
Proceedings of the Royal Society of Edinburgh, 154, 131–153, 2024

DOI:10.1017/prm.2022.93

Liouville property and quasi-isometries on
negatively curved Riemannian surfaces

Ana Granados
Saint Louis University, Madrid Campus Avenida del Valle 34, 28003
Madrid, Spain (ana.granados@slu.edu)

Domingo Pestana
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Kanai proved powerful results on the stability under quasi-isometries of numerous
global properties (including Liouville property) between Riemannian manifolds of
bounded geometry. Since his work focuses more on the generality of the spaces
considered than on the two-dimensional geometry, Kanai’s hypotheses in many cases
are not satisfied in the context of Riemann surfaces endowed with the Poincaré
metric. In this work we fill that gap for the Liouville property, by proving its
stability by quasi-isometries for every Riemann surface (and even Riemannian
surfaces with pinched negative curvature). Also, a key result characterizes
Riemannian surfaces which are quasi-isometric to R.
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1. Introduction

The classical Liouville Theorem roughly states that the only positive (bounded)
harmonic functions on Euclidean spaces are the constant ones. Since this result
was announced, several authors have considered whether this property was unique
to Euclidean spaces or could be generalized to other contexts, like Riemannian
manifolds or Aleksandrov spaces. A manifold will be said to satisfy the Liouville
property if it has no non-constant positive harmonic functions.

Yau, using a method based on the maximum principle, showed in [28] that com-
plete Riemannian manifolds with nonnegative Ricci curvature satisfied the Liouville
property. Later, Moser proved in [22] that such property also holds on Riemannian
manifolds which are bilipschitz to an Euclidean space. Kanai ([20]) added condi-
tions on the manifold and generalized this result by considering quasi-isometries
instead of bilipschitz maps; the additional conditions being having bounded geome-
try, i.e., Ricci curvature bounded from below by a negative constant and a positive
radius of injectivity.

On the other hand, some negative results were obtained. There exist bounded
harmonic functions on any simply connected manifold with negatively pinched sec-
tional curvature (see [2], [27], [3]). Also, Lyons showed that this Liouville property
is not preserved by bilipschitz maps in general ([21]).

The aim of this paper is to complete the line of work opened by Kanai discussing
under what conditions Riemannian surfaces quasi-isometric to an Euclidean space
have the Liouville property. To this end, we will consider pinched negative curvature
surfaces (with no bound on the injectivity radius). Even though Riemann surfaces
endowed with their Poincaré metrics are a natural context to apply Kanai’s results,
if they have cusps, then their injectivity radii are equal to zero.

Removing the hypothesis on the injectivity radius from Kanai’s results is a prob-
lem that has been studied in many previous works. In [12] some of the conclusions
of Kanai’s results regarding isoperimetric inequalities, existence of Green’s function
and Liouville property are obtained for manifolds (without hypotheses on the injec-
tivity radius) by using appropriate weighted graphs; to this end, it is needed that
the Riemannian volumes are doubling measures and the quasi-isometry has an addi-
tional property (it quasi-preserves the volume of the balls, see (iii) in [12, p.688]).
Papers [9], [16] and [17] also deal with this problem for isoperimetric inequalities
and existence of Green’s function on Riemannian surfaces, replacing the additional
hypotheses on the quasi-isometry in [12] by other hypothesis (for instance, on the
genus of the surfaces).

One of the main results in this paper is the following. Note that it does not need
any of those extra hypothesis; in particular, it does not require the condition (iii)
in [12, p.688] about the volume of balls.

Theorem 1.1. Let X be an orientable complete Riemannian surface with pinched
negative curvature quasi-isometric to the Euclidean space R

m for some m � 1. Then
every positive harmonic function on X is constant.

Kanai proved this theorem for surfaces with lower bounded injectivity radius.
Thus, the hypothesis of being quasi-isometric to R

m is a natural one (quasi-
isometries preserve the Liouville property of R

m under these conditions). In
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addition, in this type of theorems a hypothesis about the curvature is always nec-
essary; in particular, the hypothesis on pinched negative curvature allows the use
of some powerful tools of Geometric Function Theory in several arguments. By
Kanai’s results it suffices to consider surfaces with zero injectivity radius. We know
by [11, Corollary 1, p.336] that if there exists a constant C such that

AX(BX(p, r)) � Cr2,

for every p ∈ X and r > 0, then X has the Liouville property (AX and BX denote
Riemannian area and ball on the surface X, respectively). Thus, the heart of this
paper is the following surprising result of Theorem 4.2 (which is a consequence
of Theorem 3.4): if a surface with pinched negative curvature and zero injectivity
radius is quasi-isometric to R

m, then m = 1 (in particular, Theorem 4.2 allows to
prove proposition 4.9, which gives that X has linear growth rate); Theorem 4.2
also provides some additional properties of the surface. This shows the need of
characterizing the Riemannian surfaces which are quasi-isometric to R. This goal
is achieved in the following theorem, framed in the more general setting of metric
spaces.

Theorem 1.2. Let X be a proper geodesic metric space. The following facts are
equivalent:

(1) X is quasi-isometric to R.

(2) There is a (1, 0)-quasi-isometry from R to X.

(3) There exists a positive constant R1 such that, for all p ∈ X, X\BX(p, R1)
has exactly two unbounded connected components E1(p, R1), E2(p, R1) and

dX(x, p) � 4R1, ∀x /∈ E1(p,R1) ∪ E2(p,R1).

Next, we would like to highlight the following result, that provides a good prop-
erty of the Riemannian surfaces with pinched negative curvature quasi-isometric to
R: it is possible to decompose these surfaces as union of generalized Y-pieces (or
‘pair of pants’) in such a way that the length of the boundary of the pieces has
an upper bound. This property is potentially interesting in Teichmüller theory of
surface of infinite type, i.e. surfaces with infinitely generated fundamental group.
Informally, a Y-piece is a compact bordered surface with the shape of a pair of
pants whose boundary is the union of three simple closed geodesics; a generalized
Y-piece is either a Y-piece or a surface obtained by replacing some closed curves
in the boundary of a Y-piece by cusps or ‘pseudospheres’ (see definition 2.3 for the
precise definitions).

Theorem 1.3. Let X be an orientable complete Riemannian surface with pinched
negative curvature and quasi-isometric to R. There exist positive constants α1, α2

and one (at most countable) collection {Yk}k of generalized Y-pieces, with pairwise
disjoint interiors, so that X = ∪kYk and α1 � LX(∂Yk) � α2 for all k.

Moreover, the elements on the collection {Yk}k are Y-pieces except for, at most,
two.
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By nature, quasi-isometries represent a flexible class of maps that behave well
on a global scale, but that produce a large distortion on the local properties of
the manifolds involved. Intuitively, two metric spaces are quasi-isometric if their
large-scale metric structures are the same, ignoring fine details. Informally, quasi-
isometries allow stretching and contracting distances. Note that even though they
form a large class of maps which do not need to be continuous, they do have
interesting invariance properties.

Quasi-isometries preserve Gromov hyperbolicity of geodesic metric spaces (see,
e.g., [19], [15]); also preserve the parabolic Harnack inequality [13] and various
estimates on transition probabilities of random walks, such as heat kernel estimates.

Following the idea in [18], a function between two metric spaces f : X → Y is
said to be an (a, b)-quasi-isometric embedding with constants a � 1, b � 0, if

1
a

dX(x1, x2) − b � dY (f(x1), f(x2)) � a dX(x1, x2) + b , for every x1, x2 ∈ X.

Such a quasi-isometric embedding f is a quasi-isometry if, furthermore, there exists
a constant c � 0 such that f is c-full, i.e., if for every y ∈ Y there exists x ∈ X with
dY (y, f(x)) � c.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry
between them. It is well-known that to be quasi-isometric is an equivalence relation
(see, e.g., [20]).

A quasi-isometry can drastically change the local topology (for example, any
compact Riemannian manifold is quasi-isometric to a single point). Furthermore,
important global properties, like the dimension, are not preserved by quasi-
isometries: if X and Y are Riemannian manifolds and Y is compact, then X
and X × Y are quasi-isometric. Nevertheless, quasi-isometries sometimes preserve
a local property: some results on the stability of the injectivity radius for Riemann
surfaces with some hypotheses on their genus are shown in [9] and [17]. In partic-
ular, points with small injectivity radius are shown to be mapped onto points with
small injectivity radius.

Recall that the injectivity radius ι(p) of p ∈ X is the largest radius for which
the exponential map at p is a diffeomorphism. If X has non-positive sectional cur-
vatures, then the injectivity radius can be defined, also, as the supreme of those
r > 0 such that the ball BX(p, r) is simply connected or, equivalently, as half the
infimum of the lengths of the (homotopically non-trivial) loops based at p in X.
The injectivity radius ι(X) of X is the infimum over p ∈ X of ι(p).

The plan of the paper is as follows. In § 2 some definitions and background are
given. Section 3 deals with stability of ends, which will be needed in the proof of
the main results, given in § 4 and 5 (see Theorems 1.2, 1.1 and 1.3).

2. Definitions and background

Let us consider h > 0, a metric space X, and subsets Y, Z ⊆ X. The set
Vh(Y ) := {x ∈ X | d(x, Y ) � h} is called the h-neighbourhood of Y in X. The Haus-
dorff distance between Y and Z is defined by H(Y, Z) := inf{h > 0 |Y ⊆ Vh(Z),
Z ⊆ Vh(Y )}.
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A minimizing geodesic γ in a metric space X is an isometry from an interval
I ⊆ R onto X, i.e., LX(γ|[t,s]) = dX(γ(t), γ(s)) = |t − s| for every s, t ∈ I, where
LX denotes the length in X. We say that X is a geodesic metric space if for every
x, y ∈ X there exists a minimizing geodesic joining x and y; we denote by [xy] any
of such minimizing geodesics (since we do not require uniqueness of geodesics, this
notation is ambiguous, but it is convenient).

A geodesic ray in X is a minimizing geodesic with domain I = [0, ∞).
A geodesic line in X is a minimizing geodesic with domain I = R.
A geodesic is a map γ : I → X such that for every t ∈ I, there exists ε > 0

verifying that the restriction of γ to I ∩ (t − ε, t + ε) is a minimizing geodesic.
An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometric embedding from a real

interval on X. Note that any (1, 0)-quasigeodesic is a minimizing geodesic.
A non-exceptional Riemann surface S is a Riemann surface whose universal

covering space is the unit disk D = {z ∈ C : |z| < 1}, endowed with its Poincaré
metric (also called the hyperbolic metric), i.e., the metric obtained by projecting
the Poincaré metric of the unit disk

ds2 =
(

2
1 − |z|2

)2

( dx2 + dy2).

With this metric, S is a complete Riemannian manifold with constant curvature −1.
The only Riemann surfaces which are left out (the exceptional Riemann surfaces)
are the sphere, the plane, the punctured plane and the tori.

Recall that a set is doubly connected if its fundamental group is isomorphic to Z.
Assume now that S is a non-exceptional Riemann surface. A collar in S about

a simple closed geodesic γ is a doubly connected domain in S ‘bounded’ by two
Jordan curves β1, β2, (called the boundary curves of the collar) orthogonal to the
pencil of geodesics emanating from γ; such collar can be written as Cγ,t = {p ∈ S :
dS(p, γ) < t}, for some positive constant t. The constant t is called the width of the
collar.

The following result, known as Collar Lemma [24], will be used several times
along this work. It is generalized for surfaces with variable negative curvature in
[7].

Lemma 2.1. If γ is a simple closed geodesic in a non-exceptional Riemann surface
S, then there exists a collar about γ of width t, for every 0 < t � w, where cosh
w = coth(LS(γ)/2) or, equivalently, sinh w = 1/ sinh(LS(γ)/2).

Remark 2.2. Denote by Cγ the collar about γ of width w given by the above
lemma. It is well-known that if γ1 and γ2 are disjoint simple closed geodesics, then
Cγ1 ∩ Cγ2 = ∅ (see [24]).

Let us recall now some definitions for complete Riemannian surfaces X with
pinched negative curvature (i.e., the Gaussian curvature satisfies −k2

2 � K � −k2
1

for some constants 0 < k1 � k2).
An end in X is doubly connected if it has a neighbourhood whose fundamental

group is isomorphic to Z.
A funnel in X is a doubly connected bordered Riemannian surface whose bound-

ary is a simple closed geodesic. In the case of non-exceptional Riemann surfaces,
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given any positive number a, there is a unique (up to isometry) funnel such that
its boundary curve has length a.

A cusp in X is a neighbourhood of a doubly connected end whose fundamental
group is generated by a simple closed curve α and there is no closed geodesic in
the homotopy class of α. We know that the infimum of the lengths of non-trivial
curves in a cusp is zero (see [23, Theorem 3.7]). In the case of a non-exceptional
Riemann surface S, a collar in S about a cusp q is a doubly connected domain in S
‘bounded’ both by q and a Jordan curve (called the boundary curve of the collar)
orthogonal to the pencil of geodesics emanating from q. It is well-known that the
length of the boundary curve in S is equal to the area of the collar (see, e.g., [5]). A
collar of area β is called a β-collar. Thus, the length of the boundary of a β-collar
is also β. For each cusp there exists a 2-collar and 2-collars of different cusps are
disjoint. Besides, the collar Cγ of the simple closed geodesic γ does not intersect
the 2-collar of a cusp (see [24], [26] and [8, Chapter 4]).

Definition 2.3. A Y-piece or ‘pair of pants’ in X is a compact bordered Rieman-
nian surface which is topologically a sphere without three disks and whose boundary
is the union of three simple closed geodesics. In the case of non-exceptional Riemann
surfaces, given three positive numbers a, b, c, there is a unique (up to isometry) Y-
piece such that its boundary curves have lengths a, b, c (see, e.g., [25, p.410]).
Y-pieces are a standard tool for constructing Riemann surfaces (see [10, Chapter
X.3] and [8, Chapter 1]).

A generalized Y-piece in X is a bordered or non-bordered Riemannian surface
which is topologically a sphere without three open disks, such that there exist integers
n, m � 0 with n + m = 3, so that the boundary are n minimizing simple closed
geodesics and there are m cusps. Notice that a generalized Y-piece is topologically
the union of a Y-piece and m cylinders, with 0 � m � 3.

Definition 2.4. Any divergent curve σ : [0, ∞) −→ Y , where Y is a non-compact
Hausdorff space, determines an end E of Y . Given a compact set F of Y , one
defines E(F ) to be the arc component of Y \F that contains a terminal segment
σ([a, ∞)) of σ for some a � 0. A set U ⊂ Y is a neighbourhood of an end E if U
contains E(F ) for some compact set F of Y .

Recall that a topological space X is said proper if every closed ball in X is a
compact set.

The following result in [6, Proposition 8.29] proves that quasi-isometries of groups
preserve the number of ends. A more precise result for cusps in Riemann surfaces
is presented in [9].

Theorem 2.5. Let X and Y be proper geodesic metric spaces and f : X → Y a
c-full (a, b)-quasi-isometry. Then, f induces a bijection between the ends of X
and Y .

3. A lower bound for the injectivity radius

The next result deals with collars of geodesics and cusps separately. Recall that w
stands for the width of the collar Cγ given by lemma 2.1.
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Lemma 3.1. Assume that X is a non-exceptional Riemann surface and Y a metric
space. Let f be a c-full (a, b)-quasi-isometry from X to Y, and t > 0 a constant.
Then, there exist positive constants k1, k2 and k depending only on a, b, c, t that
satisfy the following:

(i) Let σ be a simple closed geodesic on X with LX(σ) < k2, Γ a geodesic
perpendicular to σ contained in Cσ with LX(Γ) = 2w, γ := {p ∈ Γ :
dX(p, σ) � w/2} and γ0 := {p ∈ γ : dX(p, σ) < w/2 − k1}. Then the closed
ball BY (f(p), h + t) is contained in the h-neighbourhood of f(γ) for every
point p ∈ γ0, with h := 3a + b + c.

(ii) Let C be the 2-collar of a cusp in X with boundary curve σ, γ a geodesic ray
contained in C perpendicular to σ and γ0 := {p ∈ γ : dX(p, σ) > k}. Then
the closed ball BY (f(p), h + t) is contained in the h-neighbourhood of f(γ)
for every point p ∈ γ0, with h := 2a + b + c.

Proof. Let us prove (1). Set k1 := 2a(3a + 2b + 2c + t) and k2 := 2 arccoth(cosh k1).
Notice that k1 � 6, since a � 1. Since LX(γ) = w and dX(γ, ∂Cσ) = w/2, γ is a
minimizing geodesic (not just a geodesic); therefore, f(γ) is an (a, b)-quasigeodesic.

Seeking for a contradiction, let us assume that there exists a point p ∈ γ0 such
that the ball B := BY (f(p), h + t) is not contained in the h-neighbourhood of f(γ).
Denote by Th such neighbourhood. That is, there exists a point q ∈ B\Th, and so,

dY (q, f(γ)) > h. (3.1)

Since f is c-full, there must exist p1 ∈ X such that dY (f(p1), q) � c. Let us
assume that dX(p1, σ) > w/2 − k1/2. Since p ∈ γ0, it means that dX(p, p1) > k1/2.
Using the fact that f is an (a, b)-quasi-isometry,

dY (f(p), f(p1)) � 1
a

dX(p, p1) − b >
k1

2a
− b. (3.2)

By the triangle inequality, and using that q ∈ B,

dY (f(p1), f(p)) � dY (f(p1), q) + dY (q, f(p)) � 3a + b + 2c + t. (3.3)

Combining now (3.2) and (3.3), one deduces k1 < 2a(3a + 2b + 2c + t), which
contradicts the definition of k1. Therefore, p1 ∈ Cσ,w/2−k1/2. Then, there exists
a point p2 ∈ γ close enough to p1, verifying that dX(p1, p2) is upper bounded
by the length of one of the boundary curves of Cσ,w/2−k1/2. Using Fermi coor-
dinates based on σ, we can easily check that LX(∂Cσ,w/2−k1/2)/2 < LX(∂Cσ)/2 =
LX(σ) cosh w. Collar Lemma gives dX(p1, p2) � LX(∂Cσ)/2 = LX(σ) cosh w =
LX(σ) coth(LX(σ)/2) � 3 since k1 � 6 and LX(σ) < 2 arccoth(cosh k1).

On one hand, since f is an (a, b)-quasi-isometry (recall that p2 ∈ γ),

dY (f(p1), f(γ)) � dY (f(p1), f(p2)) � adX(p1, p2) + b � 3a + b. (3.4)

On the other hand, taking into account (3.1),

dY (f(p1), f(γ)) � dY (f(γ), q) − dY (q, f(p1)) > 3a + b + c − c = 3a + b. (3.5)

Obviously (3.5) contradicts (3.4), so such a point q ∈ B\Th cannot exist.
The same arguments work for (2), defining k := a(2a + 2b + 2c + t). �
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As usual, by a Cartan-Hadamard manifold we mean a complete simply connected
Riemannian manifold with dimension greater than 1 and non-positive sectional
curvatures. Then, Y = R

m (with m � 2) is a Cartan-Hadamard manifold but R is
not, and the following statements do not hold (obviously) for R.

Lemma 3.2. Let Y be a Cartan-Hadamard manifold, h > 0 and η an (a, b)-
quasigeodesic in Y . If for some z0 ∈ η the ball BY (z0, r) is contained in the
h-neighbourhood of η, then

r � r0 := a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + 3h.

Proof. Let us define J as the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + h

)
.

Assume that the ball B := BY (z0, r) is contained in the h-neighbourhood of η,
for some z0 ∈ η. Note that, since Y is a Cartan-Hadamard manifold, B is simply
connected. Let I be an interval on the real line and η : I −→ Y a parametriza-
tion of the (a, b)-quasigeodesic. Seeking for a contradiction, let us assume that
r > h(J + 1).

Define j1 as the least integer satisfying

j1 >
1
h

(
a2

2
(3h + b) + b + 2h

)
.

There exists δ > 0 such that

r > (h + δ)(J + 1),

j1 <
1

h + δ

(
a2

2
(3h + 3δ + b) + b + 2h + 2δ

)
+ 2,

j1 >
1

h + δ

(
a2

2
(3h + 3δ + b) + b + 2h + 2δ

)
and

J >
1

h + δ

(
a2

(
a2

2
(3h + 3δ + b) + 2b + 5h + 5δ

)
+ b + h + δ

)
.

(3.6)

Since Y is a Cartan-Hadamard manifold, there exist two orthogonal geodesic
lines γ1, γ2 : R → Y with γ1(0) = γ2(0) = z0. We also have dY (γ1(t), γ2) = |t| for
every t ∈ R and dY (γ2(s), γ1) = |s| for every s ∈ R.

Let us fix points z1, z2, z3, . . . ∈ γ1 in one of the directions starting at z0 and
z−1, z−2, z−3, . . . ∈ γ1 in the opposite direction from z0, such that dY (z0, zj) =
|j|(h + δ) for every j ∈ Z with |j|(h + δ) < r. Analogously, choose points wj ∈ γ2

with dY (z0, wj) = |j|(h + δ) for every j ∈ Z with |j|(h + δ) < r.
Since B is contained in the h-neighbourhood of η, for each of these points

zj , wj ∈ B there exist points z∗j , w∗
j ∈ η verifying dY (zj , z∗j ) � h + δ and
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dY (wj , w∗
j ) � h + δ. Let tj , sj ∈ I be real values such that η(tj) = z∗j and η(sj) =

w∗
j ; in particular, we can choose s0 = t0 and η(t0) = z0 = z∗0 . Thus,

|tj − tk| � a(dY (z∗j , z∗k) + b) � a(dY (zj , zk) + 2h + 2δ + b)

= a(|j − k|(h + δ) + 2h + 2δ + b)

and, in particular,

|tj − tj+1| � a(3h + 3δ + b). (3.7)

Note that z∗J and z∗−J are both in the ball B:

dY (z∗±J , z0) � dY (z∗±J , z±J) + dY (z±J , z0) � h + δ+J(h + δ) = (h+δ)(J + 1) < r.

For the defined value j1

|sj1 − t0| � a(dY (w∗
j1 , z0) + b) � a(dY (w∗

j1 , wj1) + dY (wj1 , z0) + b)

� a(h + δ + j1(h + δ) + b).
(3.8)

A similar argument gives

|tJ − t0| � 1
a

(dY (z0, z
∗
J ) − b) � 1

a
(J(h + δ) − h − δ − b). (3.9)

Using the fourth inequality in (3.6) and j1(h + δ) < a2/2(3h + 3δ + b) + b
+ 4h + 4δ, we can easily check that

1
a

(J(h + δ) − h − δ − b) > a(h + δ + b + j1(h + δ)).

Therefore, comparing (3.8) and (3.9), one obtains |tJ − t0| > |sj1 − t0|. Analogously,
|t−J − t0| > |sj1 − t0|. Hence, by (3.7), there exists some j2 ∈ Z such that |j2| � J
and

|sj1 − tj2 | � a

2
(3h + 3δ + b).

Taking into account the above inequality,

dY (wj1 , zj2) � dY (w∗
j1 , z

∗
j2) + 2h + 2δ � a|sj1 − tj2 | + b + 2h + 2δ

� a2

2
(3h + 3δ + b) + b + 2h + 2δ,

dY (wj1 , zj2) � dY (wj1 , γ1) = dY (wj1 , z0) = j1(h + δ).

Thus,

j1(h + δ) � a2

2
(3h + 3δ + b) + b + 2h + 2δ,

which contradicts the third inequality in (3.6). Therefore,

r � hJ + h � r0. �
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Theorem 3.3. Let X be a non-exceptional Riemann surface, Y a Cartan-Hadamard
manifold and f : X → Y a c-full (a, b)-quasi-isometry. Then there exists a positive
constant c0, which just depends on a, b, c, such that ι(X) � c0. In fact, we can
choose

c0 = log coth
(

a5

2
(9a + 4b + 3c) + a3(15a + 7b + 5c) + a(9a + 5b + 4c)

)
.

Proof. Let h and r0 be the constants defined in lemmas 3.1 and 3.2 respectively,
namely, h := 3a + b + c and r0 := a2((a2/2)(3h + b) + 2b + 5h) + b + 3h. Let us
define t := r0 − h + ε, for any given ε > 0. Note that t > 0 since r0 > 3h.

As in the proof of lemma 3.1, let us fix the constants k1 and k2 there defined,
k1 := 2a(3a + 2b + 2c + t) and

k2 := 2 arccoth(cosh k1) = log
cosh k1 + 1
cosh k1 − 1

= log
cosh2(k1/2)
sinh2(k1/2)

= 2 log coth(k1/2).

Let us suppose that ι(X) < k2/2, and let us seek for a contradiction. Let x ∈ X be
a point with ι(p) < k2/2, thus there exists a non-trivial geodesic loop η based at p
with length LX(η) < k2.

Assume first that there exists a simple closed geodesic σ freely homotopic to η
on X. Hence, LX(σ) � LX(η) < k2.

As a consequence of lemma 3.1(1), if Γ is a geodesic perpendicular to σ con-
tained in Cσ with LX(Γ) = 2w, γ := {p ∈ Γ : dX(p, σ) � w/2} and γ0 := {p ∈ γ :
dX(p, σ) < w/2 − k1}, then the closed ball BY (f(p), h + t) is contained in the
h-neighbourhood of f(γ) for every point p ∈ γ0. Moreover, f(γ) is an (a, b)-
quasigeodesic in Y . By lemma 3.2, one gets that h + t � r0, which contradicts the
definition of the constant t given above.

Assume now that there is no simple closed geodesic freely homotopic to η. Thus,
η surrounds a cusp in X. A similar argument, using now lemma 3.1(2) instead of
Lemma 3.1(1), allows to obtain a contradiction in this case.

Hence,

ι(X) � 1
2

k2 = log coth(k1/2)

= log coth
(

a

(
3a + 2b + 2c + a2

(
a2

2
(3h + b) + 2b + 5h

)
+ b + 2h + ε

))
= log coth

(
a5

2
(9a + 4b + 3c) + a3(15a + 7b + 5c) + a(9a + 5b + 4c + ε)

)
for every ε > 0, and so,

ι(X) � log coth
(

a5

2
(9a + 4b + 3c) + a3(15a + 7b + 5c) + a(9a + 5b + 4c)

)
.

�
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[16, Theorem 5.5] gives that every orientable complete Riemannian surface with
pinched negative curvature is bilipschitz equivalent to a complete surface with con-
stant negative curvature. Furthermore, the bilipschitz constants depend just on the
bounds of the curvature. This fact and Theorem 3.3 have the following consequence.

Theorem 3.4. Let X be an orientable complete Riemannian surface with pinched
negative curvature, Y a Cartan-Hadamard manifold and f : X → Y a c-full (a, b)-
quasi-isometry. Then there exists a positive constant c0, which just depends on
a, b, c and the bounds on the curvature, such that ι(X) � c0.

4. Liouville property

We start this section with a technical result which will be very useful.

Lemma 4.1. Let X be a proper geodesic metric space. The following facts are
equivalent:

(1) X is quasi-isometric to R.

(2) There is a (1, 0)-quasi-isometry from R to X.

Proof. It is clear that (2) implies (1), let us prove the converse. Since X is quasi-
isometric to R and R is Gromov hyperbolic, we know that X is also Gromov
hyperbolic (see e.g. [15, p.88]). Also, there exists a c1-full (a1, b1)-quasi-isometry
F : R → X for some constants a1, b1 and c1 (see e.g. [20]). Then, g := F (R) is a
quasigeodesic in X and, since X is a proper geodesic metric space, there exists a
geodesic line γ ⊂ X such that H(g, γ) � h, where H denotes the Hausdorff distance
and h = h(δ, a1, b1) (see [15, p.101]). Thus any arc-length parametrization of γ is
also a (c1 + h)-full (1, 0)-quasi-isometry from R to X. �

If X is a complete Riemannian surface with pinched negative curvature, we say
that a bordered subsurface H ⊂ X is a half-plane if H is simply connected and ∂H
is a geodesic line. Note that any funnel in X contains infinitely many half-planes.

Theorem 4.2. Let X be an orientable complete Riemannian surface with pinched
negative curvature and injectivity radius is equal to zero and Y a complete sim-
ply connected Riemannian manifold (with non-positive sectional curvatures if the
dimension of Y is greater than 1). If X and Y are quasi-isometric, then Y is iso-
metric to R, �Ends(X) = 2, X has positive genus, has at most two cusps and does
not have funnels or half-planes.

Moreover, X has finite genus if and only if X has two cusps.

Proof. Since the injectivity radius of X is equal to zero, Theorem 3.4 implies that
Y has dimension 1. Since Y is a complete simply connected Riemannian manifold,
Y is isometric to R.

Since X is quasi-isometric to R, it follows that �Ends(X) = 2 (in virtue of
Theorem 2.5).
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By lemma 4.1, there exists a (1, 0)-quasi-isometry from R to X. However, it is
not possible to have a full geodesic line in a funnel, which implies that X does not
have funnels. The same argument gives that X does not contain any half-planes.

In [16, Theorem 5.5] it is shown that every orientable complete Riemannian sur-
face with pinched negative curvature is bilipschitz equivalent to a complete surface
with constant negative curvature; thus, without loss of generality we can assume in
the remaining part of this proof that X has K = −1, and so it is a Riemann surface
endowed with its Poincaré metric.

Seeking for a contradiction, assume that X is of genus zero. If this is the case,
then X is isometric to a domain Ω ⊂ C with its Poincaré metric. Moreover, since
�Ends(X) = 2, Ω is a doubly connected set. Now, if the two connected components
of C\Ω (with C = C ∪ {∞}) were isolated points, then Ω would be conformally
equivalent to C\{0} and a contradiction would arise since it could not be endowed
with its Poincaré metric. This means that at least one of the connected components
of C\Ω is a continuous set and, therefore, Ω is conformally equivalent either to the
punctured disk or to some annulus. Lemma 4.1 gives that there exists a geodesic line
γ ⊂ X which is a (1, 0)-quasi-isometry from R to X. However, it is not possible
to have a full geodesic line neither in a funnel nor in D\{0}. Nevertheless, this
is a contradiction with the two available options for Ω obtained above (i.e., Ω
is conformally equivalent either to the punctured disk or to an annulus). This
contradiction comes from assuming that X is of genus zero, and thus X, necessarily,
has positive genus.

Since each cusp provides an end and �Ends(X) = 2, it follows that X has at
most two cusps.

Assume that X has two cusps. Seeking for a contradiction assume that X has
infinite genus. Since the infinite genus provides at least an end to X, and each cusp
is an end, we have �Ends(X) � 3, a contradiction. Hence, X has finite genus.

Assume now that X has at most one cusp and suppose that X is of finite genus.
Since there are neither funnels nor half-planes, it means that X can be obtained
as the union of some Y-pieces and one generalized Y-piece with a single cusp
(see [1, Theorem 1.2]). If there is a finite amount of Y-pieces in the decomposi-
tion of X, then �Ends(X) = 1, which is a contradiction with the proved fact that
there are exactly two ends in this surface. Therefore, there must be an infinite
amount of Y-pieces in the decomposition of X. But, since X has finite genus, this
surface has also infinitely many ends, which is a contradiction. Thus, X must have
infinite genus. �

One could think that surfaces satisfying the hypotheses in Theorem 4.2 must
have at least one cusp, since they are quasi-isometric to R and have injectivity
radius equal to zero. However, the following example shows that that is not always
the case.

Example 4.3. There exists a surface S quasi-isometric to R with curvature -1 and
injectivity radius equal to zero, which has no cusps.

Let us consider for each n � 1 the right-angled geodesic hexagon Hn in the hyper-
bolic plane with lengths of three alternate sides equal to 1/2, 1/2, 1/(2n). Denote
by ln the length of the side connecting the two sides of length 1/2. The usual
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hyperbolic trigonometric formulas (see e.g. [8, p.40]) give

cosh
1
2n

= sinh2 1
2

cosh ln − cosh2 1
2

,

ln = arg cosh
cosh 1

2n + cosh2 1
2

sinh2 1
2

→ arg cosh
1 + cosh2 1

2

sinh2 1
2

as n → ∞. For each n � 1, let Yn be the Y-piece with boundary closed geodesics of
lengths 1, 1, 1/n obtained by pasting in an appropriate way two geodesic hexagons
isometric to Hn. Then the distance between the two closed geodesics of length 1
is ln, which has a positive and finite limit as n → ∞. For each n � 1, let Xn be
the surface with two boundary closed geodesics of lengths 1/n, 1/(n + 1) obtained
from Yn and Yn+1 by identifying pairwise the geodesic of length 1. Let S0 be the
surface with a boundary closed geodesic of length 1 obtained from X1, X2, . . . by
identifying for each n > 1 the geodesics of length 1/n in ∂Xn−1 and ∂Xn.

If S is the surface without boundary obtained from two isometric copies of S0

by identifying the geodesics of length 1, then S is a complete Riemannian surface
with curvature −1 and injectivity radius 0. Also, X is quasi-isometric to R and it
does not have cusps.

Theorem 4.2 shows the importance of characterizing the Riemannian surfaces
which are quasi-isometric to R. It also provides some necessary conditions for
an orientable complete Riemannian surface with pinched negative curvature and
injectivity radius is equal to zero to be quasi-isometric to R. In Theorem 1.2 the
general setting of metric spaces is chosen, since it is more convenient to obtain a
characterization. First, we need two technical lemmas.

Lemma 4.4. Let X be a proper geodesic metric space which is quasi-isometric to
R. Then there exists R0 > 0 such that X\BX(p, R) has exactly two unbounded
connected components for every p ∈ X and R � R0.

Proof. By Theorem 2.5 it follows that �Ends(X) = 2. Hence, X\BX(p, R) has at
most two unbounded connected components for every p ∈ X and R > 0.

lemma 4.1 gives that there exists a c-full (1, 0)-quasi-isometry h : R −→ X for
some c � 0, and let γ be the curve γ = h(R) ⊆ X. Let g : X −→ R be an (a, b)-
quasi-isometry such that g|γ = h−1, and so, g|γ is an isometry. Let us suppose first
that p ∈ γ. Let x1 and x2 be points in γ\BX(p, 3ab/2) such that p is between
them (p belongs to the segment of γ joining x1 and x2). Let η be any curve in X
joining x1 and x2. Given ε > 0 let us observe that if x, y ∈ η with dX(x, y) < ε, then
dR(g(x), g(y)) < aε + b. Therefore, g(η) is a quasigeodesic in R with endpoints g(x1)
and g(x2) having all its ‘jumps’ of less than aε + b. Note that g(p) is between g(x1)
and g(x2) (recall that g|γ is an isometry). If g would be a continuous function, then
there would exist z ∈ η with g(z) = g(p). Since the jumps of g are of less than aε + b,
it follows that there exists a point z ∈ η such that dR(g(p), g(z)) < (aε + b)/2.
Hence,

dX(p, η) � dX(p, z) � a(dR(g(p), g(z)) + b) � a
(
(aε + b)/2 + b

)
.
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By letting ε tends to zero, we obtain that

dX(p, η) � 3ab

2
=: R1.

Since x1, x2 /∈ BX(p, R1) and every curve η joining them in X intersects BX(p, R1),
we conclude that BX(p, R1) disconnects X, for each p ∈ γ. Since x1 and x2 are
arbitrary points such that p is between them and dX(p, x1), dX(p, x2) > R1, there
exist at least two unbounded connected components of X\BX(p, R1). As h is c-full
we conclude that X\BX(p, R) has at least two unbounded connected components
for every p ∈ X and R � R0 := R1 + c. This finishes the proof. �

Lemma 4.5. Let X be a proper geodesic metric space which is quasi-isometric to
R, and R0 the constant in Lemma 4.4. Then there exists a constant R1 > R0 such
that, for all p ∈ X, X\BX(p, R1) has exactly two unbounded connected components
E1(p, R1), E2(p, R1) and

dX(x, p) � 4R1, ∀x /∈ E1(p,R1) ∪ E2(p,R1).

Proof. lemma 4.1 gives that there exists a c-full (1, 0)-quasi-isometry h : R −→ X
for some c � 0. Let γ be the image γ = h(R) in X. We are going to prove that for
R1 = max{R0, c} we have

dX(x, p) � 4R1 , ∀x /∈ E1(p,R1) ∪ E2(p,R1)

(since R1 � R0 that lemma 4.4 gives that X\BX(p, R1) has exactly two unbounded
connected components). Seeking for a contradiction assume that there exist p ∈
X and x /∈ E1(p, R1) ∪ E2(p, R1) such that dX(p, x) > 4R1. Let p0 ∈ γ such that
dX(p, p0) � c. Then

BX(p,R1) ⊆ BX(p0, R1 + c) ,

E1(p0, R1 + c) ∪ E2(p0, R1 + c) ⊆ E1(p,R1) ∪ E2(p,R1) ,

and therefore

x /∈ E1(p0, R1 + c) ∪ E2(p0, R1 + c) and dX(p0, x) > 4R1 − c � 3R1.

Let now η be a minimizing geodesic joining x and γ, with dX(x, γ) = LX(η). Since
p0 ∈ γ and h is a geodesic line, we have that γ ∩ BX(p0, R1 + c) is a diameter of
BX(p0, R1 + c) and so,

F = BX(p0, R1 + c) ∪ E1(p0, R1 + c) ∪ E2(p0, R1 + c)

is an open connected set containing γ, and ∂F ⊂ ∂BX(p0, R1 + c). Thus, since
x /∈ F , γ ⊂ F and ∂F ⊂ ∂BX(p0, R1 + c), we conclude that η intersects ∂F . Let
η̃ be the maximal subcurve of η containing x and contained in X\F . If x′ ∈ η̃ ∩
∂BX(p0, R1 + c), then

dX(x, γ) = LX(η) > LX(η̃) = dX(x, x′) � dX(x, p0) − dX(p0, x
′)

> 3R1 − (R1 + c) � c,

which is a contradiction, since h is c-full.
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Hence, the conclusion of the lemma holds. �

Lemma 4.6. Let X be a proper geodesic metric space. Assume that there exists
a positive constant R1 such that, for all p ∈ X, X\BX(p, R1) has exactly two
unbounded connected components E1(p, R1), E2(p, R1) and

dX(x, p) � 4R1, ∀x /∈ E1(p,R1) ∪ E2(p,R1).

Then for each p ∈ X there exist two geodesic rays starting at p such that its union
is a (4R1)-full (1, 2R1)-quasi-isometry from R to X.

Proof. Fix p ∈ X and let us choose a sequence {xj
n} ⊂ Ej(p, R1) with dX(p, xj

n) �
n for j = 1, 2. Since X is a proper geodesic metric space, Arzelá-Ascoli’s Theorem
provides a subsequence {xj

nk
} such that {[pxj

nk
]} converges to a geodesic ray γj :

[0, ∞) → X starting at p and ‘finishing’ in Ej(p, R1) (j = 1, 2). We define γ : R −→
X as the curve

γ(t) =

{
γ1(t), if t � 0,

γ2(−t), if t � 0,

and let us check that γ is a quasigeodesic.
If s, t � 0, then dX(γ(s), γ(t)) = dX(γ1(s), γ1(t)) = |t − s|. If s, t � 0, then

dX(γ(s), γ(t)) = dX(γ2(−s), γ2(−t)) = |t − s|. Consider now s � 0 and t � 0. In
this case,

dX(γ(s), γ(t)) � dX(γ(t), γ(0)) + dX(γ(0), γ(s)) = t + |s| = |t − s|.
If |s| � R1, then

dX(γ(s), γ(t)) � dX(γ(t), γ(0)) − dX(γ(0), γ(s)) = t − |s|
= |t − s| − 2|s| � |t − s| − 2R1.

Similarly, if t � R1, then dX(γ(s), γ(t)) � |t − s| − 2R1. Finally, assume that
|s|, t > R1, and let η be a minimizing geodesic joining γ(s) and γ(t). Since
γ(t) ∈ E1(p.R1) and γ(s) ∈ E2(p.R1), we have

LX(η ∩ E1(p,R1)) � t − R1, LX(η ∩ E2(p,R1)) � |s| − R1,

and so,

dX(γ(s), γ(t)) = LX(η) � |t − s| − 2R1.

In a similar way, if s � 0 and t � 0, then |t − s| − 2R1 � dX(γ(s), γ(t)) � |t − s|.
Thus, γ is a (1, 2R1)-quasigeodesic.
For each t ∈ R and T > 0, let us consider the compact sets (since X is a proper

space and γ is a continuous curve)

Bt := BX(γ(t), 4R1)\
(
E1(γ(t), R1) ∪ E2(γ(t), R1)

)
,

KT :=
⋃

|t|�T

Bt.

The hypothesis of the lemma gives that Bt = X\(E1(γ(t), R1) ∪ E2(γ(t), R1)).
For each p ∈ X, denote by Ej(p, R1) the unbounded connected component of
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X\BX(p, R1) containing a terminal segment of γj (j = 1, 2). Thus,

KT = X\(E1(γ1(T ), R1) ∪ E2(γ2(T ), R1)
)

for T large enough, and so,

X =
⋃

T>0

KT =
⋃
t∈R

BX(γ(t), 4R1) .

Hence, γ is (4R1)-full and it is a quasi-isometry. �

lemmas 4.1, 4.5 and 4.6 give Theorem 1.2.

Lemma 4.7. Let X be a non-exceptional Riemann surface quasi-isometric to R.
Then there exists a constant C such that

LX(∂BX(p, r)) � C, AX(BX(p, r)) � Cr,

for every p ∈ X and r > 0.

Proof. Let R1 the constant in lemma 4.5. Fix p ∈ X and a universal covering map
Π : D → X with Π(0) = p. Let D be the Dirichlet fundamental domain (see e.g.
[4, p.226])

D =
{
z ∈ D : dD(z, 0) < dD(z, z0) ∀ z0 ∈ Π−1(p)\{0}}.

We claim that if γ is a minimizing geodesic in X with p ∈ γ, then the minimizing
geodesic g in D such that 0 ∈ g and Π(g) = γ (g is the lift of γ at 0) is contained
in D:

Note that dD(z, 0) = dX(Π(z), p) for every z ∈ g, since Π is a local isometry and γ
is a minimizing geodesic in X. Seeking for a contradiction assume that there exists
z ∈ g\D. Thus, there exists z0 ∈ Π−1(p) with dD(z, z0) < dD(z, 0). Since Π is a
holomorphic function, we have dX(Π(z), p) � dD(z, z0) < dD(z, 0) = dX(Π(z), p),
a contradiction. Thus, g is contained in D.

lemma 4.6 gives that there exist two geodesic rays γ1 and γ2 starting at p such
that its union is a (4R1)-full (1, 2R1)-quasi-isometry from R to X. Let g1 and g2

be the lifts at 0 of γ1 and γ2, respectively. We have proved that the geodesic rays
g1 and g2 are contained in D.

One can check that

Π
(
∂BD(0, r) ∩ D

)
= ∂BX(p, r) and LD

(
∂BD(0, r) ∩ D

)
= LX

(
∂BX(p, r)

)
for every r > 0. Let us denote by Nh(A) the closed h-neighbourhood of a set A in
a metric space Y , i.e., Nh(A) = {y ∈ Y : dY (y, A) � h}. Since γ1 ∪ γ2 is (4R1)-full

https://doi.org/10.1017/prm.2022.93 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.93


Liouville property and quasi-isometries 147

in X, we have that g1 ∪ g2 is (4R1)-full in D and so,

LX

(
∂BX(p, r)

)
= LD

(
∂BD(0, r) ∩ D

)
� LD

(
∂BD(0, r) ∩ N4R1(g1 ∪ g2)

)
for every r > 0. If I denotes the geodesic line in D given by the real interval (−1, 1),
then

LX

(
∂BX(p, r)

)
� LD

(
∂BD(0, r) ∩ N4R1(g1 ∪ g2)

)
� LD

(
∂BD(0, r) ∩ N4R1(I)

)
for every r > 0. The last inequality holds since the further apart g1 and g2 are, the
larger the set ∂BD(0, r) ∩ N4R1(g1 ∪ g2) is.

Fix r > 4R1 and let zr be the point in ∂BD(0, r) ∩ ∂N4R1(I) contained in the
first quadrant. Since the hyperbolic length of an arc of angle α in ∂BD(0, r) is
α sinh r, we have

LD

(
∂BD(0, r) ∩ N4R1(I)

)
= 4 θr sinh r,

where θr is the argument of zr. If xr ∈ (0, 1) is the point with dD(zr, xr) =
dD(zr, I), then {0, zr, xr} are the vertices of a right-angled triangle in D with
angle θr at 0, dD(0, zr) = r and dD(zr, xr) = 4R1. The hyperbolic sine theorem
(see e.g. [4, p.148]) gives

sinh r =
sinh 4R1

sin θr
. (4.1)

Hence,

LD

(
∂BD(0, r) ∩ N4R1(I)

)
= 4 θr sinh r = 4 sinh 4R1

θr

sin θr

and, since t/ sin t is an increasing function on t ∈ (0, π/2) and (4.1) gives that θr is
a decreasing function on r,

LX

(
∂BX(p, r)

)
� 4 sinh 4R1

θr

sin θr
� 4 sinh 4R1

θ4R1

sin θ4R1

for every r > 4R1. Since LX(∂BX(p, r)) � LD(∂BD(0, r)) = 2π sinh r, we have
LX(∂BX(p, r)) � 2π sinh 4R1 for every r � 4R1. Therefore,

LX

(
∂BX(p, r)

)
� C = max

{
4 sinh 4R1

θ4R1

sin θ4R1

, 2π sinh 4R1

}
for every r > 0.

Finally,

AX(BX(p, r)) =
∫ r

0

LX(∂BX(p, s)) ds �
∫ r

0

C ds = Cr. �

One can think that the converse of lemma 4.7 holds. However, it does not hold,
as the following example shows.

Example 4.8. There exists a non-exceptional Riemann surface X which is not
quasi-isometric to R, and verifying the conclusion of lemma 4.7.
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Consider the graph G0 with V (G0) = Z and E(G0) = {(n, n + 1) : n ∈ Z}. For
each k ∈ N, let Pk+1 be the path graph with k + 1 vertices and length k. Let {xk}∞k=1

be an increasing sequence of integers such that xk − xk−1 > k + 1 for every k � 2.
Let G be any graph obtained from G0 and {Pk}∞k=1 by identifying a vertex with
degree 1 in Pk with xk for each k � 1. Thus, for every u ∈ V (G) and n ∈ N, the set
{v ∈ V (G) : dG(u, v) = n} has, at most, 4 vertices and so, {v ∈ V (G) : dG(u, v)
� n} has, at most, 4n + 1 vertices. It is clear that G is not quasi-isometric to R.

Let us consider a Y-piece A such that the length of its three simple closed
geodesics on its boundary is equal to 1. If A1, A2 are Y-pieces isometric to A,
let B be the bordered Riemann surface with genus one whose boundary is the
union of two simple closed geodesics, obtained from A1 and A2 by identifying two
simple closed geodesics in ∂A1 with two simple closed geodesics in ∂A2. If A0 is
a Y-piece isometric to A, let C be the bordered Riemann surface with genus one
whose boundary is a simple closed geodesic, obtained from A0 by identifying two
simple closed geodesics in ∂A0.

Let us construct now a Riemann surface X by using the graph G as a skeleton.
Replace each vertex of degree 3, 2 and 1 in V (G) by bordered Riemann surfaces
isometric to A, B and C, respectively, and identify the simple closed geodesics in
the boundary of any of these pieces following the combinatorial design of G.

Since X is quasi-isometric to G, it is not quasi-isometric to R.
Recall that we have |∂BG(u, n) = n}| � 4 and |BG(u, n) � n}| � 4n + 1 for

every positive integer n and u ∈ V (G), G and X are quasi-isometric and X has
bounded geometry.

Kanai’s arguments in the proofs of [20, Lemmas 3.4 and 3.6] imply that there
exists a constant C1 such that AX(BX(p, r)) � C1r for every p ∈ X and r > 0.

A similar argument, using also the arguments in the proof of [20, Theorem 4.1
and Lemma 4.2], gives the bound for the length of the boundary.

By [16, Theorem 5.5], every orientable complete Riemannian surface with pinched
negative curvature is bilipschitz equivalent to a complete surface with constant
negative curvature. So, Lemma 4.7 has the following consequence.

Proposition 4.9. Let X be an orientable complete Riemannian surface with
pinched negative curvature quasi-isometric to R. Then there exists a constant C
such that

AX(BX(p, r)) � Cr,

for every p ∈ X and r > 0.

Proof of Theorem 1.1. If ι(X) > 0 and m � 2, then the result follows straightfor-
wardly from [20, Theorem 5.1]. Otherwise, applying Theorem 4.2, we can conclude
that m = 1 and, therefore, Proposition 4.9 gives that X has polynomial growth rate
of degree, at most, 1. Now the conclusion follows from [11, Corollary 1, p.336]. �

5. A decomposition of surfaces quasi-isometric to R

In this last section we prove Theorem 1.3, which provides a good property of the
Riemannian surfaces with pinched negative curvature quasi-isometric to R: it is
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possible to decompose these surfaces as union of generalized Y-pieces in such a way
that the length of the boundary of the pieces has an upper bound.

Let us start with some technical results.

Lemma 5.1. Let X be a non-exceptional Riemann surface quasi-isometric to R

and let g : R −→ X be a c-full (1, 0)-quasi-isometry. Then there exists a positive
constant k, which just depends on c, with the following property: if σ is a non-
trivial simple closed curve in ∂BX(p, r) for some p ∈ X, r > 0 with σ ∩ g(R) = ∅,
then LX(σ) � k.

Proof. First of all, recall that g exists by Lemma 4.1.
Since the function

V (t) := arccosh
(

coth
t

2

)
− t

4
coth

t

2

satisfies limt→0+ V (t) = ∞, there exists a positive constant k, which just depends
on c, such that V (t) > c when 0 < t < k.

Assume first that σ surrounds a cusp. Thus, X\σ has two unbounded compo-
nents, since X is quasi-isometric to R. Since g is a continuous quasi-isometry, we
conclude that σ ∩ g(R) �= ∅, a contradiction.

Since σ is non-trivial and it does not surround a cusp, there exists a simple closed
geodesic σ0 freely homotopic to σ, and so, LX(σ0) � LX(σ) =: �.

Seeking for a contradiction assume that � = LX(σ) < k. Thus, Collar Lemma
gives that σ0 has a collar Cσ0 of width w = arccosh(coth(LX(σ0)/2)). If μ is a simple
closed curve in ∂Cσ0 , then LX(μ) = LX(σ0) cosh w = LX(σ0) coth(LX(σ0)/2) and
therefore LX(μ) � � coth(�/2).

Let g0 be a connected subset of g(R) ∩ Cσ0 . If g0 joins the two connected compo-
nents of ∂Cσ0 , then g0 intersects σ0, and since g is a proper curve (the preimage of
a compact set in X is a compact in R), it intersects every freely homotopic curve
to σ0. In particular, g(R) ∩ σ �= ∅, a contradiction. Hence, g0 either is empty or its
two endpoints are in the same closed curve μ of ∂Cσ0 . Thus,

LX(g0) � 1
2

LX(μ) � �

2
coth

�

2
,

since g (and so, g0 when it is nonempty) is a minimizing geodesic in X.
Since g is c-full and LX(σ) < k, if q ∈ σ0, then

c � dX(q, g(R)) � w − 1
2

LX(g0) � arccosh
(

coth
�

2

)
− �

4
coth

�

2
> c,

a contradiction, and so, LX(σ) � k. �

Lemma 5.2. Let X be a non-exceptional Riemann surface quasi-isometric to R and
let γ be a geodesic line in X admiting an arc-length parametrization which is also
an (1, 0)-quasi-isometry from R to X. Then there exists a constant N with the
following property: for all p ∈ X and r > 0, there are at most N non-trivial simple
closed curves in ∂BX(p, r) not intersecting γ.
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Proof. It is a direct consequence of the facts that LX(∂BX(p, r)) � C for every p ∈
X and r > 0, and LX(σ) � k for every non-trivial simple closed curve in ∂BX(p, r)
not intersecting γ, with appropriate positive constants C and k, by Lemmas 4.7
and 5.1. �

Proof of Theorem 1.3. If the fundamental group of X is finitely generated, [23,
Proposition 4.1 and Remark 4.2] and Theorem 4.2 give that there exists a finite
collection {Yk}k of generalized Y-pieces, with pairwise disjoint interiors, so that
X = ∪kYk. Since this collection is finite, there exist positive constants α1, α2 with
α1 � LX(∂Yk) � α2 for all k. Also, the elements on the collection are Y-pieces
except for, at most, two of them (since X has at most two cusps by Theorem 4.2).

Assume now that X has an infinitely generated fundamental group. By [16,
Theorem 5.5], X can be endowed with a complete metric λ, bilipschitz to the
original and with constant curvature K = −1, i.e., its Poincaré metric. Thus, for
the time being, X will be considered to be a Riemann surface.

Since X is quasi-isometric to R, Theorem 1.2 gives that there exists a geodesic
line γ ⊂ X which is an image of R under a (1, 0)-quasi-isometry.

Fix a point p ∈ γ. As a first step, a collection of nested geodesic domains will be
constructed. To that end, an increasing sequence of positive numbers {rn}n∈N with
limn→∞ rn = ∞ will be taken. For each rn a particular geodesic domain Gn will be
constructed from the closed ball B(rn) := BX(p, rn). This construction is inspired
by [23, Theorem 4.3].

For each r > 0, the boundary of B(r) is a finite union of pairwise disjoint simple
closed curves except for, possibly, a countable set of radii (see, e.g., [1, Theorem
1.2]). Let us choose an appropriate sequence {rn} by induction. As usual, we say
that a closed curve in X is non-trivial if it is not homotopic to a point. Since X
is of infinite type, r1 can be chosen so that B(r1) contains at least two non-trivial
curves in X which are not freely homotopic in X, and such that ∂B(r1) is a finite
union of pairwise disjoint simple closed curves. Assume now that we have defined
rn and let us choose rn+1. Let {σn

j }j∈In
be the set of simple closed non-trivial

curves in ∂B(rn). If we define I1
n := {j ∈ In : σn

j ∩ γ �= ∅}, we have �I1
n � 2 since γ

is a geodesic line. Thus, �In � N + 2, where N is the constant given by Lemma 5.2,
which is independent on n.

In order to construct the geodesic domain Gn, either a minimizing geodesic γn
j or

the empty set will be related to each simple closed non-trivial curve σn
j ⊂ ∂B(rn).

Since each σn
j is a simple closed curve, by [14] (see Theorem 2.1 and the comments

after it) the minimizing geodesic γn
j freely homotopic to it (if it exists), will also

be a simple curve. It will be said that σn
j is essential if for every i ∈ In, with i �= j,

one has σn
i /∈ [σn

j ] (i.e., σn
i and σn

j are not freely homotopic).
There are two possibilities:

(i) If σn
j is essential, then γn

j is the minimizing simple closed geodesic in [σn
j ].

(ii) If either σn
j bounds a cusp in X or σn

j is not essential, then γn
j := ∅.

Since {σn
j }j are disjoint simple closed curves, the minimizing geodesics {γn

j }j are
also disjoint [25, p.405].
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Let us define Gn as the geodesic domain whose boundary is ∪j∈In
γn

j . One says
that Gn is the geodesic domain associated to B(rn). Note that the number of simple
closed geodesics in ∂Gn is at most �In � N + 2.

Set r′n := inf{t > rn : ∂B(t) contains at least one non-simple closed curve}. Set
rn+1 := r′n + ε for some ε > 0 small enough so that ∂B(rn+1) is a finite union
of pairwise disjoint simple closed curves, and all components of the interior of
B(rn+1)\B(r′n) are doubly connected.

Note that, by construction, Gn ⊂ Gn+1.
Now, in order to describe the Y-pieces let us consider the blocks An := Gn\Gn−1

for every n � 2. As it was observed above, the number of boundary curves of every
An is, at most, 2N + 4.

We claim that the genus of An is, at most, [N/2], i.e., the lower integer part of
N/2. By the choice of rn, the only way Gn could gain genus with respect to Gn−1

is in the situation when there exist i, j ∈ In, with i �= j, such that σn
i ∈ [σn

j ]. Recall
that in this case, by definition, γn

i = γn
j = ∅ and An contains a handle which is

topologically a Y-piece with two geodesic boundary curves (with the same length)
which have been identified. Therefore, each pair of boundary curves in a ball could
add, at most, one genus.

In what follows, an outer loop in An is a simple closed geodesic in ∂An, and an
inner loop one that is not contained in ∂An.

We have seen that, in each An, there exist at most 2N + 4 outer loops, and their
lengths are bounded above by C, where C is the constant of Lemma 4.7. In each
An, by [5, Theorem 2], there exists a finite number of disjoint inner loops, that
decompose An into a finite union of generalized Y-pieces, whose length is bounded
above by C ′, where C ′ is a constant which only depends on C and on the number
of outer loops, cusps and genus of An. Hence, C ′ just depends on C and N (in
particular, it does not depend on n � 2). By the argument at the beginning of
this proof, G1 is a finite union of generalized Y-pieces, and so, the length of their
boundaries is bounded above by some constant β. Let us define C ′′ := max{C ′, β}.

Since X does not have funnels or half-planes by Theorem 4.2, the argument in the
proof of [1, Theorem 1.2] gives that the Riemann surface X can be decomposed into
a countable union of such pieces, that is, X = ∪k∈NỸk where L(X,λ)(∂Ỹk) � 3C ′′

for every k ∈ N; furthermore, the elements in that union are Y-pieces except for, at
most, two of them (since X has at most two cusps by Theorem 4.2).

Let us denote by ρ the original Riemannian metric on X with pinched nega-
tive curvature. Also, for the sake of simplicity, for any curve η ⊂ X, let Lρ(η) :=
L(X,ρ)(η) and Lλ(η) := L(X,λ)(η). Since λ and ρ are bilipschitz metrics on X, there
exists a positive constant C1 such that C−1

1 � Lρ(η)/Lλ(η) � C1 for any curve
η ⊂ X.

To finish the proof, a new generalized Y-piece, Yk, will be associated to each Ỹk

as follows. Let η̃k
i for i = 1, 2, 3 be the boundary geodesic curves of Ỹk, and ηk

i for
i = 1, 2, 3 the simple closed geodesic in (X, ρ) such that ηk

i ∈ [η̃k
i ]. Since {η̃k

i }i,k

are disjoint simple closed curves, {ηk
i }i,k are also disjoint simple closed curves (see

[14] and [23, Theorem 3.11]). Note that

Lρ(ηk
i ) � Lρ(η̃k

i ) � C1Lλ(η̃k
i ) � C1C

′′.
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Next, define Yk as the generalized Y-piece having ηk
i for i = 1, 2, 3 as its boundary

curves (note that it is possible to have ηk
i = η̃k

i = ∅ for some i, if Ỹk contains a
cusp). By construction, {Yk}k∈N is a countable collection of generalized Y-pieces
in (X, ρ) with pairwise disjoint interiors and the elements on the collection are
Y-pieces except for, at most, two of them.

Since Theorem 4.2 gives that (X, ρ) does not contains funnels or half-planes, the
argument in the proof of [23, Theorem 4.3] gives that X can be decomposed into a
countable union of such pieces, that is, X = ∪k∈NYk, where Lρ(∂Yk) � 3C1C

′′ =: α2

for every k ∈ N.
Seeking for a contradiction assume that infk Lρ(∂Yk) = 0. Since X is quasi-

isometric to R, X has exactly two ends and so, it is not possible to have arbitrarily
short curves in ∂Yk with every connected component of ∂Yk disconnecting X. Also,
if X has arbitrarily short geodesics γk ⊂ ∂Yk with X\γk connected, then their large
collars create ‘arbitrarily large genus’ which obstruct a quasi-isometry to R. Hence,
there exists a positive constant α1 such that α1 � Lρ(∂Yk) for every k ∈ N. �
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growth rate under quasi-isometries. Rev. Matem. Complutense 33 (2020), 231–270.

18 M. Gromov, Hyperbolic manifolds, groups and actions. Ann. of Math. Studies, Vol. 97
(Princeton, Princeton Univ. Press, 1981), pp. 183–213.

19 M. Gromov, Hyperbolic groups, in ‘Essays in group theory’. Edited by S. M. Gersten, M.
S. R. I. Publ. Vol. 8 (Springer, 1987), pp. 75–263.

20 M. Kanai. Rough isometries and combinatorial approximations of geometries of non-
compact Riemannian manifolds. J. Math. Soc. Japan 37 (1985), 391–413.

21 T. Lyons. Instability of the Liouville property for quasi-isometric Riemannian manifolds
and reversible Markov chains. J. Diff. Geom. 26 (1987), 33–66.

22 J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math.
14 (1961), 577–591.
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