] = IK[X].

Proof We can reduce to the case where *I* is unitary and $g \in I \cap R$ as in the proof of Theorem 2.2. Then $\operatorname{Int}(R)/g(\operatorname{Int}(R))$ is zero-dimensional by [2, Theorem V.2.2], and the ideal I/(g) of $\operatorname{Int}(R)/g(\operatorname{Int}(R))$ is locally *n*-generated. Since $\operatorname{Int}(R)/g(\operatorname{Int}(R))$ is zero-dimensional, I/(g) is *n*-generated by Lemma 1.2. Thus *I* is (n + 1)-generated.

References

- [1] D. Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials. Comm. Algebra 7(1979), 1065–1077.
- [2] P. J. Cahen and J. L. Chabert, *Integer-valued polynomials*. Math. Surveys Monographs **48**, Amer. Math. Soc., Providence, Rhode Island, 1997.
- [3] J. L. Chabert, Un anneau de Prüfer. J. Algebra 107(1987), 1-16.
- [4] _____, Invertible ideals of the ring of integral valued polynomials. Comm. Algebra 23(1995), 4461–4471.
- [6] R. Gilmer, *The n-generator property for commutative rings*. Proc. Amer. Math. Soc. **38**(1973), 477–482.
 [6] R. Gilmer and W. W. Smith, *Finitely generated ideals in the ring of integer-valued polynomials*. J. Algebra
- [6] R. Gilmer and W. W. Smith, Finitely generated ideals in the ring of integer-valued polynomials. J. Algebra 81(1983), 150–164.
- [7] E. Kunz, Introduction to commutative algebra and algebraic geometry. Birkhäuser, Boston, 1985.
- [8] D. Lazard and P. Huet, Dominions des anneaux commutatifs. Bull. Sci. Math. Sér. 2 94(1970), 193-199.
- [9] D. L. McQuillan, On Prüfer domains of polynomials. J. Reine. Angew. Math. 358(1985), 162–178.
- [10] A. Ostrowski, Über ganzwertige polynome in algebraischen Zalkörpern. J. Reine. Angew. Math. 149(1919), 117–124.
- G. Polya, Über ganzwertige polynome in algebraischen Zalkörpern. J. Reine. Angew. Math. 149(1919), 97– 116.
- [12] D. E. Rush, *Generating ideals in rings of integer-valued polynomials*. J. Algebra **92**(1985), 389–394.
- [13] _____, The conditions $\operatorname{Int}(R) \subseteq \overline{R}_S[X]$ and $\operatorname{Int}(R_S) = \operatorname{Int}(R)_S$ for integer-valued polynomials. J. Pure Appl. Algebra **125**(1998), 287–303.
- [14] J. Šally, Numbers of generators of ideals in local rings. Lecture Notes in Pure and Appl. Math. 35, Marcel Dekker, New York, 1978.
- [15] Th. Skolem, Einige Sätz über Polynome. Avh. Norske Vid. Akad. Oslo. 4(1940), 1–16.

236