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Abstract

Gaussian graphical models are useful tools for conditional independence structure infer-
ence of multivariate random variables. Unfortunately, Bayesian inference of latent graph
structures is challenging due to exponential growth of Gn, the set of all graphs in n ver-
tices. One approach that has been proposed to tackle this problem is to limit search to
subsets of Gn. In this paper we study subsets that are vector subspaces with the cycle
space Cn as the main example. We propose a novel prior on Cn based on linear combi-
nations of cycle basis elements and present its theoretical properties. Using this prior,
we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge
inclusion estimates computed with our technique are comparable to estimates from the
standard technique despite searching a smaller graph space, and (ii) the vector space
perspective enables straightforward implementation of MCMC algorithms.
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1. Introduction

Gaussian graphical models (GGMs) [10, 20] have become a standard technique to represent
the conditional independence structure of a set of random variables. Given an undirected graph
G = (V, E), the set of vertices V = {1, . . . , n} represents the random variables while the set of
edges E ⊆ {(i, j) ∈ V × V : i < j} represents conditional dependencies between the variables. In
the Bayesian literature, a latent graph G is often inferred by first specifying a prior p(G) on
the space of graphs followed by a prior on the precision matrix K conditional on the graph,
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p(K | G). Then posterior inference is performed through sampling algorithms such as Markov
chain Monte Carlo (MCMC) (e.g. [15], [18]) or sequential Monte Carlo (SMC) [34, 36]. One
of the main challenges in graph inference is that the number of graphs grows exponentially
with the number of vertices since the size of the space Gn of all graphs with n vertices is
2n(n−1)/2.

There are two main lines of research addressing the computational difficulties associated
with the size of graph space: (i) devising efficient sampling algorithms and (ii) considering
particular subsets of Gn with desirable properties. This work explores novel subsets in light
of this second direction. A particularly popular restriction of Gn consists of focusing on the
set of decomposable graphs as it allows for exact posterior computation under the conju-
gate hyper-inverse Wishart prior; see e.g. [14], [15], [16], [20], [31], and [39]. However, the
decomposability assumption is often restrictive in applications: suppose that the ‘true’ graph
is non-decomposable. Niu et al. [26] prove that as the number of observations goes to infinity,
the posterior distribution concentrates at the minimal triangulations of the true graph. These
triangulations can present O(n log n) spurious edges [8].

As an alternative to decomposable graphs, recent research effort has been devoted to consid-
ering the set of spanning trees Tn on the complete graph (i.e. the graph containing all possible
edges), which is necessarily a subset of decomposable graphs as trees do not contain cycles.
Højsgaard et al. [17] propose a maximum a posteriori estimator of the latent spanning tree
based on Kruskal’s [19] algorithm. Schwaller et al. [30] are able to derive the exact posterior
distribution of each tree in Tn given a set of observations by applying Kirchoff’s matrix tree
theorem [7], while Duan and Dunson [13] propose a Bayesian model for spanning trees where
the likelihood function is built on a generative graph process and leads to an efficient Gibbs
sampling algorithm. Although spanning trees provide computational advantages compared to
considering all graphs, they only allow inference of the ‘backbone’ of the graph [13], i.e. the
minimum spanning tree of the data generating graph, at the cost of losing information about
its global structures.

In this paper we investigate larger subsets of Gn arising from an algebraic perspective on
graphs with the cycle space as the main concrete example. First, note that the set Gn together
with the edgewise modulo two addition ⊕ and the trivial multiplication (both operations are
defined in Section 2.3) forms a vector space on the finite field Z2, where the set of all edges in
the complete graph forms the standard basis of Gn. Definitions and preliminary results about
the graph vector space are deferred to Section 2.

Our work builds on the fact that alternative bases for Gn exist. In particular, we consider
the example of the space spanned by linear combinations of cycles on V which forms the
cycle space Cn. The cycle space is a proper subspace of Gn which can be spanned using bases
consisting of cycles [38]. We investigate the theoretical properties of this space and of the
prior distribution on graphs when the prior is specified through a prior on cycles, instead of the
common practice of specifying a prior on the edges, as well as the implications for statistical
inference of such a prior. We show that the cycle space Cn is a substantially smaller set than
Gn, though this does not notably affect posterior inference such as edge inclusion probabilities
in the concluding application.

The paper is structured as follows. Section 2 reviews graphical modelling concepts, how
Gn constitutes a vector space, cycle basis theory, and compares the cycle space with the set
of decomposable graphs. Section 3 analyses the cycle basis prior. Section 4 contains simula-
tion studies. In Section 5 we apply the proposed algorithm to gene expression data. Section 6
concludes the paper and discusses potential future directions. All proofs can be found in the
Supplementary Material.
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2. Background

2.1. Graph preliminaries

We consider undirected graphs with no loops and no multi-edges, also called simple graphs.
A path γα,β between two vertices α, β ∈ V is a sequence of edges (e1, . . . , em) such that
v1 = α, vm+1 = β, and ei = (vi, vi+1) for all i ∈ {1, . . . , m}, where every vertex in the ver-
tex sequence (v1, . . . , vm+1) is distinct. A circuit is a sequence of edges (e1, . . . , em) where
v1 = vm+1. A cycle is a circuit where every vertex in (v1, . . . , vm) is distinct. A graph is con-
nected when a path γα,β exists for all α, β ∈ V . A graph is complete if it contains all possible
edges, i.e. E = {(i, j) ∈ V × V : i < j}. A tree is a graph where there is exactly one path between
any pair of vertices. A spanning tree of a connected graph G = (V, E) is a tree with vertex set
V and an edge set which is a subset of E. A star tree T on the vertices {v0, . . . , vn−1} is the
spanning tree whose edges are (v0, vi) for i = 1, . . . , n − 1. In this case, v0 is the root of T . The
degree of a vertex v is the number of edges incident to v.

2.2. Bayesian inference of GGMs

In a GGM, a graph G = (V, E) on n vertices models the zeros in the precision matrix K of
the Gaussian distribution N(0, K−1) on the independent rows of the N × n data matrix X:

p(X | K) ∝ |K|N/2 exp(−〈K, U〉/2), (1)

where U = X	X and 〈A, B〉 = tr(A	B). Specifically, Kij = 0 if (i, j) /∈ E. For Bayesian infer-
ence, Dawid and Lauritzen [9] introduced the hyper-inverse Wishart prior, which is a conjugate
prior p(K | G) for decomposable graphs G. Giudici [14] and Roverato [28] generalise this idea
to non-decomposable graphs, proposing the G-Wishart distribution WG(δ, D) with degrees of
freedom δ > 2 and rate matrix D which has density

p(K | G) = 1

IG(δ, D)
|K|(δ−2)/2 exp(−〈K, D〉/2) (2)

with respect to the Lebesgue measure on the set of positive definite matrices with zeros
imposed by G. Here, IG(δ, D) is a normalising constant.

Combining the prior in (2) and the likelihood (1), K | G, X ∼ WG(δ + N, D + U) due to
conjugacy. The likelihood for G with K marginalised out follows as (e.g. [3])

p(X | G) = IG(δ + N, D + U)

(2π )Nn/2IG(δ, D)
.

Unfortunately, computing IG(δ, D) for a general graph G, despite a recently derived recur-
sive expression [35], is intractable. Monte Carlo [3] and Laplace [21] approximations have thus
been suggested, along with methods that avoid the normalising constant computation entirely
[40] using the exchange algorithm of Murray et al. [25]. Notably, IG(δ, D) is computationally
tractable for decomposable G, motivating the common restriction of the space of graphs Gn to
decomposable graphs.

Having the marginal likelihood of the observations given a general graph, Bayesian infer-
ence is performed by defining a prior p(G) on Gn. Such prior distributions are usually
constructed through the specification of edge inclusion probabilities. In the next section we
define a prior distribution over graph space based on more complex substructures than edges.
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(a) (b)

FIGURE 1. The table (a) shows three different bases of the graph space Gn with n = 4 vertices. Consider
the decomposition of the graph G ∈ Gn (b) over each of the bases: with the standard basis, G = B1 +

B3 + B4 + B6; with the cycle basis, G = B2 + B3; for the last basis, G = B1 + B2 + B5.

2.3. Gn as vector space and the cycle space

The set Gn of all graphs with n vertices is part of a vector space over the finite field Z2.
Here, Z2 is a field on the set {0, 1}, where addition is the modulo 2 addition (i.e. 0 + 0 = 0,
1 + 0 = 0 + 1 = 1, and 1 + 1 = 0) while multiplication is trivial (i.e. 0 × x = 0 and 1 × x = x
for any x ∈ {0, 1}). The vector space is the triple (Gn, ⊕, ⊗), where ⊕ is the modulo 2 addition
of the edges and ⊗ is the (trivial) multiplication such that 0 ⊗ G is the graph with no edges, and
1 ⊗ G = G. Note that the set of all edges in the complete graph forms one basis of this vector
space, which we call the standard basis. Alternative bases exist for the same vector space,
which can (i) be used as building components of a graph (in a similar way as with edges) and
(ii) induce priors p(G) through the specification of a distribution on the elements of the basis.
For illustration, Figure 1 considers three different bases of Gn with n = 4 vertices.

The basis of this work is restricting the graph space in GGMs by considering subspaces of
Gn. A subspace of the graph vector space is a subset of Gn that is closed under ⊕. Restricting
graphs via an appropriate subspace is desirable in GGMs for two reasons. Firstly, it shrinks the
search space to a subset of Gn. Secondly, being closed under addition, a subspace lends itself
well to convenient Monte Carlo sampling steps, as algorithms that only propose states in the
subspace are readily constructed. In this paper we focus on one particular subspace, namely
the cycle space.

Definition 1. (Cycle space.) The cycle space Cn of graphs with n vertices is the set of linear
combinations of cycles in Gn.

We now present some relevant properties of Cn. By its definition, Cn is closed under addition
making it a proper vector space:

P1. The cycle space Cn is a subspace of the vector space (Gn, ⊕, ⊗) [38, Theorem 5.1].

Whether a graph G ∈ Gn is in Cn can be conveniently checked using Veblen’s theorem:

P2. A graph G ∈ Gn is an element of Cn if and only if every vertex has even degree in G, i.e.
every vertex has an even number of neighbours [37].

A more intuitive description of the graphs in Cn is that they are precisely those that are the
union of edge-disjoint cycles [38, Theorem 5.1]. Also, each connected component of a graph
in Cn is a circuit. Notably, the edge union of cycles with overlapping edges is not necessarily in
Cn: the edge union of the cycles (1, 2, 3, 1) and (1, 2, 4, 1) in the example from Figure 1 results
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(a) (b)

FIGURE 2. Illustration of a fundamental system of cycles. The graph (a) visualises the spanning tree T
with solid lines and its complement T with dashed lines. The basis elements (b) are the cycles obtained

by adding one of the dashed edges in T to T .

in a degree of three for vertices 1 and 2. Also, whether the complete graph is in Cn depends on
the parity of n by property P2.

Bases of Cn can be readily found using fundamental systems of cycles.

Definition 2. (Fundamental system of cycles.) Let T = (V, ET ) be a spanning tree of the com-
plete graph and let T = (V, ET ) be the complement of T . That is, e ∈ ET if and only if e /∈ ET .
The fundamental system of cycles with respect to T is the set of graphs obtained by taking each
cycle formed by adding one edge in T to T .

(We constrain ourselves to spanning trees of the complete graph for simplicity, though note
that the fundamental system of cycles is usually also defined for incomplete graphs.)

P3. Every fundamental system of cycles is a basis of Cn [38, Theorem 5.5].

Figure 2 visualises how to obtain the fundamental system of cycles that constitutes the cycle
basis considered in Figure 1. In Figure 1, this basis, which spans Cn, is extended to span the
whole of Gn. Such extensions exist for any basis spanning a subspace [4]. Since T has (n − 1)
edges and the number of elements in the fundamental system of cycles equals the number of
edges in T , property P3 implies the dimension of Cn:

P4. The number of elements in a cycle basis and thus the dimension of the vector space Cn

is n(n − 1)/2 − (n − 1) = (n − 1)(n − 2)/2.

As considered in Figure 1, the number of basis elements in a decomposition of a graph varies
with the basis considered. The same is true when only considering cycle bases. Consider for
instance Figure 3. The graph that is basis element B6 for the path graph involves not one but
three basis elements for the cycle basis derived from the star tree (B1 + B2 + B5).

2.4. Comparing the cycle space with the set of decomposable graphs

As discussed in Section 1, there have been efforts to limit the search space to a subset of
Gn, most notably to the set of decomposable graphs. While this restriction has the advantage
of allowing normalising factors to be computed exactly, there are drawbacks to this restric-
tion especially in applications. Firstly, unlike the cycle space, the set of decomposable graphs
is not known to be closed under any vector addition operation. As a result, more involved
MCMC algorithms have been proposed to ensure that proposed graphs are decomposable via
constraints on which edge to flip [15, 33] or by sampling from the larger set of junction trees,
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FIGURE 3. Illustration of two fundamental systems of cycles with n = 5 vertices.

which correspond to decomposable graphs [16]. On the other hand, in the cycle space, we are
able to propose moves that are guaranteed to be in Cn by standard properties of vector spaces.
Similarly, decomposability cannot be checked as easily as property P2, which determines
membership of Cn.

Another, more important drawback of restricting inference to decomposable graphs is that
in general decomposable graphs do not approximate other graphs well. For instance, O(n log n)
edges need to be added to a graph to make the resulting graph decomposable in general [8].
This contrasts with the cycle space as any graph G ∈ Gn is at most n/2 edges different from a
graph in Cn per the following result.

Proposition 1. Let k be the number of odd-degree vertices in G ∈ Gn. Then there exists a graph
in Cn that differs from G by k/2 edges while there exists no graph in Cn that differs from G by
less than k/2 edges.

The size of Cn is also larger than that of the set of decomposable graphs. Note that Gn has
2n(n−1)/2 elements since the standard basis is the edge set containing n(n − 1)/2 elements. By
property P4, the cardinality of Cn is 2(n−1)(n−2)/2. In contrast, the number of decomposable
graphs on n vertices tends towards 2n2/4+O(n log n) as n → ∞ [5]. (For comparison, the number
of spanning trees on the complete graph, which are decomposable, is |Tn| = nn−2 by Cayley’s
[6] formula.) Thus, constraining graphs to the cycle space is substantially less restrictive than
assuming decomposability with a clear upper bound to the difference between any true graph
and Cn. Lastly, the set of decomposable graphs is not a subset of Cn. For instance, trees are not
in Cn by property P2 since their leaf vertices have degree one.

3. Theoretical properties of cycle basis priors

A prior distribution on Cn can be induced by assigning a distribution to cycle basis elements.
In this section we explore the theoretical properties of such priors. Here C denotes a basis of
cycles for Cn. Thus C is a set of (n − 1)(n − 2)/2 cycles. The results hold for any fixed basis
C unless otherwise noted. We begin by showing that it is possible to induce the uniform prior
on Cn.

A cycle basis prior can be defined in terms of cycle-inclusion probabilities. Similarly to the
standard basis, when the cycle-inclusion probability is 0.5, we get the uniform prior on Cn.

Proposition 2. Let C be any cycle basis for the cycle space Cn. Suppose that the inclusion of
each cycle in C is an independent Bernoulli random variable with probability 0.5. Then the
induced distribution on Cn is uniform and the marginal edge inclusion probabilities are equal
to 0.5.
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This uniformity holds for any C and thus also for the distribution on Cn induced by a distri-
bution on such bases C. The edge inclusions are not independent under the uniform distribution
over Cn: independent edges with probability 0.5 yield the uniform distribution over Gn. Instead,
edge flips can only happen jointly on sets of edges that correspond to graphs in Cn to stay in
the cycle space, i.e. to continue to satisfy property P2.

Often there is interest in non-uniform distributions, for instance to induce sparsity. In gen-
eral, the edge inclusion probabilities induced by inclusion probabilities of cycle basis elements
depend on the choice of cycle basis, and hence on the choice of spanning tree used to gen-
erate this basis via the fundamental system of cycles (property P3). Although a closed-form
expression is not available, we propose an efficient algorithm to compute the edge inclusion
probabilities from a cycle basis prior.

Proposition 3. Let e ∈ {(i, j) ∈ V × V : i < j} be any edge. Let {c1, . . . , cr} ⊂ C be the set of
basis elements that contain e. Suppose that the inclusions of these elements are independent
with inclusion probabilities {p1, . . . , pr}. Define the polynomial

f (x) =
r∏

i=1

(1 − pi + pix).

Then the induced marginal probability of inclusion of the edge e is the sum of the coeffi-
cients of the odd powers of x in f(x). This edge probability reduces to {1 − (1 − 2p)r}/2 if the
probabilities {p1, . . . , pr} are all equal to p.

If the cycle basis is generated from a star tree with independent and equally probable inclu-
sion of basis elements, then these probabilities simplify. (The fundamental system of cycles
with respect to a star tree is the set of all cycles of three edges that are incident to its root.)

Corollary 1. Let the basis C be defined as the fundamental system of cycles with respect to
a star tree T on n ≥ 2 vertices. Suppose that the cycle inclusions are independent Bernoulli
random variables with probability p. Then the marginal edge inclusion probabilities are
given by

P{(i, j) ∈ E | T} =
⎧⎨
⎩

{1 − (1 − 2p)n−2}/2 i or j is the root of T,

p otherwise.

Moreover, the distribution induced by the uniform distribution over all star trees has P{(i, j) ∈
E} = p + {1 − 2p − (1 − 2p)n−2}/n.

Polynomial multiplication can be performed efficiently using linear convolution based on
a fast Fourier transform (FFT), making the computation of the probabilities in Proposition 3
efficient. For the sake of completeness, we also provide an algorithm to compute the joint
distribution of edge inclusions induced by the cycle basis prior. This is useful in, for example,
calculating the degree distribution of a vertex.

Proposition 4. Let v ∈ V be any vertex. Let {e1, . . . , em} be the set of edges incident to v. Let
{c1, . . . , cr} ⊂ C be the set of cycles incident to v. Suppose that the cycle inclusions are inde-
pendent with inclusion probabilities {p1, . . . , pr}. For i = 1, . . . , r, let a(i), b(i) ∈ {1, . . . , m}
be such that ea(i), eb(i) are the edges of ci that are incident to v. Define the polynomial

f (t1, . . . , tr) =
r∏

i=1

(1 − pi + piti).
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Let g be the image of f in the polynomial ring R[x1, . . . , xm]/〈x2
1, . . . , x2

m〉 under the unique
ring homomorphism satisfying ti �→ xa(i)xb(i). Then the probability of including any set of edges
{es}s∈S while excluding the other m − |S| edges incident to v is given by the coefficient of∏

s∈S xs in g.

The above proposition can be applied in practice by noting that g is equal to the product
of the polynomials 1 − pi + pixa(i)xb(i) in the ring R[x1, . . . , xm]/〈x2

1, . . . , x2
m〉. Multiplication

of linear polynomials modulo squares is equivalent to a circular convolution. By the circu-
lant convolution theorem, this can be efficiently performed using an FFT of length 2 in m
dimensions.

Although the above algorithm can be used to calculate degree distributions in the general
case, closed-form expressions may be computed when the spanning tree used to generate the
cycle basis has a tractable structure as in the case of star trees.

Proposition 5. Let the basis C be defined as the fundamental system of cycles with respect
to the star tree on the vertices {v0, . . . , vn−1}, n ≥ 2, rooted at v0. Suppose that the cycle
inclusions are independent Bernoulli random variables with probability p. Then the degree
distribution for the vertices {v1, . . . , vn−1} is given by

P{deg(vi) = k} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − p)n−2 k = 0,

∑k
j=k−1

(n−2
j

)
pj(1 − p)n−2−j 2 ≤ k < n and k is even,

0 otherwise.

We now briefly discuss the sparsity of graphs in the cycle space. For a given proba-
bility p of independent basis element inclusions, Proposition 3 gives the edge probability
{1 − (1 − 2p)r}/2, which is an increasing function of p for p ≤ 0.5 and which involves the
number r of elements in the basis C that include the edge. Thus, setting a smaller p yields
shrinkage on the number of edges: the edge probability can be made arbitrarily small via p.
This shrinkage depends on C via r. For instance, consider Figure 3 and edge (2, 3). There,
r = 1 for C generated by the star tree and r = 5 for C generated by the path graph. In general,
r = 1 for any edges in the complement T of the spanning tree T that generated C. For edges in
T , r varies with C.

More generally, there is no simple relationship between the sparsity of a graph in terms of
its cycle basis inclusions and the edge-sparsity of that graph. However, analytical results are
available in the particular case that the cycle basis is generated from a star tree.

Proposition 6. Let the basis C be defined as the fundamental system of cycles with respect
to a star tree on n vertices. Define m = �(n − 1)/2�. Consider the graph G = (V, E) formed
by the inclusion of q basis elements from C. Then the number of edges |E| is bounded as
q ≤ |E| ≤ q + 2 min(q, m). The upper bound is tight for q ≤ m.

This implies that specifying a shrinkage prior on q leads to shrinkage on the number of
included edges for cycle bases induced by a star tree. We also consider |E| as a function of q
empirically in Figure 4. The empirical results show that a number q implies a smaller range of
|E| than suggested by Proposition 6, especially for a large number of vertices. Simulation
studies in Section 4 confirm that limiting q also results in lower posterior edge inclusion
probabilities, as does lowering the prior basis element inclusion probability p.

Apart from the prior process on cycle bases, we also consider the prior induced by edge
unions of spanning trees in the Supplementary Material. However, we find that computation
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FIGURE 4. Box plots of |E| − q from 100 graphs G generated by sampling q elements from a basis C gen-
erated by a star tree without replacement. The dashed lines mark the bounds 0 ≤ |E| − q ≤ 2 min(q, m)

from Proposition 6.

of the induced prior p(G) is intractable since edge unions of spanning trees do not form a
vector space. We propose an algorithm to compute p(G), specifically to count the number
of decompositions of a graph into spanning trees, with complexity O(2|E| n3), which is an
improvement over the super-exponential complexity of the brute-force enumeration method.
Further, we prove bounds to attempt an approximation of the prior ratio as appearing in a
Metropolis–Hastings acceptance probability, but simulations shows that the bounds are too
wide to be of use (see the Supplementary Material).

4. Simulation studies with the cycle basis prior

We conduct simulation studies to better understand the effect of certain cycle basis priors
on posterior inference. We do not apply these priors to the gene expression application in
Section 5, as the decomposition of a graph into changing cycle bases in step 2b of Algorithm
S1 in the Supplementary Material is too expensive with n = 93 vertices. We simulate the N ×
n data matrix X from the model p(X | K) in (1) with the n × n precision matrix K given by
Kii = 1 for i = 1, . . . , n and K12 = K13 = K23 = K34 = K35 = K45 = 0.3 while all other upper-
triangular elements of K are equal to zero. This fully defines K as it is a symmetric matrix.
Thus the true underlying graph G corresponds to the union of the two cycles (1, 2, 3) and (3,
4, 5). We set n = 15 as the number of vertices and N = 150 as the number of observations.

We consider six different priors on graphs. The first one is the edge basis prior with inde-
pendent edge inclusions with probability p = 0.5. The next four priors are constrained to the
cycle space Cn as follows. The second prior is induced by the uniform prior p(T) over all span-
ning trees combined with the prior p(G | T) resulting from a priori independent basis element
inclusions with probability p = 0.5, where the cycle basis is generated by spanning tree T . The
third prior uses the same uniform p(G | T) but with p(T) uniform over all star trees instead of
the larger set of all spanning trees. The fourth prior is the same as the third prior but with a
different p(G | T), where the a priori basis element inclusion probability is p = 0.05 instead of
0.5. The fifth prior is like the third prior but with p(G | T) uniform over all graphs that consist of
q = 3 or fewer elements from the cycle basis generated by T . Finally, the last prior is uniform
over all decomposable graphs.
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FIGURE 5. The posterior edge inclusion probabilities (upper triangle) and the median probability graph
(lower triangle) resulting from the six different priors considered for the simulated data.

We compute the posterior for the first five priors using Algorithm S1 in the Supplementary
Material, where we repeat step 1 nine times for each step 2. Step 2 involves sampling from
p(T). For the uniform prior over all spanning trees (the second prior), we use the algorithm
from [1] to sample from p(T). Schild [29] provides a faster alternative. We set the total num-
ber of MCMC steps, i.e. executions of Algorithm S1, to 105 of which 104 serve as burn-in.
Posterior computation for the prior on decomposable graphs is as described in Section 5.
Figure 5 visualises the resulting posterior edge inclusion probabilities. The probabilities are
not notably different between the edge basis and the uniform prior over the cycle space Cn

induced by considering all spanning trees or all star trees with p = 0.5.
The median probability graphs of the first three priors plus the star tree prior with the

number of basis elements q capped at three (q ≤ 3) have identical recovery of the true under-
lying graph with the cycle (3, 4, 5) and edge (1, 3) correctly detected, failure to detect (1,
2) and (2, 3), and no false positives. The extra prior regularisation in the fourth prior with
p = 0.05 results in edge (1, 3) not being detected. The truncation q ≤ 3 in the fifth prior results
in lower inclusion probabilities: an average probability of 0.054 compared to 0.056 for the third
prior with p = 0.5. The fourth prior with p = 0.05 yields an even lower average probability at

https://doi.org/10.1017/jpr.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.33


240 A. NATARAJAN ET AL.

(a) (b) (c)

FIGURE 6. The posterior edge inclusion probabilities (upper triangle) and the median probability graph
(lower triangle) resulting from the standard edge basis (a), cycle basis (b), and the set of decomposable

graphs (c).

(a) (b)

FIGURE 7. Graphs obtained by including edges whose posterior inclusion probability is larger than 0.95
when using the standard edge basis (a) and the cycle basis (b). Graph (a) has 141 edges and graph (b) has

147 edges, 123 of which appear in both graphs.

0.033. The prior on decomposable graphs produces an average of 0.11 with notably non-zero
probabilities also for edges with endpoints outside the first five nodes.

5. Application to gene expression data

In this section we restrict the graph space Gn to the cycle space Cn while inferring a gene
expression network. The data are gene expression profiles taken from tumours of breast cancer
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TABLE 1. Minimum, average and maximum absolute difference in posterior edge inclusion probabilities
resulting from the cycle basis and the set of decomposable graphs relative to the standard edge basis.

Minimum Average Maximum

Cycle basis 0.00 0.04 0.33
Decomposable graphs 0.00 0.19 1.00

patients obtained from the R package gRbase [11] preprocessed following the procedure in
[17], which yields n = 93 genes of interest from N = 250 patients. For a further description of
the data collection, see [23].

For this application, we consider three priors on Gn: the uniform prior on Gn correspond-
ing to the standard ‘edge’ basis, the uniform prior on Cn such as arising from a cycle basis
(e.g. Proposition 2) and a uniform prior over all decomposable graphs. We use a Metropolis–
Hastings algorithm for posterior inference where the proposal is to flip the presence of one
basis element in G where we use the edge basis also for the prior on decomposable graphs.
For the cycle basis, this proposal is guaranteed to be in Cn as a vector space is closed under
addition. See Section S3.2 of the Supplementary Material for details of the MCMC. The com-
putational cost is similar for the edge and cycle basis. Since the Metropolis–Hastings proposal
that we use for decomposable graphs is not constrained to decomposable graphs, the rejection
rate of that MCMC is high. We therefore run it for longer than the MCMC with the edge and
cycle basis.

Figures 6 and 7 and Table 1 summarise the resulting graph inference. There is no major
difference between the posterior edge inclusion probabilities with the edge basis and the cycle
basis. This is despite the cycle space restriction with the cycle basis. These results suggest that
restricting inference to the cycle space Cn ⊂ Gn does not substantially affect posterior inference
from when the graph space Gn is not restricted. This contrasts with the results for decomposable
graphs, which are substantially different from both the edge and cycle basis results, reflecting
that decomposability is a more severe restriction than the cycle space.

6. Discussion

In this paper we introduce a generalisation of the edge inclusion prior based on vector
spaces and, in particular, investigate the cycle subspace. We present theoretical results about
the cycle space and their bases. While the results presented in Section 2 are not our own except
for Proposition 1, to the extent of our knowledge, this is the first time the idea of restricting
inference to the cycle space has been introduced in the graphical model literature.

We also study a novel prior based on assigning independent prior basis inclusion proba-
bilities, proving its degree distribution and shrinkage properties. We implement an MCMC
algorithm that samples from the cycle space. Our algorithm is more straightforward to imple-
ment when compared to methods for decomposable graphs [15, 16, 33], by the fact that vector
spaces are closed under addition. We show empirically that studying a smaller but dense
subset of the graph space does not significantly affect inference of posterior edge inclusion
probabilities.

Moreover, this paper opens up an opportunity to various extensions of existing methodolo-
gies by considering alternative graph vector spaces such as those induced by cycle bases as
opposed to the edge basis. For example, the size-based prior of Armstrong et al. [2] can be
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used to shrink to the number of basis elements. Also, a birth–death proposal on the basis ele-
ments can be used instead of the proposal used in this paper that randomly switches one basis
element selected from a uniform distribution on all elements.

Lastly, in this paper we have only considered standard GGMs. However, it may be possible
to extend this method to other types of graphical models such as multiple graphs [27, 34],
Gaussian copulas [12, 24] and chain graphs [22, 32].
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