
Canad. Math. Bull. Vol. 42 (2), 1999 pp. 231–236

Generating Ideals in Rings
of Integer-Valued Polynomials
David E. Rush

Abstract. Let R be a one-dimensional locally analytically irreducible Noetherian domain with finite residue
fields. In this note it is shown that if I is a finitely generated ideal of the ring Int(R) of integer-valued poly-
nomials such that for each x ∈ R the ideal I(x) = { f (x) | f ∈ I} is strongly n-generated, n ≥ 2, then I is
n-generated, and some variations of this result.

Let R be an integral domain with quotient field K and let Int(R) be the ring of integer-
valued polynomials on R. Thus Int(R) = { f ∈ K[X] | f (R) ⊆ R}. The ring Int(R)
has been much studied since it was considered in the 1919 articles of Ostrowski [10] and
Polya [11] for the case that R is the ring of integers in an algebraic number field. For exam-
ple see [2] and the references listed there. In [6] Gilmer and Smith answered a question of
Brizolis [1] by showing that in the case that R is the ring Z of rational integers, each finitely
generated ideal of Int(R) is generated by two elements. Since Int(Z) is a Prüfer domain
[2, Theorem VI.1.7], the finitely generated ideals of Int(R) are invertible. Results showing
that each invertible ideal of Int(R) is two-generated for larger classes of one-dimensional
domains R were given in [3], [9], [12], [4], [13] and [2, Theorem VIII.4.3]. In this note
we give some results on numbers of generators of possibly non-invertible finitely generated
ideals of Int(R). In particular, if for example R is local with multiplicity e(R) it follows
e(R) + 1 is a uniform bound on the number of elements required to generate any finitely
generated ideal I of the two-dimensional non-Noetherian ring Int(R). We say that an ideal
I of a ring A is n-generated if it can be generated by n elements, and strongly n-generated if
each nonzero element of I is a member of an n-element generating set for I. The ring A is
said to have the n-generator property (strong n-generator property) if each finitely generated
ideal of R is n-generated (strongly n-generated). It is shown that if R is a one-dimensional
Noetherian locally analytically irreducible integral domain with finite residue fields, and if
I is a finitely generated ideal of Int(R) such that for some integer n ≥ 2, I(x) is strongly
n-generated for each x ∈ R, then I is n-generated. If in addition R is a semilocal, then I(x)
is (n− 1)-generated for each x ∈ R if and only if I is strongly n-generated. We give some of
our results for the ring of integer-valued polynomials in several variables.

1 Preliminary Results

Let R be a Noetherian integral domain with quotient field K. If d is a positive integer
we let Int(R(d)) = { f ∈ K[X1, . . . ,Xd] | f (R(d)) ⊆ R}. (We write S(d) for cartesian
product to distinguish it from a product of ideals.) We write X for (X1, . . . ,Xd) and a
for (a1, . . . , dd) ∈ R(d). An ideal I of Int(R(d)) is said to be unitary if I ∩ R 6= {0}. Let
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I(a) = { f (a) | f ∈ I}. Following [2] we say that Int(R(d)) has the almost strong Skolem
property if for finitely generated unitary ideals I and J of Int(R(d)), I(a) = J(a) for each
a ∈ R(d) ⇒ I = J. Recall that a local ring (R,m) is said to be analytically irreducible if its
m-adic completion (R̂, m̂) is an integral domain, and a Noetherian domain R is said to be
locally analytically irreducible if Rm is analytically irreducible for each maximal ideal m of
R. The relevance of this property lies in the following theorem:

Theorem 1.1 ([2, Proposition XI.3.8]) If R be a one-dimensional locally analytically irre-
ducible domain with finite residue fields, then Int(R(d)) has the almost strong Skolem property.

The following result will be needed later.

Lemma 1.2 ([8, Proposition 4.2]) If R is a zero-dimensional ring and M is a finitely gen-
erated R-module such that Mm is n-generated for each maximal ideal m of R, then M is n-
generated.

We also need the following simple lemmas which help to clarify the strong n-generator
hypothesis which is often imposed on the ideals I(x) in what follows. For this we note that
only the ideal {0} is 0-generated.

Lemma 1.3 Let I be a finitely generated ideal of the integral domain A, and let n ∈ Z, n ≥ 1.

(1) If I is strongly n-generated and S is a multiplicative subset of A, then IAS is a strongly
n-generated ideal of AS.

(2) If A has nonzero Jacobson radical, then I is strongly n-generated if and only if I is (n− 1)-
generated.

Proof Statement (1) is clear. For (2) let J be the Jacobson radical of R. For the only if
part of (2) first assume n > 1. If I 6= {0} is strongly n-generated let {a1, . . . , an} be a
generating set for I with a1 ∈ JI − {0}. Then I = (a2, . . . , an)A by Nakayama’s Lemma.
The case n = 1 is similar. The converse implication in (2) is clear.

Lemma 1.4 Let I be a finitely generated ideal of the one-dimensional Noetherian integral
domain A and let n ∈ Z, n ≥ 1. Consider the following properties of I.

(1) I is (n− 1)-generated.
(2) I is strongly n-generated.
(3) IAm is (n− 1)-generated for each maximal ideal m of A.

Then (1)⇒ (2)⇔ (3), and if n ≥ 3, (1), (2) and (3) are equivalent.

Proof That (1)⇒ (2) is clear, and (2)⇒ (3) follows from Lemma 1.3.
The implication (3)⇒ (2) is clear if n = 1. Thus let n ≥ 2 and let I 6= {0} be such that

Im is an (n − 1)-generated ideal of Am for each maximal ideal m of A. Let a1 ∈ I − {0}.
Then I/a1A is an ideal of A/a1A which is locally (n − 1)-generated. But since A/a1A is
zero-dimensional, I/a1A is (n − 1)-generated by Lemma 1.2. Thus a1 is a member of an
n-element generating set for I.

That (3)⇒ (1) if n ≥ 3 follows from a Theorem of Forster and Swan. For example see
[7, p. 108, Corollary 2.14].
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The proof of the following lemma is the same as that given in the proof of [2, Proposi-
tion XI.3.10]. See [2, Proposition VII.1.11] for the one variable case.

Lemma 1.5 Let R be a one-dimensional Noetherian domain and I a finitely generated unitary
ideal of Int(R(d)). Then there is a nonzero ideal J of R such that if a, b ∈ R(d), and ai − bi ∈ J
for i ∈ {1, . . . , d} then I(a) = I(b).

2 The n-Generator Property in Int(R)

The following result includes the result [2, Proposition XI.3.10] which gives the case that R
is Dedekind (and then n = 2).

Theorem 2.1 Let R be a one-dimensional locally analytically irreducible domain with finite
residue fields, and let I be a finitely generated unitary ideal of Int(R(d)). If for some integer
n ≥ 2, I(x) is strongly n-generated for each x ∈ R(d), then I can be generated by n elements.
Moreover, one of the generators may be chosen to be any r ∈ I ∩ R− {0}.

Proof Let r ∈ I ∩ R − {0}. It follows from [2, Proposition XI.2.9] that the ring
Int(R(d))/r

(
Int(R)

)
is zero-dimensional. Thus by Lemma 1.2 it suffices to show that

the ideal I/r
(
Int(R(d))

)
is locally (n − 1)-generated. In particular since Int(R(d))S =

Int
(
(RS)(d)

)
for each multiplicative subset S of R [2, Corollary XI.1.8], we may assume

R is local. Then by Lemma 1.3, I(x) is (n− 1)-generated for each x ∈ R.
By Lemma 1.5 there is a nonzero ideal J of R such that if a, b ∈ R(d), and ai − bi ∈ J

for each i then I(a) = I(b). Since I is finitely generated, we may choose h1, . . . , hk ∈ I such
that for each x ∈ R(d), h1(x), . . . , hk(x) are generators of I(x). We may assume k > n − 1.
Let A1, . . . ,Ae be the subsets of {h1, . . . , hk} having cardinality n − 1. If x ∈ R(d), then
since R is local and I(x) is n-generated, we have I(x) = Ai(x)R =

(
Ai(x), r

)
R for some

i ∈ {1, . . . , e}.
Let Wi = {y ∈ R̂(d) | I(y)R̂ =

(
Ai(y), r

)
R̂}. We may choose c ∈ N such that mc ⊆ J

and such that if xi − ai ∈ m̂c for each i then h j(x) − h j(a) ∈ rR for each j ∈ {1, . . . , e}.
Then if x ∈ a + (m̂c)(d) we have I(x) = I(a) and

(
Ai(a), r

)
R̂ =

(
Ai(x), r

)
R̂. It follows that

Wi is an open and closed subset of R̂(d) for each i.
Let U1 = W1 and for i ∈ {2, . . . , e} let Ui = Wi − (U1 ∪ · · · ∪Ui−1). The subsets Ui

are open and closed in R̂. Let χ j be the characteristic function of the set U j for each j. Let
t > 0 be such that mt ⊆ rR. Since Int(R(d)) is dense in C(R̂(d), R̂) [2, Proposition XI.2.4],
there exist g j ∈ Int(R(d)) such that

g j(x)− χ j(x) ∈ m̂t for x ∈ R̂(d) and j = 1, . . . , e.

Let Ai = {hi1, . . . , hin−1}, and let f j = h1 j g1 + · · · + he jge. Then for each x ∈ R̂(d) and
j = 1, . . . , n− 1, we have

f j(x) =
e∑

i=1

hi j(x)
[
gi(x)− χi(x)

]
+

e∑

i=1

hi j(x)χi(x).
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For x ∈ Us this gives f j(x)− hs j(x) ∈ mt ⊂ rR. If x ∈ Us we have I(x) =
(
r,As(x)

)
R. Since

f j(x)− hs j(x) ∈ rR, this is
(
r, f1(x), . . . , fn−1(x)

)
R. Now since (r, f1, . . . , fn−1) Int(R) and

I are unitary, (r, f1, . . . , fn−1) Int(R) = I by Theorem 1.1.

In the case of integer-valued polynomials in one variable, a standard argument (given in
the next proof) shows that it is not necessary to restrict to unitary ideals as was done in the
previous Theorem.

Theorem 2.2 Let R be a one-dimensional locally analytically irreducible domain with finite
residue fields, and let I be a finitely generated ideal of Int(R). If I(x) is strongly n-generated for
each x ∈ R, n ≥ 2, then I is n-generated. Moreover, one of the generators may be chosen to be
any g ∈ I such that gK[X] = IK[X].

Proof If I is not unitary, choose a finite subset A of I such that I = A
(
Int(R)

)
. If g ∈ I is

such that IK[X] = gK[X], then A = gA1 for some finite subset A1 of K[X], and A1K[X] =
K[X]. Let a ∈ R − {0} be such that aA1 ⊆ R[X]. Then aA1

(
Int(R)

)
= I1 is unitary,

gI1 = aI and I1(x) is strongly n-generated since I(x) is. Further, if I1 is n-generated, I is
also. Thus it suffices to consider the case that I is unitary, and g ∈ I ∩ R. The result now
follows from Theorem 2.1.

Corollary 2.3 Let R be a one-dimensional locally analytically irreducible Noetherian domain
with finite residue fields. If R has the strong n-generator property, n ≥ 2, then Int(R) has the
n-generator property.

Recall that a one-dimensional local Noetherian domain (R,m) has the n-generator prop-
erty for n = e(R), the multiplicity of R [14, Theorem 3.1.1]. Thus we have the following:

Corollary 2.4 Let R be a one-dimensional locally analytically irreducible Noetherian domain
with finite residue fields, and I ⊆ Int(R(d)) a finitely generated ideal such that e(Rm) ≤ n for
each maximal ideal m of R containing I ∩ R. If either I is unitary or d = 1, then I can be
generated by n + 1 elements.

We end this section by noting that Theorem 2.2 gives, via a result of Gilmer [5], an
alternate proof of the following well-known result. See [2, Chapter VI] for an exposition of
when Int(R) is Prüfer.

Theorem 2.5 If R is a Dedekind domain with finite residue fields, then Int(R) is Prüfer.

Proof Since R is Dedekind, each ideal of R is strongly 2-generated, and thus by Theo-
rem 2.2 each finitely generated ideal of Int(R) is 2-generated. But by [5, Corollary 3], if
for some integer n each finitely generated ideal of an integral domain D is n-generated, the
integral closure D ′ of D is Prüfer. But Int(R) is easily seen to be integrally closed since R is
[2, Proposition VI]. Thus Int(R) is Prüfer.

3 The Strong n-Generator Property in Int(R)

We now consider what can be said when the hypothesis of the strong n-generator property
on the ideals I(x) is weakened to the n-generator property. Since the n-generator property
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trivially implies the strong (n + 1)-generator property, then for R as in Theorem 2.2, if I
is a finitely generated ideal of Int(R) such that I(x) is n-generated for each x ∈ R, then by
Theorem 2.2 I is (n + 1)-generated. The following result shows that in the case that R is
semilocal, Int(R) has the strong (n + 1)-generator property. Further, there is a converse.

Theorem 3.1 Let R be a semilocal one-dimensional domain which is locally analytically irre-
ducible and has finite residue fields, and let I be a finitely generated ideal of Int(R). Then I is
strongly (n + 1)-generated if and only if I(x) is n-generated for each x ∈ R.

Proof (⇒) Let x ∈ R. For any a ∈ I(x) − {0} let f1 ∈ I be such a = f1(x). Since I
is strongly (n + 1)-generated there exist f2, . . . , fn+1 ∈ I such that I = ( f1, f2, . . . , fn+1).
Then I(x) =

(
a, f2(x), . . . , fn+1(x)

)
R. Thus I(x) is strongly (n + 1)-generated. Since R is

semilocal, it follows from part (2) of Lemma 1.3 that I(x) is n-generated.
(⇐) As in the proof of Theorem 2.2 we may assume I is unitary. Let g ∈ I−{0}. To show

that g is one of n+1 generators let b ∈ J(I∩R)−{0}where J is the Jacobson radical of R. By
Theorem 2.2 there exist f1, . . . , fn ∈ I such that I = (b, f1, . . . , fn) Int(R). For each d ∈ R
the polynomials hi = fi + bd also have the property that I = (b, h1, . . . , hn) Int(R). Since R
is not a field, R is infinite, and thus we may choose d so that (g, h1, . . . , hn)K[X] = K[X].
(In fact if f1 6= 0 we can choose d so that (g, h1)K[X] = K[X].)

To show I = (g, h1, . . . , hn) Int(R) let ug +
∑n

i=1 vihi = 1, u, vi ∈ K[X]. Then for
some c ∈ R we have cu, cvi ∈ R[X], and then (cu)g +

∑n
i=1(cvi)hi = c ∈ I. Then I =

(b, h1, . . . , hn) Int(R) ⊆ (c, b, h1, . . . , hn) Int(R) ⊆ (g, b, h1, . . . , hn) Int(R) ⊆ I. Thus I =
(g, b, h1, . . . , hn) Int(R). But for each x ∈ R, I(x) =

(
g(x), b, h1(x), . . . , hn(x)

)
R ⊆ JI(x) +(

g(x), h1(x), . . . , hn(x)
)

R. Thus we have I(x) =
(
g(x), h1(x), . . . , hn(x)

)
R by Nakayama’s

Lemma. Since R is locally analytically irreducible, Int(R) has the almost strong Skolem
property by Theorem 1.1. Thus since I and (g, h1, . . . , hn) Int(R) are unitary, I =
(g, h1, . . . , hn) Int(R).

Corollary 3.2 ([2, Proposition VIII.3.9]) Let R be a one-dimensional local domain which
is analytically irreducible and has finite residue fields, and let I be a finitely generated unitary
ideal of Int(R). Then I is invertible if and only if I(x) is principal for each x ∈ R.

Proof If I(x) is principal for each x ∈ R, then I is strongly 2-generated by Theorem 3.1,
and thus locally principal by Lemma 1.3. The converse is clear.

We now have the following counterpart to Corollaries 2.3 and 2.4.

Corollary 3.3 Let R be a one-dimensional locally analytically irreducible semilocal Noethe-
rian domain with finite residue fields and let n ≥ 2. The following are equivalent:

(1) e(Rm) ≤ n− 1 for each maximal ideal m of R;
(2) R has the (n− 1)-generator property;
(3) Int(R) has the strong n-generator property.

If instead of the strong n-generator hypothesis on the ideals I(x) we have an n-generator
hypothesis on the localization IM for each maximal ideal M of Int(R), as occurs when I
is invertible, it is easier to bound the generators of I. To illustrate we conclude with a
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generalization of [2, Theorem VIII.4.3] which is the case n = 1 of the following result.
Although the proof is essentially the same, we include it for the convenience of the reader.

Theorem 3.4 Let R be a one-dimensional Noetherian domain and I a finitely generated ideal
of Int(R) such that the ideal IM of Int(R)M is n-generated for each maximal ideal M of Int(R).
Then I is generated by n + 1-elements, one of which can be chosen to be any element g ∈ I such
that gK[X] = IK[X].

Proof We can reduce to the case where I is unitary and g ∈ I ∩ R as in the proof of
Theorem 2.2. Then Int(R)/g

(
Int(R)

)
is zero-dimensional by [2, Theorem V.2.2], and

the ideal I/(g) of Int(R)/g
(

Int(R)
)

is locally n-generated. Since Int(R)/g
(

Int(R)
)

is zero-
dimensional, I/(g) is n-generated by Lemma 1.2. Thus I is (n + 1)-generated.
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