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Abstract

We prove that the monodromy group of a reduced irreducible square system of general
polynomial equations equals the symmetric group. This is a natural first step towards
the Galois theory of general systems of polynomial equations, because arbitrary systems
split into reduced irreducible ones upon monomial changes of variables. In particular,
our result proves the multivariate version of the Abel–Ruffini theorem: the classification
of general systems of equations solvable by radicals reduces to the classification of lattice
polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also
notice that the monodromy of every general system of equations is either symmetric or
imprimitive. The proof is based on a new result of independent importance regarding
dual defectiveness of systems of equations: the discriminant of a reduced irreducible
square system of general polynomial equations is a hypersurface unless the system is
linear up to a monomial change of variables.

1. Introduction

Galois theory for lattice polytopes
A problem of enumerative geometry asks how many geometric objects satisfy a generic geometric
constraint in a given space of constraints P . Galois theory for this enumerative problem studies
how the solutions of this problem permute as the constraint runs along loops in P . In the
last decade, particularly strong results were obtained in Galois theory of Schubert calculus; see
[SW15] and references therein.

We develop Galois theory in the same vein for another well-known enumerative problem,
the Kouchnirenko–Bernstein theorem, counting the solutions of a system of generic polynomial
equations composed of a given finite collection of monomials. More accurately, let us identify
points a = (a1, . . . , an) ∈ Zn with monomials xa = xa11 . . . xann ; then every finite set of monomials
A ⊂ Zn gives rise to the space of Laurent polynomials CA = {

∑
a∈A cax

a, ca ∈ C}, supported at
A. These polynomials are defined as functions on the complex torus (C\0)n.

Theorem 1.1 (Kouchnirenko–Bernstein [Ber75]). For every collection of finite sets A = (A1,
. . . , An) in Zn, there exists a proper exceptional algebraic set BA ⊂ CA = CA1 ⊕ · · · ⊕CAn , such
that the number of common roots x ∈ (C\0)n of a system of polynomial equations f1(x) = · · · =
fn(x) = 0 for every tuple of polynomials (f1, . . . , fn) ∈ CA outside BA equals the lattice mixed
volume of (the convex hulls of) A1, . . . , An.
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In the setting of the Kouchnirenko–Bernstein theorem, denote the mixed volume by V . Then
every loop in CA\BA, pointed at some tuple f = (f1, . . . , fn), defines a permutation of the roots
of f = 0. For all loops in CA\BA, these permutations form a subgroup of the group SV of all
permutations of the V roots of f = 0. This subgroup will be called the monodromy group of the
general system of polynomial equations supported at A and denoted by GA.

We shall be interested in the following two problems:

(I) Compute GA.

(II) Classify solvable tuples A, for which the multivalued function CA\BA → (C\0)n, assigning
the roots of the system f = 0 to an element f ∈ CA\BA, can be expressed by radicals.

The first problem helps to solve the second one, because a solvable tuple A has a solvable
monodromy group GA (see, for example, [Kho15]).

Example 1.2. For n = 1 and A = A1 = {0, 1, . . . , d}, the problems above ask (I) for the mono-
dromy of the generic univariate polynomial cdx

d + cd−1x
d−1 + · · ·+ c0 and (II) for the expression

of its roots by radicals in terms of the coefficients c0, c1, . . . , cd. It is classically known that the
monodromy GA equals Sd, and thus the general equation of degree d is solvable for d 6 4.

For arbitrary n, the second problem, though not the first one, can be reduced without
loss of generality to reduced irreducible tuples A = (A1, . . . , An) in the sense of the following
Definition 1.3. Thus, the subsequent Theorem 1.5 leads to a complete solution of problem (II),
and seems to be a natural first step towards the solution of problem (I).

Definition 1.3. (1) A tuple of finite sets A1, . . . , Ak in Zn is said to be reduced, if they cannot
be shifted to the same proper sublattice of Zn.

(2) A tuple of finite sets A1, . . . , Ak in Zn is said to be irreducible (respectively, linearly
independent), if it is impossible to shift all but m (respectively, m − 1) of them to the same
sublattice of codimension m, for m > 0.

Remark 1.4. (1) Mind the difference between reduced and reducible (i.e. non-irreducible).
(2) Similar conditions were introduced by various authors for particular values of n− k (cf.,

for instance, essential tuples in [Stu94] for k = n+1). We prefer the terms ‘linearly independent’,
‘reduced’ and ‘irreducible’ (introduced in [Kho78] and [EG16] for k = n), because discriminants
and other geometric objects, related to the system of equations f = 0 for the general tuple
f ∈ CA, tend to be reduced and irreducible in the sense of algebraic geometry if the tuple
A = (A1, . . . , Ak) has the property of the same name. See Remark 3.17 and Theorem 3.21 for
some instances of this correspondence.

Theorem 1.5. If A = (A1, . . . , An) is a reduced irreducible tuple, then the monodromy group
GA equals the symmetric group SV .

The proof is given at the end of this section.

Systems of equations, solvable by radicals
Since SV is not solvable for V > 4, Theorem 1.5 implies the following corollary.

Corollary 1.6 [EG16, Conjecture 1]. For a reduced irreducible tuple (A1, . . . , An), the general
system of equations supported at (A1, . . . , An) is solvable by radicals if and only if it has at most
four solutions, that is, the lattice mixed volume of A1, . . . , An does not exceed 4.

This fact actually gives the inductive classification of all solvable tuples A = (A1, . . . , An).
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Classification 1.7. (0) We can and will assume without loss of generality that every Ai contains 0.
Indeed, otherwise shift Ai by a vector −ai, ai ∈ Ai, to a set Ãi containing 0. Now, instead of

polynomials fi ∈ CAi , we can study polynomials fi(x)/xai ∈ CÃi , because they have the same
roots as fi.

(1) We can and will assume that A is reduced. Indeed, otherwise Ai is the image of Bi under
a lattice embedding j : Zn

→ Zn for a reduced tuple B = (B1, . . . , Bn), and we have the following
fact: the solvability of B is equivalent to the solvability of A.

Proof. Consider the surjection of complex tori h : (C\0)n → (C\0)n, corresponding to the
embedding j of their character lattices, so that h(x)b = xj(b) for x ∈ (C\0)n and b ∈ Zn. Then
every tuple of polynomials f ∈ CA has the form f(x) = g(h(x)), g ∈ CB. Since h is invertible by
radicals, it follows that f = 0 and g = 0 are solvable by radicals simultaneously. 2

(2) We can and will assume that A is irreducible. Otherwise, up to reordering, the sets
A1, . . . , Ak, 0 < k < n, belong to the same k-dimensional plane L ⊂ Zn, and, denoting the
tuple of the images of the other Ai under the projection Zn

→ Zn/L by A′′, we have the
following fact: the solvability of A is equivalent to the solvability of the smaller-dimensional
tuples A′ = (A1, . . . , Ak) and A′′.

Proof. Note that upon an appropriate automorphism of (C\0)n, the polynomial fi ∈ CAi depends
only on the first k coordinates for i 6 k, so, substituting these coordinates with a solution of
f1 = · · · = fk = 0 in the system of equations fk+1 = · · · = fn = 0, we obtain a system of the
form g = 0, g ∈ CA′′

. Thus solving a generic system f = 0 supported in A amounts to solving a
generic system f1 = · · · = fk = 0 supported in A′ and a system g = 0, which is also generic in
CA′′

in the sense that assigning g to f is a dominant map CA
→ CA′′

. 2

(3) Finally, a reduced and irreducible tuple A is solvable if and only if the lattice mixed
volume of A1, . . . , An does not exceed 4 (by Corollary 1.6).

This algorithm reduces the classification of solvable systems of equations to the classification
of irreducible mixed volume 4 tuples of lattice sets. The latter classification is given in [EG16]
in dimension 2, and is, moreover, finite in every dimension; see Theorem 1.11 below for details.

Remark 1.8. In the same way, the classification of systems of equations solvable by k-radicals in
the sense of [Kho15] (i.e. those that can be reduced to solving univariate polynomial equations
of degree at most k) is reduced to the classification of tuples of lattice sets of mixed volume at
most k.

Example 1.9. For n = 2, if a reduced consistent general system of equations is solvable by
radicals, then its Newton polygons either have lattice mixed volume at most 4 (there are 14 such
maximal pairs up to automorphisms of Z2; see [EG16]), or equal a segment I of lattice length at
most 4 and an arbitrary polygon P , whose support lines parallel to I are at the lattice distance
not exceeding 4 from each other.

Classification of small polytopes
Each of the infinitely many pairs (I, P ) in the preceding example has mixed volume at most 16,
due to the following fact. We denote the lattice mixed volume of the convex hulls of A1, . . . , An

by MV(A1, . . . , An).
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Theorem 1.10. LetB1, . . . , BN be lattice sets in ZN and A1, . . . , AM in ZN ⊕ZM . Then MV(A1,
. . . , AM , B1, . . . , BN ) = MV(pA1, . . . , pAM ) MV(B1, . . . , BN ), where p : ZN ⊕ ZM

→ ZM is the
standard projection.

This well-known fact admits an especially simple proof in the spirit of Classification 1.7(2)
([Est06]; see, for example, [ST10, Lemma 4] for a geometric proof).

An algebraic proof. For fi ∈ CAi and gj ∈ CB
j , every solution of the system f = g = 0 is of the

form (x0, y0), where x0 ∈ (C\0)N is a solution of the system g = 0 and y0 ∈ (C\0)M is a solution
of the system f(x0, y) = 0. For generic f and g, the number of solutions of the three mentioned
systems equals the three lattice mixed volumes in the statement by the Kouchnirenko–Bernstein
theorem. 2

This reduces the infinite classification of tuples with small mixed volume to the classification
of irreducible tuples, which is already finite.

Theorem 1.11. For every n and V , there are finitely many irreducible tuples (A1, . . . , An) in
Zn of mixed volume V , up to automorphisms of Zn and shifts of the sets.

The proof is given in § 2. Moreover, if we restrict our attention to the unmixed case, where
A1 = · · ·=An =A, the classification becomes essentially finite across all dimensions: it was shown
in [EG16] that every reduced A ⊂ Zn of lattice volume 4 can be obtained from 34 ‘elementary’
configurations of dimension at most 6 by affine automorphisms of Zn and constructing cones
over lattice sets in the following sense.

Definition 1.12. The cone over B ⊂ Zm is the set c(B) = {0} ∪ (B × {k}) ⊂ Zm+1.

Remark 1.13. (1) The same is true for every value of the volume, as shown in [HKN18,
Corollary 3.1] (although, starting from volume 5, the classification of non-cones seems to be
incomprehensibly large).

(2) In the notation of the preceding definition, the solution by radicals of the system f0 =
· · · = fm = 0 supported at the cone c(B) can be reduced to the solution by radicals of the system
g1 = · · · = gm = 0 supported at its base B, by setting gi(x) = fi(x)/fi,0 − f0(x)/f0,0, where
fi,0 is the constant term of fi. Thus the solution by radicals of all solvable unmixed systems of
arbitrarily many variables reduces to the 34 elementary ones listed in [EG16].

(3) The classification of the 34 non-cones of volume 4 in [EG16] includes only reduced ones
(or spanning ones, in terms of [HKN18]), because this suits the needs of Corollary 1.6. The
classification of all (possibly non-reduced) non-cones of volume 4 is also possible, but is more
complicated and not finite due to empty simplices; see [HT17].

Monodromy of reducible systems of equations
In contrast to the problem of solvability, the computation of the monodromy of an arbitrary tuple
cannot easily be reduced to the case of reduced irreducible tuples. We formulate a conjecture
regarding non-reduced tuples and show by an example that the case of reducible tuples is yet
more complicated (so that we do not even make any predictions).

Conjecture 1.14. In the setting of step (1) of Classification 1.7, if the tuple B is reduced and
irreducible of mixed volume d, then the monodromy group GA equals the wreath product of
coker j and Sd acting on {1, . . . , d}.
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Figure 1. Two reducible tuples.

Remark 1.15. We now explain why GA obviously embeds into this wreath product, so the
problem is whether the embedding is actually an isomorphism. In the notation of part (1) of
Classification 1.7, the roots of f = 0 split into the fibres of the surjection h : {f = 0}→ {g = 0}.
All fibres are cosets of the subgroup coker j ⊂ (C\0)n, and every monodromy permutation
of the set {f = 0} ‘respects j’, that is to say, it sends every fibre into a fibre, preserving
its (coker j)-torsor structure. In particular, the group GA is contained in the group of all
permutations respecting j, and the latter is exactly the wreath product sought.

Example 1.16. If the tuple A is as shown on the left in Figure 1, then GA is obviously equal
to V4 ⊂ S4, generated by (12)(34) and (13)(24). However, if the tuple A is as shown on the
right, then its Cayley discriminant (Definition 3.12) has codimension 1, so a small loop around
this discriminant corresponds to a transposition in GA (see Remark 3.26), thus the group is
strictly greater than V4 (actually, it equals D8). This is despite, in the notation of step (2) of
Classification 1.7, the groups GA′ and GA′′ are the same (equal to S2) for both examples. Thus
GA is not defined solely by GA′ and GA′′ .

Nevertheless, we can confirm in our setting the ‘symmetric or imprimitive’ dichotomy,
conjectured in [SW15] for Schubert enumerative problems, modulo one obvious exclusion.

Example 1.17. Let B and C be tuples of finite sets of lattice mixed volume 1 in Zk and Zm

respectively, k > 0, m > 0 (see [EG15] or § 2 below for the classification of such tuples), and
let j : Zk

→ Zk ⊕ Zm send v to (pv, 0) for some odd prime p. Let P ′ be the tuple j(B) in
Zk ⊕Zm, and let P ′′ be a tuple of m sets in Zk ⊕Zm whose projections to Zm form the tuple C.
Then the mixed volume of a tuple P = (P ′, P ′′) equals p, and, moreover, by Remark 1.15, the
monodromy group GP is a subgroup of Z/pZ, that is, equals Z/pZ or the trivial group, of which
the former is primitive and the latter is not. Actually one can check that GP always equals Z/pZ
in accordance with Conjecture 1.14 (which is obvious in the one-dimensional case, that is, for
the equation cpx

p + c0 = 0, corresponding to P1 = {0, p} ⊂ Z1, and less obvious in general).
A tuple that can be identified with P by an isomorphism of lattices will be called a prime

tuple.

Definition 1.18. A tuple of sets A = (A1, . . . , An) in Zn is said to be numerically non-reduced,
if there exist sets B1, . . . , Bk in Zk and an embedding j : Zk

→ Zn, such that the lattice mixed
volume of B1, . . . , Bk is greater than 1, the embedding is not saturated (i.e. Zn/j(Zk) is not
free), and j(B1), . . . , j(Bk) coincide with k of the sets A1, . . . , An up to a shift.

The tuple A is said to be numerically reducible, if a quantity k < n of Ai can be shifted
to a k-dimensional sublattice L such that the lattice mixed volumes of both A′ = (the tuple of
Ai shifted to L) and A′′ = (the tuple of the images of the rest of the Ai under the projection
Zn

→ Zn/L) are greater than 1.

The name is chosen because the mixed volume V of the tuple A equals the product of the
mixed volumes of A′ and A′′ by Theorem 1.10.
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Theorem 1.19. For every non-prime tuple A (see Example 1.17), the monodromy group GA is
the symmetric group SV if the tuple A is numerically reduced and irreducible, and is imprimitive
otherwise.

Proof. If the tuple A of subsets of Zn is numerically non-reduced, then, in the notation of
Definition 1.18, let h : (C\0)n → (C\0)k be the surjection of tori, corresponding to the embedding
j : Zk

→ Zn of their character lattices so that h(x)b = xj(b) for all x ∈ (C\0)n and b ∈ Zk. Then
every system of equations f(x) = 0, f ∈ CA contains a subsystem of the form g(h(x)) = 0, g ∈ CB.
By Remark 1.15, the fibres of the surjection h : {f = 0}→ {g = 0} are blocks of the monodromy
action of GA. The number and size of the blocks are greater than 1, because the mixed volume
of B1, . . . , Bk is greater than 1, and j is not saturated.

If A is numerically reducible, then, in the notation of Definition 1.18, upon an appropriate
automorphism of (C\0)n and reordering the tuple, we may assume that A1, . . . , Ak are contained
in the first k-dimensional coordinate plane L ⊂ Zn, 0 < k < n, and the mixed volumes V ′ and
V ′′ of both A′ = (A1, . . . , Ak) and A′′ = (the images of Ak+1, . . . , An in Zn/L) are greater than 1.
In this case, every common root of a generic tuple of polynomials f = (f1, . . . , fn) ∈ CA is of
the form (x′, x′′), where x′ ∈ (C\0)k is one of the V ′ roots of the system f ′ = (f1, . . . , fk). In
particular, the fibres of the projection {f = 0}→ {f ′ = 0} are V ′ > 1 blocks of size V ′′ > 1 for
the action of the monodromy group GA, so this action is imprimitive.

If the tuple A is numerically reduced, numerically irreducible and not prime, then it is
reduced. So, if A is irreducible in this case, then GA is symmetric by Theorem 1.5.

Thus, it remains to consider reducible A that is numerically reduced, numerically irreducible
and not prime. In this case, in the notation of part (2) of Classification 1.7, the tuples A′ and A′′

are also numerically reduced, numerically irreducible and not prime, and the mixed volume of
one of them equals 1. Thus GA equals the monodromy group of the other one, which is symmetric
by induction on the dimension. 2

Structure of the paper
In § 2 we prove and discuss Theorem 1.11. The rest of the paper is devoted to the proof of
Theorem 1.5. In § 3 we reduce the assumption of irreducibility to a more general notion of dual
effectiveness (antonym to dual defectiveness; see Definition 3.14 below).

Theorem 1.20. A reduced irreducible tuple of n sets in Zn is dual effective unless, upon an
automorphism of the lattice, all of its sets can be shifted to the standard simplex (i.e. the system
of equations is essentially linear).

For the proof, see Corollary 3.23. Besides the relation to Galois theory, this result may
be important as an illustration of a new approach to dual defectiveness in the toric setting,
independent of the known ones [DiR06, DFS07, CC07, Est18, FI16, For17].

Remark 1.21. (1) In the case of full-dimensional tuples, Theorem 1.20 was deduced from [FI16]
in [BN18], settling the conjecture from [CCDDS13]. Our proof is independent of [FI16], and it
would be important to extend the technique of [BN18] from full-dimensional tuples to irreducible
ones.

(2) It would be important to drop the irreducibility assumption and completely classify dual
defective tuples in various senses (see Remark 3.16), as Example 1.16 suggests.

Theorem 1.22. If A is a reduced dual effective tuple, then the monodromy GA contains a
transposition.
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Roughly speaking, the transposition is produced by running a small loop around the
discriminant; see Theorem 3.25 for the proof and Theorem 3.27 for a possible generalization
to non-square systems of equations.

Theorem 1.23. If A is a reduced irreducible tuple, then the monodromy GA is doubly transitive.

The proof is standard and is given in § 4.

Proof of Theorem 1.5. Unless the system of equations generically has one solution (satisfying
GA = S1), Theorem 1.20 ensures that the tuple is dual effective, so the monodromy contains a
transposition by Theorem 1.22. Since it is also doubly transitive by Theorem 1.23, it coincides
with the symmetric group. 2

2. Lattice polytopes of small mixed volume

Theorem 2.1 [LZ91]. For any n, there are finitely many convex lattice polytopes of a given
lattice volume in Zn up to affine automorphisms of the lattice.

Theorem 2.2 (Minkowski [Min11]). A tuple is linearly dependent if and only if its mixed volume
equals 0.

Proof of Theorem 1.11. Tuples (B1, B1, B3, . . . , BN ) and (B2, B2, B3, . . . , BN ) are said to be AF-
descendants of (B1, B2, B3, . . . , BN ), if both of them are linearly independent. If the tuple B′

is the AF-descendant of B, then, by the Aleksandrov–Fenchel inequality and Theorem 2.2, we
have

MVB′ 6 (MVB)2. (∗)

Every linearly independent tuple B that entirely consists of sets contained in the irreducible
tuple A, can be obtained from A by taking a sequence of AF-descendants A′, A′′, . . . , A(k) = B.
Applying the inequality (∗) to this sequence, we conclude that if all sets of the tuple B are
contained in the irreducible tuple A, then

MVB 6 (MVA)2
N
. (∗∗)

Note that (∗∗) trivially holds also for linearly dependent tuples B by Theorem 2.2.
We can now estimate the lattice volume of the Minkowski sum A1 + · · · + AN as follows.

Write it as MV(A1 + · · ·+ AN , . . . , A1 + · · ·+ AN ), open the brackets and estimate every term
by the inequality (∗∗). As a result, for every irreducible tuple (A1, . . . , AN ) of mixed volume V ,

the volume of the Minkowski sum A1 + · · · + AN is at most NNV 2N, so by Theorem 2.1 there
are finitely many possibilities for A1 + · · ·+AN and hence for (A1, . . . , AN ). 2

Remark 2.3. It would be interesting to obtain a sharper estimate on the volume of A1+ · · ·+AN

in terms of the mixed volume of an irreducible tuple (A1, . . . , AN ).

The classification of irreducible tuples is known only up to mixed volume 4 in dimension 2
(see [EG16]), and up to mixed volume 1 in arbitrary dimension.

Corollary 2.4 (Minkowski). The unique irreducible tuple of mixed volume 0 is a point in Z1.

Theorem 2.5 [EG15]. The unique (up to automorphisms of the lattice and shifts of polytopes)
maximal (by inclusion) irreducible tuple of lattice polytopes of mixed volume 1 in ZN is the
tuple of N copies of the standard simplex.
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3. Discriminants and dual defectiveness

Mixed resultants
Let A = (A0, . . . , An) be a tuple of finite sets in Zn.

Definition 3.1. The A-resultant RA is the closure of the set of all tuples of polynomials f =
(f0, . . . , fn) ∈ CA that have a common root f0(x) = · · · = fn(x) = 0, x ∈ (C\0)n.

Example 3.2. For n = 1, the set RA is the zero locus of the classical Sylvester resultant.

Theorem 3.3 ([Est07, Theorem 2.26]; see also [Stu94] for the first part of the statement). If A
is irreducible, then the resultant RA is a non-empty irreducible hypersurface, and a generic tuple
f ∈ RA has a unique common root in (C\0)n.

Gelfand–Kapranov–Zelevinsky discriminants
Let A ⊂ Zn be a finite set.

Definition 3.4 [GKZ94]. The A-discriminant DA is the closure of the set of all polynomials
f ∈ CA that have a singular root f(x) = 0, df(x) = 0, x ∈ (C\0)n.

Example 3.5. For n = 1, the set DA is the zero locus of the classical discriminant.

Definition 3.6. The tuple A is said to be dual defective if DA is not a hypersurface, and dual
effective otherwise.

This is equivalent to the fact that the projectively dual variety to the toric variety XA is not a
hypersurface (hence the name). The study of dual defective projective varieties is a classical topic
in algebraic geometry [Ein86]. In particular, there is an extensive literature on the classification
of dual defective lattice sets; see [DiR06, Est18] and [FI16] for some of the most explicit answers
(the first one is for the case of smooth toric varieties).

Example 3.7. The set A = {(00), (10), (20), (01)} ⊂ Z2 is defective.

Theorem 3.8 [GKZ94]. If a dual effective A cannot be shifted to a proper sublattice of Zn, then
a generic polynomial f ∈ DA has a unique singular root x ∈ (C\0)n, and the Hessian of f at this
root is non-degenerate.

If A is dual effective, then the set DA is the zero locus of a unique irreducible integer
polynomial on CA (up to the choice of sign). This polynomial is also called the A-discriminant.
The coefficients ca, a ∈ A, of the general Laurent polynomial

∑
a∈A cax

a in CA form the natural
system of coordinates in CA, and we shall consider the A-discriminant as a polynomial of ca,
a ∈ A.

Lemma 3.9 [Est10, Lemma 2.21]. For every dual effective A ⊂ Zn and every a ∈ A, the A-
discriminant has positive degree in ca.

Remark 3.10. For every B ⊂ A, there is a natural forgetful projection CA
→ CB, sending∑

a∈A cax
a to

∑
a∈B cax

a, and we shall denote the preimage of DB under this map also by DB.

Corollary 3.11. If A is dual effective, then DA 6= DB for every B ( A.
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Discriminants of systems of equations
For a tuple A = (A1, . . . , Ak) of finite sets in Zn, 2 6 k 6 n, the concept of the discriminant of the
system of equations supported at A is ambiguous. We introduce three different versions of this
notion that appear in the literature, and it will be important for us that all of them coincide for
irreducible tuples. Denote the standard basis in Zk by e1, . . . , ek, and, for every I ⊂ {1, . . . , k},
let AI be the Cayley configuration

⋃
i∈I{ei} × Ai ⊂ Zk × Zn. For every f ∈ ZA, let fI be the

polynomial
∑

i∈I λifi(x) ∈ CAI of variables λ = (λ1, . . . , λk) ∈ (C\0)k and x ∈ (C\0)n.

Definition 3.12. (1) The naive A-discriminant [Est10] is the closure of the set of all tuples
f ∈ CA having a singular common root x ∈ (C\0)n (so that f1(x) = · · · = fk(x) = 0 and
df1(x), . . . , dfk(x) are linearly dependent).

(2) The mixed A-discriminant ([CCDDS13] for k = n) is the closure of the set of all tuples
f ∈ CA having a non-degenerate singular common root x ∈ (C\0)n (i.e. a singular common root
such that no proper subtuple of df1(x), . . . , dfk(x) is linearly dependent).

(3) The Cayley A-discriminant [Est10] is the image of the discriminant DA{1,...,k} ⊂ CA{1,...,k}

under the natural isomorphism CA{1,...,k} → CA inverse to sending every f to f{1,...,k}.

All of these sets obviously coincide for the Gelfand–Kapranov–Zelevinsky case k = 1.
However, for k > 1 (including k = n), they may be pairwise different [CCDDS13, Example 1.2]
and have irreducible components of different dimensions [Est10, Example 2.25]. Nevertheless,
this difference disappears for irreducible tuples.

Theorem 3.13. If A is irreducible, the three discriminant sets of Definition 3.12 coincide up to
irreducible components of codimension greater than 1.

Proof. If the Cayley discriminant has codimension greater than 1, then so do the naive
discriminant by [Est10, Theorem 2.31] and the mixed discriminant (as its subset).

To study the opposite case, define Σ{j1,...,jq} as the set of all tuples f = (f1, . . . , fk) ∈ CA

such that f(x) = 0 for some x ∈ (C\0)n and
∑

i λidfqi(x) = 0 for some (λ1, . . . , λq) ∈ (C\0)q

[Est10, Definition 2.33].
If the Cayley discriminant has codimension 1, then this hypersurface H is the only codi-

mension 1 component of the naive discriminant by [Est10, Theorem 2.31] and the only
codimension 1 set of the form ΣJ (namely, the one corresponding to J = {1, . . . , k}) by [Est10,
Lemma 2.34]. The latter fact implies that a singular common root of a generic tuple f ∈ H
is non-degenerate (because the linear dependence of its differentials dfj for j ∈ J ′ 6= {1, . . . , k}
would imply that ΣJ ′ = ΣJ also has codimension 1). Thus H is also a codimension 1 component
of the mixed discriminant, and the latter has no other codimension 1 components, because it is
contained in the naive discriminant. 2

Dual defectiveness of systems of equations
Definition 3.14. By Theorem 3.13, for an irreducible tuple A, we can denote the common
hypersurface components of the three discriminant sets of Definition 3.12 by DA, and call this
hypersurface the A-discriminant. The irreducible tuple A is said to be dual defective if DA is
empty, and dual effective otherwise.

If the tuple A consists of one set A1 ⊂ Zn, then it is irreducible, and its dual defectiveness is
the same property as in Definition 3.6.
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Conjecture 3.15. For irreducible tuples, the three discriminant sets of Definition 3.12 coincide
completely, that is, they are the same irreducible set.

Remark 3.16. The interrelation between the three notions of the discriminant in Definition
3.12 is not yet completely understood for reducible tuples, particularly concerning the higher-
codimension components. As a consequence, the notion of dual defectiveness for reducible
tuples splits into several non-equivalent versions, looking for the non-existence of codimension 1
components and/or existence of higher-codimension components in any of the three notions of
the discriminant. It would be important to understand how these numerous versions are related.

Remark 3.17. As we have observed, the irreducibility of the tuple A implies the irreducibility
of the codimension 1 part of the naive A-discriminant. On the other hand, the codimension 1
part of the naive A-discriminant tends to be reducible if A is reducible; see [Est10, Lemma 2.34].
The situation with reduced tuples is similar: the codimension 1 components Di of the naive
A-discriminant come with natural multiplicities equal to the number of singular roots of the
system f = 0 for a generic tuple f ∈ Di. By Theorem 3.8, an irreducible tuple A is reduced if
and only if DA is reduced in the sense of the aforementioned multiplicity (see [Est13] for the
computation of the multiplicities for non-reduced and reducible tuples).

Lemma 3.18. An irreducible tuple A is dual effective if and only if some f ∈ CA has an isolated
singular root.

Proof. If the tuple f = (f1, . . . , fk) has an isolated singular root x, then the set of tuples in CA

that have a singular root contains a hypersurface in a small neighbourhood of f . Indeed, the
projection π of the incidence set {(x̃, f̃) | f̃(x̃) = 0} ⊂ (C\0)n×CA to CA has the critical set C of
dimension one less than CA. Since x is an isolated singular root of f , the fibres of the projection
π : C → CA near (x, f) are finite, thus the image of C contains a hypersurface passing through
f . Thus, according to the naive version of the definition of the discriminant (see Definition 3.12),
DA contains a non-empty hypersurface.

To prove the statement in the other direction, recall that f{1,...,k} is a homogeneous polynomial

in the variables λ1, . . . , λk, so the equation f{1,...,k} = 0 defines a subset in CPk−1× (C\0)n.

Denote the image of the torus (C\0)k under the projection Ck
→ CPk−1 by T .

In this notation, if the tuple A is dual effective, then so is A{1,...,k}, then, by Theorem 3.8,
a generic polynomial f{1,...,k} in it has a unique (and thus isolated) singular root in T × (C\0)n,

then so does the tuple f ∈ CA. 2

Proof of Theorem 1.20
For a finite set A ⊂ Zn, let CPA be the projective space with the homogeneous coordinates
za, a ∈ A, and let m = mA : (C\0)n → CPA be the monomial map such that mA(x) has
coordinates za = xa.

Definition 3.19. The A-image of an algebraic set V ⊂ (C\0)n is the image of mA(V ) in CPA.

Remark 3.20. The A-image is usually not closed. In what follows, whenever we discuss its degree
and irreducibility, we refer to the corresponding properties of its closure. On the other hand, its
projectively dual set is defined as the set of all tangent hyperplanes to its smooth points, and is
usually also not closed.
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Theorem 3.21. Let A = (A1, . . . , Ak) and A′ = (A2, . . . , Ak) be tuples of finite sets in Zn, n > k,
and let M be the A1-image of the complete intersection f = 0 for a generic tuple of polynomials
f = (f2, . . . , fk) ∈ CA′

.

(1) If A is irreducible, then f = 0 and M are irreducible.

(2) If, besides being irreducible, A is reduced, then M is also reduced (in the sense that the
map m = mA1 : {f = 0}→ M has degree 1).

(3) Assume that A is reduced and irreducible. Then the degree of M is greater than 1 unless
the sets A1, . . . , Ak can be shifted to the same lattice simplex of lattice volume 1.

(4) Assume that A is reduced and irreducible. Then A is dual defective if and only if M is
dual defective (i.e. its projectively dual set has codimension greater than 1). Moreover, if A
and M are dual effective, then a generic tuple of polynomials in the discriminant DA has a
unique singular root, and this root is non-degenerate.

Remark 3.22. (1) We shall apply this lemma for k = n, in which case by the non-degenerate
singular root we mean just the root of multiplicity 2. However, part (4) makes sense for arbitrary
k 6 n. In this case a root x of a system of equations g = 0 is said to be singular non-degenerate,
if g = 0 defines an isolated singularity of a complete intersection in a neighbourhood of x, and
its Milnor number equals 1 (see [Loo84]).

(2) Part (1) for k < n actually occurs and will be proved under a strictly weaker assumption
that we call coirreducibility (cf. Definition 1.3): no m sets of the tuple A′ can be shifted to the
same m-dimensional sublattice.

Proof. If A is irreducible and k 6 n, then the tuple A′ is coirreducible (in the sense of Remark
3.22(2)), so part (1) follows from [Kho16] for f = 0 and thus also for M .

We shall now assume without loss of generality that 0 ∈ A1, because all properties of A
mentioned in the statement are invariant under parallel translations. For every linear form l on
CPA1 , denote the rational function l/z0 by l̃. In this notation, assigning the function f1(x) =
l̃(m(x)) to a form l (or, in coordinates, assigning the polynomial f1(x) =

∑
a∈A1

cax
a to the form

l(z) =
∑

a∈A1
caza), we establish an isomorphism between CA1 and the space of linear forms on

CPA1 .

Assume towards a contradiction that part (2) does not hold. Then, for generic linear forms
l1, . . . , ln−k+2 such that the plane l• = 0 intersects M , an intersection point would have more
than one preimage in f = 0, that is, a generic tuple of polynomials

(l̃1(m(·)), . . . , l̃n−k+2(m(·)), f2, . . . , fk) ∈ RB

supported at the tuple

B = (A1, . . . , A1︸ ︷︷ ︸
n−k+2

, A2, A3, . . . , Ak)

would have more than one common root. This would contradict Theorem 3.3, because
irreducibility of A implies irreducibility of B.

In the setting of part (3), we may assume without loss of generality by Theorem 2.5 that the
tuple

B′ = (A1, . . . , A1︸ ︷︷ ︸
n−k+1

, A2, A3, . . . , Ak)
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has mixed volume greater than 1, because it is reduced and irreducible. Then the degree of M is
greater than 1, because it equals the number of intersections of V with a generic plane l1 = · · · =
ln−k+1 = 0, that is, the number of common roots of a generic tuple of polynomials (l̃1(m(·)),
. . . , l̃n−k+1(m(·)), f2, . . . , fk) ∈ CB′

, which equals the mixed volume of B′ by the Kouchnirenko–
Bernstein theorem.

It remains to prove part (4). If M is dual effective, then the hyperplane l = 0, corresponding
to a smooth point of the projectively dual variety, is tangent to M at a unique point z, and the
tangency is non-degenerate (in the sense that the restriction of l̃ to M has the non-degenerate
Hessian at z). Then the restriction of the polynomial f1(x) = l̃(m(x)) to the complete intersection
f = (f2, . . . , fk) = 0 has a unique and non-degenerate singular root, then the resulting tuple
(f1, f2, . . . , fk) has a unique and non-degenerate singular root. By Lemma 3.18, this implies that
A is dual effective. The other direction is proved in the same way. 2

Corollary 3.23 (Theorem 1.20 refined). A reduced irreducible tuple of sets A = (A1, . . . , An)
in Zn is dual effective unless, upon an automorphism of the lattice, all of its sets can be shifted
to the standard simplex. Moreover, in this case a generic tuple f ∈ DA has a unique multiple
root, and this root has multiplicity 2.

Proof. By Theorem 3.21(1)–(3), the closure of M is a reduced irreducible curve of degree
greater than 1. Since every such curve is dual effective, the sought statement follows from
Theorem 3.21(4). 2

Remark 3.24. Excluding the notion of the projectively dual variety from this reasoning, we can
describe more explicitly the picture in CPA1 corresponding to a minimally degenerate system of
equations as follows. Taking a generic tuple (f2, . . . , fn) ∈ CA′

, the curve

M = mA1{f2 = · · · = fn = 0}

is reduced, irreducible and not a line. Thus, a generic tangent hyperplane
∑

a∈A1
caza = 0 to M

has a simple tangency and is transversal to M at the other intersection points. Then the system
of equations

∑
a∈A1

cax
a = f2(x) = · · · = fn(x) = 0 has one root of multiplicity 2, and the other

roots are of multiplicity 1.

Proof of Theorem 1.22
We first need an explicit construction of the exceptional set BA in the Kouchnirenko–Bernstein
Theorem 1.1.

The restriction of a linear function v : Rn
→ R to a finite set A ⊂ Zn takes its maximal

value at certain points of A. The set of all such points will be denoted by Av. For a tuple
A = (A1, . . . , Ak), denote the tuple (Av

1, . . . , A
v
k) by Av, and the naive discriminant of Av (see

Definition 3.12) by Dv. We shall consider Dv as a subset of CA in the sense of Remark 3.10. The
set

B =
⋃

v∈Rn

Dv ⊂ CA

is algebraic, because there are only finitely many distinct algebraic sets among Dv, v ∈ Zn.
More specifically, write u ∼ v if Au = Av; then this equivalence relation splits Rn into finitely
many relatively open polyhedral cones. These cones form a fan Σ (see, for example, [Ful93]), and
Av and Dv depend only on the cone C ∈ Σ containing v. So we shall also denote Av and Dv by
AC and DC , respectively.
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We claim that the set B can be taken as the exceptional set BA in Theorem 1.1 in the
following strong sense. Denote the incidence set

{(x, f) | f(x) = 0} ⊂ (C\0)n × CA

by E and its projection to CA by π.

Theorem 3.25 (Theorem 1.22 refined). Let the tuple A = (A1, . . . , An), the set B and the
projection π be as above with k = n.

(1) The projection π is a covering outside the set B. In particular, every f ∈ CA\B has exactly
MV(A) roots, and the group GA is the monodromy group of this covering.

(2) If A is reduced and dual effective, then, for a generic f ∈ DA:

– the system f = 0 has a unique singular root x ∈ (C\0)n, and its multiplicity is 2;

– we have f /∈ Dv for every non-zero v : Rn
→ R.

(3) For such f , let F : (C, 0) → (CA, f) be a germ of a smooth curve transversal to DA. Then
the monodromy of the covering from part (1) along the loop F (ε exp(2πit)) for small ε > 0
is a transposition.

Remark 3.26. Instead of assuming dual effectiveness in part (2), it is enough to assume that
the Cayley configuration A{1,...,n} is dual effective, and then a small loop around the Cayley
discriminant DA{1,...,n} still gives a transposition; see Theorem 3.27 below for this and some
other generalizations.

Proof of part (2). The first statement follows from Corollary 3.23, the second one from
Corollary 3.11 applied to the Cayley discriminant DA{1,...,n} . 2

Proof of parts (1) and (3). Choose a unimodular simplicial fan Σ′, subdividing Σ (see [KKMS73]
for its existence), and consider the corresponding smooth toric variety X ⊃ (C\0)n. Every cone
C ∈ Σ′ corresponds to an orbit OC ⊂ X, and, for C 6= {0}, the closure of the incidence set E in
X×CA contains a point of the form (x, f) ∈ OC×CA only if f ∈ DC . In particular, if f /∈ Dv for
every non-zero v : Rn

→ R, then, for a small neighbourhood U 3 f , its preimage V = π−1(U) is
disjoint from the orbits OC , C 6= {0}, that is, the restriction π : V → U is proper. Now consider
two cases, corresponding to the setting of part (1) and part (3), respectively: f /∈DA and f ∈DA.

If f /∈ DA, then the restriction π : V → U also has no critical points (this claim makes sense,
because E is smooth), so it is a trivial covering, and part (1) is proved.

If f ∈DA has a unique multiple root x, and this root has multiplicity 2, then the local degrees
of π at the point (x, f) and at the other points of the fibre π−1(f) equal 2 and 1, respectively.
Thus π has an A1 singularity at (x, f) and no singularities at other points of the fibre π−1(f),
that is, π(z1, z2, . . . , zN ) = (z21 , z2, . . . , zN ) in suitable local coordinates (z1, . . . , zN ) on T near
(x, f). In particular, the monodromy along a small loop around the origin in the complex line
z2 = · · · = zN = 0 is a transposition. 2

Monodromy of non-square systems of equations
We outline a generalization of Theorem 3.25 to some reducible tuples A and to the case k < n in
order to clarify what happens in examples similar to Example 1.16 and what could be a natural
counterpart of the topic of this paper for non-square systems of equations.
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Theorem 3.27. Let A = (A1, . . . , Ak), B and π be as above with arbitrary k 6 n.

(1) The projection π in a locally trivial fibration outside the set B. Moreover, B is the minimal
closed set with this property. In particular, every loop in the complement to B gives rise to
the monodromy automorphism in the cohomology H of the fibre of this fibration.

(2) The set B is a hypersurface unless m + 2 of the sets in the tuple A can be shifted to the
same m-dimensional plane (in which case the aforementioned fibration is empty).

(3) For a reduced tuple A, whose Cayley discriminant (Definition 3.12) is a hypersurface, and
for a generic f in the Cayley discriminant:

– the system f = 0 has a unique singular root x ∈ (C\0)n, and this singular root is
non-degenerate;

– we have f /∈ Dv for every non-zero v : Rn
→ R.

(4) For such f , let F : (C, 0) → (CA, f) be a germ of a smooth curve transversal to DA. Then
the ζ-function of the monodromy transformation from part (1), corresponding to the loop
F (ε exp(2πit)) for small ε > 0, has the form t2 − 1.

Parts (1) and (2) follow from [Est13, Theorems 1.1 and 1.4]. The first statement of part
(3) follows from the fact that the Cayley discriminant is a component of multiplicity 1 in the
Euler discriminant EA; see [Est13, Proposition 1.11]. (This works in particular for k = n, but we
preferred to give a more straightforward proof of Theorem 3.25 in that case.) The rest is proved
in the same way as for k = n in Lemma 3.25.

Remark 3.28. In particular, the correspondence from Theorem 3.27(1) maps the fundamental
group of the complement of B to the group GL(H). The image GA is the monodromy group of
the (non-square) system of equations supported at the tuple A. The results of the present paper
give some hope that GA can be quite explicitly described in terms of A at least for reduced
irreducible A. This important study has been recently initiated in the simplest non-square case,
(k, n) = (1, 2); see [CL18, CL17, Sal17].

4. Double transitivity of monodromy

Consider a morphism π of an algebraic set E to an irreducible algebraic set C as an abstract
enumerative problem: regard a point z ∈ C as an incidence condition, and the points of its
fibre π−1(z) as the solutions of the enumerative problem with a given incidence condition. The
enumerative problem is said to be well posed if its generic fibre is finite. In this case, there exists a
Zariski open set U ⊂ C such that π is a covering over U . The monodromy group of this covering
does not depend on the choice of U and is called the monodromy group of the enumerative
problem.

Example 4.1. The enumerative problem of the present paper falls into this scheme, if we define

E = {(x, f) | f(x) = 0} ⊂ (C\0)n × CA

and denote the projection of E to C = CA by π. For every tuple A = (A1, . . . , An), it is well
posed by Theorem 3.25(1).

Let us recall a classically known geometric criterion for the double transitivity of the
monodromy of the abstract enumerative problem π : E → C. Although its versions can be found
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in [SW15] and other relevant works, we shall recall the proof to keep the story self-contained.
Consider the fibre square

E2 = {(x, y) | π(x) = π(y)} ⊂ E2

and its projection π2 : E2 → C, sending (x, y) to π(x) = π(y) ∈ C. If the enumerative problem is
well posed, that is, for a certain Zariski open U ⊂ C, its preimage V = π−1(U) defines a covering
π : V → U , then the fibre square V2 = π−12 (U) also defines a covering π2 : V2 → U . Note that
the diagonal D = {(x, x) | x ∈ U} ⊂ V2 is an irreducible component of V2.

Theorem 4.2. The monodromy of the well-posed enumerative problem π : E → C is doubly
transitive if and only if V2 has at most one irreducible component different from D.

Proof. If D = V2, then the monodromy is trivial. Otherwise, let F be the second component of
V2. In order to prove the double transitivity, we should take two pairs of distinct points (x, y) and
(x′, y′) in the fibre π−1(z) of a point z ∈ U and construct a loop in U such that the monodromy
along this loop sends x to x′ and y to y′. Since neither (x, y) nor (x′, y′) is contained in D, both
of them are contained in F . Since F is irreducible, these two points can be connected with a
path γ. Then π2(γ) is the loop sought. 2

Corollary 4.3. Let π : E → C be a well-posed enumerative problem. If at most one irreducible
component of E2 besides the diagonal D has the same dimension as D, then the monodromy is
doubly transitive.

Proof of Theorem 1.23. The idea is to apply Corollary 4.3 to the setting of Example 4.1. In this
case we have

S = (C\0)n × (C\0)n,

E2 = {(x, y, f) | f(x) = f(y) = 0} ⊂ S × CA.

In order to prove that GA is doubly transitive, it is enough to prove that E2 has at most one
more irreducible component F of dimension N = dimCA. We shall prove it by counting the
dimension of fibres of the projection p : E2 → S. Every such fibre is a vector subspace of CA, but
different fibres may have different dimension. Namely, assuming for convenience without loss of
generality that every Ai contains 0, the fibre p−1(x, y) is given in CA by

2n− dx,y (∗)

independent linear equations, where dx,y is the number of Ai such that xa = ya for all a ∈ Ai.
Indeed, since 0 ∈ Ai, the linear equations fi(x) = fi(y) = 0 on the element f = (f1, . . . , fi, . . . ,
fn) ∈ CA are dependent if and only if they coincide and if and only if xa = ya for all a ∈ Ai, so
(∗) follows.

This implies that dim p−1(x, y) is the same for all (x, y) in the set UL, defined as follows:

VL = {(x, y) | xa = ya for all a ∈ L} ⊂ S for a sublattice L ⊂ Zn,

LI ⊂ Zn is the sublattice generated by Ai, i ∈ I,

UL = VL

∖ ⋃
LI)L

VLI
.

Namely, if (x, y) ∈ UL, then, by (∗), the fibre p−1(x, y) is given in CA by

2n− dL (∗∗)

independent linear equations, where dL is the number of Ai contained in L.
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Therefore, denoting the preimage of UL in E2 by EL, we conclude by (∗∗) that p : EL → UL

is a vector bundle of rank N − 2n+ dL, N = dimCA. Moreover, since dimUL = 2n− dimL, we
conclude that dimEL = N + dL − dimL.

Since the tuple A is reduced and irreducible, we have

dimEL = N + dL − dimL < N

unless L = Zn, or L contains no Ai at all. In the latter cases, EL equals the diagonal D ⊂ E2 or
one more N -dimensional subset F ⊂ E2 (independent of L), respectively. Since E2 is covered by
EL as L runs over all sublattices, we have proved that it has two N -dimensional components, so
that Corollary 4.3 applies. 2
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