Generating Ideals in Rings of Integer-Valued Polynomials

David E. Rush

Abstract

Let R be a one-dimensional locally analytically irreducible Noetherian domain with finite residue fields. In this note it is shown that if I is a finitely generated ideal of the ring $\operatorname{Int}(R)$ of integer-valued polynomials such that for each $x \in R$ the ideal $I(x)=\{f(x) \mid f \in I\}$ is strongly n-generated, $n \geq 2$, then I is n -generated, and some variations of this result.

Let R be an integral domain with quotient field K and let $\operatorname{lnt}(R)$ be the ring of integervalued polynomials on R. Thus $\operatorname{Int}(R)=\{f \in K[X] \mid f(R) \subseteq R\}$. The ring Int(R) has been much studied since it was considered in the 1919 articles of Ostrowski [10] and Polya [11] for the case that R is the ring of integers in an algebraic number field. For example see [2] and the references listed there. In [6] Gilmer and Smith answered a question of Brizolis [1] by showing that in the case that R is the ring Z of rational integers, each finitely generated ideal of $\operatorname{Int}(R)$ is generated by two elements. Since $\operatorname{Int}(Z)$ is a Prüfer domain [2, Theorem VI.1.7], the finitely generated ideals of Int(R) are invertible. Results showing that each invertible ideal of $\operatorname{Int}(R)$ is two-generated for larger classes of one-dimensional domains R were given in [3], [9], [12], [4], [13] and [2, Theorem VIII.4.3]. In this note we give some results on numbers of generators of possibly non-invertible finitely generated ideals of $\operatorname{Int}(R)$. In particular, if for example R is local with multiplicity $e(R)$ it follows $e(R)+1$ is a uniform bound on the number of elements required to generate any finitely generated ideal I of the two-dimensional non-Noetherian ring Int(R). We say that an ideal I of a ring A is n-generated if it can be generated by n elements, and strongly n-generated if each nonzero element of I is a member of an n-element generating set for I. The ring A is said to have the n-generator property (strong n-generator property) if each finitely generated ideal of R is n-generated (strongly n-generated). It is shown that if R is a one-dimensional Noetherian locally analytically irreducible integral domain with finite residuefields, and if I is a finitely generated ideal of $\operatorname{Int}(R)$ such that for some integer $n \geq 2, I(x)$ is strongly n-generated for each $x \in R$, then I is n-generated. If in addition R is a semilocal, then I (x) is ($n-1$)-generated for each $x \in R$ if and only if I is strongly n-generated. We give some of our results for the ring of integer-valued polynomials in several variables.

1 Preliminary Results

Let R be a Noetherian integral domain with quotient field K. If d is a positive integer we let $\operatorname{lnt}\left(R^{(d)}\right)=\left\{f \in K\left[X_{1}, \ldots, X_{d}\right] \mid f\left(R^{(d)}\right) \subseteq R\right\}$. (We write $S^{(d)}$ for cartesian product to distinguish it from a product of ideals.) We write \mathbf{X} for $\left(X_{1}, \ldots, X_{d}\right)$ and \mathbf{a} for $\left(a_{1}, \ldots, d_{d}\right) \in R^{(d)}$. An ideal I of $\operatorname{Int}\left(R^{(d)}\right)$ is said to be unitary if $I \cap R \neq\{0\}$. Let

[^0]$I(\mathbf{a})=\{f(\mathbf{a}) \mid f \in I\}$. Following [2] we say that $\operatorname{Int}\left(R^{(d)}\right)$ has the almost strong Skolem property if for finitely generated unitary ideals I and J of $\operatorname{Int}\left(R^{(d)}\right), I(a)=J(a)$ for each $\mathbf{a} \in R^{(d)} \Rightarrow I=J$. Recall that a local ring (R, m) is said to be analytically irreducible if its m-adic completion (\hat{R}, \hat{m}) is an integral domain, and a Noetherian domain R is said to be locally analytically irreducible if R_{m} is analytically irreducible for each maximal ideal m of R. The relevance of this property lies in the following theorem:

Theorem 1.1 ([2, Proposition XI.3.8]) If R be a one-dimensional locally analytically irreducibledomain with finite residuefields, then Int $\left(\mathrm{R}^{(\mathrm{d})}\right)$ hasthe almost strong Skolem property.

The following result will be needed later.
Lemma 1.2 ([8, Proposition 4.2]) If R is a zero-dimensional ring and M is a finitely generated R-module such that M_{m} is n-generated for each maximal ideal m of R, then M is n generated.

We also need the following simple lemmas which help to clarify the strong n-generator hypothesis which is often imposed on the ideals $\mathrm{I}(\mathrm{x})$ in what follows. For this we note that only the ideal $\{0\}$ is 0 -generated.

Lemma 1.3 Let I be a finitely generated ideal of the integral domain A, and let $n \in Z, n \geq 1$.
(1) If I is strongly n-generated and S is a multiplicative subset of A, then $I A_{S}$ is a strongly n-generated ideal of A_{s}.
(2) If A has nonzero Jacobson radical, then I is strongly n-generated if and only if I is $(\mathrm{n}-1)$ generated.

Proof Statement (1) is clear. For (2) let J be the Jacobson radical of R. For the only if part of (2) first assume $n>1$. If $I \neq\{0\}$ is strongly n-generated let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a generating set for I with $a_{1} \in J I-\{0\}$. Then I $=\left(a_{2}, \ldots, a_{n}\right) A$ by Nakayama's Lemma. The case $n=1$ is similar. The converse implication in (2) is clear.

Lemma 1.4 Let I be a finitely generated ideal of the one-dimensional N oetherian integral domain A and let $n \in Z, n \geq 1$. Consider the following properties of I.
(1) I is $(\mathrm{n}-1)$-generated.
(2) I is strongly n-generated.
(3) $I A_{m}$ is $(n-1)$-generated for each maximal ideal m of A.

Then $(1) \Rightarrow(2) \Leftrightarrow(3)$, and if $n \geq 3,(1),(2)$ and (3) are equivalent.

Proof That $(1) \Rightarrow(2)$ is clear, and $(2) \Rightarrow(3)$ follows from Lemma 1.3.
The implication (3) $\Rightarrow(2)$ is clear if $n=1$. Thus let $n \geq 2$ and let $I \neq\{0\}$ be such that I_{m} is an $(n-1)$-generated ideal of A_{m} for each maximal ideal m of A. Let $a_{1} \in I-\{0\}$. Then $I / a_{1} A$ is an ideal of $A / a_{1} A$ which is locally $(n-1)$-generated. But since $A / a_{1} A$ is zero-dimensional, $I / a_{1} A$ is $(n-1)$-generated by Lemma 1.2. Thus a_{1} is a member of an n-element generating set for 1 .

That (3) \Rightarrow (1) if $n \geq 3$ follows from a Theorem of Forster and Swan. For example see [7, p. 108, Corollary 2.14].

The proof of the following lemma is the same as that given in the proof of [2, Proposition XI.3.10]. See[2, Proposition VII.1.11] for the one variable case.

Lemma 1.5 Let R bea one dimensional N oetherian domain and I a finitely generated unitary ideal of $\operatorname{Int}\left(R^{(d)}\right)$. Then there is a nonzero ideal J of R such that if $\mathbf{a}, \mathbf{b} \in R^{(d)}$, and $a_{i}-b_{i} \in J$ for $i \in\{1, \ldots, d\}$ then $I(\mathbf{a})=I(b)$.

2 The n-G enerator Property in $\operatorname{Int}(R)$

The following result includes the result [2, Proposition XI.3.10] which gives the case that R is Dedekind (and then $n=2$).

Theorem 2.1 Let R be a one dimensional locally analytically irreducible domain with finite residue fields, and let I be a finitely generated unitary ideal of $\operatorname{Int}\left(\mathrm{R}^{(d)}\right)$. If for some integer $n \geq 2, I(\mathbf{x})$ is strongly n-generated for each $\mathbf{x} \in R^{(d)}$, then I can be generated by n elements. M oreover, one of the generators may be chosen to be any $r \in I \cap R-\{0\}$.

Proof Let $r \in I \cap R-\{0\}$. It follows from [2, Proposition XI.2.9] that the ring $\operatorname{Int}\left(R^{(d)}\right) / r(\operatorname{lnt}(R))$ is zero-dimensional. Thus by Lemma 1.2 it suffices to show that the ideal $I / r\left(\operatorname{lnt}\left(R^{(d)}\right)\right)$ is locally $(n-1)$-generated. In particular since $\operatorname{Int}\left(R^{(d)}\right)_{S}=$ Int $\left(\left(R_{S}\right)^{(d)}\right)$ for each multiplicative subset S of R [2, Corollary XI.1.8], we may assume R is local. Then by Lemma 1.3, I (x) is $(n-1)$-generated for each $x \in R$.

By Lemma 1.5 there is a nonzero ideal J of R such that if $\mathbf{a}, \mathbf{b} \in R^{(d)}$, and $a_{i}-b_{i} \in J$ for each i then $I(\mathbf{a})=I(\mathbf{b})$. Sincel is finitely generated, we may choose $h_{1}, \ldots, h_{k} \in I$ such that for each $\mathbf{x} \in \mathrm{R}^{(\mathrm{d})}, \mathrm{h}_{1}(\mathbf{x}), \ldots, \mathrm{h}_{\mathrm{k}}(\mathbf{x})$ are generators of $\mathrm{I}(\mathbf{x})$. We may assume $k>\mathrm{n}-1$. Let A_{1}, \ldots, A_{e} be the subsets of $\left\{h_{1}, \ldots, h_{k}\right\}$ having cardinality $n-1$. If $\mathbf{x} \in R^{(d)}$, then since R is local and $I(\mathbf{x})$ is n-generated, we have $I(\mathbf{x})=A_{i}(\mathbf{x}) R=\left(A_{i}(\mathbf{x}), r\right) R$ for some $i \in\{1, \ldots, e\}$.

Let $W_{i}=\left\{\mathbf{y} \in \hat{R}^{(d)} \mid I(y) \hat{R}=\left(A_{i}(\mathbf{y}), r\right) \hat{R}\right\}$. We may choose $c \in N$ such that $m^{c} \subseteq J$ and such that if $x_{i}-a_{i} \in \hat{m}^{c}$ for each i then $h_{j}(\mathbf{x})-h_{j}(\mathbf{a}) \in r R$ for each $j \in\{1, \ldots, e\}$. Then if $\mathbf{x} \in \mathbf{a}+\left(\hat{m}^{c}\right)^{(d)}$ we have $I(\mathbf{x})=I(\mathbf{a})$ and $\left(A_{i}(\mathbf{a}), r\right) \hat{R}=\left(A_{i}(\mathbf{x}), r\right) \hat{R}$. It follows that W_{i} is an open and closed subset of $\hat{R}^{(d)}$ for each i.

Let $\mathrm{U}_{1}=\mathrm{W}_{1}$ and for $\mathrm{i} \in\{2, \ldots, e\}$ let $\mathrm{U}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}-\left(\mathrm{U}_{1} \cup \cdots \cup \mathrm{U}_{\mathrm{i}-1}\right)$. The subsets U_{i} are open and closed in \hat{R}. Let χ_{j} be the characteristic function of the set U_{j} for each j. Let $t>0$ be such that $m^{t} \subseteq r R$. Since $\operatorname{Int}\left(R^{(d)}\right)$ is dense in $C\left(\hat{R}^{(d)}, \hat{R}\right)$ [2, Proposition XI.2.4], there exist $g_{j} \in \operatorname{Int}\left(R^{(d)}\right)$ such that

$$
g_{j}(\mathbf{x})-\chi_{j}(\mathbf{x}) \in \hat{m}^{t} \quad \text { for } \quad \mathbf{x} \in \hat{R}^{(d)} \quad \text { and } \quad j=1, \ldots, e .
$$

Let $A_{i}=\left\{h_{i 1}, \ldots, h_{i n-1}\right\}$, and let $f_{j}=h_{1 j} g_{1}+\cdots+h_{e j} g_{e}$. Then for each $\mathbf{x} \in \hat{R}^{(d)}$ and $j=1, \ldots, n-1$, wehave

$$
f_{j}(\mathbf{x})=\sum_{i=1}^{e} h_{i j}(\mathbf{x})\left[g_{i}(\mathbf{x})-\chi_{i}(\mathbf{x})\right]+\sum_{i=1}^{e} h_{i j}(\mathbf{x}) \chi_{i}(\mathbf{x}) .
$$

For $\mathbf{x} \in \mathrm{U}_{\mathrm{s}}$ this gives $\mathrm{f}_{\mathrm{j}}(\mathbf{x})-\mathrm{h}_{\mathrm{sj}}(\mathbf{x}) \in \mathrm{m}^{\mathrm{t}} \subset \mathrm{rR}$. If $\mathbf{x} \in \mathrm{U}_{\mathrm{s}}$ we havel $(\mathbf{x})=\left(\mathrm{r}, \mathrm{A}_{\mathrm{s}}(\mathbf{x})\right) R$. Since $f_{j}(\mathbf{x})-h_{s j}(\mathbf{x}) \in r R$, this is $\left(r, f_{1}(\mathbf{x}), \ldots, f_{n-1}(\mathbf{x})\right) R$. Now since $\left(r, f_{1}, \ldots, f_{n-1}\right) \operatorname{lnt}(R)$ and I are unitary, $\left(r, f_{1}, \ldots, f_{n-1}\right) \operatorname{lnt}(R)=I$ by Theorem 1.1.

In the case of integer-valued polynomials in one variable, a standard argument (given in the next proof) shows that it is not necessary to restrict to unitary ideals as was done in the previous Theorem.
Theorem 2.2 Let R be a one-dimensional locally analytically irreducible domain with finite residuefields, and let I be a finitely generated ideal of $\operatorname{lnt}(R)$. If $\mid(x)$ is strongly n-generated for each $x \in R, n \geq 2$, then I is n-generated. M oreover, one of the generators may be chosen to be any $\mathrm{g} \in \mathrm{I}$ such that $\mathrm{gK}[\mathrm{X}]=\mathrm{IK}[\mathrm{X}]$.

Proof If I is not unitary, choose a finite subset A of I such that $I=A(\operatorname{lnt}(R))$. If $g \in I$ is such that $I K[X]=g K[X]$, then $A=g A_{1}$ for some finite subset A_{1} of $K[X]$, and $A_{1} K[X]=$ $K[X]$. Let $a \in R-\{0\}$ be such that $a A_{1} \subseteq R[X]$. Then $a A_{1}(\operatorname{Int}(R))=I_{1}$ is unitary, $\mathrm{gl}_{1}=$ al and $\mathrm{I}_{1}(\mathrm{x})$ is strongly n -generated since $\mathrm{I}(\mathrm{x})$ is. Further, if I_{1} is n -generated, I is also. Thus it suffices to consider the case that I is unitary, and $g \in I \cap R$. The result now follows from Theorem 2.1.

Corollary 2.3 Let R bea one-dimensional locally analytically irreducible Noetherian domain with finite residuefields. If R has the strong n-generator property, $n \geq 2$, then $\operatorname{Int}(R)$ has the n -generator property.

Recall that a one-dimensional local Noetherian domain (R, m) hasthen-generator property for $n=e(R)$, the multiplicity of $R[14$, Theorem 3.1.1]. Thus we have the following:

Corollary 2.4 Let R bea one-dimensional locally analytically irreducibleN oetherian domain with finite residue fields, and $I \subseteq \operatorname{Int}\left(R^{(d)}\right)$ a finitely generated ideal such that $e\left(R_{m}\right) \leq n$ for each maximal ideal m of R containing $I \cap R$. If either I is unitary or $d=1$, then I can be generated by $\mathrm{n}+1$ elements.

We end this section by noting that Theorem 2.2 gives, via a result of Gilmer [5], an alternate proof of the following well-known result. See [2, Chapter VI] for an exposition of when $\operatorname{Int}(R)$ is Prüfer.

Theorem 2.5 If R is a Dedekind domain with finite residue fields, then $\operatorname{Int}(R)$ is Prüfer.

Proof Since R is Dedekind, each ideal of R is strongly 2 -generated, and thus by Theorem 2.2 each finitely generated ideal of $\operatorname{Int}(R)$ is 2-generated. But by [5, Corollary 3], if for some integer n each finitely generated ideal of an integral domain D is n-generated, the integral closure D^{\prime} of D is Prüfer. But $\operatorname{lnt}(R)$ is easily seen to be integrally closed since R is [2, Proposition VI]. Thus $\operatorname{Int}(\mathrm{R})$ is Prüfer.

3 The Strong n-G enerator Property in Int(R)

We now consider what can be said when the hypothesis of the strong n-generator property on the ideals I (x) is weakened to the n -generator property. Since the n -generator property
trivially implies the strong ($n+1$)-generator property, then for R as in Theorem 2.2, if I is a finitely generated ideal of $\operatorname{Int}(R)$ such that $I(x)$ is n-generated for each $x \in R$, then by Theorem $2.2 I$ is $(n+1)$-generated. The following result shows that in the case that R is semilocal, Int(R) has the strong $(n+1)$-generator property. Further, there is a converse.

Theorem 3.1 Let R be a semilocal one dimensional domain which is locally analytically irreducible and has finite residuefields, and let I be a finitely generated ideal of $\operatorname{Int}(R)$. Then I is strongly $(n+1)$-generated if and only if $I(x)$ is n-generated for each $x \in R$.

Proof (\Rightarrow) Let $x \in R$. For any $a \in I(x)-\{0\}$ let $f_{1} \in I$ be such $a=f_{1}(x)$. Since I is strongly $(n+1)$-generated there exist $f_{2}, \ldots, f_{n+1} \in I$ such that $I=\left(f_{1}, f_{2}, \ldots, f_{n+1}\right)$. Then $I(x)=\left(a, f_{2}(x), \ldots, f_{n+1}(x)\right) R$. Thus $I(x)$ is strongly $(n+1)$-generated. Since R is semilocal, it follows from part (2) of Lemma 1.3 that $I(x)$ is n-generated.
(\Leftarrow) As in the proof of Theorem 2.2 wemay assumel is unitary. Let $g \in I-\{0\}$. To show that g is one of $n+1$ generators let $b \in J(I \cap R)-\{0\}$ where J is the Jacobson radical of R. By Theorem 2.2 there exist $f_{1}, \ldots, f_{n} \in I$ such that $I=\left(b, f_{1}, \ldots, f_{n}\right) \operatorname{lnt}(R)$. For each $d \in R$ the polynomials $h_{i}=f_{i}+b d$ also have the property that $I=\left(b, h_{1}, \ldots, h_{n}\right) \operatorname{lnt}(R)$. Since R is not a field, R is infinite, and thus we may choose d so that $\left(g, h_{1}, \ldots, h_{n}\right) K[X]=K[X]$. (In fact if $f_{1} \neq 0$ we can choose d so that $\left(g, h_{1}\right) K[X]=K[X]$.)

To show $I=\left(g, h_{1}, \ldots, h_{n}\right) \operatorname{Int}(R)$ let $u g+\sum_{i=1}^{n} v_{i} h_{i}=1, u, v_{i} \in K[X]$. Then for some $c \in R$ we have $c u, ~ c v_{i} \in R[X]$, and then $(c u) g+\sum_{i=1}^{n}\left(c v_{i}\right) h_{i}=c \in I$. Then $I=$ $\left(b, h_{1}, \ldots, h_{n}\right) \operatorname{lnt}(R) \subseteq\left(c, b, h_{1}, \ldots, h_{n}\right) \operatorname{lnt}(R) \subseteq\left(g, b, h_{1}, \ldots, h_{n}\right) \operatorname{lnt}(R) \subseteq 1$. Thus $I=$ $\left(g, b, h_{1}, \ldots, h_{n}\right) \operatorname{lnt}(R)$. But for each $x \in R, I(x)=\left(g(x), b, h_{1}(x), \ldots, h_{n}(x)\right) R \subseteq J I(x)+$ $\left(g(x), h_{1}(x), \ldots, h_{n}(x)\right) R$. Thus we have $I(x)=\left(g(x), h_{1}(x), \ldots, h_{n}(x)\right) R$ by Nakayama's Lemma. Since R is locally analytically irreducible, Int(R) has the almost strong Skolem property by Theorem 1.1. Thus since I and ($\mathrm{g}, \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{n}}$) $\operatorname{lnt}(\mathrm{R})$ are unitary, $\mathrm{I}=$ (g, h_{1}, \ldots, h_{n}) Int(R).

Corollary 3.2 ([2, Proposition VII.3.9]) Let R be a onedimensional local domain which is analytically irreducible and has finite residuefields, and let I be a finitely generated unitary ideal of $\operatorname{Int}(R)$. Then I is invertible if and only if $I(x)$ is principal for each $x \in R$.

Proof If I (x) is principal for each $x \in R$, then I is strongly 2-generated by Theorem 3.1, and thus locally principal by Lemma 1.3. The converse is clear.

We now have the following counterpart to Corollaries 2.3 and 2.4.
Corollary 3.3 Let R be a one-dimensional locally analytically irreducible semilocal Noetherian domain with finite residue fields and let $n \geq 2$. The following are equivalent:
(1) $e\left(R_{m}\right) \leq n-1$ for each maximal ideal m of R;
(2) R has the $(\mathrm{n}-1)$-generator property;
(3) $\operatorname{Int}(R)$ has the strong n-generator property.

If instead of the strong n-generator hypothesis on the idealsI (x) we have an n-generator hypothesis on the localization I_{M} for each maximal ideal M of $\operatorname{Int}(R)$, as occurs when I is invertible, it is easier to bound the generators of I. To illustrate we conclude with a
generalization of [2, Theorem VIII.4.3] which is the case $\mathrm{n}=1$ of the following result. Although the proof is essentially the same, we include it for the convenience of the reader.

Theorem 3.4 Let R bea one-dimensional Noetherian domain and I a finitely generated ideal of $\operatorname{Int}(R)$ such that the ideal I_{M} of $\operatorname{Int}(R)_{M}$ is n-generated for each maximal ideal M of $\operatorname{Int}(R)$. Then I is generated by $\mathrm{n}+1$-elements, one of which can be chosen to beany element $\mathrm{g} \in \mathrm{I}$ such that $\mathrm{gK}[\mathrm{X}]=\mathrm{IK}[\mathrm{X}]$.

Proof We can reduce to the case where I is unitary and $g \in I \cap R$ as in the proof of Theorem 2.2. Then $\operatorname{Int}(R) / g(\operatorname{Int}(R))$ is zero-dimensional by [2, Theorem V.2.2], and the ideal $\mathrm{I} /(\mathrm{g})$ of $\operatorname{Int}(\mathrm{R}) / \mathrm{g}(\operatorname{Int}(\mathrm{R}))$ is locally n -generated. Since $\operatorname{Int}(\mathrm{R}) / \mathrm{g}(\operatorname{Int}(\mathrm{R}))$ is zerodimensional, $\mathrm{I} /(\mathrm{g})$ is n -generated by Lemma 1.2. ThusI is $(\mathrm{n}+1)$-generated.

References

[1] D. Brizolis, A theorem on ideals in Prüfer rings of integral-valued polynomials. Comm. Algebra 7(1979), 1065-1077.
[2] P. J. Cahen and J. L. Chabert, Integer-valued polynomials. M ath. Surveys M onographs 48, Amer. M ath. Soc., Providence, Rhode Island, 1997.
[3] J. L. Chabert, Un anneau de Prüfer. J. Algebra 107(1987), 1-16.
[4] \ldots, Invertible ideals of the ring of integral valued polynomials. Comm. Algebra 23(1995), 4461-4471.
[5] R. Gilmer, Then-generator property for commutative rings. Proc. Amer. M ath. Soc. 38(1973), 477-482.
[6] R. Gilmer and W. W. Smith, Finitely generated ideals in the ring of integer-valued polynomials. J. Algebra 81(1983), 150-164.
[7] E. Kunz, Introduction to commutative algebra and algebraic geometry. Birkhäuser, Boston, 1985.
[8] D. Lazard and P. Huet, Dominions des anneaux commutatifs. Bull. Sci. M ath. Sér. 2 94(1970), 193-199.
[9] D. L. M cQuillan, On Prüfer domains of polynomials. J. Reine. Angew. M ath. 358(1985), 162-178.
[10] A. Ostrowski, Ü ber ganzwertige polynome in algebraischen Zalkörpern. J. Reine. Angew. M ath. 149(1919), 117-124.
[11] G. Polya, Ü ber ganzwertige polynome in algebraischen Zalkörpern. J. Reine. Angew. M ath. 149(1919), 97116.
[12] D. E. Rush, Generating ideals in rings of integer-valued polynomials. J. Algebra 92(1985), 389-394.
[13] , The conditions $\operatorname{Int}(R) \subseteq R_{S}[X]$ and $\operatorname{Int}\left(R_{S}\right)=\operatorname{Int}(R)_{s}$ for integer-valued polynomials. J. Pure Appl. Algebra 125(1998), 287-303.
[14] J. Sally, Numbers of generators of ideals in local rings. Lecture Notes in Pure and Appl. M ath. 35, M arcel Dekker, New York, 1978.
[15] Th. Skolem, Einige Sätz über Polynome. Avh. Norske Vid. Akad. Oslo. 4(1940), 1-16.

[^0]: Received by the editors July 10, 1997.
 AM S subject classification: 13B25, 13F20, 13F05.
 (C) Canadian M athematical Society 1999.

