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Introduction

The Lusternik-Schnirelmann category (L-S category) cat(X) of a space X is the
smallest number k such that there exists an open cover {Xt,...Xk} for which each
inclusion Xt c X is nullhomotopic in X. The L-S category turns to be a homotopy
invariant of the space X. See [15] for a survey on L-S category.

Associated to the notion of L-S category is the notion of geometric category gcat(X)
due to Fox [10], which is the smallest positive integer k such that X can be covered by k
open contractible subsets. The geometric category is not an invariant of the homotopy
type of X [10]. The homotopy invariant version of gcat(X) was introduced by T. Ganea in
[12]. It is called strong category, Cat(X), and it was originally defined as the least integer
k > 1 with the property that X has the homotopy type of a polyhedron which may be
covered by k subpolyhedra each of which is contractible in itself. For a comparison of the
invariants cat(-) and Cat(-) see [12] or [22].

In this paper we focus our interest on numerical invariants of the Lusternik-
Schnirelmann type for non-compact spaces. Ordinary homotopy invariants do not
describe what is happening "far out" towards infinity and more subtle invariants are
needed to deal with non-compact spaces. To take the "infinity" into account one has
to use proper maps instead of just continuous maps and then proper homotopy
invariants replace the usual ones for non-compact spaces.

In [2] L-S category invariants are extended to the proper category V consisting of
locally compact a-compact Hausdorff spaces and proper maps. In this paper we define
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the proper analogue of a Ganea strong category and we relate it to a proper L-S
category. As an application, we prove that any open n-manifold with proper L-S
category 2 is 1-LC at oo and moreover M has the proper homotopy type of K" ((3.13)
and (3.15)). From this the Euclidean space R" (n ̂  3) is characterized as the unique
open n-manifold with proper L-S category 2 ((3.13)). This result improves previous
results in [2].

1. Preliminaries

We shall deal with the category V of Hausdorff locally compact a-compact spaces
and proper maps and the full subcategory Vo c V consisting of connected locally path-
connected spaces in V. Recall that a proper map (p-map) is a continuous map
/ : X -*• Y such that/~'(K) is compact for each compact subset K c Y. Notice that the
spaces in V always are paracompact ([9, 7.6.12]).

Given a space X in V, a system of oo-neighbourhoods of X is a decreasing sequence
of subsets of X where the closures Kj — X-Wt form an increasing sequence of

compact subsets with K, c intKj+l and X = uintKj. The sequence {Kj} will be called an
exhausting sequence of compact subsets.

A Freudenthal end of X is an element of the inverse limit T{X) = lim U(Wj), where
U{—) stands for the family of unbounded connected components. We shall also
consider the family B(—) of bounded components. A subset A c X is termed bounded
(unbounded, resp.) if the closure A is compact (non-compact, respectively). If
T(X) = {*} then X is said to be one-ended.

The following lemmas are commonplace in the topology of spaces in V, but they
are proved here since we do not know precise references for the proofs.

Lemma 1.1. Let X be a space in To. Given a compact connected subset K c. X and
a locally finite sequence {/4,},>i of connected compact subsets ofX there exists a connected
open neighbourhood of K, U, such that U is compact, and FrU D At = 0 for all j .
Moreover there also exists a compact connected neighbourhood L of K such that U,
B(X - L) = 0, and FrL n A} = 0 for all).

Proof. Since X is normal, locally connected and locally compact and {Aj} is locally
finite we can find a finite open cover {Ult...,Um} of the compact connected subset
K' = K U {Af, AjHK^ 0} with U, compact and U,: c X - {Ay, AjDK = 0}. Let U be the
connected component of U{1/,; 1 < i < m] containing K'. Clearly FrU C\Aj = 0 and U is
compact. Let L = U U {D; D e B(X — U)}. It is easy to check that L is connected and
U{X -L) = U(X - V). Hence B(X - L) = 0. Moreover, FrL c FrU impHes FrL HAj = 0
for a l l / Finally L is compact. For this let M c X be a compact set with U c intM. Then
the compactness of FrM yields that the family A} of components of X — U which meet
FrM is finite. Then L—U is contained in the union of the families Ax and
A2 = {D 6 B(X - 17); D c M). As Ax_ = U{D; D e At] and A2 = U{£>; D e A2] c M are
both compact sets it follows that L c U U Ax U A2 is also compact.
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Lemma 1.2. Let X be a space in Vo. Then there exists a sequence
U\ ̂  Lt C U2 Q L2... such that Ut is a connected open set and L, is compact with
B(X — L,) = 0. Moreover, if [Aj]^ is a locally finite sequence of compact connected
subsets of X the U,'s and Lt's can be chosen in such a way that each Aj is contained in a
difference U, - L,_, (i > 1) with Lo = 0.

Proof. Let K, c K2... be an exhausting sequence of compact subsets. Since
/C, c intK2 we can find a finite open cover {Wk} with Wk c intK2 connected and Wk

compact. Moreover, we can join the connected components of W = U{Wk] by finite chains
of connected open subsets of compact closures in some intKir Let Vx denote the union of
all the open subsets which form these chains. Then Vx is connected and open and
K, c intKit is compact. Hence the union //, = K, U {Ay, A} HK, / 0} is compact and
connected and contained in some intKh withy, > i",. Since X is normal and {Aj) is locally
finite we can find an open set Z, with H, c Z, c Z, c intKh - U{/1;; At n T, = 0}. Let U\
denote the connected component of Z, which contains Ht. Mow we apply (1.1) to U\
and we get an open connected subset Ut and a compact connected set L, with
V\ ^ I/, c L, and B(X — L,) = 0 and moreover AjnFrUl —0 for all j . Assume
L, c intK,i. If we replace JC, and K2 by L, and KS) respectively, an inductive process can
now be started to construct the required sequence.

The usual notions of homotopy, deformation, homotopy equivalence, etc . . . can
be defined in the natural way in V. Actually, the ordinary cylinder functor IX = X x /
endows the category V of a structure of /-category and hence V is a cofibration
category in the sense of Baues (see [5] and [1]). The symbols ~, ~,,, and ^ stand for
homotopy equivalence, p-homotopy equivalence, and homeomorphism respectively.
The set of p-homotopy classes of p-maps f : X -* Y will be denoted by [X, Y]p. A ray
is a proper map a : J -*• X where J denotes the half-line J = [0, oo). A strong end of
X is the p-homotopy class of a ray in F(X) = [J, X]p. Clearly each strong end defines a
Freudenthal end. When F(X) — {*} we say that X is strongly one-ended.

In the category V the constant map X -*• [*} is not defined if X is not compact.
However the role of the point is played in V by the half-line J. For this we recall that
for any space X in V, there always exists a proper map r : X —* J ([8; 6.3.5]). Moreover
the map r is unique up to p-homotopy. We shall briefly describe the construction of
such a map r. If {Uj}ji0 is a system of oo-neighbourhoods of AT with Uo — X, the Tietze
Extension Theorem yields continuous maps rt = Ut:— Uj+l —*• [j,j> + 1] with
rj(FrUj+l) =j + 1, rj(FrUj) =j. It is now clear that the maps r} define a proper map
r : J —• X. By using r, we can define (up to p-homotopy) the proper cone CpX as the
push-out in V of the diagram X x / <- X -> J. Also if / : X —*• Y is a proper map, the
proper cone of / , Cpf is naturally defined in V. When / = r, the proper cone
Cpr = Y.PX is called the proper suspension. Since J is contractible it is not hard to
check that the proper homotopical constructions in the /-category V have the same
ordinary homotopy type as the ordinary ones.

The following lemma leads us to the proper analogue of Borsuk's homotopy
extension theorem ([19, p. 41]). Recall that a space X is said to be an absolute
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neighbourhood retract (ANR-space) if for any metrizable space Y and any continuous
map / : A -*• X with A c Y closed / admits a continuous extension / : U -*• X for
some neighbourhood U of A.

Lemma 1.3 ([4, 3.5]). Let X be a locally compact metrizable space and Y a locally
compact ANR in V. Let C c X be a closed subset andf, g : C -*• Y p-homotopic maps. If
W C X is open with C c. W and f,g:W—>Y are continuous extensions of f and g
respectively then there exists a closed neighbourhood U of C in W such that f\v and g\v

are p-homotopic.

Proposition 1.4. Every ANR in V has the proper homotopy extension property
(PEHP) with respect to all pairs (X, A) in V with A closed and X metrizable.

Proof. It is similar to the classical proof in ([19, p. 41]). If V is any closed
neighbourhood of A in X and C = X x {0} U A x /, let </> : X —• / be a Urysohn map
with (t>(A) = 1 and 4>(X - intV) = 0. Then r : X x / -+ X x / given by
r(x, y) = (x, 4>{x)t) is a p-map such that r\c = idc and r{X x /) cz V x /.

Now let H : C -»• Y a p-map with Y an ANR in V. Since Y is an ANR we can
extend H to a continuous map H : W -»• Y where W is an open neighbourhood of C in
X x /. Then there exists a closed neighbourhood U c W of C such that H\c is proper.
Here we use (1.3) with f — g = H. By using the compactness of/ we can find a closed
neighbourhood V of A such that V x / c U. Then Hr : X x / —> Y is a proper
extension of H.

We also derive from (1.3) the following lemma which will be used later.

Lemma 1.5. Let X be a metrizable ANR-space in V and let C be closed in X. Assume
that the inclusion ic : C c X is p-homotopic to a composition of p-maps C —*• J —> X.
Then there exists a closed neighbourhood U of C and a proper extension r : U —>• J such
that the composition xr' is p-homotopic to the inclusion U c X.

Proof. Let r0 : X -> J be any continuous extension of r. Here we use the Tietze
Extension Theorem. If H : ic ~p <xr is a p-homotopy we consider the map

h = idx U H U ar0 : X x {0, 1} U C x / -+ X.

As X is an ANR-space we can extend h to h : W -> X for some neighbourhood W of
X x {0, 1} U C x / in X x I. By using the compactness of / one finds a neighbourhood
V of C in X with V x / c W. Let r, = ro\V. Then h\V x / yields a homotopy iv ~ ar,.
As an immediate consequence of (1.3) we get a closed neighbourhood 1/ c V and a p-
homotopy iv ~ ar' where r' = r, | [/.

https://doi.org/10.1017/S0013091500019623 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019623


ON THE GANEA STRONG CATEGORY IN PROPER HOMOTOPY 251

2. Numerical proper homotopy invariants

In [2] the proper L-S category of a space in V was defined. Namely, a closed
subset A c X is said to be properly deformable to J in X if there exists a diagram in
V

which is commutative up to p-homotopy. That is, there exists a p-homotopy
H : iA ~p ar. Notice that we can use the restriction to A of any proper map r : X -> J but
the p-homotopy class of a : J -*• X can depend on A. An open cover of X {V() is said
to be properly categorical (p-categorical) if each closure V, is p-deformable to J in X.
The proper Lusternik Schnirelmann category (p-category) of X, p — cat(X), is the least
number n such that X admits a p-categorical open cover with n elements. It is not hard
to check that p — cat(—) is a proper homotopy invariant. Moreover, the inequality
p - cat{X) > maxiCard^X)), cat(X)} always holds. Here cat denotes the ordinary L-S
category. Also it is clear that R" verifies that p — cat(R") = 2. As in ordinary homotopy
closed covers can be used in the definition of proper L-S category for ANR in V. This
is an immediate consequence of (1.5).

The proper analogue of Borsuk's homotopy extension theorem (1.4) yields

Proposition 2.1. Let X be a metrizable ANR in V and let P c X be a closed subspace
p-deformable to J in X. //"{C,},^, is a locally finite sequence of pairwise disjoint compact
subspaces of P and x, 6 C, there exists a p-deformation o/U^C, to A = {x,}^, relative to
A. Moreover, this p-deformation can be extended to a p-deformation of P to J in X.

Proof. The result is a consequence of the proper homotopy extension property
(PHEP) in (1.4). We shall give some details. Assume we have a diagram

and a p-homotopy H: iP ~p ar. Since any two p-maps in J are p-homotopic we can
use the PHEP of (P, UC.) to change r for a new r, with rx(C) = i e N for all i > 1. We
have a new p-homotopy Hl : iP ~p ar,. By using the PHEP of (J, N) we replace a by
a, ~p a with a, (i) = x,. Here we use the paths Hl\MxI between a(i) and x, given by the
p-homotopy // ' . Let H2: iP ~ a,r, be a p-homotopy.
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By using again the (PEHP) of (./, N) we find a2 and a p-homotopy F : a, ~ a2 such
that F(i, 0 = H2(x,, 1 - 0 for all i e N. Then by putting together the homotopies H2

and F(r x id) we get a new p-homotopy H3 : iP ~ a2r, such that H3|{x,} x / is a loop y,
homotopic to the constant path cx.. Moreover the homotopy G, : y, ~ cx. rel {x,} x {0,1}
can be chosen with G,({x,} x / x I) c H2({x,} x /) and so we have a p-homotopy
G = UG,, : A x / x / ->• X rel .4 x {0, 1}. Finally we apply the (PEHP) to the pair.

(P x / x /, P x / x {0} U P x {0,1} x / U A x / x /)

to extend H3 U iP x {0} x / U a2r, x (1} x / U G to a p-homotopy //" : P x / x / -> AT.
Then H4|P x / x {1} : iP ~ a.2r{ is the required p-deformation of P extending a p-
deformation of C onto ,4 relatively to A.

A subspace A c Xin T7 will be called properly admissible if the family of connected
components of A is locally finite in X (and hence countable).

Lemma 2.2. Let { [ / , , . . . , t/n} be an open p-categorical cover of a space X in Po. Then
there exists an open p-categorical cover {U\, ...,U'n} such that each U[ is properly
admissible.

Proof. Let Kt c K2... be an exhausting sequence of compact subsets of X. Let
Cm(Uj) denote the family of path components of Ut - Km. Here m > 0 with Ko — 0. Since
X is locally path connected each C e Cm(C/,) is an open subset. By compactness there
exist finite families Cm(U,) c Cm(Ut) such that Km+I - Km c u{C; C e C-iW)} (™ > 0).
Here C'_,((7i) = C0(l/f) = C(C/,). For each i we define U- = U{C; C 6 Cm(U,); m > 0}. It is
clear that {!/!},<,<„ is an open cover and it is p-categorical since U\ c ut. Moreover the
family C(U',) of path components of [/(• is locally finite since any point in Km only meets
path components of CJ(l/,) with j < m— 1. Furthermore, if D c (/| is a connected
component then D = U{C; C e C(LO and C c D ) . Indeed, since D is closed £> contains
the union of closures. Conversely, if x e D we have that x e C with C e C(t/J) since
C(LQ is locally finite. As C_c 17; is connected it follows C £ D. Finally the family of
connected components of U'i is locally finite since given an open G which only meets
the path components C,. . .Ck of £/• then G only meets the components D c. U't which
contain some C, (1 < s < k).

Proposition 2.3. Assume X is a one-ended metrizable ANR-space in Po and
H,(X;Z2) = 0. If P is a properly admissible closed subset p-deformable to J with
U(P) ^ 0 there exists a closed subset P1 c X with P c P', fi(P') = 0, W such that F is
p-deformable to J in X.

Proof. Let 0 = Lo c I/, c L, .. . be an increasing sequence with the properties of
(1.2). Moreover we can assume that each bounded component B e B(P) is contained in
some difference Dk = Uk — Lk_t (k > 1). We shall also use the differences
Dfc = Uk — Lj_t for j < k. Note Dk

k = Dk. Since both X — Lf and Uk are open connected
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and hence path connected sets, the reduced Mayer-Vietoris exact sequence yields the
isomorphism

0 = H^X; Z2) -+ H0(D
J
k; Z2) - • Ha(X - L;_,; Z2) © H0(Uk; Z2) - • H0(X; Z^ = 0

and so each D'k is path connected.
In order to connect all the bounded components of P to unbounded components

we now proceed in each difference Dk in the same way as in ([10, 16.2]). Namely, we
construct for each k > 1 a union ("forest") Fk = UT* of pairwise disjoint directed
"trees" T* C Dk whose "vertices" are all bounded components B e B{P) with B c. Dk

together with some points in Dk. Furthermore we shall construct each Fk in such a way
that the source vertices are bounded components and the sink vertices are points of
unbounded components which meet Dk. Hence for each bounded component B c T)
there will be only one directed path yB from a point xB e B to some unbounded
component UB e U(P). The forest Fk is constructed inductively as follows. Assume we
have already constructed a forest F'k. Let m'k denote the number of bounded
components in Dk — F'k. Then we consider an arc y from a bounded component
B C D , - F'k to some unbounded component U with U n Dk^0. Let p be the first point
in y n (F'k n U) and let q be the last point in the subarc from B to p belonging to some
component B" c Dk — F'k. Let y' Qy be the subarc between q and p, and let
F"k = F'k U / U B'. Then m"k = m'k— 1. Hence any forest F'k can be extended to a forest Fk

with mk = 0. The result follows by starting with F'k — 0.
Once we have constructed a complete forest Fk in each Dk, we follow the above

argument to extend Fk U Fk_{ to a new forest F*"1 in the difference Dk~
l containing all

components in Dk~\ Then F = UfFfc"1; k > 2} is a locally finite forest in X containing
all components in B(P). Now we use (2.1) to choose a p-deformation of P relatively to
each point xB, B e B(P). The construction of the (directed) forest yields an order to
push each tree T c. F onto QP = U{[/; U e U(P)}. Note that this deformation is proper
since any xB is pushed along a finite tree inside Dk

k~
l if B c £)£"'. Hence P1 — PUF is

p-deformable onto P in X and so P1 is p-deformable to J in X. This finishes the
proof.

Proposition 2.4. Le/ X be a one-ended ANR-space in Vo with HX(X; Z2) = 0. Assume
that {P, Q) is a properly admissible p-categorical cover of X. Then there exists a new
closed cover {P1, Q'} with the same properties and such that the intersection P" HQ' also is
properly admissible. Moreover, ifB(P) - B(Q) = 0 then B^P1 n Q') = 0.

Proof. Let [Cm] be the connected components of P. If {K,} is an exhausting
sequence of compact subsets of X there exists an increasing sequence of positive
integers w, < m2... such that for each i > 1 Cm n Kt, = 0 if m > m, since {Cm} is locally
finite. As X is normal and locally connected we can inductively construct connected
open subsets Um with C , C [ / , c ^ a - (U;<mL .̂) U (L)k>mCk), Um n t/v = 0 if m / m'
and L/m c A" — /C, if m > m,. Hence {l/m} is a locally finite family of pairwise disjoint closed
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sets and we define P1 — U{Um}. Notice that P" can be assumed p-deformable to J in X
by (1.5), and S(P') — 0 if B(P) — 0 since the components of P1 are Vm. Similarly we can
construct Q' = U{ Wn] with Wn connected and open. On the other hand, since
H,(X; Z2) = 0 the Mayer-Vietoris exact sequence yields the short exact sequence

0 = HX(X; Z2) 4- H0(U n W; Z2) -» H0(U; Z2) © H0(W; Z2) -» H0(X; Z2) = Z2 -»- 0

where [/ = U{t/J and W = U{WJ. This implies that the (path) components of U n W
are of the form Um n Wn. Moreover we next show that the components of P1 n Q' are of
the form UmC\Wn. Indeed, let C c P1 n Q' be a component. Then there exist m and n
such that C c T7m n WB. But l/,flW, = Z7m n WB since any x € Um n Wm with x £ t/m
necessarily belongs to Wn because X = UUW. Hence, for any open neighbourhood Q
o f x , Q n W , n C / B / 0 and so x 6 Um n Wn. Similarly if x £ Wn. As C/m n WB is a (path)
component of U n W then C/m n WB c P' n g' is connected and hence C=Unn Wm.

Finally, if B(P) — B(Q) = 0 the Un and Wn are unbounded for all m, n. Assume that
for some intersection Um n Wn is bounded. Then there exists a compact subset K c X
with C/m n Ŵ, c K. As X is one-ended we can find another compact subset L with
K c L and such that any two points in AT - L can be joined by an arc in X — K. Since
Um and Wn are unbounded we can find points x e Um — L and y e Wn- L. Let
y c X — K be a path joining x to y. In addition paths a c Um and /? c Wn can be found
joining x0 e Um n VFn to x and y respectively. In this way we have constructed a loop
^ = yUaUj8 which represents an element w{ e H, {X; Z2) = 0, and its image
A(w,,) e //0(C/ n W; Z2) is the sum of components of U C\W which are crossed by £
when £ passed from U to W. As y joins C/m to Wn outside Um n Wn, it follows that
A(w{) / 0 which is a contradiction. Therefore any intersection Um D Wn is unbounded
and hence any component C c p' n Q' is unbounded.

In addition to the L-S category, another numerical homotopy invariant was
introduced by T. Ganea ([12]) with the name of strong category. This notation admits
the following generalization to proper homotopy. Given a space X in V, the proper
strong category of X is the smallest number p — Cat(X) = k such that there exists a
space Y in V with X ~p Y and such that Y is covered with the interiors of k closed
subspaces Y{ ~p J (1 < i < k). Many results concerning strong category have their
corresponding analogues in proper homotopy. We shall prove below two of them (cf.
([6, 5.4]) and ([6, 5.5.])) which will be used later on. The key point in the proofs is the
fact that V is an /-category in the sense of [5]. In particular, categorical wedge and
cone constructions are defined in V up to p-homotopy equivalence. Moreover, if
i: A >—> X is a p-cofibration in V, the cofibre of i is defined up to p-homotopy by the
push-out diagram

A ^ - A"

•X/P.A
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It can be shown that X/PA is p-homotopically equivalent to the proper mapping cone
of i Cpi. In general any space X p-homotopically equivalent to X/PA will be called the
homotopy cofibre of i.

Proposition 2.5. Let X be a space in V such that p — cat(X) < n. Then X is a p-retract
of a space X in V with p — Cat(X) < n and conversely.

Proof. Let {Wfc}i£l<n be a p-categorical open cover of X. Then we have diagrams

which are commutative up to p-homotopies Hk. Let CpWk denote the proper cone
constructed by using rk. The homotopies Hk and the push-out properties of CpWk yield
p-maps IT : CpWk -> X such that H \Wk\s the inclusion ik. Hence the union of the p-
maps ft give a p-retract r: X = U{CpWk] - • X. Clearly each cone CpWk is p-
homotopically trivial, and so p — Cat(X) < n. The converse is easy, since the existence
of a p-retraction as above implies p — cat(X) < p — Cat{X).

Proposition 2.6. If X is a space in V then p — Cat(X) < n + k if and only if X has the
p-homotopy type of the push-out, ZA(X0, Xt), of a diagram Xo u A", <- A u A '^i A x /
(double mapping cylinder) where p — Cat(X0) < nandp — cat{Xx) < k.

Proof. The sufficiency is clear. Let now Y ~p X with Y = U}iiin+kintYi, Yt closed
and Y, ~ , J. Then XQ = U^^Y, = Uj£,inintXoY, and X, = UH+}si£n+kY, = Un+]<i<n+kintXl %
verify p - Cat(X0) < n and p - Cat{X{) < k. Moreover, we claim that Y has the same
p-homotopy type as the double mapping cylinder ZA(X0, X,) where A = Xor\X,.
Indeed, we consider the natural closed embedding ZA(X0, Xt) c Y x / with
X0<zYx {0} and Xt c Y x {1}. As Y is paracompact let {0,} be a partition of unity
subordinate to the open cover {intYt}. We now define the p-map ^ : Y -*• Y x / by
My) = (y. <t>Xl(y)) w here 4>Xl = S{< ,̂; i > n + 1}. Clearly, <px^y) = 0 and ^Xl(y) = 1 if
y $ X{ and y & Xo respectively. Therefore \j/{Y) c ZA(X0, Xt).

Let \j/': 7 - • Z ^ ^ o , X,) and q : ZA(X0, Xt) -> y denote the restrictions of i/r and
the projection n] : Y x / ->• y respectively. Clearly <JI// = idy. Moreover the formula
H(w, s) = (nl(w),(\ — s)cp'Xl(w) +sn2(w)) where 0'^,(w) = 4>Xlnl(w) yields a well-defined
p-map which gives us a p-homotopy H : '̂<? ~ p idZjl(jro-X|).

Corollary 2.7. (cf. [12, 2.1])) If X is a connected space in V p = Cat{X) < n if and
only if there exists a cofibration i: A >—» Y in V such that p — Cat{Y) <n—\ and X is
the homotopy cofibre of i.
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Proof. According to (2.6) we have X ~p ZA(X0, Xx) for a certain double mapping
cylinder with Xo ~p J and p - Cat(Xx) < n - 1. By general properties of cofibration
categories ([5, 1.1.1]) the natural p-map Xo >-> ZA(X0, Xx) is a cofibration in V and the
p-homotopy equivalence Xo ~p J yields a p-homotopy equivalence ZA(X0, X,) ~,, C =
ZA(X0, XX)/PXO. As X is connected we have A ^ 0 and clearly C is homeomorphic to
the mapping cone of i: A «->• X, which is the push-out of the diagram 7 <- A >—> M,
where M, denotes the mapping cylinder of i in P. As M, —PXU p- Cat(Mj) < n - 1
and the result follows.

Remark 2.8. Corollary (2.7) can be restated in the following way. The space X
verifies p - Cat(X) < n if and only if there exist cofibration sequences At >-> Xt -> Xi+l

(1 < i < n - 1) in V where Xt ~p J and Xn ~p X. Similarly, the Cornea cone-length
invariant ([7]) can also be defined in V. Namely, the proper cone-length of X is < n if
there exist cofibration sequences as above where A, = ZJ,Z, for some space Z, in V.
These definitions suggest natural abstract notions of Ganea strong category and
Cornea cone-length in cofibration categories. The abstract notions of both L-S
category and Cornea cone-length have been already developed for J-categories in [14]
and [7] respectively. Since the proper category V provides an example of cofibration
category which does not have a natural structure of J-category, it seems to be
interesting to develop the basic properties of abstract numerical homotopy invariants
in the setting of cofibration categories.

Incidentally the proper analogue of the Takens bound Cat < cat + 1 ([24]) still holds
for strongly one-ended spaces (cf. [6]). In fact, the short proof of this result due to
Ganea ([24, § 5]) is based on results available in any cofibration category. Hence one
can prove

Proposition 2.9. If X is a strongly one-ended connected space in V then
p - Cat(X) <p- cat(X) + 1.

Proof. Let {[/, , . . . , Uk] be a family of p-categorical closed subsets with
X = UintUi. If X = UCpU, is the space in the proof of (2.5), we clearly have
p — Cat(X) < k. Moreover, the homotopy invariance of the push-out construction in
any cofibration category ([5, II. 1.2]) yields X ~p X v (£„{/,) v . . . v (LpUk) where "v"
denotes the wedge in V. As X is strongly one-ended we can assume that all the proper
wedges are constructed along the same ray a : J -*• X. Now we get X ~p X v CpZ
where Z = £„[/, v . . . v Y.pUk, and so p - Cat{X) < k + 1 by (2.7).

Remark 2.10. If K is the Berstein-Hilton space with cat(K) = 2 < 3 - Cat(X)
([22]), it is clear that X = K x R verifies p - cat(X) = 4 < 6 = p - Cat(X). However,
we do not know whether Proposition 2.9 is true for spaces with only one Freudenthal
end.

We now apply (2.7) above to show (cf. ([22, 2.2])).

https://doi.org/10.1017/S0013091500019623 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019623


ON THE GANEA STRONG CATEGORY IN PROPER HOMOTOPY 257

Corollary 2.11. Let X be a connected space in V. Then p - Cat(X) < 2 if and only
if X has the p-homotopy type of a proper suspension in V. Moreover, if X = intP U intQ
with P, Q p-homotopically trivial closed subspaces then X ~p Ep(P n Q).

Proof. According to the proof of (2.7) one gets that X has the same p-homotopy
type as the cofibre of the inclusion i: P n Q >-> P. Hence X ~ p P/"P n g ~ p Cpi. As
P ~p J, it follows that X ~p £p(P n 0 .

As an immediate consequence of (2.5) and (2.11) we get

Corollary 2.12. If X is a connected space in V with p — cat{X) < 2 then X is a
p-retract of a proper suspension. Furthermore, if X — intP U intQ with P and Q
p-deformable closed subspaces then X ~p Ep(P n Q).

3. Proper category and the fundamental pro-group

It is known that if a space has L-S category 2 then its fundamental group is free
([10, 23.1]). In this section we state some results concerning spaces with proper
category 2. In particular we prove that the proper homotopy type of an open manifold
with proper category 2 is K". For this we recall the basic algebraic pro-invariants in
proper homotopy theory.

Given a category C, the category of towers of C, tow — C, is the category of inverse
sequences A = {A, <- A2 •«- ...} in C and pro-morphisms. See [23] for a complete
reference about pro-categories. We are interested in the full subcategory of
Mor(tow — C) whose objects are arrows / : X -*• A where X is a (tow — C)-object and A
is a C-object regarded as a constant tower whose bonding maps are the identity. This
category is denoted (tow — C,C). A {tow - C, C)-morphism from / : X -*• A to
Q : Y ->• B can be regarded as a C-morphism between A and B and a (tow - C)-
morphism from X to Y such that both morphisms are compatible via the bonding
maps. We shall use the above constructions for C — Qr, Ab, the categories of groups
and abelian groups respectively.

Given a ray a : J -*• X, the n-th homotopy pro-group of (X, a) is the inverse sequence
in (tow - Qr, Qr)

pro - nn(X, a) = [nn(X, x0) <- nn(Ut, x,) <- nn(U2, x2) « - . . . }

where [Uj] is a system of co-neighbourhoods, x} — a((;) with a([t;, oo)) c Uj, and the
bonding morphisms are induced by inclusions and base-point change isomorphisms.
When n = 1 pro — Kt(X, a) will be called the fundamental pro-group of (X, a). It is
known that the set of strong ends of X, F(X) is in 1 — 1 correspondence with the
(pointed) set Urn1 pro — 7r,(AT, a) (see [21]).

The n-th homology pro-group of X is defined as the inverse sequence in
(tow - Ab, Ab)
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pro - Hn(X) = {Hn(X) <- //„({/,) <- Hn(U2) <- . . .} .

Next we describe the fundamental pro-group of proper suspensions.

Lemma 3.1. If JLpX is the proper suspension of X in "P, pro — ni(LpX, a) is pro-
isomorphic to an inverse sequence of free groups.

Proof. Let r: X -*• J be any p-map. We can use the oo-neighbourhood system
{U}} of X with Uj — r~\[j, oo)). In this way, it is easily checked that {£pl/,} is a system
of oo-neighbourhoods of the proper suspension ~LpX, where l,pUj is constructed by
using r\Vj : Uj -*• [j, oo). As the proper suspension has the same ordinary homotopy
type as the ordinary suspension, one gets that pro — nx^LpX, a) is pro-isomorphic to the
inverse sequence of free groups ^(D, Ut, xt).

Remark 3.2. An explicit description of the pro-group pro — Tt̂ Ẑ AT, a) can be given
as follows. With the notation of the proof of (3.1) we fix a component c'o e H0(l/f; Z2)
for each /. Then each component Ce//0((/.;Z2) C^cj,, defines a generator x(c.,c°.)
e nt(LpUj, Xj) represented by a loop in T,pUt which only meets Ut in two points, one in c'
and the other in c'o. Then pro — n^pX, a) is pro-isomorphic to the inverse sequence

S = {u(c>(0)Z < - u(e, j (J )Z 4 - . . . }

where a : J -*• Y.rX is the canonical ray, "u" denotes free product and the bonding
morphisms of S carry x(c\ 4) to x(c'~\ 4"') if c' + c'o — c'"1 •+- cj,"1 in H0(Ut_i; Z2).

Lemma 3.3. If X is a properly admissible space in V and B(X) = 0 the bonding
morphisms ofS are onto.

Proof. If {C;};>, are the components, we can assume that C; c [/;_, and the result
follows from the definition of S.

Lemma 3.4. If X is a properly admissible space in V and U(X) = 0, the bonding
morphisms ofS are induced by basis inclusions.

Proof. Since U(X) — 0 all the components {C,}^, of X are compact, and we can
choose Uj = U;>,C,. Now the result follows easily from the definition of S.

Corollary 3.5. If X is a connected space in V with p — cat(X) < 2 then pro — n^X)
is pro-isomorphic to an inverse sequence of free groups.

Proof. The inverse sequence pro — 7t, (X, a) is pro-isomorphic to its image in
pro — TttCEpY, a) for some Y in V according to (2.12). Now the result follows from
(3.1).
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Corollary 3.6. Let X be a one-ended connected space in V such that X — intP U intQ
with P, Q properly admissible closed subspaces p-deformable to J in X. Assume that
B(P n Q) = 0. Then X is strongly one-ended.

Proof. According to (3.3) all the bonding morphisms of the inverse sequence
p r o - 7 t , ( I p ( P n 0 , a ) are onto, and so lim1 pro - n^Z^Pn Q), a) = {[a]} (see ([19,
II.6.2])). Hence Z p ( P n g ) has only one strong end. Finally, by (2.12) we know that
there exists a p-retraction r : Z -> X where Z ~ p I.p(P n Q). This retraction implies that
X is strongly one-ended.

Corollary 3.7. Let X be an one-ended metrizable ANR in Po such that pro — Ht(X)
is trivial in (tow — Ab, Ab). Assume that p — cat(X) = 2. Then pro — Kt(X, a) is trivial in
(tow - Gr, Gr).

Recall that a space X is 1 -LC at oo if for any oo-neighbourhood U c X there exists
an oo-neighbourhood V c U such that any loop in V is homotopically trivial in U.
Hence the triviality of pro — 7t, (X, a) is equivalent to say that X is simply connected
and 1-LC at oo.

Proof. Let P, Q be two properly admissible closed subspaces p-deformable to J
with X = intP U intQ (see (2.2)). If U(P) or U(Q) is empty then U(PnQ) = 0.
Otherwise we can apply (2.3) and (2.4) to assume that B(P nQ) — &. Now the result
follows from (2.12) and (3.2) and the following result.

Proposition 3.8. Let A = {Ao *- A, ...<-...} be an inverse sequence of groups which
is a retract in (tow — Gr, Gr) of one of the following inverse sequences

(a) L = { L 0 ^ L , £ - L 2 . . . }

(b) P = {PO^P2^P2---}

where Pt and L, are free groups, k, are basis inclusions, and p, are epimorphisms. Then
A is trivial in (tow - Gr, Gr) if and only if its abelianization A°* = [Af <- A°b ...<-...} is
trivial in (tow — Ab, Ab).

In the proof of (3.8) we shall use Lemma 3.9 below on commutator subgroups.
Given a group G, the subgroup [G, G]n (n > 1) is defined inductively as [G, G]1 = [G, G]
(the commutator subgroup of G) and [G, G]" = [[G, G]"~\ [G, G]"~']. Moreover if F is a
free group the subgroup G c F is called a. free factor if a basis of G can be extended to
a basis of the whole of F.

Lemma 3.9. Let G '-*• F a free factor. Then [G, G]n is a free factor of [F, F]n and
[F, F]nnG = [G, Gffor all i > 1.
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Proof. The commutator [F, F] consists of all words w e F such that the sum of
coefficients of each generator in w is trivial. This directly implies [G, G] = [F, F] n G
since G is a free factor. In particular, this equality yields [F, F]2C\G- [F, F]2 n [G, G].
Now we apply ([18, Ex. 32, p. 117]) to [ F , f ] c f to show that [G, G] is a free factor in
[F, F], and then [G, G]2 = [F, F]2 n [G, G] = [F, F]2 n G by the same result. We can now
proceed inductively.

Proof of (3.8). Assume Aab is trivial in (tow - Ab, Ab). If A -> P ->• A is a

retraction in (tow — Qr, Qr), then k is a monomorphism in (tow — Qr, Qr) and there exists

a pro-isomorhism A = B = {B,} with B, = /m/c, for a representative {/c, : /lm/ -*• P,} of

k. Hence we have a retract B -*• P A- B by using <j>.
On the other hand B is also pro-isomorphic to the inverse sequence C = {C,} with

C, = Imr'j c B, for a representative {r- : PB( -> B,} of r'. In particular, C"6 = 0. Moreover,
since the bonding morphisms of P are onto, it follows that the bonding morphisms of C
are also onto. As the abelianization functor preserves epimorphisms, it follows C°b — 0
for all i, and hence C, — 0 since C, c B, is a free group. Therefore A = 0.

Assume now that A —> L -*• A is a retraction in (tow — Qr, Qr). As above we can
k' r'

replace this retract by a new retract B —• L —*• B where B is an inverse sequence of free

groups. Moreover, as the bonding morphisms of L are injective the bonding morphisms

of B are also injective. More explicitly, we have an increasing sequence of positive

integers «, < n2 < ... and commutative diagrams

where all morphisms are injective except the r,'s, and r-+1kj+1 =jt for all i.
As A.ab = Bab — 0 we can assume without loss of generality that jf — 0 and hence

Bn(+1 is contained in the commutator subgroup [Bn., Bn.] c [Ln., Ln.]. Therefore
BnM Q Lni+2 n [Lni, Lj, and so Bnj+2 c [Lm+2, LniJ by (3.9). In fact the same argument
shows Bni c [Lni, Lnf for all i > 3 . Hence Bn,+2 c [Bnj+1, Bn/+1]c[Ln/+1) Lni+,]3 c [Ln,, L J 3 .
Then (3.9) yields B_(+2 c [Lnj+2, Ln,.+2]

3; that is, the inclusion Bn, c [Ln|, Ln,]
3 holds for all

i > 3 and we now apply inductively (3.9) to get all i > 3 Bn. c nm>,[Ln., Ln.]
m = 0 (see

[17, 1.3.4]). Therefore A a B = 0 in (tow - Qr, Qr).
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We devote the rest of the paper to characterize the manifolds whose proper L-S
category is 2. The proof of the next result is part of the proof of ([2, 3.6]).

Proposition 3.10. If M is a connected open n-manifold with p — cat(M) — 2 then M
is homologically trivial and simply connected. In particular M is contractible.

We briefly recall the proof. As cat(M) < p — cat(M) — 2 the fundamental group
7t,(M) is free by ([10, 23.1]). Also p - cat(M) = 2 implies that cup - length(M) = 1 for
the cup-product H*C(M\ Zp) 0 H\M; Zp) -> H'(M; Zp) for all prime p. Here ITC is the
cohomolgy of compact supports. This fact together with the Poincare Duality yield
that M is homologically trivial and as H^{M) = abelianized(n,(M)) is free with the same
rank as 7r,(M) it follows that M is also simply connected. The result follows from the
Whitehead Theorem ([26, IV.7.13]).

The following result gives us the pro-homology at oo of homologically trivial
manifolds.

Proposition 3.11. Any homologically trivial connected open n manifold is one-ended
and pro — Hq(M) — 0 if q ̂  0, n — 1 and pro — Hp(M) is pro-isomorphic to the constant
inverse sequence {Z = Z = ...} for p — 0,n — 1.

Proof. The manifold M is one-ended by ([13, 1.7]). Let Hf and H', denote the
homology of infinite cycles and the homology at infinity respectively. Then the exact
sequence ([20, p. 306])

... -> tf,(M) - • H~(M) -+ He
q(M) -». tf,_,(M) -» . . .

yields isomorphisms //~(M) ^ H'q(M) for q > 2 and tff(M) ^ H0(M) ^ Z since
H™(M) = 0. Now the Poincare Duality //~(M) =* H"-\M) yields that tf^(M) = ° i f

q •£ n. If [Wj] denotes a system of co-neighbourhoods of M we have the Milnor exact
sequence ([3, 2.1]).

0 -+ lim ]{Hq+](Wj) - • H'q(M) -»• lim{H,(W )̂} - • 0

and the groups lim1 {HP(W})} and lim {Hq(Wj)} are trivial if p > 0 and q ^ 0, n - 1 and
lim {//,(W<)} ^ Z*if q = 0, « - 1. Hence the inverse sequence {Hq{Wj)} is trivial if q / 0,
« - 1 by ([19, 6.2 Lemma 2]) and {Hq{W^i\ is pro-isomorphic to the constant sequence
{Z = Z = ...} if q = 0, n - 1 by ([19, 6.2 Corollary 8]).

As an immediate consequence of (3.7), (3.10), and (3.11) one gets

Corollary 3.12. Any connected open n-manifold M {n > 3) with p — cat(M) — 2 is
1 - LC at oo.
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As a consequence of (3.10) and (3.12), the homotopical characterizations of
Euclidean spaces due to Siebenmann ([23]) and Freedman ([11]) can be restated in the
following way

Theorem 3.13. (cf. [2, 3.6]) A connected open n-manifold M (n ^ 3 ) is homeomorphic
to W if and only if p - cat(M) — 2.

Remark 3.14. The characterization in dimension 3 depends on the Poincare
Conjecture and (3.13) can be only stated for irreducible open 3-manifolds as a
consequence of [25]. We recall that a 3-manifold is irreducible if every embedded 2-
sphere bounds a 3-cell.

For any dimension we can use basic results of proper homotopy to show

Theorem 3.15. (cf. [15, p. 336]) Let M be a connected (triangulated) open n-
manifold. Then p — cat(M) = 2 if and only if M has the same proper homotopy type as
R".

Proof. Assume p — cat(M) = 2. Then M is contractible by (3.10) and so M = W
for n < 2. If n > 3 we know (see the proof of (3.11)) that H™(M) = 0 if q ^ n. Since
pro — nt(M) — 0 by (3.7), the proper Hurewicz Theorem for CW-complexes in ([3, 3.4])
yields H™(M) 9± \R", M]p, and the fundamental class \iM e H°°(M) can be represented
by a p-map / : R" -+ M. Moreover / , : //~(R") -> //~(M) is an isomorphism and by
([3, 3.8]) we conclude that / is a p-homotopy equivalence.

Remark 3.16. Since any open «-manifold has the p-homotopy type of a finite
dimensional locally finite polyhedron ([16, p. 123]), Theorem (3.15) actually holds for
any topological manifold.
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