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Abstract. Leta, b andn be integers withn > 3. We show that, in the sense of natural density, almost
all integers represented by the binary formaxn � byn are thus represented essentially uniquely.
By exploiting this conclusion, we derive an asymptotic formula for the total number of integers
represented by such a form. These conclusions augment earlier work of Hooley concerning binary
cubic and quartic forms, and generalise or sharpen work of Hooley, Greaves, and Skinner and Wooley
concerning sums and differences of twonth powers.
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1. Introduction

The problem of determining which integers are represented by a given binary form,
and the number of such representations, is one with a long and distinguished history
extending back beyond the seminal work of Gauss concerning quadratic forms. In
1909, Thue [23] proved that whenF (x; y) 2 Z[x; y] is a binary form of degree
k > 3, andF is irreducible overQ, then there are only finitely many integral
solutions to the equationF (x; y) = n. Evertse [6], and Bombieri and Schmidt
[2], have sharpened this conclusion, and thus the latter number of solutions is
now known to beO(k1+!(n)), where!(n) denotes the number of distinct prime
divisors ofn (see [22] for later developments). When the degree ofF is large, and
n is not too small in terms ofF , it is conjectured that whenevern is represented
in the formn = F (x; y), with x; y 2 Z, then this representation is essentially
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16 M. A. BENNETT ET AL.

unique, in the sense that all primitive representations ofn are generated from a
single solution by the group of automorphisms ofF . Such numerical evidence as
is available supports this conjecture. Moreover Hooley [11] has shown that in the
sense of natural density, almost all integers represented by an irreducible binary
cubic form are thus represented essentially uniquely, with a similar conclusion [14]
holding for a class of quartic forms. With the exception of the examples provided
by sums of twokth powers (see [13, 21]), no such conclusion has hitherto been
available for binary forms of higher degree. Our purpose in the present paper is to
establish this conclusion for binary additive forms, which is to say, forms of the
shapeaxk� byk, thereby lending credibility to the aforementioned conjecture, and
augmenting the extensive body of literature on such forms (see, in particular, [1, 7,
16, 17, 19, 20]).

In order to describe our main conclusions we require some notation. When
k is a positive integer, and� and� are nonzero integers, letF�� = F��(x; y)
denote the binary additive formF��(x; y) = �xk��yk. Denote byA�� the group
of automorphisms of the formF�� lying in SL2(Z), and writeA(�; �) for the
cardinality ofA��. We say thatF�� represents the integern essentially uniquely
if there exist integersx andy with F��(x; y) = n such that ifu andv are integers
with F��(u; v) = n, then(u; v) is generated from(x; y) by the action ofA��.
Finally, whenX is a positive real number, let�k(X;�; �) denote the number of
integers with absolute value not exceedingX that are represented byF�� , but are
not represented essentially uniquely.

THEOREM 1.Letk be an integer exceeding4, and let� and� be nonzero integers.
Then for each positive numberX,

�k(X;�; �) � X(3=2k)+�k+";

where the implicit constant depends at most onk; "; �; �, and where

�k =
7k � 9

2k(2k2� 3k + 3)
:

Moreover whenk = 5, the exponent�k may be replaced by29=470.

For comparison, the aforementioned work of Hooley [11, 14] shows that

�3(X;�; �) �
X2=3

(log logX)1=600
; and �4(X;�; �) �" X

(18=37)+"; (1.1)

where the implicit constants may depend on� and�. Hooley [14] shows, in fact,
that when� and � have opposite signs, then the exponent 18=37 in the latter
estimate may be replaced by 9=19.
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REPRESENTATION OF INTEGERS BY BINARY ADDITIVE FORMS 17

WhenF (x; y) 2 Z[x; y] is a binary form of degreek > 3, Mahler [15] has shown
that the number,NF (m), of integral solutions of the inequalityjF (x; y)j 6 m

satisfies

NF (m) = �Fm
2=k +Ok;F (m

1=(k�1)); (1.2)

where�F denotes the area of the set
�
(�; �) 2 R2 : jF (�; �)j 6 1

	
. Theorem 1,

on the other hand, shows that when the formF is additive, the number of integers
with absolute value not exceedingX, which are represented byF in more than one
essentially distinct way, iso(X2=k). Consequently, in the sense of natural density,
almost all integers represented byF are thus represented essentially uniquely.
This observation contrasts sharply with the corresponding situation for binary
quadratic forms, where it is well known that most integers which are represented
have many representations. A more concrete formulation of these deliberations
is provided by the following immediate corollary of Theorem 1 and the asymptotic
formula (1.2).

COROLLARY. Suppose that the hypotheses of the statement of Theorem1 hold.
LetS(X;�; �) denote the number of integers, with absolute value not exceeding
X, which are represented by the binary form�xk � �yk. Also, let�(�; �) denote

the area of the set
n
(�; �) 2 R2 : j��k � ��kj 6 1

o
. Then

S(X;�; �) =
�(�; �)

A(�; �)
X2=k +O(X(3=2k)+�k+"); (1.3)

where the implicit constant depends at most onk; "; �; �.

By employing Hooley’s estimates (1.1), a similar conclusion can also be inferred
for binary additive forms of degree 3 and 4. We note that in this additive situation,
the conclusion (1.3) provides a significant sharpening of a theorem of Erdős and
Mahler [4] to the effect thatS(X;�; �) � X2=k. Perhaps it is opportune, before
leaving this topic, to characterise the possible automorphism groups for binary
additive forms. It plainly suffices to consider forms�xk � �yk with � and �
restricted to bek-free integers (so that neither is divisible by anykth power of
a prime number). One may easily verify that the following are the only possible
automorphisms:

(i) whenk is even, the maps(x; y)! �(x;�y);

(ii) when� = ��, the map(x; y)! (y; x);

(iii) when� = � andk is odd, the map(x; y)! (�y;�x).
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18 M. A. BENNETT ET AL.

ConsequentlyA(�; �) is characterised as follows.

A(�; �) =

8>><
>>:

1; whenk is odd and� 6= ��;
2; whenk is odd and� = ��;
4; whenk is even and� 6= ��;
8; whenk is even and� = ��:

In circumstances where� = ��, the investigation of integers represented by
the form�xk � �yk simplifies to the study of sums and differences of twokth
powers. In this situation a modification of the argument used to establish Theorem
1 yields a somewhat sharper conclusion. Write, for the sake of concision,��k (X)
for �k(X; 1;�1).

THEOREM 2. Let k be an integer exceeding2, and letX be a positive number.
Then

��k (X)�";k X
(3=2k)+(1=k(k�1))+":

Moreover, whenk = 3 or 5, one has

��k (X)�" X
(3=2k)+(1=k2

)+":

For comparison, Hooley [12] has shown that��3 (X) �" X
5=9+", and has also

established (in [13]) that whenk > 5 is odd one has��k (X)� X5=(3k�1)+". Also,
whenk > 4 is even the estimate provided by Theorem 2 for��k (X) is identical
with that provided by Skinner and Wooley [21, Thm. 1.1] (see Greaves [9, 10]
whenk = 4). However, Theorem 2 provides bounds for�+k (X) which are new
and non-trivial for all evenk with k > 6, and provides bounds superior to those of
Hooley [13, 14] whenk = 4, and whenk > 5 is odd.

Our proofs of Theorems 1 and 2 depend on a bound for the number of solutions
of a certain auxiliary equation. We establish this estimate in Section 4, following the
trail laid down in [21] for a simpler situation in which less precision was required.
It transpires that our argument employs a slicing procedure which entails counting
the number of points on certain affine plane curves. We bound the latter number
by appealing to an estimate of Bombieri and Pila [3], the successful application
of which requires us to establish a criterion for the absolute irreducibility of the
polynomialf(x; y) = f(x; y;�; �; b1; b2), defined by

f(x; y) = �((x + b1)
k � (x� b1)

k)� �((y + b2)
k � (y � b2)

k): (1.4)

In Theorem 2.2 we completely classify the situations in which the polynomial
f(x; y) is, or is not, absolutely irreducible. Having obtained our absolute irre-
ducibility criterion in Section 2, and recorded further technical preliminaries in
Section 3, we are able in Section 4 to establish the desired auxiliary estimates.
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REPRESENTATION OF INTEGERS BY BINARY ADDITIVE FORMS 19

The proofs of Theorems 1 and 2, in Sections 6 and 5 respectively, are fairly
immediate consequences of the estimates provided in Section 4, the proof of The-
orem 1 entailing the application of Roth’s Theorem to bound the domains of the
variables.

In the remainder of this paper, constants implied by the Vinogradov symbols
� and �, and those relating to Landau’s notation, unless otherwise stated,
depend at most on a positive number" and upon the degree of a given binary
form.

The authors are grateful to the referee for useful comments.

2. An absolute irreducibility criterion

In this section we investigate the absolute irreducibility of the polynomialf(x; y)
defined in (1.4). Our strategy is to show that if this polynomial is reducible over
C [x; y], then the corresponding curve must possess many singular points. Mean-
while, by exploiting the arithmetic of the number fields defined by the latter singular
points, one finds thatf(x; y) has few singular points unless� = �� andb1 = �b2.
But in the latter circumstancef(x; y) is plainly reducible overQ[x; y]. We start our
investigations inC .

LEMMA 2.1. Let�; �; b1 andb2 be nonzero complex numbers, letk be an integer
exceeding2, and letf(x; y) = f(x; y;�; �; b1; b2) be the polynomial defined in
(1:4). Then the projective closure,C, of the affine plane curve overC defined by
the equationf(x; y) = 0, has the following properties.

(i) The points at infinity onC are non-singular.
(ii) If f(x; y) factors non-trivially overC as f = f1f2, and if C1 and C2 are

the projective closures of the curves defined byf1 = 0 and f2 = 0
respectively, then all the intersection points ofC1 and C2 have intersection
multiplicity one.

(iii) If f(x; y) is reducible overC thenC possesses at leastk � 2 distinct singular
points overC .

Proof. (i) The homogenization off(x; y) has the shape

h(x; y; z) = 2b1�x
k�1� 2b2�y

k�1 + z2g(x; y; z);

where g(x; y; z) is a homogeneous polynomial of degreek � 3. At infinity
one hasz = 0, and thus if the first partial derivatives vanish, then necessarily
x = y = 0. Butx = y = z = 0 does not define a point in the projective plane,
whence there are no singular points onC at infinity. Part (i) of the lemma follows
immediately.
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20 M. A. BENNETT ET AL.

(ii) By hypothesisf splits non-trivially overC asf = f1f2, andC1 andC2 are
the respective projective closures of the curves defined byf1 = 0 andf2 = 0.
Suppose thatC1 andC2 intersect at a pointP . Then necessarilyP is a singular point
of C, whence from (i) one has thatP is a finite point. IfC1 andC2 have intersection
multiplicity exceeding one atP , then without loss of generality one has

�
@f1

@x
;
@f1

@y

�
= �

�
@f2

@x
;
@f2

@y

�
(2.1)

atP . Note that the Equation (2.1) covers the case whereP is a singular point of
C1, in which case one has� = 0. Consequently, on making use of the fact that
f1 = f2 = 0 atP ,

@2f

@x2 = 2�
�
@f2

@x

�2

;
@2f

@y2 = 2�
�
@f2

@y

�2

and

@2f

@x@y
= 2�

�
@f2

@x

��
@f2

@y

�
:

But in view of (1.4) the polynomial@2f=@x@y is identically zero, and hence
at least one of@2f=@x2 and@2f=@y2 vanishes atP . Moreover, becauseP is a
singular point ofC, one also has@f=@x = @f=@y = 0 atP , and thus a simple
calculation reveals that at least one ofb1 andb2 is zero, contrary to our assumptions.
It follows that wheneverC1 andC2 intersect, they do so with multiplicity one, and
this completes the proof of part (ii) of the lemma.

(iii) Suppose thatf(x; y) is reducible overC , so that it splits non-trivially, let us
say asf = f1f2. LetC1 andC2 denote the projective closures of the curves defined
by f1 = 0 andf2 = 0, respectively. Since the product of the degrees off1 andf2 is
at least as large as degf � 1, which isk � 2, we find from Bezout’s Theorem that
C1 andC2 intersect in at leastk � 2 points in the complex projective plane, when
counted according to multiplicity. But by (i), none of these points is at infinity, and
by (ii), the intersection multiplicity at each of these points is one. Thus there are at
leastk�2 distinct intersection points, and all of these points are singular points of
C. This completes the proof of part (iii) of the lemma.

THEOREM 2.2.Letk be an integer exceeding2, let b1 andb2 be nonzero integers,
and suppose that� and� are nonzerok-free integers. If� = �� andb1 = �b2,
then the polynomialf defined by(1:4) is reducible inQ[x; y], and otherwisef is
absolutely irreducible inC [x; y].
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REPRESENTATION OF INTEGERS BY BINARY ADDITIVE FORMS 21

Proof. If f is not absolutely irreducible then by Lemma 2.1 there exist at least
k�2 distinct singular pointsP = (x; y) on the affine curve defined byf(x; y) = 0.
Since

@f

@x
= �k((x+ b1)

k�1� (x� b1)
k�1)

and

@f

@y
= ��k((y + b2)

k�1� (y � b2)
k�1);

it follows that at a singular pointP we have

x+ b1 = !1(x� b1) and y + b2 = !2(y � b2); (2.2)

where!1 and!2 are(k � 1)th roots of unity, not necessarily distinct. Notice that
since thebi are nonzero, one has!i 6= 1 (i = 1;2). Thus, on solving forx andy
and substituting into the equationf(x; y) = 0, we obtain the relation

�

�

�
b1

b2

�k
=

�
1� !1

1� !2

�k�1

: (2.3)

Moreover, in view of (2.2), the values!1 and!2 uniquely determinex andy, and
hence the Equation (2.3) must hold for at leastk � 2 distinct pairs(!1; !2) of
non-trivial (k � 1)th roots of unity.

Suppose next that!1 and !2 satisfy (2.3), and letr1 and r2 be the exact
multiplicative orders of!1 and!2 respectively. Necessarily each ofr1 and r2

dividesk � 1. Whenm > 1, let �m denote a primitivemth root of unity. It is
well-known (see for example, [8, Thm. 45], and its proof) that ifm is divisible by
at least two distinct primes, then 1� �m is a unit. If 1� !1 and 1� !2 are both
units then the right-hand side of (2.3) is a unit. But then, since the left hand side of
(2.3) is rational, we must have(�=�)(b1=b2)

k = �1. Our hypotheses concerning
� and� therefore lead to the conclusion that� = �� andb1 = �b2, in which case
f is plainly reducible inQ[x; y]. Henceforth, therefore, we may suppose without
loss of generality that� and� are coprime, and thatr1 = pr, a prime power. We
can also assume thatr2 6= r1, since otherwise the right-hand side of (2.3) again
becomes a unit.

Our strategy is now to show that there are fewer thank � 2 singular points by
considering the possibilities forr1 andr2. If such can be established, then in view
of Lemma 2.1 it follows thatf is absolutely irreducible, and the proof of Theorem
2.2 will be complete.

Case1. Suppose thatr2 = ps and, without loss of generality,r < s. The
primep is totally ramified in the cyclotomic fieldQ(!2). Let p be the prime ideal
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22 M. A. BENNETT ET AL.

dividing (p) in the latter field, and letd = ordp((�=�)(b1=b2)
k). We know that

ordp(1� !2) = 1 and ordp(1� !1) = ps�r (see [8, Thm. 45]). Using the fact
ordp(p) = [Q(!2) : Q] = �(ps), and equating orders atp in (2.3), we find that

dps�1(p� 1) = (ps�r � 1)(k � 1):

It follows that the power ofp dividing dps�1 must be the same as that dividing
k � 1, and so this uniquely determiness, and thusr as well. Also,p is uniquely
determined as the only prime dividing� or �, sincep is the only prime ideal of
Q(!2) occurring in the factorisation of the right-hand side of (2.3).

If r2 = 4 andr1 = 2 then there are only two possible choices for(!1; !2), and
this is insufficient, since there must be at leastk � 2, andk � 1 is divisible by
r2 = 4. Therefore we may suppose thatr2 > 4. But then there is an automorphism
of Q(!2)=Q which fixes!1 but does not fix!2 or send it to its complex conjugate.
This automorphism fixes the left hand side of (2.3) but changes the absolute value
of the right-hand side. This again is impossible.

Case2. Suppose now thatr2 is a power of some prime different fromp, or
is divisible by at least two distinct primes. Then 1� !2 is either a unit or does
not dividep in any cyclotomic field. It follows thatr is uniquely determined by
the equationdpr�1(p � 1) = k � 1. For each of the�(pr) possible choices of
!1, there are at most two (complex conjugate) possibilities for!2, for otherwise
the absolute value of the right hand-side of (2.3) changes. Hence there are at most
2�(pr) < 2pr � 1 choices for(!1; !2). Since bothr1 andr2 must dividek � 1,
we deduce that there are fewer thank� 2 choices for(!1; !2), and once more this
provides a contradiction.

3. Preliminary lemmata

Before advancing to the main body of our argument, we pause in order to record
several preliminary lemmata.

LEMMA 3.1. For i = 1;2;3, suppose thatQi is a positive number, and thatxi is
an integer with16 xi 6 Qi. Then the equationa1x1+a2x2+a3x3 = 0 is soluble
in integersa1; a2; a3 with (a1; a2; a3) = 1 and

jaij 6 Q�1
i (3Q1Q2Q3)1=2 (1 6 i 6 3):

Proof. This is the cases = 3 of [21, Lem. 2.1].

LEMMA 3.2. Let p(x) and q(x) be polynomials with integral coefficients, of
respective degreesk and r. Suppose also thatk > r and (k; r) = 1. Then the
numberN(X; p; q) of solutions of the Diophantine Equationp(y) = q(x), with
0 6 x; y 6 X, satisfiesN(X; p; q)� X1=k+".
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Proof. This is [21, Corollary 2.3.1].

LEMMA 3.3. Letk be an integer exceeding2, leta1; a2; b1 andb2 be fixed positive
integers, and suppose that� and � are nonzerok-free integers. Letf(x; y) =
f(x; y;�; �; b1; b2) be the polynomial defined in(1:4). Also, letM(X) denote
the number of solutions of the Diophantine Equationf(a1u; a2v) = 0 with 1 6
u; v 6 X, subject, in the cases in which� = ��, to the additional condition
a1u+ b1 6= a2v + b2. ThenM(X)� X1=(k�1)+".

Proof. Suppose either that� 6= ��, or else that� = �� but b1 6= �b2.
Then by Theorem 2.2 the polynomialf(u; v) is absolutely irreducible of degree
k � 1. Thus Bombieri and Pila [3, Thm. 5] implies that in this caseM(X) �
X1=(k�1)+". Meanwhile, if� = �� andb1 = �b2, then any solutionu; v counted
by M(X) satisfies the equationg(a1u; b1) = �g(a2v;�b1), whereg(z;w) =
(z+w)k� (z�w)k. But whenz andw are positive,g(z;w) is a strictly increasing
function ofz, and thus solutions to the latter equation must satisfya1u = �a2v.
Consequently, in this second case, there are no solutions counted byM(X) with
a1u+ b1 6= a2v + b2. This completes the proof of the lemma.

Notice that in the conclusions of Lemmata 3.2 and 3.3, the implicit constants
depend at most onkand", but are independent of the coefficients of the polynomials
defining the respective equations.

4. An auxiliary equation

It transpires that our arguments in Sections 5 and 6 below depend for their success
on certain estimates for the number of solutions of the Diophantine Equation

�uk1 � �vk1 = �uk2 � �vk2 ; (4.1)

with variables restricted to a suitable region. By defining new variablesx; y; z; w

by

x = u1� u2; y = u1 + u2; z = v1� v2; w = v1 + v2; (4.2)

the Equation (4.1) may be brought into the shape

��k(x; y) = ��k(z; w); (4.3)

where the polynomial�k(s; t) is defined by

�k(s; t) = (t+ s)k � (t� s)k: (4.4)

The object of this section is to obtain estimates for the number,Mk(Q;H) =
Mk(Q;H;�; �), of solutions of the Equation (4.3) with 16 x 6 H1, 16 y 6 Q1,
1 6 z 6 H2, 1 6 w 6 Q2, subject, in the cases where� = ��, to the additional
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conditionx+ y 6= z +w. We divide our argument into two parts, according to the
parity ofk, following closely the argument of [21, Sect. 3].

LEMMA 4.1. Let k be an even integer withk > 4, and let� and� be nonzero
k-free integers. LetH1;H2; Q1; Q2 be positive numbers, and write

M = minfj�j; j�jgmaxfH1;H2; Q1; Q2g:

Then

Mk(Q;H;�; �)�M"
�
H1H2Q2 +H2

1

�1=2
(H2 +Q1 +Q2)1=(k�1) :

Proof. We begin by noting that by relabelling variables, we may suppose without
loss of generality thatj�j > j�j. Next, for each solutionx; y; z; w of (4.3) counted
byMk(Q;H;�; �), we have

�xyUk(x; y) = �zwUk(z; w); (4.5)

where we write

Uk(s; t) =
X

06r<k=2

 
k

2r + 1

!
s2rtk�2r�2: (4.6)

We note for future reference that for real values ofs andt, the polynomialUk(s; t)
is zero if and only ifs = t = 0. Write d = (x; z) ande = (x=d;w), and put
x1 = x=(de), z1 = z=d andw1 = w=e. Then(x1; z1w1) = 1. On substituting into
(4.5), we obtain

�x1yUk(dex1; y) = �z1w1Uk(dz1; ew1): (4.7)

For ease of handling, let us define

� = (3H1H2Q2)
1=2; A = �=(dQ2); B = �=(eH2); C = �=H1:(4.8)

Let T1(d; e) denote the number of solutions(x1; y; z1; w1) of Equation (4.7) with

maxfA;Bg < x1 6 H1=(de); (4.9)

1 6 y 6 Q1; (4.10)

1 6 z1 6 H2=d; (x1; z1) = 1; (4.11)

1 6 w1 6 Q2=e; (x1; w1) = 1; (4.12)
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REPRESENTATION OF INTEGERS BY BINARY ADDITIVE FORMS 25

and subject, in the cases where� = ��, to the additional condition

dex1 + y 6= dz1 + ew1: (4.13)

Also, letT2(d; e) denote the corresponding number of solutions with the condition
(4.9) replaced by

1 6 x1 6 maxfA;Bg: (4.14)

Then it follows from the preceding paragraph that

Mk(Q;H) 6
X

16d6H1

X
16e6H1=d

�
T1(d; e) + T2(d; e)

�
: (4.15)

We first estimateT1. By Lemma 3.1, for eachx1; z1; w1 satisfying (4.9), (4.11)
and (4.12), there exist integersa, b andc, not all zero, with(a; b; c) = 1, 06 jaj 6
A, 06 jbj 6 B, 06 jcj 6 C and satisfying the equation

aw1 + bz1 = cx1: (4.16)

We note that botha andb are nonzero. For suppose thata = 0. Then we have
bz1 = cx1 with (x1; z1) = (b; c) = 1, whencejx1j = jbj 6 B, contradicting (4.9).
Similarly, if b = 0, then necessarilyjx1j = jaj 6 A, again contradicting (4.9).
Thus we may assume that neithera norb is zero. We substitute from (4.16) forw1

into (4.7) to deduce that

T1(d; e) 6
X

0<jaj6A

X
0<jbj6B

X
06c6C

U(d; e; a; b; c); (4.17)

whereU(d; e; a; b; c) denotes the number of solutions of the equation

�ak�1x1yUk(dex1; y) = �z1(cx1� bz1)Uk(adz1; e(cx1 � bz1)); (4.18)

with x1; y; z1 satisfying (4.9)–(4.11). Observe that, in view of the coprimality
condition (x1; z1) = 1 of (4.11), for each such solution(x1; y; z1) counted by
U(d; e; a; b; c) the Equation (4.18) implies thatx1 divides�bUk(ad;�be). Fur-
thermore, since neithera nor b is zero, we havebUk(ad;�be) 6= 0. Thus, by
using standard estimates for the divisor function, there are at mostO(M") possible
choices forx1. Fixing any one such choice, the equation (4.18) takes the shape
p(z1) = q(y), wherep(z1) has degreek andq(y) has degreek�1. Then Lemma 3.2

implies that the number of possible choices fory andz1 is O
�
(H2 +Q1)

1=k+"
�
.

ThusU(d; e; a; b; c) isO(M"(H2 +Q1)
1=k), and hence by (4.8) and (4.17),

T1(d; e)�M"(de)�1
�
H1H2Q2 +H2

1

�1=2
(H2 +Q1)

1=k: (4.19)
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Next we estimateT2(d; e). Let V1(d; e) denote the number of the solutions
x1; y; z1; w1 counted byT2(d; e) in which x1 6 B, and letV2(d; e) denote the
corresponding number of solutions withx1 6 A. Then in view of (4.14), we have

T2(d; e) 6 V1(d; e) + V2(d; e): (4.20)

First we boundV1(d; e). For each fixed choice ofx1 andz1, we solve the Equation
(4.7) fory andw1. On recalling (4.6), Equation (4.7) implies that

�((a1y + b1)
k � (a1y � b1)

k) = �((a2w1 + b2)
k � (a2w1� b2)

k); (4.21)

wherea1 = 1, b1 = dex1, a2 = e and b2 = dz1. Then by Lemma 3.3, the
number of possible choices fory andw1 satisfying (4.10), (4.12) and (4.13) is
O((Q1 +Q2)

1=(k�1)+"). Consequently

V1(d; e)�
X

16x16B

X
16z16H2=d

(Q1 +Q2)
1=(k�1)+";

whence by (4.8),

V1(d; e)� (de)�1(H1H2Q2)
1=2(Q1 +Q2)

1=(k�1)+": (4.22)

A similar argument boundsV2(d; e) in like manner, on interchanging the roles of
d ande, andw1 andz1. In this way we obtain

V2(d; e)�
X

16x16A

X
16w16Q2=e

(Q1 +H2)
1=(k�1)+";

and thus by (4.8),

V2(d; e)� (de)�1(H1H2Q2)
1=2(Q1 +H2)

1=(k�1)+": (4.23)

On recalling (4.15), (4.19) and (4.22), we therefore deduce that

Mk(Q;H)�M"
X

16d6H1

X
16e6H1=d

(de)�1

�
�
H1H2Q2 +H2

1

�1=2
(Q1 +Q2 +H2)

1=(k�1);

and the desired conclusion follows immediately.

LEMMA 4.2. Let k be an odd integer withk > 3, and let� and� be nonzero
k-free integers. LetH1;H2; Q1; Q2 be positive numbers, and defineM as in the
statement of Lemma4:1. Then

Mk(Q;H;�; �)�M"
k

�
H1H2Q2 +H2

1 +H2
2

�1=2
(Q1 +Q2 +H2)

�k ;
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where�k = 1=k andMk = j�jM whenk = 3;5, and �k = 1=(k � 1) and
Mk =M otherwise.

Proof. As in the proof of Lemma 4.1, we may plainly suppose thatj�j > j�j.
For each solutionx; y; z; w of (4.3) counted byMk(Q;H;�; �), we have

�xVk(x; y) = �zVk(z; w); (4.24)

where we write

Vk(s; t) =
X

06r<k=2

 
k

2r + 1

!
s2rtk�2r�1: (4.25)

We again note for future reference that for real values ofs andt, the polynomial
Vk(s; t) is zero if and only ifs = t = 0. Writed = (x; z), and putx1 = x=d and
z1 = z=d. Thus(x1; z1) = 1. On substituting into (4.24), we obtain

�x1Vk(dx1; y) = �z1Vk(dz1; w): (4.26)

We now estimateMk(Q;H;�; �) using an argument strikingly similar, though
simpler, than that used in the proof of Lemma 4.1. In order to curtail our delib-
erations, we adopt the convention throughout the remainder of the proof of this
lemma thate = 1, w1 = w, that the coprimality condition(x1; w1) = 1 is to be
ignored, and that occurrences of maxfA;Bg are to be replaced simply byB. Let
T1(d) denote the number of solutions(x1; y; z1; w) of the Equation (4.26) satisfy-
ing (4.9)–(4.13), and letT2(d) denote the corresponding number of solutions with
the condition (4.9) replaced by (4.14). Then it follows from the above discussion
that

Mk(Q;H) 6
X

16d6H1

�
T1(d) + T2(d)

�
: (4.27)

We first observe that from (4.4) and (4.25) the Equation (4.26) implies that (4.21)
is satisfied. Thus the argument leading to (4.22) remains valid, and we deduce that

X
16d6H1

T2(d)�M"(H1H2Q2)
1=2(Q1 +Q2)

1=(k�1): (4.28)

We estimateT1(d) when 16 d 6 H1 as in the argument used to estimate
T1(d; e) in the proof of Lemma 4.1. LetU(d; a; b; c) denote the number of solutions
(x1; y; z1; w) of the equation (4.26) satisfying (4.9)–(4.13) and (4.16). Then it
follows, as in the argument leading to (4.17), that

T1(d) 6
X

0<jaj6A

X
06jbj6B

X
06c6C

U(d; a; b; c): (4.29)
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On substituting from (4.16) forw into (4.26), we deduce thatU(d; a; b; c) is
bounded above by the number of solutions of the equation

�ak�1x1Vk(dx1; y) = �z1Vk(adz1; cx1� bz1); (4.30)

with x1; y; z1 satisfying (4.9)–(4.11). Moreover on this occasion one may assume
thata is nonzero. Observe that for each solution(x1; y; z1) counted byU(d; a; b; c),
the Equation (4.30) implies thatx1 divides�Vk(ad;�b). Furthermore, sincea is
nonzero, we haveVk(ad;�b) 6= 0. Then by again using standard estimates for the
divisor function, it follows that there are at mostO(M") possible choices forx1.
Fixing any one such choice, the Equation (4.30) takes the shapep(z1) = q(y),
wherep(z1) has degreek andq(y) has degreek � 1. Then Lemma 3.2 implies
that the number of possible choices fory andz1 is O((H2 + Q1)

1=k+"), whence
U(d; a; b; c) is O(M"(H2 + Q1)

1=k). Consequently we deduce from (4.29) the
bound

T1(d)�M"d�1
�
H1H2Q2 +H2

1 +H2
2

�1=2
(Q1 +Q2 +H2)

1=k: (4.31)

On combining (4.27), (4.28) and (4.31), we arrive at the desired conclusion in
the cases wherek > 7. Whenk = 3, we proceed as in the above argument, save
for the treatment ofT2. In this case the Equation (4.21) becomes

�(3a2
1b1y

2 + b3
1) = �(3a2

2b2w
2
1 + b3

2):

Then provided that�b3
1 6= �b3

2, standard estimates (see, for example, Estermann
[5]) show that the number of possible choices fory andw1 isO(M"

k). Meanwhile,
since� and� are cube-free in this case, if�b3

1 = �b3
2, then necessarily� = �� and

b1 = b2, whencea1y = a2w1, and thusa1y+ b1 = a2w1+ b2, contradicting (4.13).
We therefore deduce that whenk = 3, one hasT2(d) � M"

kd
�1(H1H2Q2)

1=2,
and the desired refinement follows immediately. The casek = 5 may be disposed
of similarly once we observe that in this case the Equation (4.21) becomes

�(5b1Y
2� 4b5

1) = �(5b2W
2� 4b5

2);

whereY = a2
1y

2+ b2
1 andW = a2

2w
2
1+ b2

2. This completes the proof of the lemma.

5. Sums and differences ofkth powers

In this section we apply the conclusions of Section 4 to establish Theorem 2. We
first make some simplifying observations. First note that whenk is even��k (X)
is the number of non-negative integers not exceedingX which are represented as
the sum of twokth powers of non-negative integers in more than one essentially
distinct way. Thus Skinner and Wooley [21, Thm. 1] shows that whenk > 4 is
even,

��k (X)� X(3=2k)+(1=k(k�1))+":
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In all other cases under consideration, on taking account of the underlying auto-
morphism group and noting that zero has multiple representations, one finds that
��k (X) � 1+ ��k(X), where��k(X) denotes the number of positive integers not
exceedingX that are represented as the difference of two integralkth powers in
more than one essentially distinct way.

Next we observe that if a positive integern is represented as the difference of
two integralkth powers, sayn = uk�vk, then on taking account of the underlying
automorphism group one may suppose thatu > jvj andu 6= v. Thus, by a suitable
rearrangement of variables, we deduce that��k(X) is bounded above by the number
of integral solutions of the system

0 < uk1 � vk1 = uk2 � vk2 6 X; (5.1)

with

�ui 6 vi < ui; (i = 1;2) and u1 6= u2: (5.2)

For each solutionu; v of (5.1) satisfying (5.2), we define integersx; y; z; w by
x = u1�v1, y = u1+v1, z = u2�v2 andw = u2+v2. On recalling the definition
of �k(s; t) given by (4.4), the above discussion leads to the conclusion

��k(X)� Nk(2
kX); (5.3)

whereNk(Q) denotes the number of solutions of the system

0 < �k(x; y) = �k(z; w) 6 Q; (5.4)

in non-negative integersx; y; z; w satisfyingx 6= 0, z 6= 0 andx + y 6= z + w.
Moreover, whenk is even we may use the symmetry of�k(s; t) to impose the
additional conditionsy > x andw > z.

On recalling the definitions (4.6) and (4.25), we note that (4.4) implies that

�k(s; t) =

(
2stUk(s; t); whenk is even;

2sVk(s; t); whenk is odd:

Consequently, ifx; y; z; w is a solution of (5.4) counted byNk(Q), then

0 < x 6 minfQ1=k; Qy1�kg and 0< z 6 minfQ1=k; Qw1�kg: (5.5)

We note that the contribution toNk(Q) from those solutions withy = 0 orw = 0
isO(Q1=k+"). For wheny = 0, on assigning any permissible choice ofx one finds
from (5.4) thatz is a divisor of a fixed nonzero integer. Having determinedx and
z, the variablew is determined by a non-trivial polynomial from (5.4), and thus the
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desired conclusion follows from (5.5). A similar argument disposes of the solutions
with w = 0 in like manner. Next, on dividing into dyadic intervals, we deduce that

Nk(Q)� Q1=k+" +Q" max
16Y 6Q1=(k�1)

max
16W6Q1=(k�1)

N�

k (Q;Y;W ); (5.6)

whereN�
k (Q;Y;W ) denotes the number of integral solutions of the system (5.4)

satisfyingY 6 y 6 2Y , W 6 w 6 2W and (5.5). Moreover, on recalling the
definition ofMk(Q;H;�; �) from Section 4, one has

N�

k (Q;Y;W ) 6 Mk(2Y;2W;minfQ1=k; QY 1�kg;

minfQ1=k; QW 1�kg; 1;1): (5.7)

Write �k for 1=k whenk = 3;5, and for 1=(k � 1) otherwise. Then when
Y 6 Q1=k, W 6 Q1=k andk > 3, we may combine the conclusions of Lemmata
4.1 and 4.2 with (5.7) to obtain

N�

k (Q;Y;W )� (WQ2=k)1=2(Q1=k + Y +W )�k+" � (Q1=k)3=2+�k+":

When insteadY 6 Q1=k andQ1=k < W 6 Q1=(k�1) one similarly obtains

N�
k (Q;Y;W ) � (Q1+1=kW 2�k)1=2(Y +W +QW 1�k)�k+"

� (Q1=k)3=2+�k+":

On interchanging the roles ofY andW , a similar argument yields the same bound
whenQ1=k < Y 6 Q1=(k�1) andW 6 Q1=k. Finally, whenQ1=k < Y 6 Q1=(k�1)

andQ1=k < W 6 Q1=(k�1) we find that

N�
k (Q;Y;W ) � (Q2W 2�kY 1�k)1=2(Y +W +QW 1�k)�k+"

� (Q1=k)3=2+�k+":

Thus in any caseN�

k (Q;Y;W ) � (Q1=k)3=2+�k+", and so Theorem 2 follows
immediately from (5.3) and (5.6).

6. Binary additive forms

Our way is now clear to establish Theorem 1. We begin by discussing some
simplifications. First, by multiplying the form through, if necessary, by�1, we
may restrict attention to non-negative integers represented by�xk � �yk. Next we
note that there is no loss of generality in supposing� and� to be nonzerok-free
integers. Moreover the conclusions of Theorem 2 permit us to suppose further
that� 6= ��. In particular, therefore, zero is represented by�xk � �yk precisely
whenx = y = 0, and so it suffices henceforth to consider only positive integers
represented by the form in question.
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Now we bound the domains of the variables. Suppose thatn is a positive integer
represented by�xk � �yk. If k is even and�xk � �yk is definite, so that� > 0
and� < 0, then plainlyjxj 6 n1=k andjyj 6 n1=k. If k is even and�xk � �yk

is indefinite, meanwhile, one has that�=� is positive. Let� = (�=�)1=k . Then no
matter what the parity ofk, on recalling that� and� arek-free and� 6= ��, we
have that� is a real irrational algebraic number. Let" be a small positive number.
Then it follows from Roth’s Theorem (see [18]) that for each pair of nonzero
integersp andq, one has

jp� �qj � jqj�1�" and jp��1� qj � jpj�1�";

where here the (ineffective) implicit constants depend at most on�, � and". We
thus conclude that for each integer pair(u; v) one has

j�uk � �vkj �
�
maxfjuj; jvjg

�k�2�"
;

and so in all cases under consideration, if�xk � �yk = n then there exists a
numberA = A(k; "; �; �) such that

jxj 6 An1=(k�2)+" and jyj 6 An1=(k�2)+": (6.1)

An upper bound for�k(X;�; �) is provided by the number of integral solutions
of the system

0 < �uk1 � �vk1 = �uk2 � �vk2 6 X; (6.2)

with u1 6= u2, and subject in the cases wherek is even to the additional condition
u1 6= �u2. We apply different arguments to bound the latter number according to
the size of maxi=1;2fjuij; jvijg. Thus, on dividing the range for the latter maximum
into dyadic intervals, one deduces from (6.1) that for any numberV satisfying
1 6 V 6 AX1=(k�2)+", one has

�k(X;�; �) � T (V ) +X" max
V 6W6AX1=(k�2)+"

S(W ); (6.3)

whereT (V ) denotes the number of solutions of (6.2) withu1 6= u2 (and whenk is
even, withu1 6= �u2), satisfying

max
i=1;2

fjuij; jvijg 6 V; (6.4)

and whereS(W ) denotes the corresponding number of solutions satisfying instead

W < max
i=1;2

fjuij; jvijg 6 2W: (6.5)
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We first boundS(W ). Let us estimate the number of solutions of (6.2) counted
by S(W ) in which

ju1j = max
i=1;2

fjuij; jvijg: (6.6)

Plainly one may argue similarly when one of the remaining variables is in fact
maximal. In view of (6.5), the hypothesis (6.6) implies thatW < ju1j 6 2W . But
from (6.2) one hasj�uk1 � �vk1 j 6 X, and henceju1�

�1� v1j � Xju1j
1�k. Thus

we deduce that givenu1 with W < ju1j 6 2W , the number of possible choices for
v1 isO(1+XW 1�k). Further, givenu1 andv1, the variablesu2 andv2 satisfy an
equation of the shape�uk2 � �vk2 = n, so that there areO(X") possible choices
for u2 andv2 (see, for example, [2], although earlier references would suffice in
this case). Consequently, on combining these bounds we conclude that

S(W )� X"
�
W +XW 2�k

�
: (6.7)

Next we observe that an upper bound forT (V ) is provided by the number of
integral solutions of the equation

�(uk1 � uk2) = �(vk1 � vk2); (6.8)

with u1 6= u2 (and whenk is even, withu1 6= �u2), and satisfyingjuij 6 V and
jvij 6 V (i = 1;2). We are therefore able to boundT (V ) by using Lemmata 4.1
and 4.2, following some simplifying observations. Note first that by interchanging
indices, it suffices to consider only those solutions in whichju1j > ju2j and
jv1j > jv2j. Also, whenk is even we may plainly suppose that the variables are
all non-negative. Whenk is odd, moreover, we may adjust the signs of� and�,
if necessary, so that it suffices to consider the situation in whichu1 andv1 are
restricted to be positive numbers. Now define new variablesx; y; z; w according
to (4.2). Then we find that the solutionu; v of (6.8) corresponds to a solution
x; y; z; w of the Equation (4.3). On recalling (6.4), we are led by this discussion to
the conclusion

T (V )�Mk(2V;2V;2V;2V ;�; �);

and hence, by Lemmata 4.1 and 4.2, we have

T (V )� V 3=2+�k+"; (6.9)

where�k = 1=k whenk = 3;5, and�k = 1=(k � 1) otherwise.
On combining (6.3), (6.7) and (6.9), we finally obtain

�k(X;�; �) � V 3=2+�k+" +X"(X1=(k�2) +XV 2�k);
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and the conclusion of Theorem 1 follows with a modicum of computation on taking
V k�1=2+�k = X.
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