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Abstract: Subglacial melt has important implications for ice-sheet dynamics. Locating and identifying
subglacial lakes are expensive and time-consuming, requiring radar surveys or satellite methods. We
explore three methods to identify source regions for lakes using seven continent-wide environmental
characteristics that are sensitive to or influenced by ice-sheet temperature. A simple comparison of
environmental properties at lake locations with their continent-wide distributions suggests a statistical
relationship (high Kolmogorov-Smirnov statistic) between stable lake locations and ice thickness and
surface temperatures, indicating melting under passive conditions. Active lakes, in contrast, show little
correlation with direct thermally influenced parameters, instead exhibiting large statistical differences
with horizontal velocity and bedrock elevation. More sophisticated techniques, including principal
component analysis (PCA) and machine learning (ML) classification, provide better spatial
identification of lake types. Positive PCA scores derived from the environmental characteristics
correlate with stable lakes, whereas negative values correspond to active lakes. ML methods can also
identify regions where subglacial lake melt sources are probable. While ML provides the most accurate
classification maps, the combination of approaches adds deeper knowledge of the primary controls on
lake formation and the environmental settings in which they are likely to be found.
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Introduction

Since the confirmation of the existence of subglacial
lakes in the late 1960s (Robin et al. 1970), 675 subglacial
lakes have been discovered beneath the Antarctic ice
sheet (Livingstone et al. 2022). Multiple studies have
targeted these lakes because of their unique isolated
environments buried under kilometres of ice and their
influence on glacial dynamics (Humbert et al. 2018,
Couston & Siegert 2021). For example, subglacial lakes
have been shown to affect ice velocity (Stearns et al.
2008). Additionally, subglacial lakes reduce bedrock
friction (Gudlaugsson et al. 2016) and increase heat
transfer at the bedrock/ice interface (Pattyn et al. 2016).
Subglacial lakes may portend more regional melting,
having implications for subglacial hydrology and
hydrogeology (Wright et al. 2012, Ashmore & Bingham
2014, Fricker et al. 2016) that can perturb the solid
Earth temperature field (Siegert et al. 2017). In addition,
subglacial lakes are also sites of extreme environments
that host life, serving as an analogue of possible life on
icy moons (Siegert et al. 2001, Christner et al. 2014,
Thatje et al. 2019).
The vast majority of known subglacial lakes have been

identified using remote sensing techniques. Radio-echo
sounding (RES; Siegert, 2000) is the most effective

method for detecting subglacial lakes. RES is an indirect
observation technique that relies on radio waves to
penetrate the ice sheet and reflect off subglacial water
bodies. Smaller lakes can be difficult to resolve using this
method as they blend into the bedrock background
(Magnússon et al. 2021). Ephemeral lakes resulting from
the seasonal filling and drainage of basins may not be
captured by RES; instead, these active lakes are more
commonly discovered using satellite altimetry via the
changes in ice elevation and specific surface morphology
(Gray 2005, Fricker et al. 2007, Horgan et al. 2012).
Despite the discovery of numerous subglacial lakes, it is

likely that many remain undiscovered (Goeller et al. 2016,
MacKie et al. 2020). For comparison, Canada is ∼75%
of the land area of Antarctica yet has nearly 880 000
lakes, most of which are glacial (Messager et al. 2016).
Scandinavia, although much smaller, has a similar
spatial density of lakes to Canada (Messager et al. 2016).
While an ice sheet still covers Antarctica and the
bedrock remains frozen over much of the continent
(maximum estimated area covered by lakes = 95%;
Siegert 2000, Goeller et al. 2016), there are probably
many more subglacial lakes beneath the Antarctic ice
sheet that remain undiscovered due to the limitations
presented by current detection methods (MacKie et al.
2020).
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Because remote sensing techniques are unlikely to
identify all existing lakes, multivariate and machine
learning (ML) methods have been demonstrated to
help identify favourable lake-forming environments
(Rodriguez-Galiano et al. 2015). For example, MacKie
et al. (2020) used logistic regression trained using five
environmental variables and several derivative
parameters to refine estimates of locations and areas of
subglacial lakes. Their results provide a minimum
estimate of 0.32% of Antarctica being covered by
subglacial lakes. However, this result will only be a
fraction of the total area of melting at the base of the ice
sheet.
In this study, we build upon these previous studies to

explore seven site characteristics that contribute to the
thermal state of the ice sheet to develop multivariate
methods to predict the source regions and classification
of subglacial lake melt sources. Our tests include
comparisons between distributions of individual
variables at lakes within East Antarctica, principal
component analysis (PCA) and ML using the subspace
K-nearest neighbour (KNN) method. From these tests,
we develop three separate models of subglacial lake melt
source identification that can be applied to subglacial
environments.

Background

Subglacial lakes

Subglacial lakes are classified as active or stable (Fig. 1),
where stable lakes can be identified via RES (Oswald &
Robin 1973, Carter et al. 2007, Wright & Siegert 2012)

and active lakes can be identified via satellite
observations of ice elevation (Gray 2005). Stable
subglacial lakes are believed to form when the melting
point is reached under a geothermal gradient (Siegert
2000). With the exception of near-surface effects, the
temperature increases with depth in ice (Paterson 1994).
This increase in temperature results in the ice exceeding
its pressure melting point under sufficiently thick ice,
which then melts and collects in a low region to form a
subglacial lake. For a typical geothermal gradient (with
a surface temperature of -50°C, ice thermal conductivity
of 2.3 W m-1 K-1 and basal heat flux of 40 mW m-2), the
melting point is located at a depth of ∼2.5 km based on
simple back-of-the-envelope estimates using the heat
equation, although this varies depending on regional
heat flux (An et al. 2015, Martos et al. 2017) and local
environmental factors such as surface temperature (King
& Turner 1997), ice velocity, mass accumulation rates
(Llubes et al. 2006) and subglacial geology (Willcocks
et al. 2021). Active lakes (lakes where water is actively
transported into or out of the lake) lead to the overlying
ice sheet being raised or lowered accordingly due to ice
buoyancy (Horgan et al. 2012). As these types of lakes
may result from the inflow of external water sources, it is
possible for lakes to form irrespective of the geothermal
environment. Due to the transient nature of these lakes,
active lakes can be temporaryor seasonal (Lai et al. 2021).

Predictive studies

Previous attempts at constructing predictive models have
included those of Livingstone et al. (2013) and Goeller

Fig. 1. Map of subglacial lake locations across
Antarctica categorized into active (with active
water inflows/outflows) and stable (with constant
water levels). There are 535 stable lakes and 140
active lakes. Lake locations and designations are
from Livingstone et al. (2022).
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et al. (2016), who both used hydraulic potential to identify
the drainage pathways under the Antarctic ice sheet and to
locate points of pooling above the bedrock. Goeller et al.
(2016) identified 10 183 potential lake locations. Both
models identified ∼4–5% of the Antarctic ice sheet base
to lie above a region where water can pool in the
bedrock. Livingstone et al. (2013) were able to reduce
this percentage down to 2.7% by removing pooling
locations where temperatures would be too cold for
liquid water, while Goeller et al. (2016) were able to
reduce the percentage down to 0.6% by scaling the
predicted lakes down to match those of known lake
locations. Both of these models are highly dependent on
the Bedmap2 dataset (Fretwell et al. 2013), which has an
unrealistically smooth bedrock topography due to
interpolation (MacKie et al. 2020).
To address some of these issues, MacKie et al. (2020)

used ML methods to incorporate additional datasets in
order to refine the number of lakes. To improve the
limitations of the Bedmap2 dataset, MacKie et al.
(2020) generated a more realistic bedrock topography
by simulating small-scale roughness using Fourier
analysis. Derivative parameters including bedrock slope
and curvature of the hydraulic potential were then

incorporated into their analysis. In addition, MacKie
et al. (2020) included heat flux, ice velocity, strain,
curvature of the hydraulic potential, ice-surface slope,
ice thickness, flow accumulation models and distance
along the ice flow path from the grounding line to form
a linear regression. The estimated area covered by
subglacial lakes in this study ranged from 0.32% to
0.60%. However, not all of these variables contribute
meaningfully to the analysis.
We take a broader perspective, focusing not simply on

lakes, but also on their source potential; that is, the base
of the ice sheet that is melting and contributes to lake
formation. We use the more recent and higher-resolution
topography of the BedMachine model (Morlighem et al.
2019) and examine several recent models of geothermal
heat flux.

Datasets

To classify the formation environment of subglacial lakes,
we examine the seven site characteristics shown in Fig. 2.
These parameters are chosen as direct or indirect proxies
for temperature or thermal state at the ice sheet bedrock
and can be easily observed/estimated. To prepare each

Fig. 2. Datasets used for developing lake melt source classification. a. Surface temperature is an averaging of multiple temperature
measurements dating from 1979 to 2011 (van Wessem et al., 2014). b. Heat flow is an ensemble average from the following sources:
Maule (2005), An et al. (2015), Martos et al. (2017), Shen et al. (2020), Guimarães et al. (2020), Stål et al. (2021). c. Ice thickness,
d. bedrock elevation and f. bedrock slope have all been taken from Morlighem et al. (2019). e. Crustal thickness data are taken
from Baranov et al. (2017). g. Horizontal surface velocity data are taken from Palmer et al. (2013).
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dataset for analysis, they were projected onto Antarctic
polar stereographical coordinates and interpolated into a
common grid with a discretization of 10 km× 10 km.
Surface temperature is an important boundary

condition that influences the depth at which melting is
reached under a positive thermal gradient. Temperature
was recorded by averaging the updated Regional
Atmospheric Climate Model (RACMO2) over a 32 year
period (1979–2011; van Wessem et al. 2014). In
Antarctica, the estimated surface temperature ranges
from -5°C to -60°C, with the former being closer to the
melting point of the ice. Therefore, we expect that
subglacial lakes are more likely to exist in regions with
warmer surface temperatures.
Basal temperatures of the ice sheet are influenced by

the solid Earth geothermal gradient (Paterson 1994).
Because there are relatively few direct estimates of
Antarctic geothermal heat flux, we average six published
geophysical proxy-based estimates of heat flux. We do
this by interpolating all six models into the same
10 km × 10 km grid used for all other samples and then
finding the mean heat flux in each cell. This ensemble
heat flux map may improve the accuracy of the average
by reinforcing heat flux estimates where they agree and
averaging out large contrasting anomalies where the
models agree poorly (Supplemental Appendix). These
models include a satellite-based magnetic Curie depth
model (Maule 2005), a shear-wave tomography model
(An et al. 2015), a Curie airborne-based magnetic model
(Martos et al. 2017), an interpolated model based on
current core heat flux measurements (Guimarães et al.
2020) and two empirical seismic similarity models (Shen
et al. 2020, Stål et al. 2021).
Although the heat flux is proportional to the thermal

gradient, the absolute temperature at depth is critical
for melting. Therefore, the thickness of the ice is also an
important site characteristic to consider. For ice
thickness, we use the BedMachine model (Morlighem
et al. 2019), which is higher resolution than the earlier
Bedmap2 dataset (Fretwell et al. 2013). While the depth
at which melting will occur differs from region to region,
we expect many areas of thick ice to have lake melt
sources due to the vast depth causing even the lowest
thermal gradients to reach the melting point of ice.
Large-scale elevation variations can be sensitive to

tectonic activity and/or reflect thermal gradients in the
lithosphere beneath (Hasterok & Chapman 2011, An
et al. 2015, Hasterok & Gard 2016). Although the ice
represents a relatively uniform cover in the interior,
bedrock elevation may help identify hidden thermal
contributions to lithospheric buoyancy. The link between
elevation and thermal structure can be made
complicated by variations in compositional buoyancy
(lateral variations in crustal thickness and rock density).
Furthermore, we do not expect to find lake melt sources

in regions of the highest topography, as the surface ice is
often too thin and/or the surface temperatures are too
cold for a sufficient gradient to create a lake melt source
in these environments. We use the BedMachine model
(Morlighem et al. 2019) as the bedrock elevation model.
Crustal thickness can also be used as a proxy for

tectonically active/stable regions, and it reflects total
radiogenic heat flux (Hasterok & Webb 2017, Goes et al.
2020). We acknowledge that the link between crustal
thickness and the lithospheric thermal state can be
tenuous, especially at the global scale (Mareschal &
Jaupart 2013), but there are good reasons to suspect that it
may be a reasonable assumption for beneath Antarctica.
First, the Cenozoic West Antarctic Rift has a thin crust
and an estimated high geothermal heat flux (Behrendt
1999, Jordan et al. 2020). The older East Antarctica has a
thicker crust and lower geothermal heat flux (Krynauw
1996). Second, the mantle has approximately an order
of magnitude lower concentrations of heat-producing
elements than the crust, so a thick crust may lead to
higher radiogenic heat flux. We use the crustal thickness
model of Baranov et al. (2017), which has a grid spacing
of 10 km× 10 km.
Furthermore, we will examine the topographical

bedrock slope around lakes, as some models predict that
topography can focus heat flux into valleys and away
from peaks (van der Veen et al. 2007). If correct, we
would expect to see lake melt sources in areas of extreme
topographical changes due to the amplification these
cause in local heat flux at the base of valleys where lakes
would not normally form (Palmer et al. 2013). We define
the topographical bedrock slope as the magnitude of the
change in bedrock elevation using Equation 1:

R =
������������������
∂z
∂x

( )2

+ ∂z
∂y

( )2
√

(1)

with respect to the slope in orthogonal directions.
Llubes et al. (2006) demonstrated how ice velocity in

both the horizontal and vertical directions directly
influences thermal profiles via advection dissipation and
basal friction. As measuring velocity throughout the ice is
impractical, we use surface velocity as a proxy for the
underlying velocity value in the glaciers (Wolff & Doake
1986) as well as the thermal effects it applies. The surface
velocity of the ice in the horizontal direction is taken from
Rignot (2019). As there is a high correlation between
horizontal and vertical velocities, we used horizontal
surface velocity as a proxy for velocity in both directions.
Complex physical processes can make it difficult to

directly link these thermally sensitive proxies to
temperature. Thus, the use of multidimensional methods
can potentially reveal patterns between proxies that
simpler analyses cannot.
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Methods

Weexplore three techniques to characterize the environments
associated with subglacial lakes: 1) comparative analysis,
which is the simplest and least rigorous, 2) PCA, which is
a multivariate method, and 3) ML methods, which are
the most sophisticated methods, although offering less
clear causal connections between observations and
predictions.

Comparative analysis

When examining environmental parameters individually,
specific parameters are expected to be identified as
critical to an ideal lake melt source. We compared the
distribution of lake parameters (both active and stable)
against the whole of Antarctica with a resolution of
10 km × 10 km. Comparisons are made both visually
and using the two-sample Kolmogorov-Smirnov (KS)
statistic. Low KS values suggest similar distributions
and therefore little influence of the environmental
variable on lake melt source formation. High KS values
indicate greater differences between the distributions and
may indicate an influence of the environmental variable
on lake melt source formation or as a possible predictor
of lake occurrence (Maguire et al. 2021).

Principal component analysis

PCA is amultidimensional method that determines a set of
linear basis vectors that can be used to discriminate data.
We use it in order to examine the source of variance in
the data and to separate Antarctic regions based on the
likelihood of finding active lake melt sources, stable lake
melt sources or no melt sources at all. We perform a
PCA to account for the fact that no single environmental
variable can describe an ideal lake melt source
environment. It is also used as a precondition to reduce
noise in some of the ML experiments.
There are significant variations in the magnitudes and

ranges of each of the variables with respect to each
other, which can make it more difficult to resolve the
sources of variance. To account for this, we centre and
normalize all parameters using Equation 2:

x̂i = xi − �xi
sxi

(2)

where xi is the observed data, x̄i is the mean and σxi is
the standard deviation. Rather than use x̄i and σxi from
the lakes, we use the parameters calculated from the
Antarctic grids to perform the PCA analysis. This choice
gives us a series of values for each of the lake parameters
standardized in relation to Antarctica as a whole. It also
ensures that as the database of lakes grows, the PCA
vectors need not change. Using these unitless variables,

we conduct a PCA on the normalized parameters to
create a set of eigenvectors and eigenvalues for our
principal axes. We then compare the scores of lakes with
those of East Antarctica to identify regions with high
potential for lake melt sources.

Machine learning methods

The third set of tests for lake melt source classification
employs ML methods computed using the MATLAB®

ML classifier MLC application (MATLAB 2020). The
classifier takes a set of identified multivariate data points
(also referred to as training data) and applies multiple
ML algorithms to the data variables in order to create
a prediction function that can identify unidentified
data points from their input variables. All tests were
performed using 10% cross-validation to reduce the
likelihood of overfitting. Tests were performed with and
without PCA preconditioning, but it was found that this
did not make a significant difference to accuracy and
therefore it was not included in the preferred classifier.
The resulting prediction function uses the training data
to test its accuracy according to the number of correct
classifications it makes. Unlike the previous two
methods, the MLC has multiple methods at its disposal,
which we use to find methods that accurately identify
environments with lake melt source probabilities.
A null lake class (i.e. no lake present) is required to train

the MLC to identify regions without lakes. Although we
have a database of lake locations, there is no validated
null lake dataset (i.e. locations without lakes). Therefore,
we randomly assign several Antarctic locations as
proxies for a null class (i.e. no lake present), with the
only restriction being a minimum proximity to currently
known lake locations. While randomly picking points
can be a tenuous method for creating a null class (an
undiscovered lake can be incorrectly assigned a null
class), staying far away from known existing lakes is a
simple and independent criterion that seems logically
reasonable. Several tests were conducted by varying the
minimum allowable distance from null points to known
lakes. An optimal threshold of 200 km was determined
for the null proxy cells (Supplemental Appendix). To
prevent oversampling, 675 null proxy cells (the same as
the number of subglacial lakes) were used for training.
We initially began by testing the training data against

all 24 of the available classifiers using default settings to
identify the most promising methods from their accuracy
(see Supplemental Table 1). The best-performing
methods were explored more thoroughly, testing a range
of tuning parameters (see Supplemental Appendix). The
subspace KNN method was found to deliver the highest
percentage of correct classifications, and therefore this
was used create our preferred classifier model. The
subspace KNN model is an ensemble learner where
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KNN classifications are made using multiple subsets of
the environmental properties. The classification is
predicted via the majority response from the ensemble of

predictions. To access the probability score for each
class, we reverted to the command-line versions of the
classification codes.

Fig. 3. Comparison of Antarctic and lake distributions for key environmental parameters: a. Ice-surface temperature; b. heat flux; c. ice
thickness; d. bedrock elevation; e. crustal thickness; f. bedrock slope; g. horizontal ice velocity. Antarctica datasets have been
resampled to a common 10 km× 10 km grid. The Antarctic datasets have been normalized to a percentage of the entire continent;
lakes have been normalized to the total number of lakes (both active and stable). The Kolmogorov-Smirnov (KS) statistics are
computed between the cumulative distributions of lakes distinguished by type and the Antarctic continent. Larger KS values indicate
a greater difference between the distributions.
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Results

Comparative analysis

Surface temperature is one of the most distinct parameters
when comparing lakes with Antarctica as awhole (Fig. 3).
The estimated annual average surface temperatures for
Antarctica range from -55°C to -10°C, with a relatively
uniform distribution (Fig. 3a). Stable lakes are more
common in regions with low surface temperatures,
generally < -40°C, whereas active lakes are more
common at warmer temperatures. The KS statistic for
stable lakes is 0.490 and for active lakes is 0.163,
indicating a greater difference between stable lakes and
Antarctica than between active lakes and Antarctica.
Both Antarctica and subglacial lakes skew towards

lower basal heat flux values, with both peaking at
∼50 mW m-2 (Fig. 3b). Although Antarctica has a long,
smooth tail for high estimated heat flux values, stable
lakes noticeably drop at > 57.5 mW m-2. The one
exception is a small cluster of lakes at ∼75 mW m-2.
These high heat flux-related lakes are in regions of West
Antarctic (Fig. 1) that experienced Cenozoic rifting
(Schroeder et al. 2014).
A large difference between Antarctic and stable lake

distributions is found with ice thickness (Fig. 3c).
Antarctic ice thickness values are relatively uniformly
distributed, ranging from 0 to 4 km. However, lakes
rarely occur beneath ice thinner than 1 km, and stable
lakes generally skew strongly towards regions with thick
ice (> 2.8 km). The peak in the lake distribution occurs
at slightly higher than 3 km of ice, resulting in a KS
statistic of 0.487 relative to the Antarctic continent.
Active lakes are found beneath a wider range of
ice-thickness values, from < 500 m to nearly 4 km. This
distribution more closely reflects that of East Antarctica,
with a KS statistic of 0.151.
The elevation of the Antarctic bedrock generates a

relatively smooth normal distribution ranging from -2 to
2 km (Fig. 3d). In general, lakes are biased towards
lower-elevation regions. Although stable lakes have a
similar distribution to Antarctica as a whole, active lakes
are biased towards lower values. The skew towards lower
values is relatively minor for stable lakes, resulting in a
KS statistic of 0.170. In contrast, active lakes are
strongly skewed towards lower elevations, resulting in a
high KS statistic of 0.531.
The bimodal crustal thickness distribution of Antarctica

is reflected in active but not stable subglacial lakes (Fig. 3e).
Active lakes exhibit the same bimodal nature, as they are
found in both East and West Antarctica, whereas the vast
majority of stable lakes are found in regions with the
thickest crust (i.e. East Antarctica, > 37 km). This result
is unsurprising given the geographical distribution of the
identified lakes (Fig. 1) and the well-known East-West
dichotomy of the continent (e.g. Baranov et al. 2017).

Despite the lack of stable lakes above thin crust in East
Antarctica, the KS values are reasonably similar for both
types of subglacial lakes because the thin crust includes a
relatively small area of Antarctica.
Bedrock slope is the least dissimilar environmental

parameter between East Antarctica and its lakes. Both
lakes and Antarctica as a whole skew towards
topographically flat (Fig. 3f). Out of the seven
parameters, bedrock slope demonstrates the least distinct
difference between active and stable lakes. Bedrock slope
is a poor factor for determining the ideal lake
environment, which is consistent with Willcocks et al.
(2021), who showed how the topographical effect of
local heat flux is probably the opposite of that theorized
by van der Veen et al. (2007).
The surface-ice velocity of the Antarctic ice sheet peaks

at 1–4 m year-1 (Fig. 3g). Neither active nor stable lakes are
distributed in regions similar to East Antarctica. In a clear
difference between stable and active lakes, stable lakes are
skewed towards regions with slow-moving ice, whereas
active lakes are skewed towards regions of fast-moving

Table I. Variance in the environmental parameters associated with
Antarctic subglacial lakes as well as their percentage of the total share
of the variance. Most variance is found in the horizontal ice velocity,
whose variance makes up over a quarter of the total variance. Bedrock
slope makes up the least of the variance, at < 1.5% of the total.

Parameter Variance Total %

Surface temperature 0.711 10.912
Basal heat flux 0.825 12.660
Ice thickness 0.508 7.801
Bedrock elevation 1.369 21.013
Crustal thickness 1.868 28.667
Bedrock slope 0.097 1.495
Horizontal ice velocity (log) 1.137 17.451

Note: We have taken the log of horizontal ice velocity to account for the
orders of magnitude difference between the maximum and minimum
values.

Table II. Basis vectors determined from the principal component (PC)
analysis of subglacial lakes and their explained variance. We can see
that almost 63% of variance is held within PC1 and > 93% of the
variance is contained within the first three PCs.

PC1 PC2 PC3 PC4 PC5 PC6

Surface temperature -0.315 0.338 -0.163 0.157 -0.152 0.844
Basal heat flux -0.266 0.434 -0.423 0.594 0.086 -0.450
Ice thickness 0.129 -0.450 0.109 0.567 0.619 0.255
Bedrock elevation 0.500 0.451 -0.333 -0.344 0.554 0.105
Crustal thickness 0.637 0.345 0.421 0.415 -0.352 0.040
Horizontal ice velocity
(log)

-0.397 0.416 0.703 -0.106 0.395 -0.089

% variance 66.136 16.506 10.774 3.440 2.272 0.872

Note: We have taken the log of horizontal ice velocity to account for the
orders of magnitude difference between the maximum and minimum
values.
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ice. The regions of slow velocities have high vertical
advection, which depresses the thermal gradient, carrying
colder temperatures down to the base of the ice sheet
(Mony et al. 2020). Thus, stable lakes can only form
under regions of sufficiently thick ice where temperatures
can reach the melting point of ice along these depressed
thermal gradients. Active lakes, however, tend to form in
regions where the ice is flowing rapidly, indicating that
they are not the product of the geothermal gradient. The
KS statistic is relatively high for both types of lakes:
0.495 for stable lakes and 0.433 for active lakes.

Principal component analysis

The PCA indicates relatively similar variances between
five of the seven normalized and centred variables
(Table 1). Horizontal velocity accounts for the largest
variance (∼29%), whereas bedrock slope accounts for
2% of the total variance. Because the variance
contributed by bedrock slope is very small, we exclude it
from the remainder of the PCAs. Excluding bedrock
slope results in relatively minor changes to the basis

Fig. 5. The scores of each Antarctic cell along the first principal component (PC) axis, thus showing where active lakes are likely to form
(green areas) over stable ones (blue areas). A larger-scale view of PC1 is also shown, illustrating the accuracy of predicted lake types of
the region in the black box along with ice stream names.

Fig. 4. Map of lake scores in the first two principal component
(PC) axes overlying a heat map of the scores of a
10 km× 10 km terrestrial Antarctic grid. Scores are computed
from the sum of the products of the centred and normalized
environmental parameters with their associated principal
vector components. Also shown are the projections of the
environmental vector components illustrating the relative
importance of each parameter to the score assigned to a
location.
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functions and does not affect interpretations based on the
results.
The first three principal components account for > 90%

of the total variance (Table II). The first principal
component explains nearly 63% of the variance in the
data. The analysis identifies crustal thickness and
bedrock elevation as the most important variables,
contributing to a positive score. On the negative side,

horizontal velocity, surface temperature and heat flux are
important. For the second principal component, ice
thickness contributes to a negative score, whereas all
other variables trend towards positive values.
For the first two principal components, the projection of

the basis vectors is quite simple, which makes it relatively
straightforward to interpret the variance of the scores. The
basis vectors fall into three groups: 1) bedrock elevation
and crustal thickness, 2) surface temperature,
geothermal heat flux and horizontal velocity and 3) ice
thickness. An increase in group 1 vectors increases PC1
and PC2 scores. An increase in group 2 vectors increases
PC1 and decreases PC2 scores. An increase in group 3
vectors has little influence on PC1 scores while strongly
contributing to negative PC2 scores (Fig. 4).
Unfortunately, the similarity between the distributions

of the lake scores and the Antarctic grid prevents us
from accurately predicting a lake melt source from the
PCA results (Fig. 4). However, it is possible to
discriminate between stable and active lakes and the
regions they are most likely to be found from the PCA
score. Stable lakes tend to have positive PC1 scores

Table III. Performance of the preferred classifier (seven learners, four
dimensions). The confusion matrix reports the true and predicted
classes following model training. Also shown are the percentages
correct/total and incorrect/total in each respective row and column.

Predicted class

Stable Active Null Sensitivity Miss
rate

True
class

Stable 456 12 68 85.1% 14.9%
Active 18 80 41 57.6% 42.4%
Null 22 17 631 94.2% 5.8%
Precision 91.9% 73.4% 85.3%
False-discovery
rate

8.1% 26.6% 14.7%

Fig. 6. Location of stable (blue) and active (green) lake melt sources classified by a machine learning classifier as having a high or low
probability based of the six parameters identified in this paper. The classifier was created using a training dataset of 140 active and
535 stable Antarctic subglacial lakes parameters combinedwith 675 Antarctic null cell parameters. Null cells were identified based on
them being > 200 km away from any currently observed lake.
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and/or negative PC2 scores, whereas active lakes tend to
have negative PC1 scores and less negative PC2 scores.
Stable lakes tend to follow the group 1 and 3 axes,
whereas active lakes tend to project along the group 2
axes. While there are several stable lakes with negative
PC1 scores (generally PC1 < -1), only two active lakes
have a positive PC1 score. The stable vs active lake
tendencies towards positive and negative PC1 scores,
respectively, provide a means to classify regions as
favourable for either type of lake.
A map of PC1 scores illustrates the correspondence

between PC1 scores and subglacial lake locations
(Fig. 5). PC1 scores are generally positive in East
Antarctica, except along the coast and within ice streams.
PC1 scores are generally negative in West Antarctica and
along the coast. This result is reflective of the general
East-West dichotomy within Antarctica: thicker crust and
higher bedrock elevation in the East and higher heat flux
and surface temperatures in the West. The PC1 map
shows good correspondence to the locations of lakes,
even resolving the difference in classes at reasonably fine
resolution in some regions (e.g. Coats Land).

Subspace KNN classifier

Our preferred subspace KNN classifier uses seven learners
with four dimensions to generate the prediction function.
The preferred model was determined by training
classifiers to a range of learners and dimensions
(Supplemental Appendix). The ideal model parameters
were chosen according to a kink in the L-curve of the
classification error rate. Model performance relative to
each class was evaluated using multiple metrics
computed from the confusion matrix (Table III). Across
the three classes, the subspace KNN model resulted in
precision > 73%, with the highest precision of 92% being
obtained for stable lakes. Sensitivity is another metric of
accuracy. Approximately 90% of stable lakes and null
cells were correctly identified by the subspace KNN
model. However, only 58% of active lakes were correctly
identified by the model. Most incorrectly identified true
lakes were misclassified as null. However, many of the
misclassified lakes lie just outside of regions classified
with high lake probabilities (Fig. 6). Perhaps the
relatively low grid resolution of the environmental
parameters plays some role in this accuracy.
Visually, the predicted lake class map shows good

spatial correspondence between lakes and class
probability (Fig. 6). The ML model identifies the regions
running from Dome C across central East Antarctica,
around the South Pole and Pine Island Glacier as having
high probabilities for stable lakes. High probabilities of
active lakes are found in Marie Byrd Land, west of the
Transantarctic Mountains and south of Mount Erebus
and in the ice streams in Coats Land. Because of our

colour scale, only null regions with very high probability
null classes (> 90%) are clearly null (white). These
regions tend to be relatively large and continuous and
far from lakes. However, there also exist many regions
with more moderate probabilities of a null class, which
must contain misclassified lakes. We used a simple
majority to determine the class; however, raising the
threshold for null determination would reduce the
number of lakes being classified as null.

Discussion

We find thatmultivariatemethods provide valuable insights
into the types of environments associated with source
regions for subglacial lakes. While a comparative analysis
is able to show unique trends in the distribution of lake
properties compared to the Antarctic background, it can
only be used in a qualitative way. Thus, to develop a
reasonable map of subglacial melt sources and the types
of lakes they fill, multivariate methods are required.
The comparative analysis is able to identify biases in the

types of environments conducive to lake formation
(Fig. 3). Only horizontal velocity shows clear differences
between both lake types and Antarctica, although in
opposite ways. Stable lakes tend to be found in regions
of low-velocity ice, whereas active lakes are more
common in regions of fast-moving ice. MacKie et al.
(2020) also identified a similar distinction in horizontal
velocity correlation coefficients between the two types of
lakes. Stable lakes tend to reside in regions with ice
thicker than 2500 m (not the 3500 m identified by Pattyn
et al. 2016), low surface temperatures and low heat
flows. It is probable that the low heat flow increases the
thickness of ice. This combination of properties is
consistent with the geographical location of the most
stable lakes in the interior of East Antarctica. In
contrast, active lakes are found in regions with low
bedrock elevation and high surface ice velocities, which
are more commonly found in West Antarctica and along
coastal ice streams. Bell et al. (2007) had previously
made similar observations about active lakes found in
ice streams. The lack of clear differences in heat flux,
surface temperature and ice thickness suggests that
active lakes may not have strongly thermal origins.
Instead, active lakes form by melting elsewhere, which is
subsequently transported to the lake locations. The low
accuracy of the subspace KNN method for active lakes
is probably related to our choice of environmental
datasets that reflect the thermal conditions of the ice
sheet. A different set of datasets may be required to
improve the performance of ML methods when looking
for active lakes.
The PCA provides a means to quantitatively map the

multivariate distribution of properties that contribute to
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stable and active lakes (Fig. 5). The first principal
component is the most significant for identifying lake
types. The results are highly accurate in regions where
both active and stable lakes are in close proximity, as is
demonstrated for Coats Land (Fig. 5 inset). Although
regions with high second principal component scores
(> 1.8) are generally regions without lakes, most of the
null randomized cells show little differences in their
distributions compared to lakes (Supplemental Fig. 2b).
These regions correspond to the Antarctic Peninsula and
the Transantarctic Mountains. Hence, the PCA may only
poorly identify regions where melt is unlikely.
ML can refine the predictions of lake types and melt

source regions and can provide the means to assess
confidence in such predictions. For example, the subspace
KNN classifier is able to correctly classify regions where
PCA poorly classifies stable lakes in West Antarctica
(Fig. 6). By adding null locations, it identifies regions
where melting is unlikely. Because the null cells are random
and only based on a minimum proximity to known lakes,
there is the potential that some of the null cells could still
be regions of melting. However, the distribution of null
regions is considerably greater than the area where the
randomized null points are located, many of which have no
null training points (Fig. 6 & Supplemental Fig. 2a).
Similarly to MacKie et al. (2020), we find that the

bedrock slope adds very little useful information for
identifying lakes and potential melt sources. While other
environmental properties have clear biases in lake
distributions, bedrock slope does not (Fig. 3g). We
initially ran ML models with bedrock slope, but we
found that this did not produce significant improvements
in the classification models. Therefore, we excluded
bedrock slope from our preferred models. Previous
studies included hydraulic potential (Livingstone et al.
2013, Goeller et al. 2016, MacKie et al. 2020), which
may improve the precise prediction of lakes rather than
melt regions. However, the large error in bedrock
elevation (up to ± 1000 km in some locations; Morlighem
et al. 2019) can undermine the utility of using bedrock
slope for predictions. Additionally, MacKie et al. (2020)
found a very low correlation between bedrock slope and
lake probability predictions, further suggesting its limited
contribution. It is more probable that the addition of
distance along flow paths and a water routing algorithm
would result in the differences in probability between the
model in MacKie et al. (2020) and our own.
The probabilities predicted for lake locations by

MacKie et al. (2020) are generally much lower than
ours. Again, this difference is probably due to their
addition of a water routing model and their attempt to
precisely locate lakes rather than to identify potential
source regions. However, there are some key differences
that arise from other choices. Our model predicts a gap
in central East Antarctica that is devoid of lakes (Fig. 6),

whereas MacKie et al. (2020) predicted no such gap.
This difference probably arises due to our method for
introducing null cells. It remains to be seen whether our
method is valid. Another clear difference between our
model and that of MacKie et al. (2020) is situated
beneath Pine Island Glacier in West Antarctica, where
there are several stable lakes (Fig. 6). These lakes were
included in the lake database at the time when MacKie
et al. (2020) trained their model. While MacKie et al.
(2020) did suggest there being a very slight probability
(< 0.001) of such lakes existing beneath this region, our
model suggests a much higher likelihood of this.
A number of new heat flux models of the Antarctic

continent have been produced in the past few years.
Current models can have a wide variety of values for the
basal geothermal heat flux of Antarctica (Shen et al.
2020). MacKie et al. (2020) included a global seismic
tomography-based heat flux model by Shapiro &
Ritzwoller (2004) and two magnetic Curie depth-derived
heat flux models (Maule 2005, Martos et al. 2017). The
global tomography model is too low resolution to be
very useful, so it is excluded from our study. We include
several more recent heat flux models in our analysis in
addition to the two magnetic-based models, including
the continent-wide seismic tomography-based model by
An et al. (2015), two statistical-based models by Shen
et al. (2020) and Stål et al. (2021) and a thermal-based
model by Guimarães et al. (2020).
Our preferred model uses the ensemble heat flux model;

however, we produced a subspace KNNmap for each heat
flux model separately. We find that the ensemble model
gives results with the highest accuracy, although
admittedly the variations in accuracy range from 86% to
91% (Supplemental Fig. 3d). Because an ensemble
model averages out differences and amplifies agreement
between models, it will often produce a better estimate
of the true field. Hence, the best result is obtained using
the ensemble heat flux.
When compared individually, the recent

statistical-based models (which we believe are presently
the most accurate estimates of heat flux) do not perform
as well as the magnetic-based models. We hesitate to
speculate as to why this may be so because there are
clear issues with the magnetic models. For example, heat
flux in some large regions of West Antarctica is
estimated to be > 150 mW m-2 (Maule 2005, Martos
et al. 2017), whereas heat fluxes > 120 mW m-2 would
cause regional melting of the middle to lower crust
(Hasterok & Chapman 2011). Furthermore, the Curie
depth models are highly sensitive to the initial depth
estimates (Gard & Hasterok 2021). In order to produce
the predicted low heat flux in cratonic East Antarctica
and higher heat flow in the Cretaceous West Antarctic
Rift, the crustal thickness in West Antarctica was
arbitrarily halved to produce the initial Curie depth
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(Maule 2005, Martos et al. 2017). Thus, the Curie
depth-based heat flux estimates may have biases
introduced that make them less accurate. However, none
of the heat flux models perform well when compared
with conjugate terranes in Australia, India and Africa
(Pollett et al. 2019).
Regardless of the heat flux model used to train the lake

classifier, the results are generally similar (Supplemental
Fig. 4). The largest differences occur in West Antarctica,
although even there the models share broad agreement
of there being no lakes on the Antarctic Peninsula, stable
lakes in the vicinity of Pine Island Glacier and active
lakes in Marie Byrd Land. Another region of some
difference appears beneath Victoria Land to the west of
the Transantarctic Mountains.
Given the large variations in heat flux models, there is

probably still some significant improvement that can be
made in the future. Some of the discrepancies between
heat flux models result from differences in the sensitivity
of the geophysical fields to temperature as opposed to
other factors such as composition. However, a
significant fraction of the differences are probably due to
uncertainties regarding the physical properties of the
crust that are poorly constrained (Pollett et al. 2019).
Physical property uncertainties also affect statistically
based methods, as they tend to resort to average
behaviour rather than accurately capturing the range
and wavelength of spatial variations (Shen et al. 2020).
Therefore, improving heat flux models requires better
estimates of heat production and thermal conductivity
variations both laterally and vertically within the crust.
It may be possible to improve physical property
estimates using empirical relationships between thermal
properties and geophysical proxies such as crustal
seismic velocity or density (Hasterok & Webb 2017,
Hasterok et al. 2018, Jennings et al. 2019). Near-surface
variations in thermal conductivity can also cause
refractive effects that are not incorporated into
geophysical proxy-based heat flux estimates (Willcocks
et al. 2021). Incorporating these estimates will require
models of subglacial geology, specifically the location of
geological contacts, which could be developed from a
combination of gravity and aeromagnetic observations.

Conclusion

Multivariate methods have the potential to improve our
understanding of subglacial lake distributions and their
source regions. Using a combination of comparative
analysis, PCA and the ML methods, we find that stable
lakes are more likely to occur in regions with thick ice
and low geothermal heat flux, while active lakes lie in
regions with fast ice concentrated in coastal ice streams
and West Antarctica. PCA is able to distinguish between

the environments that typically form active lakes
compared to stable lakes, but it cannot identify regions
that are unlikely to contain lakes. ML methods can
improve the prediction of lake types, as well as identify
regions without lakes. The subspace KNN method was
found to be the most accurate ML method for this
purpose. Producing more accurate maps that identify
ideal subglacial lake melt sources requires improved
resolution of environmental characteristics. Such
maps will also benefit from improved heat flux estimates
that incorporate sub-ice geology to predict thermal
properties.
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