
11
Covariant analysis

Consider the scattering of a Dirac electron in an external field created
by an electromagnetic transition current density in a hadronic target. We
assume to start with that the target makes a transition from the ground
state to some discrete excited state. The external vector potential Aext

μ (x, t)
can be related to that current density through the use of Maxwell’s
equations1 (

∂

∂xν

)2

Aext
μ (x, t) = −ep〈f|Ĵμ(x, t)|i〉 (11.1)

Here |i〉 and |f〉 are exact Heisenberg eigenstates of the target with energies
E, E ′ respectively. It follows that the time dependence of the target matrix
element can be extracted as(

∂

∂xν

)2

Aext
μ (x, t) = −ep〈f|Ĵμ(x)|i〉e−i(E−E′)t (11.2)

The states can similarly be taken as eigenstates of four-momentum pμ =
(p, iE), so the entire space-time dependence can be extracted as(

∂

∂xν

)2

Aext
μ (x, t) = −ep〈f|Ĵμ(0)|i〉ei(p−p′)·x (11.3)

First-order time-dependent perturbation theory and the interaction of Eq.
(10.24) lead to the scattering operator

Ŝ
.
= −i

∫
Ĥ(1)

I (x, t) d4x (11.4)

1 These are Maxwell’s equations in the Lorentz gauge for the external field where, by

current conservation, ∂Aext
μ /∂xμ = 0.
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52 Part 2 General analysis

Fig. 11.1. Feynman diagram for electron scattering from a hadronic target.

Here the interaction representation for the electrons has been introduced
and they carry the free field time dependence exp(±ik ·x). Now take matrix
elements of the scattering operator between appropriate initial and final
electron states

〈k2, s2|Ŝ |k1, s1〉 = − e√
Ω2

ū(k2, s2)γμu(k1, s1)

∫
e−iq·x Aext

μ (x) d4x

q ≡ k2 − k1 (11.5)

If one proceeds directly to the continuum limit, what is required is the
four-dimensional Fourier transform of the external field

Ãext
μ (q) =

∫
e−iq·x Aext

μ (x) d4x (11.6)

The Fourier transform is inverted with the relation

Aext
μ (x) =

∫
eiq·x Ãext

μ (q)
d4q

(2π)4
(11.7)

Substitute Eq. (11.7) on the left hand side of Eq. (11.3). The right hand
side is then reproduced if one chooses

−q2 Ãext
μ (q) = −ep〈f|Ĵμ(0)|i〉(2π)4δ(4)(p − p′ − q) (11.8)

The required S-matrix thus takes the form

〈f|Ŝ |i〉 = − eep√
Ω2

ū(k2)γμu(k1)
1

q2
〈f|Ĵμ(0)|i〉(2π)4δ(4)(p − p′ − q)

q = k2 − k1 = p − p′ (11.9)

The spin quantum numbers for the electron have been suppressed.
The amplitude in Eq. (11.9) can be represented as a Feynman diagram

as shown in Fig. 11.1. There is a corresponding set of Feynman rules for
the S-matrix:
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11 Covariant analysis 53

Fig. 11.2. Quantization volume.

1. Include a factor of (−i) for each order of perturbation theory; here
second order;

2. Include a factor of (−eJμ) for each vertex; here

• −ieγμ ; for electron vertex

• −ep〈f|Ĵν(0)|i〉 ; for hadronic vertex (lowest order)

3. Include factors of u(k1)/
√

Ω and ū(k2)/
√

Ω for the initial and final
electron legs;

4. Include the following factor for the virtual photon propagator

1

(2π)4 i

1

q2
δμν (11.10)

Since both the electron and target currents are conserved, one could
just as well use the following expression for the photon propagator

1

(2π)4 i

1

q2

[
δμν − qμqν

q2
(1 − ᾱ)

]
(11.11)

The extra term in qμqν vanishes in the S-matrix element (see below).
Here different choices of ᾱ correspond to different gauges for the
internal vector potential;

5. Include a factor (2π)4δ(4)(
∑

i pi) at each vertex;

6. Integrate
∫
d4p over internal lines.

The factors in the above diagram can be checked according to (−i)2(−ie)
×(−ep)(2π)8/(2π)4i

√
Ω2 = −eep(2π)4/

√
Ω2.

As indicated previously, we choose to quantize in a big box of volume
Ω (Fig. 11.2) and in the end let Ω → ∞. This fictitious volume must
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54 Part 2 General analysis

Fig. 11.3. Flux and cross section in any frame obtained by a Lorentz transfor-
mation along the incident electron direction.

disappear from any physical result. The end term in Eqn. (11.9) should
really be written in the form

(2π)3δ(3)(p − p′ − q) =

∫
box

ei(p−p′−q)·x d3x = Ω δp′,p−q (11.12)

Thus the S-matrix for the problem at hand actually takes the form

〈f|Ŝ |i〉 ≡ −2πiδ(Wf − Wi)Tfi

Tfi = −ieepū(k2)γμu(k1)
1

q2
〈f|Ĵμ(0)|i〉 δp′,p−q (11.13)

Here Wf,Wi are the final and initial total energies. The cross section can
now be evaluated immediately with the aid of the Golden Rule

dσ =
Rfi

Flux
= 2π|Tfi|2δ(Wf − Wi)dρf

1

Flux
(11.14)

It follows immediately that

[δp′,p−q]
2 = δp′,p−q (11.15)

Only one of the momenta in the final state is independent. The number of
states for the final electron in a big box with periodic boundary conditions
is

dρf =
Ω

(2π)3
d3k2 (11.16)

Consider the incident flux in any frame obtained by a Lorentz transfor-
mation along the incident electron direction as shown in Fig. 11.3. The
incident flux is defined by vrel/Ω and is given by

Flux =
1

Ω
vrel =

1

Ω

(
k1

ε1
+

p

E

)

=
1

Ωε1E
(ε1p + k1E)

=
1

Ωε1E

√
(k1 · p)2 (11.17)
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11 Covariant analysis 55

The last relation follows for k1 antiparallel to p and massless electrons
since then k1 · p = −k1p − ε1E = −(k1E + ε1p). The reader can verify that
the same result holds if k1‖p, which we now use to generically identify
this case. A combination of the above results then leads to

dσ = 2π
e2e2

p

q4
|ū(k2)γμu(k1)〈f|Ĵμ(0)|i〉|2δ(Wf − Wi)

Ω d3k2

(2π)3

×δp′,p−q
Ωε1E√
(k1 · p)2

(11.18)

If the electron beam is unpolarized and its final polarization unmea-
sured, one must average over initial electron spins and sum over final
spins.2 If the target is unpolarized and unobserved, one must average over
initial target states and sum over final states. The cross section thus takes
the form (recall e2/4π = α, the fine-structure constant)

dσ =
4α2

q4

(
d3k2

2ε2

)
1√

(k1 · p)2
(2ε1ε2)

1

2

∑
s1

∑
s2

∑
i

∑
f

×|ū(k2)γμu(k1)〈f|Ĵμ(0)|i〉|2(ΩE)(2π)3δ(4)(p − p′ − q) (11.19)

Here Eqn. (11.12) has again been employed. The product of the matrix
element and its complex conjugate can now be written out. In taking
the complex conjugate, one must use {γ4, γi} = 0 to restore the gamma

matrices to the proper order and also remember that Ĵμ = (Ĵ, iρ̂) has an
imaginary fourth component. We therefore arrive at the final, important
result

dσ =
4α2

q4

(
d3k2

2ε2

)
1√

(k1 · p)2
ημνWμν (11.20)

ημν ≡ −2ε1ε2
1

2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμu(k1)

Wμν = (2π)3
∑
i

∑
f

〈i|Ĵν(0)|f〉〈f|Ĵμ(0)|i〉(ΩE)δ(4)(p′ − p + q)

This expression represents the cross section in any frame where k1‖p.
It is evident from Fig. 11.3 that dσ is a small element of transverse area
and, as such, is invariant under Lorentz transformations along the incident
electron direction. The initial factors in this result are all Lorentz invariant.
The quantity ημν transforms as a second rank tensor (see below). Hence

2 We shall later relax these conditions.
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56 Part 2 General analysis

one concludes that Wμν must also be a second rank tensor.3 The right
hand side of Eq. (11.20) is explicitly Lorentz invariant and can now be
evaluated in any Lorentz frame; it represents the physical cross section in
any frame where k1‖p.

If one were doing elastic scattering from a point Dirac particle, the
matrix elements of the current would each be proportional to 1/Ω and
the final momentum would be determined by the use of Eq. (11.12).
The quantity Wμν would thus be independent of Ω and the quantization
volume would then cancel from Eq. (11.20), as it must. This is in fact a
general result, as we shall see in all our applications.

Although Eq. (11.20) has been derived under the assumption of a
discrete final state of the target, the generalization to an arbitrary final
state of the target, which might include the production of many particles,
is now immediate. One simply calculates the appropriate inelastic matrix
element of the current and then sums over the correct number of final
states at given (p, q) in Wμν .

With the aid of the positive-energy projection operators for the Dirac
equation in Eq. (10.20), the lepton response tensor can be evaluated for
massless electrons as follows

ημν ≡ −2ε1ε2
1

2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμu(k1)

= −ε1ε2 trace

[
γν

(−iγλk2λ

2ε2

)
γμ

(−iγρk1ρ

2ε1

)]

=
1

4
4
[
k2νk1μ + k1νk2μ − (k1 · k2)δμν

]
ημν = k2νk1μ + k1νk2μ − (k1 · k2)δμν (11.21)

This is evidently a second rank Lorentz tensor, as advertised.
The target response tensor Wμν is a second rank Lorentz tensor built

out of the two remaining independent four-vectors p and q; everything
else has been summed over. The electromagnetic current is conserved.
With the aid of the Heisenberg equations of motion, one concludes that

∂

∂xμ
〈f|Ĵμ(x)|i〉 = ei(p−p′)·x i(p − p′)μ〈f|Ĵμ(0)|i〉 = 0

qμ〈f|Ĵμ(0)|i〉 = 0 (11.22)

Hence current conservation for the target implies

qμWμν = Wμνqν = 0 (11.23)

3 This can be proven directly from the Lorentz transformation properties of the states,

but the argument is more involved.
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11 Covariant analysis 57

The Dirac equation for the massless electrons implies that

ū(k2)γλqλu(k1) = ū(k2)(γλk2λ − γλk1λ)u(k1) = 0 (11.24)

It follows that the lepton response tensor in Eq. (11.21) obeys the same
conditions

qμημν = ημνqν = 0 (11.25)

The two independent Lorentz scalars that can be constructed from p

and q are q2 and q · p. Recall p2 = −M2
T is fixed by the target mass. In

the laboratory frame, for massless electrons, q2 = (k2 − k1)
2 − (k2 − k1)

2 =
2k1k2(1 − cos θ) where θ is the scattering angle. Furthermore, the target is
at rest in that frame so p = (0, iMT ). Hence one can identify these scalers
in the laboratory frame according to

q2 = 4k1k2 sin2 θ

2
; laboratory frame

q · p = −q0MT (11.26)

The conditions in Eq. (11.23) then imply that the target response tensor
must have the following form

Wμν = W1(q
2, q · p)

(
δμν − qμqν

q2

)

+W2(q
2, q · p) 1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
(11.27)

This result is due to Bjorken [Bj60], Von Gehlen [Vo60], and Gourdin
[Go61]. It forms the basis for the subsequent analysis. It makes use only of
Lorentz covariance and current conservation, and it holds for any hadronic
target, independent of its internal structure. Note that it is

∑
i

∑
f that

yields the simplicity of the form in Eq. (11.27). Upon substitution of this
expression, the cross section in Eq. (11.20) is then exact to lowest order in
α. We proceed to the proof of this important result.

Write the most general tensor4 one can make out of the four-vectors p

and q

Wμν = W1δμν + W2
pμpν

M2
T

+ A
qμqν

M2
T

+ B
1

M2
T

(pμqν + pνqμ)

+C
1

M2
T

(pμqν − pνqμ) (11.28)

4 Note that εμνρσqρpσ is a pseudotensor. We shall return to this later.
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58 Part 2 General analysis

Use the current conservation relations in Eq. (11.23)

W1qν + W2
p · q pν
M2

T

+ A
q2 qν

M2
T

+ B
1

M2
T

(p · q qν + q2 pν)

+C
1

M2
T

(p · q qν − q2 pν) = 0

W1qμ + W2
p · q pμ
M2

T

+ A
q2 qμ

M2
T

+ B
1

M2
T

(p · q qμ + q2 pμ)

+C
1

M2
T

(q2 pμ − p · q qμ) = 0 (11.29)

Since p and q are linearly independent four-vectors, their coefficients
must individually vanish

W1 +
q2

M2
T

A +
p · q
M2

T

B +
p · q
M2

T

C = 0

p · q
M2

T

W2 +
q2

M2
T

B − q2

M2
T

C = 0

W1 +
q2

M2
T

A +
p · q
M2

T

B − p · q
M2

T

C = 0

p · q
M2

T

W2 +
q2

M2
T

B +
q2

M2
T

C = 0 (11.30)

The solution to these linear equations is

C = 0

B = −p · q
q2

W2

A = −M2
T

q2
W1 +

(
p · q
q2

)2

W2 (11.31)

This is the desired result.

The next task is to combine the expressions in Eqs. (11.21, 11.27) to get
the cross section in Eq. (11.20). With the aid of Eq. (11.25), the required
expression reduces to

ημνWμν = (k1μk2ν + k1νk2μ − k1 · k2 δμν)

(
W1δμν + W2

pμpν

M2
T

)

= W1(−2k1 · k2) + W2
1

M2
T

(2 p · k1 p · k2 − p2 k1 · k2) (11.32)
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11 Covariant analysis 59

Now employ some kinematics in the laboratory frame. Since the electrons
are massless here

q = k2 − k1

q2 = −2k1 · k2 = −2k1 · k2 + 2ε1ε2

= 2ε1ε2(1 − cos θ) = 4ε1ε2 sin2 θ

2
(11.33)

Also, since p = (0, iMT ) in the laboratory frame,

p2 = −M2
T

(p · k1)(p · k2) = M2
T ε1ε2 (11.34)

Hence

ημνWμν = 4ε1ε2 sin2 θ

2
W1 + 2ε1ε2(1 − sin2 θ

2
)W2

= 2ε1ε2

(
W2 cos2

θ

2
+ 2W1 sin2 θ

2

)
(11.35)

The double differential cross section in the laboratory frame in Eq. (11.20)
can therefore be written

d2σ

dε2dΩ2
=

α2

4ε21ε
2
2 sin4 θ/2

(
ε22
2ε2

)(
1

MTε1

)
2ε1ε2

(
W2 cos2

θ

2
+ 2W1 sin2 θ

2

)
(11.36)

Introduce the Mott cross section for the scattering of a relativistic (mass-
less) Dirac electron from a point charge5

σM ≡ α2 cos2 (θ/2)

4ε21 sin4 (θ/2)
(11.37)

The double differential cross section in the laboratory frame for the
scattering of a relativistic Dirac electron from an arbitrary hadronic target
to order α2 then takes the form

d2σ

dΩ2dε2
= σM

1

MT
[W2(q

2, q · p) + 2W1(q
2, q · p) tan2 θ

2
] (11.38)

This is a central result.
It is useful at this point to demonstrate the relation to the photoabsorp-

tion cross section. The process is illustrated in Fig. 11.4. This cross section

5 Two factors of Eq. (10.27) restore the correct dimensions (recall ε = h̄kc).
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60 Part 2 General analysis

Fig. 11.4. The process of photoabsorption by a hadronic target.

measures one slice of the two-dimensional response surface W1(q
2, q · p).

In fact

σγ =
(2π)2α√
(k · p)2

W1(k
2,−k · p) ; k2 = 0 (11.39)

Here k = (k, iωk) is the four-momentum of the incoming photon. This
result is derived as follows.

Start from the interaction with the transverse quantized radiation field

H ′ = −ep

∫
J(x) · A(x) d3x (11.40)

Everything is now in the Schrödinger representation. The quantized radia-
tion field is expanded in normal modes according to Eq. (8.8) with helicity
unit vectors λ = ±1 defined in Eq. (8.4) and Fig. 8.1. The scattering op-
erator is again given in lowest order by Eq. (11.4) where now everything
is in the interaction representation. The appropriate S-matrix element of
this scattering operator is

〈f|Ŝ |i〉 = iep

(
1

2ωkΩ

)1/2

ekλ · 〈f|Ĵ(0)|i〉 (2π)4δ(4)(p + k − p′) (11.41)

The system is again quantized in a big box with periodic boundary
conditions so that Eq. (11.12) should actually be employed. The T-matrix
is identified as in Eq. (11.13)

Sfi = −2πiδ(Wf − Wi)Tfi

Tfi = −ep

(
1

2ωkΩ

)1/2

ekλ · 〈f|Ĵ(0)|i〉 Ω δp′,p−k (11.42)

The cross section is again given by

σγ =
Rate

Flux
= 2π|Tfi|2δ(Wf − Wi)

1

Flux

Flux =
1

Ω

√
(k · p)2
ωkE

(11.43)
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11 Covariant analysis 61

With unpolarized and unobserved targets, one must again average over
initial states and sum over final states and with an unpolarized beam, one
must average over photon polarizations. With the use of Eq. (11.15) and
the identification of the target response tensor in Eq. (11.20), one finds

σγ =
2π2α√
(k · p)2

∑
λ=±1

(e
†
k,λ)iWij(ek,λ)j (11.44)

It is now necessary to carry out the polarization sums, and with the
insertion of the expressions for the helicity unit vectors one has∑

λ±1

(e
†
kλ)i(ekλ)j

=
1

2
[(ek1 − iek2)i(ek1 + iek2)j + (ek1 + iek2)i(ek1 − iek2)j]

= (ek1)i(ek1)j + (ek2)i(ek2)j

= δij − kikj

k2
(11.45)

The last relation follows since the set of unit vectors in Fig. 8.1 is complete.
Current conservation can now be employed on the last term

kμ〈f|Ĵμ(0)|i〉 = 0

k · 〈f|Ĵ(0)|i〉 = |k| 〈f|Ĵ0(0)|i〉 (11.46)

The required expression in Eq. (11.44) can therefore be written as a
covariant polarization sum∑

λ

(e
†
k,λ)iWij(ek,λ)j = Wμμ (11.47)

One has to be careful with the limit k2 → 0 of the general expression
for the target response tensor in Eq. (11.27). From its definition in terms
of matrix elements of the current in Eq. (11.20), Wμν cannot be singular
in this limit. Thus, by inspection

W2 → O(q2) ; q2 → 0

−W1 +
(p · q)2
M2

Tq
2
W2 → O(q2) (11.48)

The trace of the response tensor is given in general by

Wμμ = 3W1 + W2
1

M2
T

[
p2 − (p · q)2

q2

]
(11.49)
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62 Part 2 General analysis

With the use of Eqs. (11.48) one has

Wμμ → 3W1 − W2 − W1 + O(q2) ; q2 → 0

Wμμ → 2W1 + O(q2)

Wμμ(k
2 = 0) = 2W1(k

2 = 0) (11.50)

This is the desired result, and Eq. (11.39) holds as claimed.
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