A construction of monogenic near-ring groups, and some applications

S.D. Scott

Abstract

Let V be a group generated by elements v_{1} and v_{2} of finite coprime order, and let N be the near-ring generated by the inner automorphism induced by v_{1}. It is proved that V is a monogenic N-group. Certain consequences of this result are discussed. There exist finite near-rings N with identity generated by a single distributive element μ, such that $\mu^{2}=1$ and where the radical $J_{2}(N)$ (see Günter Pilz, Near-rings. The theory and its applications, 1977, p. 136) is non-nilpotent.

Throughout this paper all groups will be written additively. This does not imply conmutativity. All near-rings considered will be left distributive and zero-symmetric.

Let N be a near-ring and V an N-group. We call V monogenic by v, if v is an element of V such that $v N=V[1, \mathrm{p} .75]$.

Let V be a group, v an element of V, and k a positive integer. The sum $v+v+\ldots+v$ of v taken k times will be denoted by $v k$.

PROPOSITION. Let V be a group and v_{1} an element of V. Let α be the inner automorphism of V induced by v_{1} and N the near-ring of all maps of V into V generated by α. If v_{l} has finite order, then

Received 17 April 1978.
N has an identity and V is a unitary N-group.
Proof. It is easily seen that V is an N-group. Also if $\left|v_{1}\right|=n$, then $\alpha^{n}=1$ is the identity of N and $v 1=v$ for all v in V.

We now prove the following theorem.
THEOREM. Let V be a group generated by two elements v_{1} and v_{2} of finite order. Let α be the inner automorphism of V induced by v_{1} and N the near-ring of all maps of V into V generated by α. If $\left|v_{1}\right|$ and $\left|v_{2}\right|$ are coprime, then V is monogenic by $v_{1}+v_{2}$.

Proof. By the above proposition, V is unitary. Thus $\left(v_{1}+v_{2}\right) 1=v_{1}+v_{2}$ is in $\left(v_{1}+v_{2}\right) N$. We shall prove by induction that $v_{2} m+v_{1} m$ is in $\left(v_{1}+v_{2}\right) N$ for all positive integers m. Since $v_{1}+v_{2}$ is in $\left(v_{1}+v_{2}\right) N,\left(v_{1}+v_{2}\right) \alpha=v_{2}+v_{1}$ is in $\left(v_{1}+v_{2}\right) N$, and the statement holds for $m=1$. Assume $v_{2}(m-1)+v_{1}(m-1)$ is in $\left(v_{1}+v_{2}\right) N$. It follows that

$$
v_{1}+v_{2}+v_{2}(m-1)+v_{1}(m-1)=v_{1}+v_{2} m+v_{1}(m-1)
$$

is in $\left(v_{1}+v_{2}\right) N$. Now

$$
\begin{aligned}
\left(v_{1}+v_{2} m+v_{1}(m-1)\right) \alpha & =-v_{1}+v_{1}+v_{2} m+v_{1}(m-1)+v_{1} \\
& =v_{2} m+v_{1} m
\end{aligned}
$$

is in $\left(v_{1}+v_{2}\right) N$ and the statement holds for all positive integers.
Since $\left|v_{1}\right|$ and $\left|v_{2}\right|$ are coprime, there exists a positive integer r such that $\left|v_{1}\right| r \equiv 1 \bmod \left|v_{2}\right|$. Hence $v_{2}\left|v_{1}\right| r+v_{1}\left|v_{1}\right| r=v_{2}$ is in $\left(v_{1}+v_{2}\right) N$ and similarly v_{1} is in $\left(v_{1}+v_{2}\right) N$. Thus $\left(v_{1}+v_{2}\right) N=V$ and the theorem is proved.

In what follows all near-rings have an identity and all N-groups are unitary.

A non-zero N-group V is of type 0 (see [1, p. 77]), if there
exists v in V such that $v N=V$ and V contains no proper submodules.
A non-zero N-group is of type 2 if it contains no proper N-subgroups. A near-ring with a faithful N-group of type 0 or type 2 will be called 0 -primitive or $2-p r i m i t i v e, ~ r e s p e c t i v e l y ~(s e e ~[1, ~$ p. 103]).

Many finite non-abelian simple groups have two generators of coprime order. Let V be such a group and v_{1}, v_{2}, and N be as in the statement of the above theorem. Now V has no proper submodules as it has no proper normal subgroups. By the theorem proved above, V is a type $0 \quad N$-group. The cyclic subgroup of V generated by v_{1} is a proper N-subgroup and therefore V is not of type 2 . It is not difficult to show that N is 0 -primitive but not 2 -primitive, and that the radical $J_{2}(N)$ (see [1, p. 136]) of such a near-ring is non-nilpotent. These near-rings are clearly distributively generated. What is more they are generated by a single distributive element.

The projective unimodular groups $P(K, 2)$ of dimension 2 over a finite prime field K where $|K|>3$ are finite, non-abelian, and simple (see [2, p. 122]). Any such group V is generated by an element v_{1} of order two and an element v_{2} of order three [2, p. 166]. Our theorem allows us to construct an infinite family of finite 0 -primitive near-rings that are not 2-primitive. Furthermore, any member N of this family is generated by a single distributive element μ such that $\mu^{2}=1$. Thus, even near-rings N generated in this very simple manner may have a nonnilpotent radical $\left(J_{2}(N)\right)$.

References

[1] Günter Pilz, Near-mings. The theory and its applications (NorthHolland Mathematics Studies, 23. North-Holland, Amsterdam, New York, Oxford, 1977).
[2] Eugene Schenkman, Group theory (Van Nostrand, Princeton, New Jersey; Toronto; New York; London; 1965).

Department of Mathematics,
University of Auckland,
Auckland,
New Zealand.

