
J. Fluid Mech. (2011), vol. 676, pp. 546–571. c© Cambridge University Press 2011. The
online version of this article is published within an Open Access environment subject to the
conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://
creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge Univer-
sity Press must be obtained for commercial re-use.

doi:10.1017/jfm.2011.69

Low Rossby limiting dynamics for stably
stratified flow with finite Froude number

BETH A. WINGATE1†, PEDRO EMBID2,
MIRANDA HOLMES-CERFON3 AND MARK A. TAYLOR4

1MS D413, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
2Department of Mathematics and Statistics, the University of New Mexico, Albuquerque,

NM 87131, USA
3New York University, Courant Institute of Mathematical Sciences, New York, NY 10012, USA

4Sandia National Laboratories, Albuquerque, NM 87185, USA

(Received 27 May 2009; revised 26 January 2011; accepted 8 February 2011;

first published online 27 April 2011)

In this paper, we explore the strong rotation limit of the rotating and stratified
Boussinesq equations with periodic boundary conditions when the stratification is
order 1 ([Rossby number] Ro = ε, [Froude number] Fr= O(1), as ε → 0). Using the
same framework of Embid & Majda (Geophys. Astrophys. Fluid Dyn., vol. 87, 1998,
p. 1), we show that the slow dynamics decouples from the fast. Furthermore, we
derive equations for the slow dynamics and their conservation laws. The horizontal
momentum equations reduce to the two-dimensional Navier–Stokes equations.
The equation for the vertically averaged vertical velocity includes a term due to
the vertical average of the buoyancy. The buoyancy equation, the only variable
to retain its three-dimensionality, is advected by all three two-dimensional slow
velocity components. The conservation laws for the slow dynamics include those
for the two-dimensional Navier–Stokes equations and a new conserved quantity
that describes dynamics between the vertical kinetic energy and the buoyancy. The
leading order potential enstrophy is slow while the leading order total energy retains
both fast and slow dynamics. We also perform forced numerical simulations of the
rotating Boussinesq equations to demonstrate support for three aspects of the theory
in the limit Ro → 0: (i) we find the formation and persistence of large-scale columnar
Taylor–Proudman flows in the presence of O(1) Froude number; after a spin-up
time, (ii) the ratio of the slow total energy to the total energy approaches a constant
and that at the smallest Rossby numbers that constant approaches 1 and (iii) the
ratio of the slow potential enstrophy to the total potential enstrophy also approaches
a constant and that at the lowest Rossby numbers that constant is 1. The results of
the numerical simulations indicate that even in the presence of the low wavenumber
white noise forcing the dynamics exhibit characteristics of the theory.
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1. Introduction
For planetary scale rotating and stratified fluid dynamics, Charney (1948) estimated

the orders of magnitude of different terms in the Euler equations by using typical

† Email address for correspondence: wingate@lanl.gov
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values of large scale atmospheric motion. From these arguments, which included
approximate hydrostatic and geostrophic balance, he derived reduced sets of equations
called the quasi-geostrophic equations (QG) that are widely used in idealised studies
of oceanic and atmospheric dynamics. In addition to finding equations that govern
the large scales, Charney also points out that the QG equations ‘filtered out’ the
inconsequential fast waves from the large scale motions.

In the work of Embid & Majda (1996, 1998), Majda & Embid (1998), they
showed that the QG limit ([Rossby number] Ro → 0, [Froude number] Fr → 0 and
Fr/Ro = f/N finite) can also be derived from the rotating Boussinesq equations
with periodic boundary conditions, (2.8)–(2.9). Their asymptotic analysis relies on
the separation of fast and slow time scales and incorporates the fast waves that
were filtered out in Charney’s analysis. The resulting limiting equations are obtained
by averaging over the fast time scale and accounts for three-waves interactions
of fast and slow waves. Moreover, a rigorous justification of this approach was
given by a direct application of Schochet’s method of cancellation of oscillations for
hyperbolic equations, Schochet (1994). In these papers, taking Ro → 0 corresponds
to geostrophic balance and taking Fr → 0 corresponds to hydrostatic balance. When
both these parameters go to zero, the equations for the slow dynamics decouple from
the fast and are Charney’s QG equations.

In addition to the quasi-geostrophic regime described above, we consider the
dynamics of two other dynamical regimes: (i) the strong stratification limit where the
physics is dominated by strong stratification but has only weak rotational effects and
(ii) the strong rotation limit where the physics is dominated by fast rotation but is
only weakly stratified.

The first limit, the strong stratification limit, is thought to be important in
geophysical fluid dynamics, see the review by Riley & Lelong (2000), because it
describes flows that occur at length scales between the large, quasi-geostrophic scales
and the small scales where energy is dissipated. Fluid dynamical theory for this
physical regime has been explored by Riley & Lelong (2000), Riley & deBruynKops
(2003), Babin, Mahalov & Nicolaenko (1996), Babin et al. (1997), Babin, Mahalov
& Nicolaenko (1998, 2002), Embid & Majda (1998). Parametrically this regime is
described by Fr → 0, Ro =O(1), f/N → 0. Here it has also been found that the slow
dynamics decouples from the fast and that it leads to new equations for the slow
dynamics that are not the QG equations derived by Charney.

One way the slow dynamics of the QG limit differs from the slow dynamics of
the strong stratification limit is in the role of the zero frequency dispersive waves.
To explore this we examine the eigenfrequencies of the non-dimensional linearised
rotating Boussinesq equations, (2.8) and (2.9) in the absence of dissipative effects,

ω(k) = ± (Fr2m2 + Ro2 |kH |2)1/2

RoFr|k| , ω(k) = 0 (double), (1.1)

where |kH |2 = k2 + l2 with k and l the horizontal wavenumbers, m the vertical
wavenumber and |k|2 = k2 + l2 + m2. There are two kinds of eigenfrequencies. The
first kind are the slow vortical modes that have zero frequency for all k, and
contribute to the potential vorticity. The second kind are the dispersive waves that
have non-zero frequency but make no contribution to potential vorticity. The latter
are the familiar inertia–gravity waves that are filtered from Charney’s QG equations.
In the strong stratification limit (see Babin et al. 1997; Embid & Majda 1998), where
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Fr → 0, Ro = O(1), f/N → 0, the fast eigenfrequencies are

ωFr(k) = ±|kH |
|k| , ω(k) = 0 (double). (1.2)

Again there are two kinds of eigenfrequencies, the slow vortical modes and the fast
gravity waves. However, here the fast waves contribute to the slow dynamics when
kH = 0. That is, one of the wave modes, corresponding to horizontal averages with
zero potential vorticity, has a slow component that resonates with the PV bearing
vortical modes. This manifests itself in the vertically sheared horizontal dynamics
mode introduced by Embid & Majda (1998) and investigated by Smith & Waleffe
(2002), Majda & Grote (1997).

In this work, we look at the strong rotation (low Rossby) limit where geostrophic
balance dominates but the flow is only weakly stratified. These dynamics are
parametrically described by the limit Ro → 0, Fr= O(1), f/N → ∞.

This physical regime is relevant in regions of the deep ocean where stratification is
weak but rotational effects are dominant. For example, Van Haren & Millot (2005)
observe values of N =0 ± 0.4f (2.5 <f/N < ∞) in the deep Mediterranean Sea and
argue that the dynamics in those regions are driven by both weak stratification and the
horizontal components rotation. In fact, they observe non-hydrostatic motions with
vertical velocities of the same order of magnitude as the horizontal. Another region of
the world where strong rotation and weak stratification have been observed is in the
deep Arctic Ocean. Measurements in the Beaufort Gyre by Timmermans, Melling &
Rainville (2007), Timmermans et al. (2010) show f/N ≈ 2 above 2600 m and f/N ≈ ∞
between the depths of 2600 and 3600 m. One of the reasons these investigators give
for studying the deep Arctic is that in their 2002 pilot study they discovered the
dynamics to be unexpectedly active in the deep ocean. Weak stratification in the deep
ocean at high latitudes has been noted for the North Atlantic and North Pacific in
Emery, Lee & Magaard (1984) where they compute mean profiles of density and
Brunt–Väisäla frequency; in the deep waters of the Arctic Ocean by Jones, Rudels
& Anderson (1995); and in the Southern Ocean by Heywood, Garabato & Stevens
(2002). Furthermore, warm core eddies with depths of 1000 m or more have been
observed in the Arctic by Woodgate et al. (2001).

In the limit of strong rotation and weak stratification (Ro → 0, Fr= O(1),
f/N → ∞) the fast eigenfrequencies are

ωRo(k) = ±|m|
|k| , ω(k) = 0 (double). (1.3)

Again, there are two kinds of frequencies corresponding to fast inertial waves and
slow PV modes. Also, in this limit the non-PV bearing modes make a contribution to
the slow dynamics, but this time it occurs when m =0, which corresponds to vertically
averaged dynamics, which we refer to as Taylor–Proudman dynamics.

By using the general framework developed in Embid & Majda (1998), we show that
in the low Rossby number limit the horizontal and vertical dynamics decouple. In
the horizontal, the slow equations are the two-dimensional Navier–Stokes equations
along with two conservation laws, the horizontal kinetic energy and the vertical
vorticity. In the case where the flow is not stratified this is consistent with other
work Chen et al. (2005). The vertically averaged vertical momentum equation is an
advection–diffusion like equation that couples to the buoyancy through its vertical
average. The slow equation for the buoyancy is the only quantity that remains fully
three-dimensional and is advected by all three components of the slow velocity. The
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slow equations for the vertical momentum and the buoyancy are coupled and give
rise to new conservation laws for the coupled w − ρ dynamics. We also show that the
slow modes evolve independent of the fast and that the total energy is composed of
both slow and fast components, while the potential enstrophy is, to leading order in
the expansion parameter, purely slow. The reduced equations and their conservation
laws are supported by numerical simulations using low wavenumber forcing. These
slow equations are not quasi-geostrophic because they are non-hydrostatic.

2. Non-local form of the Boussinesq equations
The Boussinesq equations for flow moving at a constant rotation about the ẑ axis

for vertically stratified flow is

D

Dt
v + f ẑ × v + ρ−1

0 ρg ẑ + ρ−1
0 ∇p = ν�v, (2.1)

D

Dt
ρ − bw = κ�ρ, (2.2)

∇ · v = 0, (2.3)

where is the material derivative, v = (u, v, w) is the Eulerian velocity, p is the pressure
and the total density ρ̃ has been decomposed into ρ̃ = ρo − bz + ρ, where ρ0 is a
constant background reference value of the density, b is the density gradient in the
vertical and ρ is the density fluctuation. We assume b > 0 for stable stratification. The
parameter f is twice the frame rotation rate, g is the acceleration of gravity, ν is
the kinematic viscosity and κ is the diffusion coefficient.

In order to distinguish the physical mechanisms of fast rotation from weak
stratification, we use the same velocity and length scales for all three components
of velocity and in all three dimensions. Therefore we non-dimensionalise using the
following characteristic scales; L is the length scale for the three spatial coordinates
x =(x, y, z), U is the velocity scale and L/U is the advective time scale. The scale for
the density fluctuation is bU/N , where N = (gb/ρo)

1/2 is the Brunt–Väisälä frequency.
Then we arrive at the following non-dimensional quantities,

Ro =
U

f L
, Eu =

P

ρU 2
, Re =

UL

ν
, Pr =

ν

κ
, Fr =

U

NL
, (2.4)

where Ro is the Rossby number, Fr is the Froude number, Eu is the Euler number,
Re is the Reynolds number and Pr is the Prandtl number. Then the non-dimensional
Boussinesq equations for rotating and stratified flows are

D

Dt
v +

1

Ro
ẑ × v + Eu ∇p +

1

Fr
ρ ẑ =

1

Re
�v, (2.5)

D

Dt
ρ − 1

Fr
w =

1

RePr
�ρ with ∇ · v = 0. (2.6)

It is clear that v and ρ are the evolution variables in (2.5) and (2.6) and that
the role of the pressure gradient term in the momentum equation is to enforce the
incompressibility condition. By eliminating the pressure term, it is possible to recast
the Boussinesq equations exclusively in terms of the evolution variables and at the
same time to incorporate the incompressibility constraint. This equivalent formulation
is, however, in non-local form. To write these equations in their non-local form take
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the divergence of the momentum equation to find the equation for the pressure,

Eu∇p = ∇�−1

(
1

Ro
ẑ · ω − 1

Fr

∂ρ

∂z
− ∇ · (v · ∇v)

)
, (2.7)

where �−1 is the inverse Laplacian operator and ω = ∇ × v = (ξ, η, ω) is the local
vorticity. Substitute the equation for the pressure into (2.5) and (2.6) to get the
non-local form of the Boussinesq equations,

D

Dt
v +

1

Ro
ẑ × v + ∇�−1

(
1

Ro
ẑ · ω − 1

Fr

∂ρ

∂z
− ∇ · (v · ∇v)

)
+

1

Fr
ρ ẑ =

1

Re
�v, (2.8)

D

Dt
ρ − 1

Fr
w =

1

RePr
�ρ. (2.9)

These equations automatically incorporate the incompressibility condition. Indeed,
taking the divergence of (2.8) results in ∂/∂t(∇ · v) = 1/Re�(∇ · v), so that if ∇ · v is
zero initially, then it remains zero for all time.

A quantity of fundamental importance is the potential vorticity q̃ = ωa · ∇ρ̃, where
ωa = ω + f ẑ. Clearly q̃ = q − f b, where the evolution of q = f (∂ρ/∂z) − bω + ω · ∇ρ

is given by Ertel’s theorem,

Dq

Dt
= ν�ω · ∇ρ + κ∇(�ρ) · ωa. (2.10)

If we scale q with f bFr and ω with f Ro, then the non-dimensional form of q is

q =
∂ρ

∂z
− Ro

Fr
ω + Ro (ω · ∇ρ), (2.11)

and the non-dimensional form of Ertel’s equation for q is

Dq

Dt
=

1

RePr
�

∂ρ

∂z
− Ro

FrRe
�ω +

Ro

Re
�ω · ∇ρ +

Ro

RePr
ω · ∇�ρ. (2.12)

The equations for the global integrated total energy and potential enstrophy are

1

2

d

dt

∫
V

(|v|2 + ρ2) dv = − 1

Re

∫
V

|∇v|2 dv − 1

RePr

∫
V

|∇ρ|2 dv , (2.13)

1

2

d

dt

∫
V

q2 dv =

∫
V

q
∂q

∂t
dv = − 1

RePr

∫
V

∣∣∣∣∇∂ρ

∂z

∣∣∣∣2 dv + O(Ro). (2.14)

The energy equation, (2.13) is independent of the Rossby and Froude numbers but the
enstrophy equation (2.14) depends on the Rossby number, with a leading dissipative
term depending on |∇(∂ρ/∂z)|2 and the remaining contributions involving powers of
the Rossby number.

3. Limiting dynamics for the rapidly rotating Boussinesq equations
Here we formulate the limiting dynamics for the rapidly rotating Boussinesq

equations, i.e. in the limit of Ro → 0 and Fr =O(1). In doing so, we will follow
the approach developed in great generality by Embid & Majda (1998) and which
builds upon earlier work of Klainerman & Majda (1981), Majda (1984) and Schochet
(1987, 1994). In fact, the present work complements the work of Embid and Majda
which focused on the cases where Fr → 0 with either Ro/Fr finite or Ro = O(1). The
analysis starts with the recasting of the rotating Boussinesq equations in an abstract
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setting that reveals its key structure. This is followed with the asymptotic formulation
of the slow dynamics equations in the limit of Ro → 0 and balanced initial data, i.e.
without fast inertial waves. Finally, we adapt the theory developed by Embid and
Majda to formulate limiting dynamics equations in the limit of Ro → 0 and with fast
inertial waves.

3.1. Abstract framework for the rotating Boussinesq equations

If we introduce the vector u =(v, ρ) and let Ro = ε, then the rotating Boussinesq
equations, (2.8) and (2.9) become, in abstract operator form,

∂u
∂t

+
1

ε
LF u + LSu + B(u, u) = Du, (3.1)

u|t=0 = u0(x),

with the operators LF , LS , B and D given by

LF u =

(
ẑ × v + ∇�−1ω

0

)
(3.2)

LSu = (Fr)−1

⎛⎜⎝ρ ẑ − ∇�−1

(
∂ρ

∂z

)
−w

⎞⎟⎠ (3.3)

B(u, u) =

(
v · ∇v − ∇�−1(∇ · (v · ∇v))

v · ∇ρ

)
(3.4)

Du =

(
(Re)−1�v

(Re)−1(Pr)−1�ρ

)
. (3.5)

In the equations above the linear operator L = ε−1LF + LS splits into a fast piece LF

associated with the Rossby number Ro = ε and a slow piece LS associated with the
Froude number. It is clear that (3.1) becomes singular in the limit of ε → 0, and the
fast operator LF will have a dominant role. The remaining terms in (3.1) are given
by the bilinear advective operator B(u, u) and the diffusion operator Du.

As we mentioned before, if the initial data u0 in (3.1) are divergence free, then
the solution remains divergence free for all time. But in fact more is true, each
individual operator, LF , LS , B and D, takes solenoidal fields into solenoidal fields.
Therefore, a natural setting for (3.1) is the Hilbert space X of vector fields u = (v, ρ)
in L2 that are divergence free, ∇ · v = 0, and equipped with the L2 – norm, which
is physically equivalent to the total energy, ‖u‖2 =

∫
|v|2 + ρ2 dv . In addition, we

assume 2π-periodicity in all the space variables. This choice of boundary conditions
considerably simplifies the study of (3.1), particularly the analysis of the operator
LF , and the resulting slow limiting dynamics equations, (3.13), and the fast wave
averaging equations, (3.32). The reason for this simplification is the fact that the
associated eigenfunctions are given explicitly in terms of Fourier modes. In addition,
the choice of periodic boundary conditions is consistent with the numerical simulations
presented in § 4. Changing the domain and the boundary conditions can make the
mathematical analysis quite difficult; for example, for arbitrary bounded domains it
may be impossible to characterise the eigenfunctions of LF . The choice of an infinite
domain may change drastically the structure of the null space (slow waves) and the
range (fast waves) of the operator LF .
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One key observation is the fact that the operator LF (and LS) is skew-Hermitian
in X: for u1 and u2 in X,∫

V

u∗
2LF u1 dv = −

∫
V

(LF u2)
∗u1 dv , (3.6)

where u∗ denotes the conjugate transpose of u. Several important properties follow
from this fact. First, (3.1) satisfies (in the absence of diffusion) the conservation of
energy, (2.13). This property is shared with other important systems in mathematical
physics, such as the Euler and the Maxwell equations. Second, according to the
spectral theorem, skew-Hermitian operators have purely imaginary eigenvalues and
an orthonormal basis of eigenfunctions, see Lax (2002). Physically this means that
the basic normal mode solutions of equations represent wave motions. Finally, the
null space of LF , N(LF ), is orthogonal to the range of LF , R(LF ). This can be
thought of a consequence of the spectral theorem because N(LF ) is spanned by
the eigenfunctions with zero eigenvalue (slow modes) whereas R(LF ) is spanned
by the remaining eigenfunctions with non-zero eigenvalues (fast modes). This last
property will be exploited later in the derivation of the slow dynamics equations.

Next we apply the previous observations to the linear equation,

∂u
∂t

+
1

ε
LF u = 0, (3.7)

and seek normal mode solutions in the form of harmonic plane waves

u(x, t) = r exp [ik · x − iε−1ω(k) t], (3.8)

where k = (k, l, m) is the wavenumber, ω(k) is the frequency and the purely
imaginary number λ= iω(k) is the eigenvalue of LF associated with the eigenfunction
u = r exp[ik · x]. The four eigenfrequencies ω(k) are given by the dispersion relations,

ω(k) = ±m/|k|, ω(k) = 0 (double). (3.9)

Therefore, the equations admit slow modes moving on time scales O(1) when ω(k) = 0
and fast waves moving on time scales O(1/ε) when ω(k) �= 0. The fast waves in this
limit are gyroscopic or inertial waves. They are waves that owe their existence to
the presence of the Coriolis force and were originally described by Kelvin (1880).
Descriptions of these waves can be found in LeBlond & Mysak (1978) and Greenspan
(1990). Of course, if m = 0 in (3.9) then we only have slow gyroscopic waves. Explicit
formulas for the eigenvectors r associated with the fast and slow normal modes are
given in the Appendix.

3.2. Slow limiting dynamics as Ro → 0

Here we consider the limiting dynamics equations as Ro → 0 under the assumption
that the solution uε(x, t) of (3.1) evolves only on the slow (advective) time scale.
The formal derivation in the context of the abstract operator equation, (3.1), is
straightforward. We start by assuming that uε(x, t) has the asymptotic expansion,

uε(x, t) = u0(x, t) + εu1(x, t) + O(ε2), (3.10)

as ε → 0. Plugging uε into (3.1) and collecting the contribution of order O(ε−1) yields

LF u0 ≡ 0, (3.11)

that is, u0 is in N(LF ) for all time, or equivalently, u0(x, t) is represented exclusively
in terms of slow modes. In particular, the initial data u0(x) = u0(x, 0) are in N(LF )
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to leading order in ε. The next contribution of order O(ε0) yields

∂u0

∂t
+ LF u1 + LSu0 + B(u0, u0) − Du0 = 0. (3.12)

The slow limiting dynamics equation is now obtained by projecting (3.12) onto N(LF )
as follows. First apply the orthogonal projection P of X onto N(LF ) to both sides
of (3.12). Since u0 is in N(LF ) for all time so is ∂u0/∂t , hence P (∂u0/∂t) = ∂u0/∂t . In
addition, since LF u1 is in R(LF ) and N(LF ) is orthogonal to R(LF ), then P (LF u1) = 0
and any contribution from u1 is eliminated under the projection. Finally, we eliminate
the superscript in u0 and obtain the slow limiting dynamics equations,

∂u
∂t

+ P (LSu + B(u, u) − Du) = 0, u|t=0 = u0(x) ∈ N(LF ). (3.13)

Next we notice that, to leading order in ε, it is enough for the initial data u0(x) to
be in N(LF ) to automatically guarantee that the solution u(x, t) of (3.13) remains
in N(LF ) for all time. Indeed, if we integrate in time (3.13) and use the fact that
u0 ∈ N(LF ), we conclude that u(t) ∈ N(LF ) for all time. Moreover, we will show
shortly that in the context of the rotating Boussinesq equations the null space N(LF )
consists precisely of the Taylor–Proudman columnar flows, Taylor (1921). Therefore,
we can say that to leading order in ε, if the initial data are Taylor–Proudman flows
(i.e. free of fast inertial waves), then the solution u remains a Taylor–Proudman flow
for all time and its evolution is described by the slow dynamics equations. When
the initial data are Taylor–Proudman flows to leading order in ε, we say that the
flow is in approximate Taylor–Proudman balance. Finally we remark that all these
formal considerations can be established with full mathematical rigour through a
direct application of the general theory of singular limits of hyperbolic systems first
developed by Klainerman & Majda (1981), Majda (1984), with later additions by
Schochet (1987).

To obtain the concrete formulation of the slow dynamics for the Boussinesq
equations, (3.1)–(3.5), we need to determine explicitly the null space N(LF ) and
its orthogonal projection P . For this purpose, it is convenient to split vectors
and operators into their horizontal and vertical components. Thus, the velocity
v =(vH , w) with vH = (u, v), the gradient ∇ =(∇H , ∂/∂z) with ∇H = ((∂/∂x), (∂/∂y)),
and the Laplacian ∆ =�H + (∂2/∂z2) with �H =(∂2/∂x2) + (∂2/∂y2).

The null space N (LF ) of the fast operator LF in (3.2) is characterised by

−v +
∂

∂x
�−1ω = 0, (3.14)

u +
∂

∂y
�−1ω = 0, (3.15)

∂

∂z
�−1ω = 0, (3.16)

where ω = (∂v/∂z) − (∂u/∂y) is the vertical component of the vorticity and
v is incompressible, ∇ · v = 0. From (3.16), it follows that �−1ω = ψ is z-
independent of z. Introducing ψ back into (3.14)–(3.15), shows that ψ is the
streamfunction for vH , vH = (−(∂ψ/∂y), ∂ψ/∂x), and that vH is incompressible,
∇H · vH = (∂/∂x)(−(∂ψ/∂y)) + (∂/∂y)(∂ψ/∂x) = 0. Since v is incompressible by
assumption, then it follows that (∂w/∂z) = 0, i.e. w is also z-independent. This shows
that N(LF ) consists of Taylor–Proudman column flows, i.e. states u =(v, ρ) with v

z-independent and vH incompressible. That no restrictions are imposed upon ρ is
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not surprising since the fast operator LF only includes those contributions associated
with the Rossby number.

The orthogonal projection P onto the null space N(LF ) is given by

P u =

⎛⎝〈vH 〉z − ∇H�−1
H (∇H · 〈vH 〉z)

〈w〉z

ρ

⎞⎠ , (3.17)

where 〈f 〉z = (1/2π)
∫ 2π

0
f (x, y, z) dz denotes the average in the vertical direction.

Therefore the concrete form of (3.13), the slow limiting dynamics equations for the
rotating Boussinesq equations is

∂vH

∂t
+ vH · ∇HvH + ∇Hp =

1

Re
�HvH , (3.18)

∇H · vH = 0, (3.19)
∂w

∂t
+ vH · ∇Hw =

1

Re
�Hw − 1

Fr
〈ρ〉z, (3.20)

∂ρ

∂t
+ v · ∇ρ − 1

Fr
w =

1

RePr
�ρ, (3.21)

where v = v(x, y, t), ρ = ρ(x, y, z, t) and ∇Hp = ∇H�−1
H [∇H · (vH · ∇HvH )]. For brevity

of notation we omit distinguishing between projected and unprojected variables and
instead state that all the variables in (3.18)–(3.21) are the result of applying the
projection operator, (3.17).

In the slow dynamics, the horizontal component of the velocity vH is governed
by the 2D Navier–Stokes equation. Moreover, vH evolves independent of the vertical
velocity w and the density ρ but it influences the dynamics of these variables through
the advection terms in (3.20) and (3.21). The dynamics of the vertical velocity w

and the density ρ are strongly coupled. Interestingly, the vertical velocity w evolves
according to a 2D forced advection–diffusion equation, (3.20), with buoyancy force
given by 〈ρ〉z, the density average in the vertical direction. On the other hand, the
evolution of the density ρ is given by the 3D forced advection–diffusion equation,
(3.21), and remains the same as (2.6) in the Boussinesq approximation.

A consequence of this decoupling of the horizontal velocity from the vertical velocity
and the density in (3.18)–(3.21) is the appearance of additional globally integrated
conservation laws which are not present in the original Boussinesq equations. First,
the 2D Navier–Stokes equation for vH yields the conservation of horizontal kinetic
energy and enstrophy,

1

2

d

dt

∫
A

|vH |2 da = − 1

Re

∫
A

|∇HvH |2 da, (3.22)

1

2

d

dt

∫
A

ω2 da = − 1

Re

∫
A

|∇Hω|2 da, (3.23)

where integration is over the horizontal period square A= [0, 2π]2. Next, taking the
vertical average of the equation for ρ, (3.21), results in an evolution equation for 〈ρ〉z,

∂

∂t
〈ρ〉z + vH · ∇H 〈ρ〉z − 1

Fr
w =

1

RePr
�H 〈ρ〉z. (3.24)
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Combining (3.20) and (3.24) results in horizontal conservation laws for the vertical
kinetic energy and the average vertical potential energy,

1

2

d

dt

∫
A

w2 da = − 1

Fr

∫
A

w〈ρ〉z da − 1

Re

∫
A

|∇H w|2 da, (3.25)

1

2

d

dt

∫
A

〈ρ〉2
z da =

1

Fr

∫
A

w〈ρ〉z da − 1

RePr

∫
A

|∇H 〈ρ〉z|2 da, (3.26)

and adding these two equations results in the conservation of vertical energy,

1

2

d

dt

∫
A

(
w2 + 〈ρ〉2

z

)
da = − 1

Re

∫
A

|∇H w|2 da − 1

RePr

∫
A

|∇H 〈ρ〉z|2 da. (3.27)

Additionally, if we define the density fluctuation ρ̃ = ρ − 〈ρ〉z, then from the density
equations, (3.21)–(3.24), it follows the conservation of potential energy,

1

2

d

dt

∫
V

ρ̃2 dv = − 1

RePr

∫
V

|∇ρ̃|2 dv , (3.28)

where the volume integral is over the period cube V = [0, 2π]3. Of course, (2.13) for the
conservation of total energy still holds for the slow dynamics equations, (3.18)–(3.21).
Finally, define the potential vorticity q for the slow dynamics equations as the leading
term of the expansion of q given by (2.11) in powers of Ro = ε, q = ∂ρ/∂z = ∂ρ̃/∂z.
Then the equation for the conservation of potential enstrophy is

1

2

d

dt

∫
V

q2 dv = − 1

RePr

∫
V

|∇q|2 dv . (3.29)

The conservation laws above were obtained directly from the slow limiting dynamics
equations. In the different limiting regimes of strong stratification and Burger
number Bu = (Ro/Fr)2 = 0(1), or strong stratification and weak rotation, Babin
et al. (1997, 1998) showed that conserved quantities for the limiting equations, like
the horizontally averaged buoyancy correspond to adiabatic invariants for the full
Boussinesq equations.

Finally, we remark that although the abstract derivation of the slow limiting
dynamics equations, (3.13), is completely general, the concrete form of the equations
depend on the explicit calculation of N(LF ), R(LF ) and the projection operator P of X

onto N(LF ). This calculation is very much dependent on the choice of the domain and
the boundary conditions. For example, if we assume the horizontal variables infinite
in extent and periodicity in the vertical variable, i.e. V = �2 × [0, 2π], then N(LF )
is still given by Taylor–Proudman columns, (3.14)–(3.16), the projection operator by
(3.17) and the slow limiting dynamics equations by (3.18)–(3.21). On the other hand,
if we also assume infinite extent in the vertical variable, i.e. V = �3, then N(LF ) only
admits flows with zero velocity (this is reasonable because the only velocity field v

that is z-independent and has finite kinetic energy is v = 0) and in this case the slow
limiting dynamics becomes trivial. However, it is arguable whether a fluid of infinite
depth constitutes a reasonable assumption in the present context.

3.3. Fast limiting dynamics as Ro → 0

The derivation of the slow limiting dynamics equations presented in the previous
section was based on the assumption that the solution evolved only on the slow
advective time scale. This assumption is warranted if, to leading order in ε, the initial
data do not include fast inertial waves components. If, on the other hand, the initial
data contain inertial waves, then the limiting dynamics equations as Ro → 0 must
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be modified to take into account the fast inertial waves. The derivation of the fast
limiting dynamics for small Rossby number and finite Froude number is readily
obtained by invoking the very general approach developed in the fundamental work
of Embid & Majda (1998) on the limiting dynamics of the Boussinesq equations with
small Froude number and either finite or small Rossby number. In fact, we only have
to switch the roles of the fast and slow operators LF and LS and apply their theory
in straightforward fashion. For this reason we are content with a summary of the
main points of their theory and their most relevant conclusions for the present work.

Following Embid & Majda (1998) we assume that the solution uε(x, t) of (3.1)
depends on two separate time scales, the slow advective time scale t and the fast time
scale τ = t/ε associated with the inertial waves. In addition, we assume that for ε � 1
the solution has the asymptotic expansion,

uε(x, t) = u0(x, t, τ )|τ=t/ε + εu1(x, t, τ )|τ=t/ε + O(ε2), (3.30)

and it is also assumed that u1(x, t, τ ) = o(τ ), uniformly on 0 � τ � T/ε, to guarantee
the asymptotic validity of the expansion. The analysis of Embid and Majda then
shows that to leading order in ε the solution uε(x, t) of (3.1) is given by,

uε(x, t) = u0(x, t, τ )|τ=t/ε + o(1) = e−t/εLF u(x, t) + o(1), (3.31)

where u(x, t) solves a reduced equation obtained by averaging over the fast time
variable τ ,

∂u
∂t

+ lim
T →∞

1

T

∫ T

0

eτLF
[
LS(e

−τLF u) + B(e−τLF u, e−τLF u) − D(e−τLF u)
]
dτ = 0,

u(x, t)|t=0 = u0(x). (3.32)

The fast wave averaging equation, (3.32), supersedes the slow dynamics equation,
(3.13), whenever inertial waves are present. We also remark that the asymptotic
analysis of Embid & Majda (1998) can be justified with complete mathematical
rigour via the technique of cancellation of oscillations developed in the important
paper of Schochet (1994).

In practice it may be difficult to evaluate the limit over the fast variable τ in
(3.32). However, this calculation can be performed in the case of periodic boundary
conditions. In this case, the fast operator LF has an orthonormal basis of periodic
eigenfunctions of the form,

uα
k (x) = eik · x rα

k , (3.33)

where k =(k, l, m) is the wavenumber, α indicates whether the mode is slow (α = 0)
or fast (α = ±1), and rα

k = (vα
k , ρα

k ). The associated purely imaginary eigenvalue is

λα
k = iωα

k , where the frequency ωα
k is given by (3.9), namely ω

±1
k = ±m/|k| and ω0

k =0.
The explicit form of these eigenfunctions is given in the Appendix. Next, we expand
u(x, t) in terms of the eigenfunctions of LF ,

u(x, t) =
∑

k

1∑
α=−1

σα
k (t) eik · x rα

k , (3.34)

and introduce this expansion into the fast wave averaging equation, (3.32). In order
to evaluate the fast time averaging in (3.32) we observe that

eτLF (eik · x rα
k ) = eiτωα

k eik · x rα
k , (3.35)
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and also that

lim
T →∞

1

T

∫ T

0

eiωτ dτ =

{
1 if ω = 0

0 if ω �= 0
. (3.36)

With these observations we can evaluate all the terms in the limiting fast dynamics
equation, (3.32), and conclude that the Fourier amplitudes σα

k (t) satisfy the system of
differential equations,

dσα
k

dt
+

∑
Rα

k

B
(α′,α′′,α)
(k′,k′′,k) σα′

k′ σ
α′′

k′′ +
∑
Sα

k

L
(α′,α)
k σ α′

k =
∑
Sα

k

D
(α′,α)
k σ α′

k . (3.37)

The first sum in (3.37) comes from averaging the nonlinear advection term
B(u, u) with summation over the set of three–wave resonant interactions
Rα

k = {(k′, k′′, α′, α′′)|k′ + k′′ = k, ωα′

k′ + ωα′′

k′′ = ωα
k }. The second and third sums come

from averaging the slow operator LS and the diffusion operator D, respectively, with
summation over the set Sα

k = {α′|ωα′
k =ωα

k }. Formulas for the interaction coefficients

B
(α′,α′′,α)
(k′,k′′,k) , L

(α′,α)
k and D

(α′,α)
k are included in the Appendix.

The fast dynamics equations for the Fourier amplitudes in (3.37) suggest that there
is strong interaction of the fast and slow modes through three-waves interactions,

via the quadratic interaction coefficients B
(α′,α′′,α)
(k′,k′′,k) . However, it is remarkable that the

dynamics of the slow modes (α = 0) proceeds independent of the fast modes (α = ±1),
making the system of slow and fast modes only weakly coupled. This is because all
the interaction coefficients B

(±1,±1,0)
(k′,k′′,k) corresponding to ‘fast + fast → slow’ interaction

are always zero. The verification of this fact is given in the Appendix. Of course,
the equation for the dynamics of the slow modes in (3.37) is nothing more than
previously derived slow limiting dynamics equations, (3.13), recast in terms of the
Fourier modes. Nevertheless, the slow modes influence the dynamics of the fast modes
in (3.37) through ‘fast + slow → fast’ interactions. These conclusions mirror those
previously derived by Embid & Majda (1998) for the case of small Froude number.

A remarkable consequence of this weak coupling is that in the absence of dissipation
there is conservation of energy for the slow and the fast modes separately. The
reasoning, which was first provided by Embid & Majda (1998) for the case of small
Froude number, is reproduced below. First we observe that the solution u(x, t) of
the fast limiting dynamics, (3.32), has a unique orthogonal decomposition in terms of
slow and a fast component,

u(x, t) = uS(x, t) + uF (x, t). (3.38)

In fact, uS(x, t) is given explicitly by (3.34) with α = 0 and uF (x, t) by (3.34) with
α = ±1. Next we substitute u(x, t) into (3.31) and make use of (3.35) to conclude that
to leading order in ε the solution uε(x, t) has the form,

uε(x, t) = uS(x, t) + e−t/εLF uF (x, t) + o(1). (3.39)

Moreover, since LF is a skew-Hermitian operator, then et/εLF is an unitary operator,
and since the eigenfunctions of LF are also an orthonormal basis for et/εLF (see Lax
2002), we conclude that

‖u‖2 = ‖uS‖2 + ‖et/εLF uF ‖2 = ‖uS‖2 + ‖uF ‖2, (3.40)

where ‖u‖2 =
∫

|v|2 + ρ2 dv is twice the total energy (kinetic plus potential). In the
absence of dissipation, (2.13) shows that the Boussinesq equations conserve energy, so
that ‖u‖2 is constant in time. On the other hand, the slow limiting dynamics equations
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Run number Ro Fr f N kf kd εf ktotal T0

1 1.0 1.0 7.0827 7.0827 3 3 1.0 256 20
2 0.3 1.0 23.6091 7.0827 3 10.0 1.0 256 20
3 0.2 1.0 35.4136 7.0827 3 15.0 1.0 256 20
4 0.1 1.0 70.8273 7.0827 3 30.0 1.0 256 20
5 0.08 1.0 88.5341 7.0827 3 37.5 1.0 256 20
6 0.05 1.0 141.6546 7.0827 3 60.0 1.0 256 20
7 0.01 1.0 708.2731 7.0827 3 300.0 1.0 256 60

Table 1. This figure tabulates the parameters used in the simulations at 2563 with low
wavenumber forcing.

also conserve energy, so that ‖uS‖2 is also constant in time. Combining these two
facts with (3.40), we conclude that ‖uF ‖2 is constant in time, thus proving that the
energies of uS and uF are constant separately. This important physical property of
the fast limiting dynamics equations will be exploited later as a diagnostic tool in the
numerical simulations.

Finally, we remark that the Fourier basis in (3.33) can be used to study the
dependence of other related physical quantities on the slow and fast modes. For
example, the leading term of the potential vorticity q in (2.11) has the eigenfunction
expansion

q =
∂ρ

∂z
= i

∑
k

1∑
α=−1

mρα
k σ α

k (t)eik · x, (3.41)

where ρα
k is the fourth component of the vector rα

k in (3.33). Inspection of these vectors

in (A 2) and (A 3) in the Appendix reveals that ρ
±1
k = 0 and in consequence the q

is composed of slow modes even with the presence of fast inertial waves in the fast
limiting dynamics. This fact can be used as the starting point to prove conservation
of potential vorticity, in the weak sense and without dissipation, along the same lines
developed in Embid & Majda (1998). By contrast, the eigenfunction expansion of the
vertical component of the vorticity ω is

ω =
∂v

∂x
− ∂u

∂y
= i

∑
k

1∑
α=−1

(
kvα

k − luα
k

)
σα

k (t)eik · x, (3.42)

with uα
k and vα

k being the first and second components of rα
k in (3.33). Another

inspection of (A 2) and (A 3) in the Appendix reveals that kv0
k − lu0

k = 0 and we
conclude that ω is exclusively composed of fast modes.

4. Numerical simulations
The goal of this section is to see if key attributes of the Fr ≈ 1, Ro → 0 limiting

dynamics can be reproduced in numerical simulations that use low wavenumber white
noise forcing. The three aspects we examine are: (i) the columnar structure, (ii) the
time evolution of the ratio of the ERo → 0 (slow) total energy to the total energy, E,
and (iii) the time evolution of the ratio of the QRo → 0 (slow) potential enstrophy to
the total potential enstrophy, Q.

For all our simulations, detailed in table 1, we use the triply periodic, pseudo-
spectral LANL/Sandia direct numerical simulation code that solves (2.1) and (2.2)
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in rectangular domains (2D [0, 1]2 or 3D [0, 1]3) with a pseudo-spectral method or
fourth order finite differences and a RK4 time stepping scheme. The code allows for
an arbitrary number of passive scalars and arbitrary aspect ratio grids. The code uses
MPI for its parallelisation along with a 3D domain decomposition (allowing for slab
decomposition, pencil decomposition or cube decomposition). Since its inception,
it has been designed for performance on massively parallel computers and has
excellent scalability, which has been demonstrated on up to 18 000 processors running
problems as large as 40963 (64B grid points). All diagnostics and associated I/O are
also implemented with fully scalable algorithms. The parallel fast Fourier transform
(FFT) at the core of the model is one of the fastest available. It uses a custom data
transpose algorithm which overlaps inter-process communication with on-processor
data rearrangement allowing the code to rely exclusively on stride 1, on-processor
FFTs (for which the code uses the fastest Fourier transform in the West (FFTW)).

For the code’s configuration we turn to a paper by Smith & Waleffe (2002). In
that work they not only studied the generation of large, slow scales in rotating and
stratified flow but they also found that for strongly stratified flows they recovered the
sheet-like structures described when vertically sheared horizontal (VSH) dynamics
dominates which was discussed Embid & Majda (1998), Riley & Lelong (2000), Riley
& deBruynKops (2003), Babin et al. (1997). In the spirit of those simulations, we
examine some aspects of the low Rossby number limit by using a similar simulation
set-up. The principal difference between the code set-up of Smith & Waleffe (2002)
and this work is that instead of using high wavenumber white noise forcing we use
low wavenumber white noise forcing which can be understood by considering the
Rossby deformation radius, Ld ,

Ld =
N

f
Lf or kd =

f

N
kf . (4.1)

where kf is the peak wavenumber of the forcing and kd is the wavenumber of
the deformation radius. This equation shows that the important horizontal length
scales described by kd increase with increasing rotation rate assuming N is held fixed
(see table 1). Because of limited resolution we choose kf = 3 for all the simulations
presented in this paper.

For the sake of completeness, we outline some of the details of the Smith &
Waleffe (2002) code configuration. First, in order to reduce the effects of viscosity in
the intermediate range of scales, a hyperviscosity replaces the Laplacian dissipation
used in (2.1). The momentum dissipation is replaced by (−1)p+1νh(∇2)pv and the
buoyancy by (−1)p+1κh(∇2)pρ, where p = 8 for all the simulations presented in this
paper. The hyperviscosity, νh, is

νh = 2.5

(
E(km, t)

km

)1/2

k2−2p
m , (4.2)

as in Chasnov (1994), where km is the highest available wavenumber and E(km, t)
is the kinetic energy in the highest available wavenumber shell. The hyperdiffusivity
used for the buoyancy equation is similar. The random forcing spectrum F (k) is
Gaussian with a standard deviation s = 1 and energy input rate εf = 1 given by

F (k) = εf

exp(−0.5(k − kf )2/s2)

(2π)1/2s
. (4.3)
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Figure 1. To characterise the numerical simulations, this figure shows the time evolution of
(a) kinetic energy, (b) potential energy and (c) potential enstrophy for selected Rossby numbers
and Fr = 1. Energy, potential enstrophy and time have been non-dimensionalised using the
scales in (4.5). The kinetic energy grows in time due to the momentum forcing. After a spin-up
time, comparison of the different runs shows that the smaller the Rossby number the larger the
magnitude of the kinetic energy, and the smaller the magnitude of the potential energy. The
order of magnitude of the potential enstrophy also decreases with decreasing Rossby number.
For all the simulations except Ro = 1 columns appear that span the depth of the fluid. These
columns are dynamic and remain columnar for the duration of the simulation.

In like manner we also use Rossby and Froude numbers based on the energy input
rate εf and the peak wavenumber kf of the forcing,

Fr =
(εf (2πkf )2)1/3

N
and Ro =

(εf (2πkf )2)1/3

f
. (4.4)

The characteristic scales for time, energy and potential enstrophy are

T =
(
εf (2πkf )2

)−1/3
, E =

(
εf (2πkf )−1

)2/3
and Q = ρ2

o

(
εf (2πkf )5

)2/3
. (4.5)

These scales are used throughout the numerical section to non-dimensionalise time,
energy and potential enstrophy. The factors of 2π appear in the above expressions
because the code has a domain of [0, 1]3.

Each run is spun up from zero and forced throughout by the low wavenumber white
noise forcing described by (4.3). The parameters N and f remain fixed throughout
the simulation. For runs where (Ro < 1) columnar structures form during the spin up
period. The columns are dynamic and retain their basic columnar structure in the
quantities uz and ux throughout the simulation (see figure 3).

The evolution of the kinetic energy, potential energy and potential enstrophy, non-
dimensionalised using the scales in (4.5), for selected Rossby numbers is shown in
figure 1. Because the flow is forced in the momentum equations the kinetic energy
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Figure 2. This figure shows vertical (a) and horizontal (b) averages of the horizontal
component of the velocities for Ro = 1 and Fr = 1 simulations of the full Boussinesq equations.
Patterns form on length scales consistent with the low wavenumber forcing of kf = 3 but no
columns form.

increases with time. After a spin-up time, comparison of the different runs shows that
the smaller the Rossby number the larger the magnitude of the kinetic energy, and
the smaller the magnitude of the potential energy. The order of magnitude of the
potential enstrophy also decreases with decreasing Rossby number.

4.1. Columnar Taylor–Proudman flows

The classical Taylor–Proudman result is that for constant density flow in geostrophic
and hydrostatic balance the vertical derivatives of the horizontal and vertical velocities
are zero, creating columnar flows. Our theory, described by the projection operator,
(3.17), generalises the Taylor–Proudman theory to the case when the density is not
constant and the flow is not in hydrostatic balance. We examine the flow characteristics
at different Rossby numbers to see if Taylor–Proudman flows appear. First we define
two averages of u, the x component of the horizontal velocity,

uz =

∫
L

u(x, y, z, to)2π dz, and ux =

∫
L

u(x, y, z, to)2π dx, (4.6)

where L =1 and to is any time after the spin-up time. Figures 2 and 3 show contour
plots of uz, which we used to identify large-scale horizontal structures, and contour
plots of ux , which we use to identify large-scale vertical structures. Plot (a) of each
figure shows contours of uz while plot (b) shows contours of ux . Figure 2 shows the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.69


562 B. A. Wingate, P. Embid, M. Holmes-Cerfon and M. A. Taylor

0 1

1(a)

t =
 0

.1 y

0 1

1(b)

z

0 1

1

t =
 1

.0 y

0 1

1

z

0 1

1

t =
 5

.0 y

0 1

1

z

0 1

1

t =
 1

0.
0

y

0 1

1

z

0 1

1

t =
 2

0.
0

y

0 1

1

z

0.16 0.25

0.15

0.05

–0.05

–0.15

0.08

–0.08

–0.16

0.8 0.6

0.2

–0.2

–0.6

0.6

0.4

0

–0.4

–0.8

–1.2

1.2

0.4

–0.4

–1.2

2.4

1.6

0.8

0

–0.8

–1.6

–2.4

0.4

0

–0.4

–0.8

1.6

0.8

0

–0.8

–1.6

2.0

1.2

0.4

–0.4

–1.2

–2.0

3.0

2.0

1.0

0

–1.0

–2.0

–3.0

0

x x

u–z u–x

Figure 3. This figure shows vertical (a) and horizontal (b) averages of the horizontal
component of the velocities for Ro = 0.2 and Fr = 1 simulations of the full Boussinesq equations.
By time t = 10 columnar structures are beginning to form. At t = 20 the dominant columnar
structures have formed and remain columnar through the rest of the simulation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.69


Low Rossby limiting dynamics 563

case when Ro = 1 (not small). The main structures of this flow are consistent with
kf = 3 forcing scale but never become columnar flows. On the right of figure 3, for the
case of a smaller Rossby number, Ro =0.2, the contours reveal a low wavenumber
vortical structure. That this is a columnar structure becomes evident by examining the
lower right panel of figure 3, which shows the contour plot of ux . There is no similar
columnar structure for the Ro = 1 run. Therefore, even with low wavenumber white
noise forcing columnar Taylor–Proudman flows spontaneously form if the Rossby
number is low enough.

Though much is known about the formation and instability of vortices in rotating
and stratified flow, this is the first study that we know of where a constant-in-time
white noise forcing creates columnar structures that remain columnar throughout the
length of the simulation.

Other studies that discuss the formation of columnar structures in rotating
turbulence (with no buoyancy) can be found in Davidson, Staplehurst & Dalziel
(2006), Staplehurst, Davidson & Dalziel (2008), Sreenivasan & Davidson (2008).
These are studies about the creation and evolution of vortices from an initial
condition, unlike this work which has a constant-in-time white noise forcing, and
they do not consider stratification, while this work considers only weak stratification.
Despite this, the mechanisms they found for columnar vortex formation are relevant
to this study. In Davidson et al. (2006), Staplehurst et al. (2008), they begin by
considering an initial blob of fluid in a rotating environment. They find that when
the rotation is strong enough linear wave energy propagation is biased along the axes
of rotation and that when the columnar vortex appears it remains contained in the
cylinder that circumscribes the initial blob. When the rotation is weak a centrifugal
bursting phenomenon prevents any columnar vortices from forming. We can see
evidence for this in figure 3 as the wavenumber 3 structures elongate and finally form
columnar structures. There are two classical laboratory studies of the formation of
columnar vortices and both employ a constant-in-time forcing: the original laboratory
studies by Taylor (1921) and Davies (1972). Both investigators studied the dynamics
associated with the slow, steady, horizontal motion of a solid obstacle through a fluid
rotating about a vertical axis. One main difference between the studies is that Davies
(1972) included stratification and Taylor (1921) did not. Both investigators find the
formation of columnar structures above the moving topographic feature. While there
are considerable differences in the kinds of columnar vortices that form, when they
did form there was no mention of them becoming unstable.

There is also a large body of literature on the stability of columnar vortices in
rotating and stratified flow. We restrict this discussion to key work related to this
study (strong rotation and weak stratification, i.e. non-hydrostatic). We first consider
the work of Potylitsin & Peltier (1998) in which they use linear stability analysis to
study the stability of columnar vortices to three-dimensional perturbations. They use
two initial distributions of vorticity: Kelvin–Helmholtz-generated vortices in shear
and Kida-like vortices in strain. Their conclusion is that an isolated anti-cyclonic
vortex column is strongly destabilised by small values of the background rotation,
while rapid rotation stabilises both cyclonic and anti-cyclonic initial conditions. They
explain this phenomenon using the Taylor–Proudman theorem. They also discuss the
details of the stability of anti-cyclonic vortices but since all our columnar vortices
are cyclonic we will not describe their other results here. The next related paper is
Potylitsin & Peltier (2003) where they use direct numerical simulations to study the
evolution of Kelvin–Helmholtz-generated columnar vortices and verify their previous
results that strong rotation stabilises the columnar vortices. The last work we will
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Figure 4. Plot (a) shows the total energy, E (solid line) and the slow total energy, ERo (dashed
line). The total energy and the slow total energy appear to be on parallel trajectories in time.
This is explored more fully in (b) which shows the time evolution of the ratio ERo/E. As the
Rossby number decreases, a larger fraction of the total energy is slow. Furthermore, the low
Rossby number runs appear to be approaching a constant at late times.

examine is Otheguy, Chomaz & Billant (2006). This work also uses a linear stability
analysis but begins with an initial condition of co-rotating vortices. When there is
no stratification, they find, as Potylitsin & Peltier (1998), that the columnar vortex is
elliptic unstable and that stronger stratification causes a zig-zag instability. This work
is not directly applicable to our work because it studies the evolution of an initial
condition of co-rotating vortices which our simulations do not show but it shows
that the evolution of columnar vortices depends on the rotation, stratification, initial
conditions and forcing.

4.2. Ratio of slow energy to total energy

Our theory states that in the absence of viscosity the total energy is composed of
both fast and slow dynamics but that the ratio of the Ro → 0 (slow) total energy, ERo,
to the total energy, E, should go to a constant (cf. the discussion following (3.40))

ERo

E
→ C for ν = 0. (4.7)

In this section we examine the time evolution of ERo/E of our numerical simulations
for varying Rossby numbers. The total energy, E, is given by

E =

∫
V

1

2
(|v|2 + ρ2)(2π)3 dv , (4.8)

where V = 1. The Ro → 0 (slow) component is computed by projecting the full solution
vector, (u, v, w, ρ) onto the null space of the fast operator using (3.17). The total
energy from the slow variables is then computed by combining the slow horizontal
kinetic energy described by (3.22) and the total vertical energy described in (3.27),

ERo =

∫
A

1

2

(
|vH |2 + w2 + 〈ρ〉2

z

)
(2π)2 da, (4.9)

where A= 1 and, as mentioned above, all the variables are the result of projecting
the full solution vector onto the null space of the fast operator. Figure 4(a) shows
the evolution of both E (solid line) and ERo (dashed line) with time. At fixed time,
both the slow total energy and the total energy have larger amplitudes as the Rossby
number decreases. The figure also shows that the total energy and the slow total
energy appear to maintain a similar ratio as time increases. This is explored more
fully in figure 4(b) where we plot the ratio ERo/E. We find that when Ro = 1 the ratio
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Figure 5. This figure shows the dependence of the time averaged quantities E
T

Ro/E
T

and

Q
T

Ro/Q
T

on Ro. As the Rossby number decreases the simulations show that a larger fraction
of the total energy and potential enstrophy is slow.

ERo/E maintains approximately the same percentage of slow to total energy, but
that the slow component is a small fraction of the total. As we decrease the Rossby
number the time evolution of ERo/E shows a gradual increase in the percentage of
energy that is slow relative to the total. For the smallest Rossby numbers we ran, the
ratio quickly increases to a value where a substantial fraction of the total energy is
its slow component and then gradually increases towards a constant close to 1. While
ERo/E is not a constant in time, it is nearly so for the smallest Rossby numbers. This
suggests that even when there is dissipation and forcing in the system there is a rapid
initial adjustment of ERo/E towards a value that indicates a significant fraction of
the total energy is slow, then a gradual increase towards a constant close to 1.

To examine the explicit dependence of ERo/E on Rossby number, we compute its

time average, E
T

Ro/E
T
, where we compute the average using

X
T

=
1

TF − T0

TF∑
i=T0

Xi dti , (4.10)

where T0 is a time immediately after spin up and TF is the last time available from
the simulation. This quantity is shown in figure 5 where we see the trend that as the
Rossby number decreases, the ratio of slow total energy to total energy is approaching
a constant and that the constant is close to 1. This implies that at the low Rossby
numbers most of the total energy in these simulations is slow.

4.3. Ratio of slow potential enstrophy to total potential enstrophy

Our theory shows that in the limit of Ro → 0 and Fr= O(1), the potential enstrophy
contains only slow dynamics (see the discussion below (3.41)). Stated another way,
the ratio of the slow potential enstrophy, QRo, to the total potential enstrophy, Q,
goes to 1,

QRo

Q
→ 1 for ν = 0. (4.11)
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Figure 6. Plot (a) shows the time evolution of the potential enstrophy (solid line) and the slow
potential enstrophy (dashed line). As the Rossby number decreases the curves that represent
the slow potential enstrophy and the total potential enstrophy converge towards each other.
This is explored more fully in (b) which shows the time evolution of the ratio QRo/Q. For the
lowest Rossby number, Ro =0.01, the magnitude of the ratio starts to decrease after about
T = 30 indicating that the slow component of the potential enstrophy decreases. However, at
that Rossby number the simulations are approaching the limit of what 2563 simulations can
resolve. For the other Rossby numbers, as Ro decreases this ratio approaches 1, showing that
in the limit of fast rotation and order one stratification a large fraction of their potential
enstrophy is its slow component – even with white noise forcing.

Here we examine the time evolution of QRo/Q for our numerical simulations for a
sequence of decreasing Rossby numbers. We compute the total potential enstrophy
as,

Q =

∫
V

1

2
q2 dv , (4.12)

where V = (2π)3 and q is the non-dimensional potential vorticity described by (2.11).
The Ro → 0 component of potential enstrophy is computed by projecting the full
solution vector onto the null space of the fast operator, (3.17). However, since
the projection operator does not affect ρ, the Ro → 0 component of the potential
enstrophy can be computed by

QRo =

∫
V

1

2

(
∂ρ

∂z

)2

dv . (4.13)

The panel on the left of figure 6 compares the time evolution of Q (solid lines)
with the time evolution of QRo (dashed lines). As the Rossby number decreases, the
gap between the solid and dashed lines decreases, indicating that the total enstrophy’s
composition has a larger slow component. This is explored further in figure 6(b)
where we show the ratio QRo/Q. As the Rossby number tends to smaller values the
slow component of the potential enstrophy becomes a larger fraction of the total
potential enstrophy. This suggests that even with low wavenumber white noise forcing
the potential enstrophy of this limit is dominated by its slow component. We also
note that as the Rossby number decreases the vorticity is expected to have a larger
fast component (see § 3.3) which means the potential enstrophy defined by (4.12) can
be replaced with (4.13).

Finally, to see the dependence of the ratio QRo/Q on the Rossby number, we plot

the quantity Q
T

Ro/Q
T

where the averages are computed using (4.10) and are shown in
figure 5. This figure shows that QRo/Q → 1 as Ro decreases, the ratio is approaching 1
but more slowly in Rossby number than that of the energy. Dimensionally this means
the globally integrated potential enstrophy is dominated by the vertical gradient
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of the buoyancy times the Coriolis parameter while both the vorticity times the
Brunt–Väisäla frequency and the nonlinear terms have lesser influence.

5. Summary
We have examined the fast rotation limit of the rotating and stratified Boussinesq

equations using the framework of Embid & Majda (1998). We have shown that to
leading order, the dynamics is composed of both fast and slow components but
that the slow dynamics evolves independent of the fast. We have also derived new
equations for the slow dynamics. These include the two-dimensional Navier–Stokes
equations for the slow horizontal velocity, a forced advection-=diffusion equation for
the vertically averaged vertical velocity, making the slow dynamics non-hydrostatic,
and an equation for the buoyancy which is the only quantity to retain its three-
dimensional character. In the absence of viscosity and diffusivity these new sets of
equations conserve a horizontal kinetic energy and vertical vorticity, along with a new
conserved quantity that describes dynamics between the vertical kinetic energy and
the buoyancy. The leading order total energy contains both fast and slow dynamics,
though their ratio is conserved. The potential energy is found, to leading order, to
contain only slow dynamics.

Our numerical simulations, which used low wavenumber white noise forcing in
the momentum equations, reveal the emergence of Taylor–Proudman flows as the
Rossby number decreases. They also support the theory that the ratio of the slow
to total energy goes to a constant as the Rossby number is decreased and that the
constant is close to 1. In addition to the energy we also examined the ratio of the slow
potential enstrophy to the total potential enstrophy. The smallest Rossby number we
examined, Ro = 0.01, was at the limit of the scales that could be resolved at this
resolution. However, the other Rossby numbers showed the trend that the ratio of
the slow potential enstrophy to total potential enstrophy also approaches a constant
and that constant trends towards 1. These numerical simulations indicate that some
of the aspects dynamics derived in this paper exist even in the presence of white noise
forcing and hyperviscosity.

Appendix
A.1. Analysis of the fast operator

The fast operator LF is defined on the Hilbert space X of 2π-periodic square-
integrable vector fields u =(v, ρ) that are divergence free, ∇ · v = 0. In the space X

the eigenfunctions of LF are given by Fourier modes of the form uk(x) = eik · x rk ,
where k = (k, l, m) is the wave number and rk = (vk, ρk) is a fixed vector. The
divergence free condition reduces to the algebraic constraint vk · k = 0. In terms
of the Fourier eigenmode uk(x) the eigenvalue equation LF uk = λkuk reduces to the
algebraic eigenvalue problem LF (k)rk = λk rk , where the matrix symbol LF (k) is given,
for k �= 0 and k = 0, respectively, by

LF (k) =
1

|k|2

⎛⎜⎜⎜⎝
−kl −(l2 + m2) 0 0

k2 + m2 kl 0 0

−lm km 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , LF (0) =

⎛⎜⎜⎜⎝
0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ ,

(A 1)
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with |k|2 = k2 + l2 + m2. The algebraic eigenvalue problem has four purely imaginary

eigenvalues, λk = iωα
k , with ω

±1
k = ± m

|k| corresponding to fast inertial modes and

the double eigenvalue ω0
k =0 corresponding to the slow modes. The associated

eigenvectors are given as follows. If |kH | �= 0 there are three eigenvectors,

r1
k =

1√
2|kH ||k|

⎛⎜⎜⎜⎝
−l|k| + ikm

k|k| + ilm

−i|kH |2

0

⎞⎟⎟⎟⎠ , r−1
k =

1√
2|kH ||k|

⎛⎜⎜⎜⎝
l|k| − ikm

−k|k| − ilm

i − kH |2

0

⎞⎟⎟⎟⎠ , r0
k =

⎛⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎠ .

(A 2)

The fourth eigenvector does not satisfy the incompressibility constraint vk · k = 0. If
|kH | =0 but |k| �= 0, then ω

±1
k = ±1, ω0

k =0, and there are four eigenvectors,

r1
k =

1√
2

⎛⎜⎜⎜⎝
1

−i

0

0

⎞⎟⎟⎟⎠ , r−1
k =

1√
2

⎛⎜⎜⎜⎝
1

i

0

0

⎞⎟⎟⎟⎠ , r0
k =

⎛⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎠ , r̃0
k =

⎛⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎠ , (A 3)

but the fourth eigenvector, r̃0
k , violates the incompressibility constraint. Finally, if

|k| =0 then there are two fast modes associated with ω
±1
0 = ±1 and two slow

modes associated with ω0
0 = 0, with the four eigenvectors in (A 3) now satisfying

the incompressibility constraint. Notice that the eigenfunctions are normalised and
satisfy the symmetry condition rα

k = r−α
−k , where the bar stands for complex conjugation.

For this reason, we require that the amplitudes σα
k (t) in (3.34) satisfy the condition

σα
k = σ −α

−k to ensure that u(x, t) in (3.34) is real valued.

A.2. Formulas for the interaction coefficients

Here we collect the formulas for the interaction coefficients B
(α′,α′′,α)
(k′,k′′,k) , L(α′,α)

k and D
(α′,α)
k ,

which appear in Fourier formulation of the limiting fast dynamics equations, (3.37).

The quadratic interaction coefficient B
(α′,α′′,α)
(k′,k′′,k) is given by

B
(α′,α′′,α)
(k′,k′′,k) =

i

2

[(
vα′

k′ · k′′)rα′′

k′′ +
(
vα′′

k′′ · k′)rα′

k′
]

· rα
k . (A 4)

With this formula we can verify the claim that the fast limiting dynamics equations
for the slow modes is independent of the fast modes, i.e. the quadratic interaction
coefficients corresponding to ‘fast + fast → slow’ are zero. Because the formula for
the quadratic interaction coefficient in (A 4) is invariant under the permutation of α′

and α′′, and k′ and k′′, it is sufficient to check that B
(−1,1,0)
(k′,k′′,k) is zero. The three-wave

resonance equations for this case is

k′ + k′′ = k,
m′

|k′| − m′′

|k′′| = 0. (A 5)

There are three cases to consider. First, if |kH | �= 0 then r0
k in (A 2) is orthogonal to

r±1
k in both (A 2) and (A 3), and B

(−1,1,0)
(k′,k′′,k) is zero. Second, if |kH | =0 but |k| �= 0 then

r0
k in (A 3) coincides with r0

k in the previous case and the quadratic coefficient is again
zero. Finally, if |k| =0 then there rα

k in (A 3) is either r0
k or r̃0

k . In this case k′ = −k′′

and, by symmetry, r−1
−k′ = r1

k′ . Direct calculation then shows that the third component
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of (v1
k′ · (−k′))r1

k′ + (v1
k′ · k′)r1

k′ in (A 4) is given by(
v1

k′ · (−k′)
)
w1

k′ +
(
v1

k′ · k′)w1
k′ = i|k′

H |2(v1
k′ + v1

k′) · k′

= 2i|k′
H |2(−l′|k′|, k′|k′|, 0) · (k′, l′, m′) = 0, (A 6)

and this implies that the dot product with either r0
k or r̃0

k for the quadratic interaction

coefficient in (A 4) is again zero. This proves that B
(−1,1,0)
(k′,k′′,k) is always zero.

Next, the linear interaction coefficient L
(α′,α)
k in (3.37) is given by

L
(α′,α)
k =

(
rα
k

)∗
LS(k)rα′

k , (A 7)

where the matrix symbol LS(k) associated with the slow operator LS is given, for
k �= 0 and k = 0, respectively, by

LS(k) =
1

Fr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − km

|k|2

0 0 0 − lm

|k|2

0 0 0
|kH |2
|k|2

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, LS(0) =

1

Fr

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎞⎟⎟⎟⎠ . (A 8)

Direct calculation of these coefficients with the eigenvectors given in (A 2) and (A 3)
gives the explicit values of L

(0,±1)
k = ±i/

√
2 and L

(±1,0)
k = ∓i/

√
2 when k =(k, l, 0),

L
(0,0̃)
0 = 1, and L

(0̃,0)
0 = −1 when k = 0, and zero otherwise.

Finally, the diffusion coefficient D
(α′,α)
k in (3.37) is given by

D
(α′,α)
k =

(
rα
k

)∗
D(k)rα′

k , (A 9)

where D(k) is the diagonal matrix

D(k) = diag

(
− 1

Re
|k|2, − 1

Re
|k|2, − 1

Re
|k|2, − 1

RePr
|k|2

)
, (A 10)

and direct calculation with the eigenvectors given in (A 2) and (A 3) shows that

D
(1,1)
k = D

(−1,−1)
k = − 1

Re
|k|2, D

(0,0)
k = − 1

RePr
|k|2, (A 11)

and zero otherwise.
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