A Restriction Theorem for a k-Surface in \mathbb{R}^{n}

Daniel M. Oberlin

Abstract. We establish a sharp Fourier restriction estimate for a measure on a k-surface in \mathbb{R}^{n}, where $n=k(k+3) / 2$.

Fix a positive integer k and let $n=k(k+3) / 2$. If $x \in \mathbb{R}^{k}$, write $x=\left(x_{1}, \ldots, x_{k}\right)$ and define $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ by

$$
\phi(x)=\left(x_{1}, \ldots, x_{k}, x_{1}^{2}, \ldots, x_{k}^{2}, x_{1} x_{2}, \ldots, x_{1} x_{k}, x_{2} x_{3}, \ldots, x_{2} x_{k}, \ldots, x_{k-1} x_{k}\right)
$$

Write S for the k-surface in \mathbb{R}^{n} which is the range of ϕ and let σ be the measure induced on S by Lebesgue measure on \mathbb{R}^{k}. We are interested in the operator R^{*} taking functions $f \in C_{c}^{\infty}(S)$ to functions on \mathbb{R}^{n} which is given by

$$
R^{*}(f)(\xi)=\widehat{f d \sigma}(\xi)
$$

The operator R^{*} is the adjoint of the Fourier restriction operator associated with the surface S and the measure σ. The natural problem is to determine the indices $p, q \in[1, \infty]$ such that there is an a priori estimate

$$
\begin{equation*}
\left\|R^{*} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C(p, q)\|f\|_{L^{p}(\sigma)} . \tag{1}
\end{equation*}
$$

There is also the analogous problem for the localized operator R_{0}^{*} given by

$$
R_{0}^{*}(f)(\xi)=\widehat{f \psi d \sigma}(\xi)
$$

where ψ is fixed in $C_{c}^{\infty}(S)$. For $k=1$ these operators are associated with a parabola in \mathbb{R}^{2}. Their mapping properties are well understood and are analogous to those of the corresponding operator associated with the circle. For $k \geq 2$ the first result is due to Christ [C2], who obtained estimates for R_{0}^{*} when $p=2$. Mockenhaupt [M1, M2] extended Christ's results to the cases $k \geq 3$. De Carli and Iosevich [CI] obtained a sharp L^{2} result. Bak and Lee [BL] adapted Mockenhaupt's method to obtain the following nearly sharp result. (Their paper also contains a more detailed history of these problems.)

[^0]Theorem 1 ([BL]) If $k=2$ or 3 then R^{*} is bounded from $L^{p}(S)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ if and only if $\frac{1}{p}+\frac{k+2}{q}=1, q>2(k+1)$. If $k \geq 4$, then R_{0}^{*} is bounded from $L^{p}(S)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ if $\frac{1}{p}+\frac{k+2}{q}<1, q>2(k+1)$, and R_{0}^{*} is unbounded from $L^{p}(S)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ if $q \leq 2(k+1)$ or $\frac{1}{p}+\frac{k+2}{q}>1$.

The purpose of this note is to present a slight improvement on Theorem 1:
Theorem 2 For $k \geq 2$, the operator R^{*} is bounded from $L^{p}(S)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ if and only if $\frac{1}{p}+\frac{k+2}{q}=1, q>2(k+1)$.

Quoting Christ [C2, p. 224]: "The strategy of our proof is not new: following Prestini [P], we utilize an argument originating in Fefferman [F] and Carleson and Sjölin [CS], based on a change of variables and the Hausdorff-Young inequality, to reduce (1) to an easier problem concerning estimates for positive integral operators." The same strategy is utilized in [BL]. The proof of Theorem 2 is a bit simpler than that of Theorem 1, depending on a change of variables different from that in [BL].

Proof of Theorem 2 As the necessity of the condition $\frac{1}{p}+\frac{k+2}{q}=1, q>2(k+1)$ is already established in [BL], it is enough to show the other implication.

We adopt the convention that C denotes a positive constant which may depend only on the relevant dimensions and/or indices. Writing $\|\cdot\|_{r}$ for $\|\cdot\|_{L^{r}\left(\mathbb{R}^{n}\right)}$, the Hausdorff-Young inequality shows that it is enough to prove the inequality

$$
\|(f d \sigma) * \cdots *(f d \sigma)\|_{\left(\frac{q}{k+1}\right)} \leq C\|f\|_{L^{p}(S)}^{k+1}
$$

where the convolution is $(k+1)$-fold. This is equivalent to the inequality

$$
\begin{equation*}
\int_{\left(\mathbb{R}^{k}\right)^{k+1}} \prod_{l=1}^{k+1} f\left(x^{l}\right) h\left(\phi\left(x^{1}\right)+\cdots+\phi\left(x^{k+1}\right)\right) \leq C\|f\|_{L^{p}\left(\mathbb{R}^{k}\right)}^{k+1}\|h\|_{\frac{q}{k+1}} \tag{2}
\end{equation*}
$$

for functions f on \mathbb{R}^{k}. For $j=1, \ldots, k$, write $v_{j}=\left(x_{j}^{1}, \ldots, x_{j}^{(k+1)}\right)$ and let d be the $(k+1)$-vector $(1, \ldots, 1)$. For fixed v_{2}, \ldots, v_{k}, define

$$
\Phi\left(x_{1}^{1}, \ldots, x_{1}^{(k+1)}\right)=\left(v_{1} \cdot d,\left|v_{1}\right|^{2}, v_{1} \cdot v_{2}, \ldots, v_{1} \cdot v_{k}\right)
$$

Then the Jacobian J of Φ is the determinant of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 x_{1}^{1} & 2 x_{1}^{2} & \ldots & 2 x_{1}^{(k+1)} \\
x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{(k+1)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k}^{1} & x_{k}^{2} & \ldots & x_{k}^{(k+1)}
\end{array}\right]
$$

For $1 \leq s<2$ we will estimate (2) by the product of

$$
\begin{equation*}
\left(\int_{\left(\mathbb{R}^{k}\right)^{k+1}} h^{s^{\prime}}\left(\phi\left(x^{1}\right)+\cdots+\phi\left(x^{k+1}\right)\right) \cdot J d x^{1} \cdots x^{k+1}\right)^{1 / s^{\prime}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{\left(\mathbb{R}^{k}\right)^{k+1}} \prod_{l=1}^{k+1} f^{s}\left(x^{l}\right) \cdot J^{-s / s^{\prime}} d x^{1} \cdots x^{k+1}\right)^{1 / s} \tag{4}
\end{equation*}
$$

Beginning with (3), write

$$
\begin{aligned}
h\left(\phi\left(x^{1}\right)+\right. & \left.\cdots+\phi\left(x^{k+1}\right)\right) \\
= & h\left(\Phi\left(x_{1}^{1}, \ldots, x_{1}^{(k+1)}\right), v_{2} \cdot d, \ldots, v_{k} \cdot d,\right. \\
& \left.\left|v_{2}\right|^{2}, \ldots,\left|v_{k}\right|^{2}, v_{2} \cdot v_{3}, v_{2} \cdot v_{4}, \ldots, v_{k-1} \cdot v_{k}\right) \\
\doteq & h\left(\Phi\left(x_{1}^{1}, \ldots, x_{1}^{(k+1)}\right), \Psi(v)\right)
\end{aligned}
$$

where $v=\left(v_{2}, \ldots, v_{k}\right)$. Thus (3) $)^{s^{\prime}}$ is

$$
\int_{\left(\mathbb{R}^{k+1}\right)^{k-1}} \int_{\mathbb{R}^{k+1}} h^{s^{\prime}}\left(\Phi\left(x_{1}^{1}, \ldots, x_{1}^{(k+1)}\right), \Psi(v)\right) \cdot J d x_{1}^{1} \cdots x_{1}^{(k+1)} d v
$$

The map Φ has multiplicity at most 2 for almost all v. For such v

$$
\int_{\mathbb{R}^{k+1}} h^{s^{\prime}}\left(\Phi\left(x_{1}^{1}, \ldots, x_{1}^{(k+1)}\right), \Psi(v)\right) \cdot J d x_{1}^{1} \cdots x_{1}^{(k+1)} \leq 2 \int_{\mathbb{R}^{k+1}} h^{s^{\prime}}(y, \Psi(v)) d y
$$

and so it follows that (3) $)^{s^{\prime}}$ is bounded by

$$
\begin{equation*}
2 \int_{\left(\mathbb{R}^{k+1}\right)^{k-1}} \int_{\mathbb{R}^{k+1}} h^{s^{\prime}}(y, \Psi(v)) d y d v \tag{5}
\end{equation*}
$$

To bound (5) (by $C\|h\|_{s^{\prime}}^{s^{\prime}}$), recall that

$$
\Psi\left(v_{2}, \ldots, v_{k}\right)=\left(v_{2} \cdot d, \ldots, v_{k} \cdot d,\left|v_{2}\right|^{2}, \ldots,\left|v_{k}\right|^{2}, v_{2} \cdot v_{3}, v_{2} \cdot v_{4}, \ldots, v_{k-1} \cdot v_{k}\right)
$$

where $d=(1,1, \ldots, 1)$. We write $d^{\prime}=d / \sqrt{k+1}$ and $v_{j}=d_{j} d^{\prime}+c_{j}$ with $c_{j} \perp d^{\prime}$. Then if g is a function on $\mathbb{R}^{(k-1)(k+2) / 2}$ we have

$$
\begin{align*}
& \int_{\left(\mathbb{R}^{k+1}\right)^{k-1}} g\left(\Psi\left(v_{2}, \ldots, v_{k}\right)\right) d v_{2} \cdots d v_{k} \tag{6}\\
& =\int_{\mathbb{R}^{k-1}} \int_{\left(\mathbb{R}^{k}\right)^{k-1}} g\left(\sqrt{k+1} d_{2}, \ldots, \sqrt{k+1} d_{k},\left(d_{2}\right)^{2}+\left|c_{2}\right|^{2}, \ldots,\left(d_{k}\right)^{2}+\left|c_{k}\right|^{2}\right. \\
& \left.\quad d_{2} d_{3}+c_{2} \cdot c_{3}, d_{2} d_{4}+c_{2} \cdot c_{4}, \ldots, d_{k-1} d_{k}+c_{k-1} \cdot c_{k}\right) d c_{2} \cdots c_{k} d d_{2} \cdots d_{k}
\end{align*}
$$

We require a lemma (whose proof is postponed until after the main argument).

Lemma 3 The inequality

$$
\int_{\mathbb{R}^{k(k-1)}} \alpha\left(\left|c_{2}\right|^{2}, \ldots,\left|c_{k}\right|^{2}, c_{2} \cdot c_{3}, c_{2} \cdot c_{4}, \ldots, c_{k-1} \cdot c_{k}\right) d c_{2} \cdots c_{k} \leq C \int_{\mathbb{R}^{k(k-1) / 2}} \alpha(x) d x
$$

holds for nonnegative Borel functions α on $\mathbb{R}^{k(k-1) / 2}$.
An application of this lemma to (6) now shows that

$$
\int_{\left(\mathbb{R}^{k+1}\right)^{k-1}} g\left(\Psi\left(v_{2}, \ldots, v_{k}\right)\right) d v_{2} \cdots d v_{k} \leq C \int_{\mathbb{R}^{(k-1)(k+2) / 2}} g(z) d z
$$

(if g is a function on $\mathbb{R}^{(k-1)(k+2) / 2}$). Applying this to (5) shows that

$$
\begin{equation*}
\left(\int_{\left(\mathbb{R}^{k}\right)^{k+1}} h^{s^{\prime}}\left(\phi\left(x^{1}\right)+\cdots+\phi\left(x^{k+1}\right)\right) \cdot J d x^{1} \cdots x^{k+1}\right)^{1 / s^{\prime}} \leq C\|h\|_{s^{\prime}} \tag{7}
\end{equation*}
$$

completing the process of bounding (3).
To bound (4) we will need another lemma. Recall that $x^{l}=\left(x_{1}^{l}, \ldots, x_{k}^{l}\right)$ and write D for the absolute value of the determinant of

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{(k+1)} \\
x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{(k+1)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k}^{1} & x_{k}^{2} & \ldots & x_{k}^{(k+1)}
\end{array}\right]
$$

Lemma 4 ([C1, Theorem B]) Suppose $0<\gamma<1,1 \leq r<2$, and $\frac{1}{r}=1-\frac{\gamma}{k+1}$. Then the inequality

$$
\int_{\left(\mathbb{R}^{k}\right)^{k+1}} \prod_{1}^{k+1} f_{l}\left(x^{l}\right) D^{-\gamma} d x^{1} \cdots x^{k+1} \leq C \prod_{1}^{k+1}\left\|f_{l}\right\|_{L^{r}\left(\mathbb{R}^{k}\right)}
$$

holds for nonnegative Borel functions f_{l}.
An application of Lemma 4 to the integral in (4) bounds (4) by $C\|f\|_{L^{s}\left(\mathbb{R}^{k}\right)}^{k+1}$ so long as the r defined by $\frac{1}{r}=1-\frac{s}{s^{\prime}} \frac{1}{k+1}$ satisfies $1 \leq r<2$ (which follows from $1 \leq s<2$). That is, (4) is bounded by $C\|f\|_{L^{p}\left(\mathbb{R}^{k}\right)}^{k+1}$ where $p=r s$ and so $\frac{1}{p}=\left(\frac{k+2}{s}-1\right) \frac{1}{k+1}$ (since $\left.\frac{1}{r}=\frac{k+2-s}{k+1}\right)$. With $q=s^{\prime}(k+1)$, it follows that $\frac{1}{p}+\frac{k+2}{q}=1$. Thus the bound (7) for (3) now yields (2) whenever $\frac{1}{p}+\frac{k+2}{q}=1$ and $q>2(k+1)$.

Proof of Lemma 3 The proof depends on a particular parametrization of $\left(\mathbb{R}^{k}\right)^{k-1}$. We begin by introducing notation.

Write e_{j} for the j th standard unit vector in \mathbb{R}^{k}. Fix a Borel mapping

$$
\omega_{k-1} \mapsto O\left(\omega_{k-1}\right)
$$

of the unit sphere Σ_{k-1} in \mathbb{R}^{k} into the orthogonal group on \mathbb{R}^{k} in such a way that $O\left(\omega_{k-1}\right) e_{1}=\omega_{k-1}$. For $\omega_{k-1} \in \Sigma_{k-1}$, set

$$
\omega_{k-1}^{\prime}=O\left(\omega_{k-1}\right) e_{2} \in\left\{\omega_{k-1}\right\}^{\perp} \cap \Sigma_{k-1}
$$

realize Σ_{k-2} as $\left\{\omega_{k-1}\right\}^{\perp} \cup \Sigma_{k-1}$, and, as above, for $\omega_{k-2} \in \Sigma_{k-2}$, let $O\left(\omega_{k-1}, \omega_{k-2}\right)$ be an orthogonal map on \mathbb{R}^{k} which fixes ω_{k-1} and takes ω_{k-1}^{\prime} to ω_{k-2}. Then

$$
O\left(\omega_{k-1}, \omega_{k-2}\right) O\left(\omega_{k-1}\right)
$$

takes e_{1} to ω_{k-1} and e_{2} to ω_{k-2}. For such $\omega_{k-1}, \omega_{k-2}$ set

$$
\omega_{k-2}^{\prime}=O\left(\omega_{k-1}, \omega_{k-2}\right) O\left(\omega_{k-1}\right) e_{3} \in\left\{\omega_{k-1}, \omega_{k-2}\right\}^{\perp} \cap \Sigma_{k-1}
$$

realize Σ_{k-3} as $\left\{\omega_{k-1}, \omega_{k-2}\right\}^{\perp} \cap \Sigma_{k-1}$, and, for $\omega_{k-3} \in \Sigma_{k-3}$, let $O\left(\omega_{k-1}, \omega_{k-2}, \omega_{k-3}\right)$ be an orthogonal map on \mathbb{R}^{k} which fixes $\omega_{k-1}, \omega_{k-2}$ and takes ω_{k-2}^{\prime} to ω_{k-3}. Continue this way until $O\left(\omega_{k-1}, \ldots, \omega_{1}\right)$ is defined. Write $\omega=\left(\omega_{1}, \ldots, \omega_{k-1}\right)$ and

$$
O(\omega)=O\left(\omega_{k-1}, \ldots, \omega_{1}\right) O\left(\omega_{k-1}, \ldots, \omega_{2}\right) \cdots O\left(\omega_{k-1}\right)
$$

The notation $d \omega_{1} \cdots \omega_{k-1}$ will represent integration with respect to the product of the surface area measures on (the realizations) of the spheres $\Sigma_{1}, \ldots, \Sigma_{k-1}$.

For $\theta_{i} \in[0, \pi]$ define

$$
\sigma_{1}\left(\theta_{1}\right)=\left(\cos \theta_{1}, \sin \theta_{1}\right) \in \Sigma_{1}
$$

and

$$
\sigma_{j}\left(\theta_{1}, \ldots, \theta_{j}\right)=\left(\cos \theta_{1} ; \sin \theta_{1} \sigma_{j-1}\left(\theta_{2}, \ldots, \theta_{j}\right)\right) \in \Sigma_{j}
$$

For $j=1, \ldots, k-2$, the notation $\left(\sigma_{j}\left(\theta_{1}, \ldots, \theta_{j}\right), 0\right)$ stands for the k-vector obtained by following $\sigma_{j}\left(\theta_{1}, \ldots, \theta_{j}\right)$ with $(k-j-1) 0$'s.

The parametrization of $\left(\mathbb{R}^{k}\right)^{k-1}$ is now

$$
\begin{aligned}
& \left(c_{0} ; c_{1} ; \ldots ; c_{k-2}\right)= \\
& \quad\left(\rho_{0} O(\omega) e_{1} ; \rho_{1} O(\omega)\left(\sigma_{1}\left(\theta_{1}^{1}\right), 0\right) ; \ldots ; \rho_{k-2} O(\omega)\left(\sigma_{k-2}\left(\theta_{1}^{k-2}, \ldots, \theta_{k-2}^{k-2}\right), 0\right)\right)
\end{aligned}
$$

where the ρ_{j} 's are positive. The volume element which corresponds to Lebesgue measure $d c_{0} \cdots c_{k-2}$ on $\left(\mathbb{R}^{k}\right)^{k-1}$ is

$$
\begin{array}{rl}
\prod_{0}^{k-2} \rho_{j}^{k-1} d \rho_{0} \cdots \rho_{k-2} & d \omega_{1} \cdots \omega_{k-1} \prod_{1}^{k-2}\left(\sin \theta_{1}^{j}\right)^{k-2} \\
& \times \prod_{2}^{k-2}\left(\sin \theta_{2}^{j}\right)^{k-3} \cdots \prod_{k-2}^{k-2}\left(\sin \theta_{k-2}^{j}\right) d \theta_{1}^{1} \theta_{1}^{2} \theta_{2}^{2} \cdots \theta_{1}^{k-2} \cdots \theta_{k-2}^{k-2}
\end{array}
$$

The ranges of integration for the ρ and θ variables are $(0, \infty)$ and $[0, \pi]$, respectively. (The ranges for the ω 's were described above.) For example, in the case $k=4$ we have

$$
\begin{gathered}
c_{0}=\rho_{0} \omega_{3}, \quad c_{1}=\rho_{1}\left(\cos \theta_{1}^{1} \omega_{3}+\sin \theta_{1}^{1} \omega_{2}\right) \\
c_{2}=\rho_{2}\left(\cos \theta_{1}^{2} \omega_{3}+\sin \theta_{1}^{2} \cos \theta_{2}^{2} \omega_{2}+\sin \theta_{1}^{2} \sin \theta_{2}^{2} \omega_{1}\right)
\end{gathered}
$$

The volume element can be written

$$
\rho_{2}^{3}\left(\sin \theta_{1}^{2}\right)^{2} \sin \theta_{2}^{2} d \rho_{2} d \theta_{1}^{2} \theta_{2}^{2} d \omega_{1} \cdot \rho_{1}^{3}\left(\sin \theta_{1}^{1}\right)^{2} d \rho_{1} d \theta_{1}^{1} d \omega_{2} \cdot \rho_{0}^{2} d \rho_{0} d \omega_{3}
$$

For fixed $\omega_{3}, \rho_{0}, \omega_{2}, \theta_{1}^{1}$, and $\rho_{1}, d c_{2}$ is $\rho_{2}^{3}\left(\sin \theta_{1}^{2}\right)^{2} \sin \theta_{2}^{2} d \rho_{2} d \theta_{1}^{2} \theta_{2}^{2} d \omega_{1}$ since $d \omega_{1}$ gives "surface area" on $\left\{\omega_{3}, \omega_{2}\right\}^{\perp} \cap \Sigma_{3}$. And for fixed ω_{3} and $\rho_{0}, d c_{1}$ is $\rho_{1}^{3}\left(\sin \theta_{1}^{1}\right)^{2} d \rho_{1} d \theta_{1}^{1} d \omega_{2}$ since $d \omega_{2}$ gives surface area on $\left\{\omega_{3}\right\}^{\perp} \cap \Sigma_{3}$. Finally, $d c_{0}$ is $\rho_{0}^{3} d \rho_{0} d \omega_{3}$.

Lemma 3 is the statement that

$$
\begin{aligned}
\int_{\mathbb{R}^{k(k-1)}} \alpha\left(\left|c_{0}\right|^{2}, \ldots,\left|c_{k-2}\right|^{2}, c_{0} \cdot c_{1}, c_{0} \cdot c_{2}, \ldots, c_{k-3} \cdot c_{k-2}\right) & d c_{0} \cdots c_{k-2} \\
\leq & \leq \int_{\mathbb{R}^{k}(k-1) / 2} \alpha(x) d x
\end{aligned}
$$

Since the orthogonal mappings $O(\omega)$ have no effect on the inner products $c_{i} \cdot c_{j}$, we define

$$
\left({c^{\prime}}_{0} ; c^{\prime}{ }_{1} ; \ldots ; c^{\prime}{ }_{k-2}\right)=\left(\rho_{0} e_{1} ; \rho_{1}\left(\sigma_{1}\left(\theta_{1}^{1}\right), 0\right) ; \ldots ; \rho_{k-2}\left(\sigma_{k-2}\left(\theta_{1}^{k-2}, \ldots, \theta_{k-2}^{k-2}\right), 0\right)\right)
$$

Lemma 3 then follows by observing that

$$
\begin{gather*}
\int \alpha\left(\left|c^{\prime}{ }_{0}\right|^{2}, \ldots,\left|{c^{\prime}}_{k-2}\right|^{2}, c^{\prime}{ }_{0} \cdot{c^{\prime}}^{\prime}, c^{\prime}{ }_{0} \cdot{c^{\prime}}^{\prime}, \ldots, c^{\prime}{ }_{k-3} \cdot c^{\prime}{ }_{k-2}\right) \prod_{0}^{k-2} \rho_{j}^{k-1} d \rho_{0} \cdots \rho_{k-2} \tag{8}\\
\times \prod_{1}^{k-2}\left(\sin \theta_{1}^{j}\right)^{k-2} \prod_{2}^{k-2}\left(\sin \theta_{2}^{j}\right)^{k-3} \cdots \prod_{k-2}^{k-2}\left(\sin \theta_{k-2}^{j}\right) d \theta_{1}^{1} \theta_{1}^{2} \theta_{2}^{2} \cdots \theta_{1}^{k-2} \cdots \theta_{k-2}^{k-2} \\
\leq C \int_{\mathbb{R}^{k(k-1) / 2}} \alpha(x) d x
\end{gather*}
$$

We will explain this in the case $k=4$, the general case being completely analogous. If $k=4$ then

$$
\begin{aligned}
& \left(\left|c^{\prime}{ }_{0}\right|^{2},\left|c^{\prime}{ }_{1}\right|^{2},\left|c^{\prime}{ }_{2}\right|^{2}, c^{\prime}{ }_{0} \cdot{c^{\prime}}^{\prime}, c^{\prime}{ }_{0} \cdot{c^{\prime}}^{\prime}, c^{\prime}{ }_{1} \cdot c^{\prime}{ }_{2}\right) \\
& =\left(\rho_{0}^{2}, \rho_{1}^{2}, \rho_{2}^{2}, \rho_{0} \rho_{1} \cos \theta_{1}^{1}, \rho_{0} \rho_{2} \cos \theta_{1}^{2}, \rho_{1} \rho_{2}\left(\cos \theta_{1}^{1} \cos \theta_{1}^{2}+\sin \theta_{1}^{1} \sin \theta_{1}^{2} \cos \theta_{2}^{2}\right)\right)
\end{aligned}
$$

while the volume element can be written

$$
\rho_{1} \rho_{2} \sin \theta_{1}^{1} \sin \theta_{1}^{2} \sin \theta_{2}^{2} d \theta_{2}^{2} \cdot \rho_{0} \rho_{2} \sin \theta_{1}^{2} d \theta_{1}^{2} \cdot \rho_{0} \rho_{1} \sin \theta_{1}^{1} d \theta_{1}^{1} \cdot \rho_{2} d \rho_{2} \cdot \rho_{1} d \rho_{1} \cdot \rho_{0} d \rho_{0}
$$

Thus (8) is evident.

Acknowledgement The author is grateful to Jong-Guk Bak for interesting and helpful correspondence. In particular, the author was in possession of a proof of Theorem 2 for the case $k=2$ when he received the preprint [BL], and he appreciates Bak's encouraging him to extend that argument to $k \geq 3$.

References

[BL] J.-G. Bak and S. Lee, Restriction of the Fourier transform to a quadratic surface in \mathbb{R}^{n}. Math. Z. 247(2004), 409-422.
[C1] M. Christ, Estimates for the k-plane transform. Indiana Univ. Math. J. 33(1984), 891-910.
[C2] , On the restriction of the Fourier transform to curves: endpoint results and the degenerate case. Trans. Amer. Math. Soc. 287(1985), 223-238.
[CI] L. de Carli and A. Iosevich, Some sharp restriction theorems for homogeneous manifolds. J. Fourier Analysis and Applications 4(1998), 105-128.
[CS] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44(1972), 287-299.
[F] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124(1970), 9-36.
[M1] G. Mockenhaupt, Bounds in Lebesgue spaces of oscillatory integral operators. Habilitation thesis, Universität Siegen, 1996.
[M2] , Some remarks on oscillatory integrals. In: Geometric Analysis and Applications. Proc. Centre Math. Appl. Austral. Nat. Univ. 39, Canberra, 2001.
[M2] E. Prestini, Restriction theorems for the Fourier transform to some manifolds in \mathbb{R}^{n}. In: Harmonic analysis in euclidean spaces. Proc. Sympos. Pure Math. 35, American Mathematics Society, Providence, RI, 1979, pp. 101-109.

Department of Mathematics
Florida State University
Tallahassee, FL 32306-4510
U.S.A.
e-mail: oberlin@math.fsu.edu

[^0]: Received by the editors January 21, 2003; revised June 10, 2004.
 The author was partially supported by the NSF.
 AMS subject classification: 42B10.
 Keywords: Fourier restriction.
 (c) Canadian Mathematical Society 2005.

