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Abstract

Given a Hamiltonian action of a proper symplectic groupoid (for instance, a Hamiltonian
action of a compact Lie group), we show that the transverse momentum map admits a
natural constant rank stratification. To this end, we construct a refinement of the canon-
ical stratification associated to the Lie groupoid action (the orbit type stratification, in
the case of a Hamiltonian Lie group action) that seems not to have appeared before, even
in the literature on Hamiltonian Lie group actions. This refinement turns out to be com-
patible with the Poisson geometry of the Hamiltonian action: it is a Poisson stratification
of the orbit space, each stratum of which is a regular Poisson manifold that admits a nat-
ural proper symplectic groupoid integrating it. The main tools in our proofs (which we
believe could be of independent interest) are a version of the Marle–Guillemin–Sternberg
normal form theorem for Hamiltonian actions of proper symplectic groupoids and a
notion of equivalence between Hamiltonian actions of symplectic groupoids, closely
related to Morita equivalence between symplectic groupoids.
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Stratification of the transverse momentum map

Introduction

Traditionally, a Hamiltonian action is an action of a Lie group G on a symplectic manifold (S, ω),
equipped with an equivariant momentum map:

J : (S, ω) → g∗,

taking values in the dual of the Lie algebra of G. Throughout the years, variations on this notion
have been explored, many of which have the common feature that the momentum map

J : (S, ω) → (M,π) (1)

is a Poisson map taking values in a specified Poisson manifold (see, for instance, [McD88, Lu91,
MW98, Wei01]). In [MW88], such momentum map theories were unified by introducing the notion
of Hamiltonian actions for symplectic groupoids, in which the momentum map takes values in
the Poisson manifold integrated by a given symplectic groupoid. In this paper, we show that the
transverse momentum map of such Hamiltonian actions admits a natural stratification, provided
the given symplectic groupoid is proper. To be more precise, let (G,Ω) ⇒ (M,π) be a proper
symplectic groupoid with a Hamiltonian action along a momentum map (1). The symplectic
groupoid generates a partition of M into symplectic manifolds, here called the symplectic leaves
of (G,Ω). On the other hand, the G-action generates a partition of S into orbits. We denote the
spaces of orbits and leaves as

S := S/G and M := M/G.
The momentum map (1) descends to a map

that we call the transverse momentum map. Because we assume G to be proper, by the results
of [PPT14, CM17] (which we recall in § 2.1) both the orbit space S and the leaf space M admit
a canonical Whitney stratification: SGp(S) and SGp(M), induced by the proper Lie groupoids
G � S (the action groupoid) and G. These, however, do not form a stratification of the transverse
momentum map, in the sense that J need not send strata of SGp(S) into strata of SGp(M) (see
Example 1 below). Our first main result is Theorem 2.52, which shows that there is a natural
refinement SHam(S) of SGp(S) that, together with the stratification SGp(M), forms a constant
rank stratification of J . This means that:

• J sends strata of SHam(S) into strata of SGp(M);
• the restriction of J to each pair of strata is a smooth map of constant rank.

Theorem 2.52 further shows that SHam(S) is, in fact, a Whitney stratification of the orbit space.
We call SHam(S) the canonical Hamiltonian stratification of S.

Example 1. Let G be a compact Lie group with Lie algebra g and let J : (S, ω) → g∗ be a
Hamiltonian G-space with equivariant momentum map. In this case, (G,Ω) = (T ∗G,−dλcan) (cf.
Example 1.5), S = S/G,M = g∗/G, and SGp(S) and SGp(M) are the stratifications by connected
components of the orbit types of the G-actions. The stratification SHam(S) can be described as
follows. Let us call a pair (K,H) of subgroups H ⊂ K ⊂ G conjugate in G to another such pair
(K ′, H ′) if there is a g ∈ G such that gKg−1 = K ′ and gHg−1 = H ′. Consider the partition of S
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defined by the equivalence relation

Op ∼ Oq ⇐⇒ (GJ(p), Gp) is conjugate in G to (GJ(q), Gq), (2)

where Gp and Gq denote the isotropy groups of the action on S, whereas GJ(p) and GJ(q) denote
the isotropy groups of the coadjoint action on g∗. The connected components of the members of
this partition form the stratification SHam(S). When G is abelian, SHam(S) and SGp(S) coincide,
but in general they need not (consider, for example, the cotangent lift of the action by left
translation of a non-abelian compact Lie group G on itself).

Our second main result is Theorem 2.91(b), which states that SHam(S) is, in fact, a constant
rank Poisson stratification of the orbit space and gives a description of the symplectic leaves
in terms of the fibers of the transverse momentum map. To elaborate, let us first provide some
further context. The singular space S has a natural algebra of smooth functions C∞(S): the
algebra consisting of G-invariant smooth functions on S. This is a Poisson subalgebra of

(C∞(S), {·, ·}ω).

Hence, it inherits a Poisson bracket, known as the reduced Poisson bracket. Geometrically, this is
reflected by the fact that SGp(S) is a Poisson stratification of the orbit space (see Definition 2.86
and Theorem 2.91(a)). In particular, each stratum of SGp(S) admits a natural Poisson structure,
induced by the Poisson bracket on C∞(S). Closely related to this is the singular symplectic
reduction procedure of Lerman and Sjamaar [LS91], which states that for each symplectic leaf
L of (G,Ω) in M , the symplectic reduced space

SL := J−1(L)/G (3)

admits a natural symplectic Whitney stratification. Let us call this the Lerman–Sjamaar stratifi-
cation of (3). This is related to the Poisson stratification SGp(S) by the fact that each symplectic
stratum of such a reduced space (3) coincides with a symplectic leaf of a stratum of SGp(S).

Remark. The facts mentioned above are stated more precisely in Theorems 2.91(a), 2.53
and 2.91(c). Although these theorems should be known to experts, in the literature we could
not find a written proof (that is, not in the generality of Hamiltonian actions for symplec-
tic groupoids; see, e.g., [FOR09, LS91] for the case of Lie group actions). Therefore, we have
included proofs of these.

Returning to our second main result: Theorem 2.91(b) states first of all that, like SGp(S),
the canonical Hamiltonian stratification SHam(S) is a Poisson stratification of the orbit space,
the leaves of which coincide with symplectic strata of the Lerman–Sjamaar stratification of the
reduced spaces (3). In addition, it has the following properties:

• in contrast to SGp(S), the Poisson structure on each stratum of SHam(S) is regular (meaning
that the symplectic leaves have constant dimension);

• the symplectic foliation on each stratum Σ ∈ SHam(S) coincides, as a foliation, with that by
the connected components of the fibers of the constant rank map J |Σ.

The reduced spaces (3) are, as topological spaces, the fibers of J . As stratified spaces (equipped
with the Lerman–Sjamaar stratification), these can now be seen as the fibers of the stratified
map

J : (S,SHam(S)) → (M,SGp(M)).
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Stratification of the transverse momentum map

Our third main result is Theorem 2.98, which says that, besides the fact that the Poisson structure
on each stratum of SHam(S) is regular, these Poisson manifolds admit natural proper symplectic
groupoids integrating them.

Example 2. Let (G,Ω) ⇒ (M,π) be a proper symplectic groupoid. Then (G,Ω) has a canonical
(left) Hamiltonian action on itself along the target map t : (G,Ω) →M . In this case, (S, ω) =
(G,Ω) and the orbit space S is M , with orbit projection the source map of G. The stratification
SHam(S) is the canonical stratification SGp(M) induced by the proper Lie groupoid G (as in
Example 2.5). Thus, Theorems 2.91 and 2.98 imply that each stratum of SGp(M) is a regular,
saturated Poisson submanifold of (M,π), that admits a natural proper symplectic groupoid
integrating it. This is a result in the forthcoming paper on non-regular Poisson manifolds of
compact types, by Crainic, Fernandes and Mart́ınez Torres.

Regular proper symplectic groupoids have been studied extensively in [CFM19] and have
been shown to admit a transverse integral affine structure. In particular, the proper symplectic
groupoids over the strata of the canonical Hamiltonian stratification admit transverse integral
affine structures. As it turns out, the leaf space of the proper symplectic groupoid over any
stratum of SHam(S) is smooth, and the transverse momentum map descends to an integral
affine immersion into the corresponding stratum of SGp(M). This is reminiscent of the findings
of [CDM88, Zun06].

Brief outline. In Part 1 we generalize the Marle–Guillemin–Sternberg (MGS) normal form for
Hamiltonian actions of Lie groups, to those of symplectic groupoids (Theorem 1.1). From this
we derive a simpler normal form for the transverse momentum map (Example 1.51), using a
notion of equivalence for Hamiltonian actions that is analogous to Morita equivalence for Lie
groupoids (Definition 1.44). Part 1 provides the main tools for the proofs in Part 2, where we
introduce the canonical Hamiltonian stratification and prove the main theorems mentioned above
(Theorems 2.52, 2.53, 2.91 and 2.98). A more detailed outline is given at the start of each of
these parts.

Conventions. Throughout, we require smooth manifolds to be both Hausdorff and second
countable and we require the same for both the base and the space of arrows of a Lie groupoid.

1. The normal form theorem

In this part we prove a version of the MGS normal form theorem for Hamiltonian actions of
symplectic groupoids.

Theorem 1.1. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are given a
Hamiltonian (G,Ω)-action along J : (S, ω) →M . Let O be the orbit of the action through some
p ∈ S and L the leaf of G through x := J(p). If G is proper at x (in the sense of Definition 1.7),
then the Hamiltonian action is neighbourhood-equivalent (in the sense of Definition 1.20) to its
local model around O (as constructed in § 1.3).

Both the local model and the proof of this theorem are inspired on those of two existing
normal form theorems: the MGS normal form [Mar85, GS84] by Marle, Guillemin and Sternberg
on one hand, and the normal form for proper Lie groupoids [Wei02, Zun06, CS13, FdH18] and
symplectic groupoids [Zun06, CM12, CFM17] on the other.

We split the proof of this theorem into a rigidity theorem (Theorem 1.21) and the construction
of a local model out of a certain collection of data that can be associated to any orbit O of a
Hamiltonian action. In §§ 1.1 and 1.2 we introduce the reader to this data and in § 1.3 we construct
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the local model. To prove Theorem 1.1, we are then left to prove the rigidity theorem, which is the
content of § 1.4. Lastly, in § 1.5 we introduce a notion of Morita equivalence between Hamiltonian
actions that allows us to make sense of a simpler normal form for the transverse momentum map.
We then study some elementary invariants for this notion of equivalence, analogous to those for
Morita equivalence between Lie groupoids, which will lead to further insight into the proof of
Theorem 1.1. This will also be important later in our definition of the canonical Hamiltonian
stratification and our proof of Theorems 2.52 and 2.53.

1.1 Background on Hamiltonian groupoid actions
1.1.1 Poisson structures and symplectic groupoids. Recall that a symplectic groupoid is a

pair (G,Ω) consisting of a Lie groupoid G and a symplectic form Ω on G which is multiplicative.
That is, it is compatible with the groupoid structure in the sense that

(pr1)
∗Ω = m∗Ω − (pr2)

∗Ω,

where we use
m,pr1,pr2 : G(2) → G

to denote the groupoid multiplication and the projections from the space of composable arrows
G(2) to G. Given a symplectic groupoid (G,Ω) ⇒ M , there is a unique Poisson structure π on M
with the property that the target map t : (G,Ω) → (M,π) is a Poisson map. The Lie algebroid
of G is canonically isomorphic to the Lie algebroid T ∗

πM of the Poisson structure π on M , via

ρΩ : T ∗
πM → Lie(G), ιρΩ(α)Ω1x = (dt1x)∗α, ∀α ∈ T ∗

xM, x ∈M. (4)

The symplectic groupoid (G,Ω) is said to integrate the Poisson structure π on M .

Example 1.2. The dual of a Lie algebra g is naturally a Poisson manifold (g∗, πlin), equipped
with the so-called Lie–Poisson structure. Given a Lie group G with Lie algebra g, the cotangent
groupoid (T ∗G,−dλcan) is a symplectic groupoid integrating (g∗, πlin). The groupoid structure
on T ∗G is determined by that fact that, via left-multiplication on G, it is isomorphic to the
action groupoid G� g∗ of the coadjoint action.

1.1.2 Momentum maps and Hamiltonian actions. To begin with, recall the following
definition.

Definition 1.3 [MW88]. Let (S, ω) be a symplectic manifold. A left action of a symplec-
tic groupoid (G,Ω) ⇒ M along a map J : (S, ω) →M is called Hamiltonian if it satisfies the
multiplicativity condition

(prG)∗Ω = (mS)∗ω − (prS)∗ω, (5)

where we use
mS ,prS : G � S → S, prG : G � S → G,

to denote the map defining the action and the projections from the action groupoid to S and G.
Right Hamiltonian actions are defined similarly.

The infinitesimal version of Hamiltonian actions for symplectic groupoids are momentum
maps. To be more precise, by a momentum map we mean a Poisson map J : (S, ω) → (M,π)
from a symplectic manifold into a Poisson manifold. That is, for all f, g ∈ C∞(M) it holds that

J∗{f, g}π = {J∗f, J∗g}ω.

Every momentum map comes with a symmetry, in the form of a Lie algebroid action. Indeed,
a momentum map J : (S, ω) → (M,π) is acted on by the Lie algebroid T ∗

πM of the Poisson
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structure π. Explicitly, the Lie algebroid action aJ : Ω1(M) → X (S) along J is determined by
the momentum map condition:

ιaJ (α)ω = J∗α, ∀α ∈ Ω1(M). (6)

Hamiltonian actions integrate such Lie algebroid actions, in the following sense.

Proposition 1.4. Let (G,Ω) ⇒ M be a symplectic groupoid and let π be the induced Poisson
structure on M (as in § 1.1.1). Suppose that we are given a left Hamiltonian (G,Ω)-action along
J : (S, ω) →M . Then J : (S, ω) → (M,π) is a momentum map and the Lie algebroid action

a : Ω1(M) → X (S) (7)

associated to the Lie groupoid action (via (4)) coincides with the canonical T ∗
πM -action along J .

In other words, (7) satisfies the momentum map condition (6). A similar statement holds for
right Hamiltonian actions.

An appropriate converse to this statement holds as well; see, for instance, [BC05].

Example 1.5. Continuing Example 1.2: as observed in [MW88], the data of a Hamiltonian
G-action with equivariant momentum map J : (S, ω) → g∗ is the same as that of a Hamiltonian
action of the symplectic groupoid (G� g∗,−dλcan) along J .

Example 1.6. Any symplectic groupoid has canonical left and right Hamiltonian actions along
its target and source map, respectively.

1.2 The local invariants
1.2.1 The leaves and normal representations of Lie and symplectic groupoids. To start with,

we introduce some more terminology. Let G ⇒ M be a Lie groupoid and x ∈M . By the leaf of G
through x we mean the set Lx consisting of points in M that are the target of an arrow starting
at x. By the isotropy group of G at x we mean the group Gx := s−1(x) ∩ t−1(x) consisting of
arrows that start and end at x. In general, Gx is a submanifold of G and as such it is a Lie group.
The leaf Lx is an initial submanifold of M , with smooth manifold structure determined by the
fact that

t : s−1(x) → Lx (8)

is a (right) principal Gx-bundle. Note that a leaf of G may be disconnected. Given a leaf L ⊂M
of G, we let GL := s−1(L) denote the restriction of G to L. This is a Lie subgroupoid of G. In
all of our main theorems, we assume at least that G is proper at points in the leaves under
consideration, in the following sense.

Definition 1.7 [CS13]. A Hausdorff Lie groupoid G is called proper at x ∈M if the map

(t, s) : G →M ×M

is proper at (x, x), meaning that any sequence (gn) in G such that (t(gn), s(gn)) converges to
(x, x) admits a convergent subsequence.

If G is proper at some (or equivalently every) point x ∈ L, then L and the Lie sub-
groupoid GL are embedded submanifolds of M and G respectively, and the isotropy group Gx is
compact. Returning to a general leaf L, the normal bundle NL to the leaf in M is naturally
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a representation
NL ∈ Rep(GL)

of GL, with the action defined as

g · [v] = [dt(v̂)] ∈ Nt(g), g ∈ GL, [v] ∈ Ns(g), (9)

where v̂ ∈ TgG is any tangent vector satisfying ds(v̂) = v. We call this the normal representation
of G at L. It encodes first-order data of G in directions normal to L (see also [CS13]). Given
x ∈ L, so that L = Lx, this restricts to a representation

Nx ∈ Rep(Gx) (10)

of the isotropy group Gx on the fiber Nx of NL over x, which we refer to as the normal rep-
resentation of G at x. Without loss of information, one can restrict attention to the normal
representation at a point, which will often be more convenient for our purposes. This is because
the transitive Lie groupoid GL is canonically isomorphic to the gauge groupoid of the principal
bundle (8), and the normal bundle NL is canonically isomorphic to the vector bundle associated
to the principal bundle (8) and the representation (10).

Example 1.8. For the holonomy groupoid of a foliation (assumed to be Hausdorff here), the leaves
are those of the foliation and the normal representation at x is the linear holonomy representation
(the linearization of the holonomy action on a transversal through x).

Example 1.9. For the action groupoid of a Lie group action, the leaves are the orbits of the
action and the normal representation at x is simply induced by the isotropy representation on
the tangent space to x.

For a symplectic groupoid the basic facts stated below hold, which follow from multiplicativity
of the symplectic form on the groupoid (see, e.g., [BCWZ04] for background on multiplicative
2-forms).

Proposition 1.10. Let (G,Ω) ⇒ M be a symplectic groupoid and let π be the induced Poisson
structure on M . Let x ∈M , let L be the leaf of G through x and GL the restriction of G to L.

(a) There is a unique symplectic form ωL on L such that

Ω|GL = t∗ωL − s∗ωL ∈ Ω2(GL).

The connected components of (L, ωL) are symplectic leaves of the Poisson manifold (M,π).
(b) The normal representation (10) is isomorphic (via (4)) to the coadjoint representation

g∗x ∈ Rep(Gx).

1.2.2 The orbits, leaves, and normal representations of Hamiltonian actions. Next, we will
study the leaves and the normal representations for the action groupoid of a Hamiltonian action.
Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are given a left Hamiltonian
(G,Ω)-action along J : (S, ω) →M . Let p ∈ S, x := J(p) ∈M , let (L, ωL) be the symplectic leaf
of (G,Ω) through x (as in Proposition 1.10) and let Gx be the isotropy group of G at x. By the
orbit of the action through p we mean

Op := {g · p | g ∈ s−1(x)} ⊂ S,

and by the isotropy group of the G-action at p we mean the closed subgroup

Gp := {g ∈ Gx | g · p = p} ⊂ Gx.
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Note that these coincide with the leaf and the isotropy group at p of the action groupoid. We let

Np ∈ Rep(Gp) (11)

denote the normal representation of the action groupoid at p. There are various relationships
between the orbits, leaves and the normal representations at p and x. To state these, consider
the symplectic normal space to the orbit O at p:

SNp :=
TpOω

TpO ∩ TpOω
, (12)

where we denote the symplectic orthogonal of the tangent space TpO to the orbit through p as

TpOω := {v ∈ TpS | ω(v, w) = 0, ∀w ∈ TpO}. (13)

Further, consider the annihilator of gp in gx:

g0
p ⊂ g∗x. (14)

Proposition 1.11. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are given
left Hamiltonian (G,Ω)-action along J : (S, ω) →M . Let O be the orbit of the action through
p ∈ S.

(a) The map J restricts to a surjective submersion JO : O → L from the orbit O onto a leaf L
of G. Moreover, the restriction ωO ∈ Ω2(O) of ω coincides with the pull-back of ωL:

ωO = (JO)∗ωL. (15)

(b) The symplectic normal space (12) to O at p is a subrepresentation of the normal represen-
tation (11) of the action at p. In fact, (12), (11), and (14) fit into a canonical short exact
sequence of Gp-representations:

0 → SNp → Np → g0
p → 0. (16)

(c) The normal representation (10) of G at x := J(p) fits into the canonical short exact sequence
of Gp-representations:

0 → g0
p → g∗x → g∗p → 0. (17)

Proof. That J maps O submersively onto a leaf L follows from the axioms of a Lie groupoid
action. The equality (15) is readily derived from (5). Part (c) is immediate from Proposi-
tion 1.10(b). To prove part (b) and provide some further insight into part (c), observe that
J induces a Gp-equivariant map:

dJp : Np → Nx.

Therefore, we have two short exact sequences of Gp-representations:

0 → Ker(dJp) → Np → Im(dJp) → 0, (18)

0 → Im(dJp) → Nx → CoKer(dJp) → 0. (19)

Using the following proposition, the short exact sequence (19) translates into the short exact
sequence (17), whereas (18) translates into (16). In particular, this proves part (b). �
Proposition 1.12. Let (G,Ω) ⇒ M be a symplectic groupoid and suppose that we are given a
left Hamiltonian (G,Ω)-action along J : (S, ω) →M . Further, let p ∈ S.

(a) The symplectic orthogonal (13) of the tangent space TpO to the orbit O through p coincides
with Ker(dJp).
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(b) The isotropy Lie algebra gp, viewed as subset of T ∗
xM via (4), is the annihilator of Im(dJp)

in TxM , where x = J(p).

This is readily derived from the momentum map condition (6).

1.2.3 The symplectic normal representation. Note that the symplectic form ω on S descends
to a linear symplectic form ωp on the symplectic normal space (12).

Proposition 1.13. In fact, (SNp, ωp) is a symplectic Gp-representation.

Proof. We ought to show that ωp is Gp-invariant. Note that, for any v ∈ Ker(dJp) and g ∈ Gp,

g · [v] = [dm(g,p)(0, v)].

Thus, using Proposition 1.12(a) we find that for all v, w ∈ TpOω and g ∈ Gp,

ωp(g · [v], g · [w]) = (m∗ω)(g,p)((0, v), (0, w)) = ωp([v], [w]),

where in the last step we applied (5). �
Definition 1.14. Given a Hamiltonian action as above, we call

(SNp, ωp) ∈ SympRep(Gp) (20)

its symplectic normal representation at p.

Given any symplectic representation (V, ωV) of a Lie group H, the H-action is Hamiltonian
with quadratic momentum map

JV : (V, ωV) → h∗, 〈JV (v), ξ〉 = 1
2ωV (ξ · v, v). (21)

As we will now show, given a Hamiltonian (G,Ω)-action along J : (S, ω) →M , the quadratic
momentum map,

JSNp : (SNp, ωp) → g∗p, (22)

of the symplectic normal representation at p can be expressed in terms of the quadratic differen-
tial of J at p. Recall from [AGV12] that the quadratic differential of a map F : S →M at p ∈ S
is defined to be the quadratic map

d2Fp : Ker(dFp) → CoKer(dFp), d2Fp(v) =
[
1
2

d2

d2t

∣∣∣∣
t=0

(ψ ◦ F ◦ ϕ−1)(tv)
]
,

where ϕ : (U, p) → (TpS, 0) and ψ : (V, x) → (TxM, 0) are any two open embeddings, defined on
open neighbourhoods of p and x := F (p) such that F (U) ⊂ V , with the property that their
differentials at p and x are the respective identity maps. Returning to the momentum map J ,
by Proposition 1.12 its quadratic differential becomes a map

d2Jp : TpOω → g∗p. (23)

Proposition 1.15. Let J : (S, ω) →M be the momentum map of a Hamiltonian action and
p ∈ S. Then the quadratic differential (23) is the composition of the quadratic momentum map
(22) with the canonical projection TpOω → SNp:
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For the proof, we use an alternative description of the quadratic differential. Recall that, given
a vector bundle E → S and a germ of sections e ∈ Γp(E) vanishing at p ∈ S, the linearization
of e at p is the linear map

elinp : TpS → Ep, elinp := prEp
◦ (de)p,

where we view the differential (de)p of the map e at p as map into Ep ⊕ TpS, via the canonical
identification of (TE)(p,0) with Ep ⊕ TpS. With this, one can define the intrinsic Hessian of F
at p to be the symmetric bilinear map

Hessp(F ) : Ker(dFp) × Ker(dFp) → CoKer(dFp), (Xp, Yp) �→
[

1
2(dF (Y ))linp (Xp)

]
,

where Y ∈ Xp(S) is any germ of vector fields extending Yp and we see dF (Y ) as a germ of sections
of F ∗(TM). The quadratic differential is now given by the quadratic form

d2Fp(v) = Hessp(F )(v, v), v ∈ Ker(dFp).

We will further use the following immediate, but useful, observation.

Lemma 1.16. Let Φ : E → F be a map of vector bundles over the same manifold, covering the
identity map. If e ∈ Γp(E) is a germ of sections that vanishes at p, then so does Φ(e) ∈ Γp(F )
and we have

Φ(e)linp = Φ ◦ elinp .

Proof of Proposition 1.15. Let αx ∈ gp ⊂ T ∗
xM and Xp ∈ Ker(dJp) = TpOω. We have to prove

〈JSNp([Xp]), αx〉 = 〈αx,d2Jp(Xp)〉.
This will follow by linearizing both sides of (6). Let α ∈ Ω1(M) and X ∈ X (S) be extensions of
αx and Xp, respectively. On one hand, we have

〈(ιa(α)ω)linp (Xp), Xp〉 = ωp(a(α)linp (Xp), Xp)

= 2〈JSNp([Xp]), αx〉.
Here we have first used that, given a k-form β and a vector field Y that vanishes at p, it holds
that

(ιY β)linp (Xp) = ιY lin
p (Xp)βp,

as follows from Lemma 1.16. Furthermore, for the second step we have used that the Lie algebra
representation gp → sp(SNp, ωp) induced by the symplectic normal representation is given by

αx · [Xp] = [a(α)linp (Xp)].

On the other hand, linearizing the right-hand side of (6) we find (as desired)

〈(J∗α)linp (Xp), Xp〉 = (α(dJ(X))linp (Xp)

= 2〈αx,d2Jp(Xp)〉.
Here we have first used that, given a vector field Y and a k-form β that vanishes at p, it holds
that

(ιY β)linp (Xp) = ιYp(β
lin
p (Xp)),

as follows from Lemma 1.16. Furthermore, for the second step we have again used
Lemma 1.16. �
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1.2.4 Neighbourhood equivalence and rigidity. We now turn to the notion of neighbourhood
equivalence, used in the statement of Theorem 1.1. In view of Proposition 1.10, the restriction
of a symplectic groupoid (G,Ω) to a leaf L gives rise to the data of:

• a symplectic manifold (L, ωL);
• a transitive Lie groupoid GL ⇒ L equipped with a closed multiplicative 2-form ΩL;

subject to the relation

ΩL = t∗GLωL − s∗GLωL. (24)

Definition 1.17. We call a collection of such data a zeroth-order symplectic groupoid data.

Further, using Proposition 1.11(a), we observe that the restriction of a Hamiltonian
(G,Ω)-action along J : (S, ω) →M to an orbit O (with corresponding leaf L = J(O)) encodes
the data of:

• a zeroth-order symplectic groupoid data (GL,ΩL) ⇒ (L, ωL);
• a pre-symplectic manifold (O, ωO);
• a transitive Lie groupoid action of GL along a map JO : O → L;

subject to the relations

(prGL)∗ΩL = (mO)∗ωO − (prO)∗ωO and ωO = (JO)∗ωL. (25)

Here we use

mO,prO : GL � O → O, prGL : GL � O → GL,

to denote the map defining the action and the projections from the action groupoid to O
and GL.

Definition 1.18. We call a collection of such data a zeroth-order Hamiltonian data.

Next, we define realizations of such zeroth-order data and neighbourhood equivalences
thereof.

Definition 1.19. By a realization of a given zeroth-order symplectic groupoid data

(GL,ΩL)

(L, ωL)

(G,Ω)

(M,π)

i

we mean an embedding of Lie groupoids i : GL ↪→ G with the property that Ω pulls back to
ΩL and that GL embeds as the restriction of G to a leaf. Of course, (L, ωL) then automatically
embeds as a symplectic leaf of (G,Ω). We call two realizations i1 and i2 of the same zeroth-order
symplectic groupoid data neighbourhood-equivalent if there are opens V1 and V2 around L in M1

and M2 respectively, together with an isomorphism of symplectic groupoids:

(G1,Ω1)|V1

(V1, π1)

(G2,Ω2)|V2

(V2, π2)

∼=

that intertwines i1 with i2.
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Definition 1.20. By a realization of a given zeroth-order Hamiltonian data

(GL,ΩL)

(L, ωL)

(O, ωO) (G,Ω)

(M,π)

(S, ω)

JO
(i, j)

J

we mean a pair (i, j) consisting of:

• a realization i of the zeroth-order symplectic groupoid data (GL,ΩL) ⇒ (L, ωL);
• an embedding j : O ↪→ S that pulls back ω to ωO and is compatible with i, in the sense that
i and j together intertwine JO with J , and the actions along these maps.

We call two realizations (i1, j1) and (i2, j2) of the same zeroth-order Hamiltonian data
neighbourhood-equivalent if there are opens V1 and V2 around L in M1 and M2, respectively,
a G1|V1-invariant open U1 and a G2|V2-invariant open U2 around O in J−1

1 (V1), respectively
J−1

2 (V2), together with:

• an isomorphism (G1,Ω1)|V1
∼= (G2,Ω2)|V2 that intertwines i1 with i2;

• a symplectomorphism (U1, ω1) ∼= (U2, ω2) that intertwines j1 with j2 and is compatible with
the above isomorphism of symplectic groupoids, in the sense that together these intertwine
J1 : U1 → V1 with J2 : U2 → V2, and the actions along these maps.

In other words, we have an isomorphism of Hamiltonian actions

(G1,Ω1)|V1

(V1, π1)

(U1, ω1) (G2,Ω2)|V2

(V2, π2)

(U2, ω2)

J1
∼= J2

that intertwines the embeddings of zeroth-order data. Usually the embeddings are clear from the
context and we simply call the two Hamiltonian actions neighbourhood-equivalent around O.

We can now state the rigidity result mentioned in the introduction to this section.

Theorem 1.21. Suppose that we are given two realizations of the same zeroth-order
Hamiltonian data with orbit O and leaf L. Fix p ∈ O and let x = JO(p) ∈ L. If both symplectic
groupoids are proper at x (in the sense of Definition 1.7), then the realizations are neighbourhood-
equivalent if and only if their symplectic normal representations at p are isomorphic as symplectic
Gp-representations.

In the coming section, we give an explicit construction to show the following.

Proposition 1.22. For any zeroth-order Hamiltonian data with orbit O, any choice of p ∈ O
and any symplectic representation (V, ωV) of the isotropy group Gp, there is a realization of the
zeroth-order data that has (V, ωV) as symplectic normal representation at p.

Given a Hamiltonian action, we call the realization constructed from the zeroth-order
Hamiltonian data obtained by restriction to O and from the symplectic normal representation
at p: the local model of the Hamiltonian action around O (we disregard the choice of p ∈ O, as
different choices result in isomorphic local models). Applying Theorem 1.21 to the given Hamil-
tonian action on one hand and, on the other hand, to its local model around O, Theorem 1.1
follows. Hence, after the construction of this local model, it remains for us to prove Theorem 1.21.
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1.3 The local model
1.3.1 Reorganization of the zeroth-order Hamiltonian data. Before constructing the local

model, we rearrange the zeroth-order data (defined in the previous subsection) into a simpler
form. First, due to the relations (24) and (25), the triple of 2-forms ΩL, ωL and ωO can be fully
reconstructed from the single 2-form ωL. Therefore, a collection of zeroth-order Hamiltonian
data can equivalently be defined as the data of:

• a symplectic manifold (L, ωL);
• a transitive Lie groupoid GL ⇒ L;
• a transitive Lie groupoid action of GL along a map JO : O → L.

After the choice of a point p ∈ O, this can be simplified further to a collection consisting of:

• a symplectic manifold (L, ωL);
• a Lie group G (corresponding to Gx);
• a (right) principal G-bundle P → L (corresponding to t : s−1(x) → L);
• a closed subgroup H of G (corresponding to Gp).

To see this, fix a point p ∈ O and let x = JO(p) ∈ L. Since GL is transitive, the choice of x ∈ L
induces an isomorphism between GL and the gauge groupoid

s−1(x) ×Gx s
−1(x) ⇒ L, (26)

of the principal Gx-bundle t : s−1(x) → L. In particular, GL is entirely encoded by this principal
bundle. Furthermore, due to transitivity the GL-action along JO is entirely determined by this
principal bundle and the subgroup Gp of Gx. Indeed, the map JO can be recovered from this, for
we have a commutative square

where the left vertical map is defined by acting on p and the upper horizontal map is the canonical
one. Moreover, the action can be recovered as the action of the groupoid (26) along the upper
horizontal map, given by [p, q] · [q] = [p].

1.3.2 Construction of the local model for the symplectic groupoid. The construction presented
here is well known. For other (more Poisson geometric) constructions of this local model, see
[CM12, Mar13]. The local model for the symplectic groupoid is built out of the zeroth-order
symplectic groupoid data, encoded as above by:

• a symplectic manifold (L, ωL);
• a Lie group G;
• a (right) principal G-bundle P → L.

To construct the local model, we make an auxiliary choice of a connection 1-form θ ∈ Ω1(P ; g)
and define

θ̂ ∈ Ω1(P × g∗), θ̂(q,α) = 〈α, θq〉. (27)

Then, we use the symplectic structure ωL on L to define

ωθ = (prL)∗ωL − dθ̂ ∈ Ω2(P × g∗), (28)
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where by prL we denote the composition P × g∗
pr1−−→ P → L. The 2-form ωθ is closed,

non-degenerate at all points of P × {0} and (P × g∗, ωθ) → g∗ is a (right) pre-symplectic
Hamiltonian G-space. Therefore, the open subset Σθ ⊂ P × g∗ on which ωθ is non-degenerate is a
G-invariant neighbourhood of P × {0}. Since the action is free and proper, the symplectic form
ωθ descends to a Poisson structure πθ on the open neighbourhood Mθ of the zero-section L,
defined as

Mθ := Σθ/G ⊂ P ×G g∗.

This is the base of the local model. For the construction of the integrating symplectic groupoid,
notice first that the pair groupoid

(Σθ × Σθ, ωθ ⊕−ωθ) (29)

is a symplectic groupoid and, furthermore, it is a (right) free and proper Hamiltonian G-space
(being a product of two). Therefore, the symplectic form ωθ ⊕−ωθ descends to the symplectic
reduced space at 0 ∈ g∗:

(Gθ,Ωθ) := ((Σθ × Σθ) �G,Ωred). (30)

The pair groupoid structure on Σθ × Σθ descends to a Lie groupoid structure on (30), making it a
symplectic groupoid integrating (Mθ, πθ). This is the symplectic groupoid in the local model. It is
canonically a realization of the given zeroth-order symplectic groupoid data: the gauge groupoid
of the principal G-bundle P → L (corresponding to (26)) embeds into (30) via the zero-section.

1.3.3 Construction of the local model for Hamiltonian actions. The construction below gen-
eralizes that in [Mar85, GS84]. The local model is built out of a zeroth-order Hamiltonian data
and a symplectic representation of an isotropy group of the action, encoded as in § 1.3.1 by:

• a symplectic manifold (L, ωL);
• a Lie group G;
• a (right) principal G-bundle P → L;
• a closed subgroup H of G;
• a symplectic H-representation (V, ωV).

Choose an auxiliary connection 1-form θ ∈ Ω1(P ; g) and define ωθ, Σθ and Mθ as in the con-
struction of the local model for symplectic groupoids. To construct a Hamiltonian action of the
symplectic groupoid (30), consider the product of the Hamiltonian H-spaces:

prh∗ : (Σθ, ωθ)
prg∗−−−→ g∗ → h∗ and JV : (V, ωV) → h∗,

where JV is as in (21). This is another (right) Hamiltonian H-space:

JH : (Σθ × V, ωθ ⊕ ωV) → h∗, (q, α, v) �→ α|h − JV (v),

where the action is the diagonal one, which is free and proper. The symplectic manifold in the
local model is the reduced space at 0 ∈ h∗:

(Sθ, ωSθ
) := ((Σθ × V ) �H,ωred). (31)

To equip this with a Hamiltonian action of (30), observe that, on the other hand, the symplectic
pair groupoid (29) acts along

prΣθ
: (Σθ × V, ωθ ⊕ ωV) → Σθ
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in a Hamiltonian fashion as (σ, τ) · (τ, v) = (σ, v) for σ, τ ∈ Σθ and v ∈ V . This descends to a
Hamiltonian action of (30) that fits into a diagram of commuting Hamiltonian actions:(Gθ,Ωθ

)

Mθ

(Σθ × V, ωθ ⊕ ωV)

h∗

(T ∗H,−dλcan)

prMθ JH

with the property that the momentum map of each one is invariant under the action of the other.
It therefore follows that the left-hand action descends to a Hamiltonian action along the map

Jθ : (Sθ, ωSθ
) →Mθ, [σ, v] �→ [σ]. (32)

This is the Hamiltonian action in the local model. It is canonically a realization of the given
zeroth-order Hamiltonian data: as in the previous subsection the gauge groupoid of the principal
G-bundle P → L embeds into (30) via the zero-section and similarly P/H embeds into (31). This
completes the construction of the local model. Finally, given the starting data in Proposition 1.22,
one readily verifies that the symplectic normal representation at p of the resulting Hamiltonian
action of (30) along (32) is isomorphic to (V, ωV) as symplectic Gp-representation. Thus, this also
completes the proof of Proposition 1.22.

Remark 1.23. Under the assumption that the short exact sequence

0 → h0 → g∗ → h∗ → 0 (33)

splits H-equivariantly (which holds if H is compact), the local model can be put in the more
familiar form of a vector bundle over O. Indeed, let p : h∗ → g∗ be such a splitting. Then we
have an open embedding

Sθ → P ×H (h0 ⊕ V ), [p, α, v] �→ [p, α− p(JV (v)), v] (34)

onto an open neighbourhood of the zero-section, which identifies the momentum map (32) with
the restriction to this open neighbourhood of the map

P ×H (h0 ⊕ V ) → P ×G g∗, [p, α, v] �→ [p, α+ p(JV (v))]. (35)

To identify the action accordingly, observe that, as Lie groupoid, (30) embeds canonically onto
an open subgroupoid of

(P × P ) ×G g∗ ⇒ P ×G g∗, (36)

which inherits its Lie groupoid structure from the submersion groupoid of prg∗ : P × g∗ → g∗,
being a quotient of it. This identifies the action of (30) along (35) with (a restriction of) the
action of (36) along (35), given by

[p1, p2, α+ p(JV (v))] · [p2, α, v] = [p1, α, v], p1, p2 ∈ P, α ∈ h0, v ∈ V.

1.3.4 Relation to the MGS model. Let G be a Lie group and consider a Hamiltonian G-space
J : (S, ω) → g∗. As remarked in Example 1.5, this is the same as a Hamiltonian action of the
cotangent groupoid (G� g∗,−dλcan) ⇒ g∗ along J . Let p ∈ S, α = J(p) and suppose that G� g∗

is proper at α (in the sense of Definition 1.7). In this case, our local model around the orbit O
through p is equivalent to the local model in the MGS normal form theorem for Hamiltonian
G-spaces (recalled below). To see this, first note that, since the isotropy group Gα is compact,
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the short exact sequence of Gα-representations

0 → g0
α → g∗ → g∗α → 0 (37)

is split. Let σ : g∗α → g∗ be a Gα-equivariant splitting of (37) and consider the connection one-
form θ ∈ Ω1(G; gα) on G (viewed as right principal Gα-bundle) obtained by composing the
left-invariant Maurer–Cartan form on G with σ∗ : g → gα. The leaf L through α is a coadjoint
orbit and ωL is the Kirillov–Kostant–Souriau symplectic form, which is invariant under the
coadjoint action. Therefore, the 2-form ωθ ∈ Ω2(G× g∗α), defined as in (28), is not only invariant
under the right diagonal action of Gα, but it also invariant under the left action of G by left
translation on the first factor. This implies that the open Σθ on which ωθ is non-degenerate is
of the form G×W for a Gα-invariant open W around the origin in g∗α. The local model for the
cotangent groupoid around L becomes

(G� (G×Gα W ),Ωθ) ⇒ G×Gα W,

the groupoid associated to the action of G by left translation on the first factor. To compare this
to the cotangent groupoid itself, consider the G-equivariant map

ϕ : G×Gα W → g∗, [g, β] �→ g · (α+ σ(β)).

Since G� g∗ is proper at α, we can shrink W so that ϕ becomes an embedding onto a G-invariant
open neighbourhood of L. Then ϕ lifts canonically to an isomorphism of symplectic groupoids

(G� (G×Gα W ),Ωθ)
∼−→ (G� g∗,−dλcan)|ϕ(G×GαW ), (38)

and this is a neighbourhood equivalence around G� L (with respect to the canonical
embeddings). Our local model for (S, ω) around O is the same as that in the MGS local
model, and via (38) the Hamiltonian action in our local model is identified with the Hamiltonian
G-space in the MGS local model. In particular the momentum map (35) is identified with

JMGS : G×Gp (g0
p ⊕ SNp) → g∗, [g, β, v] �→ g · (α+ σ(β + p(JSNp(v)))).

Remark 1.24. As will be clear from the proof of Theorem 1.21, the conclusion of Theorem 1.1
can be sharpened for Hamiltonian Lie group actions: if we start with a Hamiltonian G-space,
then under the assumptions of Theorem 1.1 we can in fact find a neighbourhood equivalence in
which the isomorphism of symplectic groupoids is the explicit isomorphism (38). In particular,
this neighbourhood equivalence is defined on G-invariant neighbourhoods of O in S and L in g∗.

1.4 The proof
1.4.1 Morita equivalence of groupoids. To prove Theorem 1.21 (and, hence, Theorem 1.1), we

will reduce to the case where O ⊂ J−1
X (0) is an orbit of a Hamiltonian G-space JX : (X,ωX) → g∗

(with G a compact Lie group), to which we can apply the MGS theorem. The idea of such a
reduction is by no means new: in fact, it has already appeared in the work of Guillemin and
Sternberg. To do so, we use the fact that Morita equivalent symplectic groupoids have equivalent
categories of modules. In preparation for this, we will now first recall the definition, some useful
properties and examples of Morita equivalence.

Definition 1.25. Let G1 ⇒ M1 and G2 ⇒ M2 be Lie groupoids. A Morita equivalence from G1

to G2 is a principal (G1,G2)-bi-bundle (P, α1, α2). This consists of:

• a manifold P with two surjective submersions αi : P →Mi;
• a left action of G1 along α1 that makes α2 into a principal G1-bundle;
• a right action of G2 along α2 that makes α1 into a principal G2-bundle.
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Furthermore, the two actions are required to commute. We depict this as follows.

G1

M1

P

M2

G2

α1 α2

For every leaf L1 ⊂M1, there is a unique leaf L2 ⊂M2 such that α−1
1 (L1) = α−1

2 (L2); such
leaves L1 and L2 are called P -related. When (G1,Ω1) and (G2,Ω2) are symplectic groupoids,
then a symplectic Morita equivalence from (G1,Ω1) to (G2,Ω2) is a Morita equivalence with the
extra requirement that (P, ωP ) is a symplectic manifold and both actions are Hamiltonian.

Morita equivalence is an equivalence relation that, heuristically speaking, captures the geom-
etry transverse to the leaves. The simplest motivation for this principle is the following basic
result.

Proposition 1.26. Let (P, α1, α2) be a Morita equivalence from G1 ⇒ M1 to G2 ⇒ M2.

(a) The map

hP : M1 →M2, L1 �→ α2(α−1
1 (L1)) (39)

that sends a leaf L1 of G1 to the unique P -related leaf of G2 is a homeomorphism.
(b) Suppose that x1 ∈M1 and x2 ∈M2 belong to P -related leaves and let p ∈ P such that

α1(p) = x1 and α2(p) = x2. Then the map

Φp : (G1)x1 → (G2)x2 (40)

defined by the relation

g · p = p · Φp(g), g ∈ (G1)x1 ,

is an isomorphism of Lie groups. Furthermore, the map

ϕp : Nx1 → Nx2 , [v] �→ [dα2(v̂)], (41)

where v̂ ∈ TpP is any tangent vector such that dα1(v̂) = v, is a compatible isomorphism
between the normal representations at x1 and x2.

Example 1.27. Any Lie groupoid G ⇒ M is Morita equivalent to itself via the canonical bi-module
(G, t, s). The same goes for symplectic groupoids. Another simple example: any transitive Lie
groupoid is Morita equivalent to a Lie group (viewed as groupoid over the one-point space); as a
particular case of this, the pair groupoid of a manifold is Morita equivalent to the unit groupoid
of the one-point space.

Example 1.28. Morita equivalences can be restricted to opens. Indeed, let (P, α1, α2) be a
Morita equivalence between G1 ⇒ M1 and G2 ⇒ M2, and let V1 be an open in M1. Then
V2 := α2(α−1

1 (V1)) is an invariant open in M2 and (α−1
1 (V1), α1, α2) is a Morita equivalence

between G1|V1 and G2|V2 . The same works for symplectic Morita equivalences.

Example 1.29. If G ⇒ M is a Lie groupoid and V is an open in M , then G|V is Morita equivalent
to the restriction of G to the saturation of V (the smallest invariant open containing V ). This
can be seen by applying Example 1.28 to the first Morita equivalence in Example 1.27. The same
holds for symplectic groupoids.
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Example 1.30. The following example plays a crucial role in our proof of Theorem 1.21. Consider
the set-up of § 1.3.2. There is a canonical symplectic Morita equivalence(Gθ,Ωθ

)

Mθ

(Σθ, ωθ)

Wθ

(G� g∗,−dλcan)|Wθ

prMθ
prg∗

between (30) and the restriction of the cotangent groupoid to the G-invariant open Wθ :=
prg∗(Σθ) around the origin in g∗. This relates the central leaf L in Mθ to the origin in g∗.

1.4.2 Equivalence between categories of modules. Next, we recall how a Morita equivalence
induces an equivalence between the categories of modules. Given a Lie groupoid G ⇒ M , by a
G-module we simply mean a smooth map J : S →M equipped with a left action of G. A morphism
from a G-module J1 : S1 →M to J2 : S2 →M is a smooth map ϕ : S1 → S2 that intertwines J1

and J2 and is G-equivariant. This defines a category Mod(G).

Example 1.31. Let G ⇒ M be a Lie groupoid and let W be an invariant open in M . Consider
the full subcategory ModW (G) of Mod(G) consisting of those G-modules J : S →M with the
property that J(S) ⊂W . There is a canonical equivalence of categories between ModW (G) and
Mod(G|W ).

Example 1.32. Let G be a Lie group and M a left G-space. Consider the category HomG(−,M)
of smooth G-equivariant maps from left G-spaces into M . A morphism between two such maps
J1 : S1 →M and J2 : S2 →M is a smooth G-equivariant map ϕ : S1 → S2 that intertwines J1

and J2. There is a canonical equivalence of categories between HomG(−,M) and Mod(G�M).

We now recall the following.

Theorem 1.33. A Morita equivalence (P, α1, α2) between two Lie groupoids G1 and G2 induces
an equivalence of categories between Mod(G1) and Mod(G2), explicitly given by (43).

Proof. To any G1-module J : S →M1 we can associate a G2-module, as follows. The Lie groupoid
G1 acts diagonally on the manifold P ×M1 S along the map α1 ◦ pr1, in a free and proper way.
Hence, the quotient

P ∗G1 S :=
(P ×M1 S)

G1

is smooth. Moreover, since the actions of G1 and G2 commute and α1 is G2-invariant, we have a
left action of G2 along

P∗(J) : P ∗G1 S →M2, [pP , pS ] �→ α2(pP ), (42)

given by

g · [pP , pS ] = [pP · g−1, pS ].

We call this the G2-module associated to the G1-module J . For any morphism of G1-modules
there is a canonical morphism between the associated G2-modules. Thus, this defines a functor

Mod(G1) → Mod(G2)

(J : S →M1) �→ (P∗(J) : P ∗G1 S →M2).
(43)

An analogous construction from right to left gives an inverse to this functor. �
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Next, we recall the analogue for symplectic groupoids. Given a symplectic groupoid (G,Ω) ⇒
M , by a Hamiltonian (G,Ω)-space (called symplectic left (G,Ω)-module in [Xu91]) we mean a
smooth map J : (S, ω) →M equipped with a left Hamiltonian (G,Ω)-action. A morphism ϕ from
J1 : (S1, ω1) →M to J2 : (S2, ω2) →M is a morphism of G-modules satisfying ϕ∗ω2 = ω1. This
defines a category Ham(G,Ω).

Example 1.34. Let (G,Ω) ⇒ M be a symplectic groupoid and let W be an invariant open in M .
The equivalence in Example 1.31 restricts to an equivalence between the category HamW (G,Ω),
consisting of Hamiltonian (G,Ω)-spaces with the property that J(S) ⊂W , and Ham((G,Ω)|W ).

Example 1.35. Let G be a Lie group and consider the category Ham(G) of left Hamiltonian
G-spaces. Here, a morphism between Hamiltonian G-spaces J1 : (S1, ω1) → g∗ and J2 :
(S2, ω2) → g∗ is a G-equivariant map ϕ : S1 → S2 that intertwines J1 and J2 and satisfies ϕ∗ω2 =
ω1. The equivalence in Example 1.32 restricts to one between Ham(G) and Ham(G� g∗,−dλcan).
This refines the statement in Example 1.5.

Theorem 1.36 [Xu91]. A symplectic Morita equivalence (P, ωP , α1, α2) between two symplectic
groupoids (G1,Ω1) and (G2,Ω2) induces an equivalence of categories between Ham(G1,Ω1) and
Ham(G2,Ω2), explicitly given by (44).

Proof. Let (P, ωP , α1, α2) be a symplectic Morita equivalence between symplectic groupoids
(G1,Ω1) and (G2,Ω2) and let J : (S, ωS) →M1 be a Hamiltonian (G1,Ω1)-space. The symplectic
form (−ωP ) ⊕ ωS descends to a symplectic form ωPS on P ∗G1 S and the (G2,Ω2)-action along
the associated module P∗(J), as in (42), becomes Hamiltonian. As before, this extends to a
functor

Ham(G1,Ω1) → Ham(G2,Ω2)

(J : (S, ωS) →M1) �→ (P∗(J) : (P ∗G1 S, ωPS) →M2)
(44)

and an analogous construction from right to left gives an inverse functor. �

1.4.3 Proof of rigidity. The proof of Theorem 1.21 hinges on the following two known results.
The first is a rigidity theorem for symplectic groupoids.

Theorem 1.37 [CFM17]. Suppose that we are given two realizations of the same zeroth-order
symplectic groupoid data with leaf L. Fix x ∈ L. If both symplectic groupoids are proper at x
(in the sense of Definition 1.7), then the realizations are neighbourhood-equivalent.

Remark 1.38. The assumption appearing in [CFM17, Theorem 8.2] is that G is proper, which is
stronger than properness at x. However, if G is proper at x, then there is an open U around the
leaf L through x such that G|U is proper (see, e.g., [dHo13, Remark 5.1.4]).

The second result that we will need is the following rigidity theorem for Hamiltonian
G-spaces.

Theorem 1.39 [Mar83, GS84]. Let G be a compact Lie group and let J1 : (S1, ω1) → g∗ and
J2 : (S2, ω2) → g∗ be Hamiltonian G-spaces. Suppose that p1 ∈ J−1

1 (0) and p2 ∈ J−1
2 (0) are such

that Gp1 = Gp2 . Then there are G-invariant neighbourhoods U1 of p1 and U2 of p2, together with
an isomorphism of Hamiltonian G-spaces that sends p1 to p2:
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if and only if there is an equivariant symplectic linear isomorphism

(SNp1 , ωp1) ∼= (SNp2 , ωp2).

The main step in proving Theorem 1.21 is to prove the following generalization of
Theorem 1.39.

Theorem 1.40. Let (G,Ω) ⇒ M be a symplectic groupoid that is proper at x ∈M . Suppose
that we are given two Hamiltonian (G,Ω)-spaces J1 : (S1, ω1) →M and J2 : (S2, ω2) →M . Let
p1 ∈ S1 and p2 ∈ S2 be such that J1(p1) = J2(p2) = x and Gp1 = Gp2 . Then there are G-invariant
open neighbourhoods U1 of p1 and U2 of p2, together with an isomorphism of Hamiltonian
(G,Ω)-spaces that sends p1 to p2:

if and only if there is an equivariant symplectic linear isomorphism

(SNp1 , ωp1) ∼= (SNp2 , ωp2).

To prove this we further use the following lemma.

Lemma 1.41. Let (P, ωP , α1, α2) be a symplectic Morita equivalence between (G1,Ω1) and
(G2,Ω2). Further, let J : (S, ωS) →M be a Hamiltonian (G1,Ω1)-space, let pS ∈ S and fix a
pP ∈ P such that α1(pP ) = J(pS). Then the isomorphism (40) restricts to an isomorphism

ΦpP : GpS

∼−→ G[pP ,pS ],

and there is a compatible symplectic linear isomorphism

(SNpS , (ωS)pS ) ∼= (SN[pP ,pS ], (ωPS)[pP ,pS ])

between the symplectic normal representation at pS of the Hamiltonian (G1,Ω1)-space J and the
symplectic normal representation at [pP , pS ] of the associated Hamiltonian (G2,Ω2)-space P∗(J)
of Theorem 1.36.

Although this lemma can be verified directly, we postpone its proof to § 1.5.4, where we give
a more conceptual explanation. With this at hand, we can prove the desired theorems.

Proof of Theorem 1.40. The forward implication is straightforward. Let us prove the backward
implication. Throughout, let G := Gx denote the isotropy group of G at x. To begin with observe
that, since G is proper at x, there is an invariant open neighbourhood V of the leaf L through x
and a G-invariant open neighbourhood W of the origin in g∗, together with a symplectic Morita
equivalence

(G,Ω)|V

V

(P, ωP )

W

(G� g∗,−dλcan)|W
α1 α2

that relates the leaf L to the origin in g∗. Indeed, this follows by first applying Theorem 1.37 to:

• the zeroth-order data of (G,Ω) at L;
• the canonical realization (G,Ω);
• the realization (30);
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and combining the neighbourhood-equivalence of symplectic groupoids obtained thereby with
Examples 1.28 and 1.30 to find a symplectic Morita equivalence as above in which the open
around L is possibly not invariant; the invariance can then be ensured by composing with the
Morita equivalence in Example 1.29. Since V is G-invariant, so are J−1

1 (V ) and J−1
2 (V ) and we

can consider the Hamiltonian (G,Ω)-spaces

JV
1 : (J−1

1 (V ), ω1) →M and JV
2 : (J−1

2 (V ), ω2) →M (45)

obtained by restricting the given Hamiltonian (G,Ω)-spaces J1 and J2. By Theorem 1.36,
combined with Examples 1.34 and 1.35, the above Morita equivalence induces an equiva-
lence of categories (with explicit inverse) between the category of Hamiltonian (G,Ω)-spaces
J : (S, ω) →M with J(S) ⊂ V and the category of Hamiltonian G-spaces J : (S, ω) → g∗ with
J(S) ⊂W . Consider the Hamiltonian G-spaces associated to (45),

P∗(JV
1 ) : (P ∗(G|V) J

−1
1 (V ), ωPS1) → g∗ and P∗(JV

2 ) : (P ∗(G|V) J
−1
2 (V ), ωPS2) → g∗,

and fix a p ∈ P such that α1(p) = x. We will show that these Hamiltonian G-spaces satisfy the
assumptions of Theorem 1.39 for the points [p, p1] and [p, p2]. First of all, since the leaf L is
P -related to the origin in g∗, it must be that α2(p) = 0. Therefore, we find

P∗(JV
1 )([p, p1]) = α2(p) = 0 and P∗(JV

2 )([p, p2]) = α2(p) = 0.

Second, Lemma 1.41 implies that G[p,p1] = G[p,p2], as both coincide with the image of Gp1 = Gp2

under Φp : Gx → G. Third, by the same lemma, there are symplectic linear isomorphisms

ψ1 : (SNp1 , (ω1)p1)
∼−→ (SN[p,p1], (ωPS1)[p,p1]) and ψ2 : (SNp2 , (ω2)p2)

∼−→ (SN[p,p2], (ωPS2)[p,p2]),

that are both compatible with the isomorphism of Lie groups:

Gp1

Φp−−→ G[p,p1] = Gp2

Φp−−→ G[p,p2].

By assumption, there is an equivariant symplectic linear isomorphism

ψ : (SNp1 , ωp1)
∼−→ (SNp2 , ωp2).

All together, the composition

ψ2 ◦ ψ ◦ ψ−1
1 : (SN[p,p1], (ωPS1)[p,p1])

∼−→ (SN[p,p2], (ωPS2)[p,p2])

becomes an equivariant symplectic linear isomorphism. Thus, the assumptions of Theorem 1.39
hold, which implies that there are G-invariant opens U[p,p1] around [p, p1] and U[p,p2] around
[p, p2], together with an isomorphism of Hamiltonian G-spaces that sends [p, p1] to [p, p2]:

One readily verifies that, by passing back through the above equivalence of categories via the
explicit inverse functor, we obtain G-invariant opens U1 around p1 and U2 around p2, together
with an isomorphism of Hamiltonian (G,Ω)-spaces from J1 : (U1, ω1) →M to J2 : (U2, ω2) →M
that sends p1 to p2, as desired. �
Proof of Theorem 1.21. As in the previous proof, the forward implication is straightforward.
For the backward implication, let (i1, j1) and (i2, j2) be two realizations of the same zeroth-
order Hamiltonian data (with notation as in Definition 1.20). Let p ∈ O and x = JO(p)
and suppose that their symplectic normal representations at p are isomorphic as symplectic
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Gp-representations. By Theorem 1.37 there are respective opens V1 and V2 around L in M1 and
M2, together with an isomorphism

Φ : (G1,Ω1)|V1

∼−→ (G2,Ω2)|V2

that intertwines i1 with i2. Consider, on one hand, the Hamiltonian (G1,Ω1)|V1-space obtained
from the given Hamiltonian (G1,Ω1)-space J1 by restriction to V1 and, on the other hand, the
Hamiltonian (G1,Ω1)|V1-space Φ∗(J2) obtained from the given Hamiltonian (G2,Ω2)-space J2

by restriction to V2 and pullback along Φ. These two Hamiltonian (G1,Ω1)|V1-spaces meet the
assumptions of Theorem 1.40 at the points j1(p) and j2(p). Thus, there are (G1|V1)-invariant
opens U1 ⊂ J−1

1 (V1) and U2 ⊂ J−1
2 (V2), together with an isomorphism of Hamiltonian (G1,Ω1)|V1-

spaces that sends j1(p) to j2(p):

As one readily verifies, the pair (Φ,Ψ) is the desired neighbourhood equivalence. �

1.5 The transverse part of the local model
1.5.1 Hamiltonian Morita equivalence. In order to define a notion of Morita equivalence

between Hamiltonian actions, we first consider a natural equivalence relation between Lie
groupoid maps (respectively, groupoid maps of Hamiltonian type, defined below). In the next
subsection we explain how this restricts to an equivalence relation between Lie groupoid actions
(respectively, Hamiltonian actions).

Definition 1.42. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids. By a Morita
equivalence from J1 to J2 we mean the data consisting of:

• a Morita equivalence (P, α1, α2) from G1 to G2;
• a Morita equivalence (Q, β1, β2) from H1 to H2;
• a smooth map j : Q→ P that intertwines Ji ◦ βi with αi and that intertwines the Hi-action

with the Gi-action via Ji, for both i = 1, 2.

We depict this as

H1

S1

Q

S2

H2

G1

M1

P

M2

G2

J1

J1

J2

J2

j

β1 β2

α1 α2

As an analogue of this in the Hamiltonian setting, we propose the following definitions (more
motivation for which will be given in the coming subsections).
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Definition 1.43. Let (G,Ω) ⇒ M be a symplectic groupoid and let H ⇒ (S, ω) be a Lie
groupoid over a pre-symplectic manifold. We call a Lie groupoid map J : H → G of Hamiltonian
type if

J ∗Ω = (tH)∗ω − (sH)∗ω.

Definition 1.44. Let J1 : H1 → G1 and J2 : H2 → G2 be of Hamiltonian type. By a
Hamiltonian Morita equivalence from J1 to J2 we mean a Morita equivalence (in the sense of
Definition 1.42) with the extra requirement that (P, ωP , α1, α2) is a symplectic Morita equivalence
and that

j∗ωP = (β1)∗ω1 − (β2)∗ω2. (46)

The same type of arguments as for Morita equivalence of Lie and symplectic groupoids (see
[Xu91]) show that Hamiltonian Morita equivalence indeed defines an equivalence relation.

1.5.2 Morita equivalence between groupoid maps of action type. To see that the equivalence
relation(s) in the previous subsection induce an equivalence relation between Lie groupoid actions
(respectively, Hamiltonian actions), the key remark is that a left action of a Lie groupoid G along
a map J : S →M gives rise to a map of Lie groupoids covering J :

prG : G � S → G. (47)

Further, notice that the groupoid map (47) is of Hamiltonian type precisely when the action is
Hamiltonian (that is, when (5) holds).

Definition 1.45. By a Morita equivalence between (left) Lie groupoid actions we mean a Morita
equivalence between their associated Lie groupoid maps (47). Similarly, by a Morita equivalence
between (left) Hamiltonian actions we mean a Hamiltonian Morita equivalence between their
associated groupoid maps (47).

In the remainder of this subsection, we further unravel what it means for two Hamiltonian
actions to be Morita equivalent. The starting point for this is the following example, which
concerns the modules appearing in Theorems 1.33 and 1.36.

Example 1.46. Let G1 ⇒ M1 be a Lie groupoid acting along J : S →M1 and suppose that we are
given a Morita equivalence (P, α1, α2) from G1 to another Lie groupoid G2 ⇒ M2. Consider the
associated G2-action along P∗(J) : P ∗G1 S →M2. The Morita equivalence from G1 to G2 extends
to a canonical Morita equivalence between these two actions:

G1 � S

S

P ×M1 S

P ∗G1 S

G2 �
(
P ∗G1 S

)

G1

M1

P

M2

G2

prG1

J

prG2

P∗(J)

prP

prS prPS

α1 α2

Here the upper left action is induced by the diagonal G1-action, whereas the upper right
action is induced by the G2-action on the first factor. When (G1,Ω1) and (G2,Ω2) are symplec-
tic groupoids, the action along J1 : (S1, ω1) →M1 is Hamiltonian, and the Morita equivalence
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(P, ωP , α1, α2) is symplectic, then the associated (G2,Ω2)-action along P∗(J) : (P ∗G1 S, ωPS) →
M2 is Hamiltonian. In this case, the above Morita equivalence is Hamiltonian.

In fact, we will show that more is true.

Proposition 1.47. Every Morita equivalence between two Lie groupoid maps that are both of
action type is of the form of Example 1.46. The same holds for Hamiltonian Morita equivalence.

Here, for convenience, we used the following terminology.

Definition 1.48. Let J : H → G be a map of Lie groupoids covering J : S →M . We say that J
is of action type if there is a smooth left action of G along J and an isomorphism of Lie groupoids
from G � S to H that covers the identity on S and makes the following diagram commute.

This has the following more insightful characterization.

Proposition 1.49. A Lie groupoid map J : H → G is of action type if and only if for every
p ∈ S the map J restricts to a diffeomorphism from the source fiber of H over p onto that of G
over J(p).

This is readily verified. To prove Proposition 1.47 we use the following closely related lemma,
the proof of which is also left to the reader.

Lemma 1.50. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids and let a Morita
equivalence between them (denoted as Definition 1.42) be given. Let q ∈ Q, and denote p = j(q),
pi = βi(q) and xi = Ji(pi) for i = 1, 2. Then we have a commutative square

in which all vertical arrows are diffeomorphisms. In particular, J1 is of action type if and only
if j restricts to a diffeomorphism between the β2- and α2-fibers. Analogous statements hold for
J2, replacing α2 and β2 by α1 and β1.

Proof of Proposition 1.47. Suppose that we are given Lie groupoids G1 ⇒ M1 and G2 ⇒ M2,
together with a G1-module J1 : S1 →M1 and a G2-module J2 : S2 →M2 and a Morita equivalence
between the associated Lie groupoid maps (47), denoted as in Definition 1.42. It follows from
Lemma 1.50 that the map

(j, β1) : Q→ P ×M1 S1 (48)

is a diffeomorphism. The diagonal action of G1 along α1 ◦ prP : P ×M1 S1 →M1 induces an
action of G1 � S1 along prS1

: P ×M1 S1 → S1, which is the upper left action in Example 1.46.
The diffeomorphism (48) intertwines β1 with prS1

and is equivariant with respect this action.
In particular, by principality of the G1 � S1-action, there is an induced diffeomorphism

S2
∼−→ P ∗G1 S1. (49)

One readily verifies that, when identifying Q with P ×M1 S1 via (48) and S2 with P ∗G1 S1 via
(49), the given Morita equivalence is identified with that in Example 1.46. Furthermore, when
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(G1,Ω1) and (G2,Ω2) are symplectic groupoids, (S1, ω1) and (S2, ω2) are symplectic manifolds, the
given actions along J1 and J2 are Hamiltonian and the Morita equivalence between (G1,Ω1) and
(G2,Ω2) is symplectic, then one readily verifies that (49) is a symplectomorphism from (S2, ω2)
to (P ∗G1 S1, ωPS1) if and only if the relation (46) is satisfied. This proves the proposition. �

1.5.3 The transverse local model. In this paper we will mainly be interested in
Hamiltonian Morita equivalences between Hamiltonian actions, rather than between the more
general groupoid maps of Hamiltonian type (as in Definition 1.43). There is, however, one
important exception to this.

Example 1.51. This example gives a Hamiltonian Morita equivalence between the local model
for Hamiltonian actions and a groupoid map Jp that is built out of less data and is often easier
to work with. The use of this Morita equivalence makes many of the proofs in § 2.2 both simpler
and more conceptual. Let (Gθ,Ωθ) be the symplectic groupoid (30) and let Jθ : (Sθ, ωSθ

) →Mθ

be the Hamiltonian (Gθ,Ωθ)-space (32). The Morita equivalence of Example 1.30 extends to a
Hamiltonian Morita equivalence between the action along Jθ and a groupoid map of Hamiltonian
type from H � (h0 ⊕ V ) to G� g∗ (restricted to appropriate opens). To see this, let p : h∗ → g∗

be an H-equivariant splitting of (33). Consider the H-equivariant map

Jp : h0 ⊕ V → g∗, (α, v) �→ α+ p(JV (v)), (50)

where JV : V → h∗ is the quadratic momentum map (21). By H-equivariance, this lifts to a
groupoid map

Jp : H � (h0 ⊕ V ) → G� g∗, (h, α, v) �→ (h, Jp(α, v)). (51)

This groupoid map is not of action type, but it is of Hamiltonian type with respect to the
pre-symplectic form 0 ⊕ ωV on h0 ⊕ V and there is a canonical Hamiltonian Morita equivalence

Gθ � Sθ

(Sθ, ωSθ
)

Σθ ×prh∗ JV
V

(Uθ, 0 ⊕ ωV)

H � (h0 ⊕ V )|Uθ

(Gθ,Ωθ)

Mθ

(Σθ, ωθ)

Wθ

(G� g∗,−dλcan)|Wθ

prGθ Jθ
JpJp

prΣθ

prSθ βp

prMθ
prg∗

that relates the central orbit in Sθ to the origin in h0 ⊕ V . Here Wθ := pr∗g(Σθ) and Uθ :=
J−1

p (Wθ) are invariant open neighbourhoods of the respective origins in g∗ and h0 ⊕ V .
Furthermore, the map βp is defined as

βp : Σθ ×prh∗ JV
V → Uθ, (p, α, v) �→ (α− p(JV (v)), v).

With this in mind, we think of the groupoid map Jp as a local model for the ‘transverse part’
of a Hamiltonian action near a given orbit.

1.5.4 Elementary Morita invariants. As will be apparent in the rest of this paper, many
invariants for Morita equivalence between Lie groupoids have analogues for Morita equivalence
between Hamiltonian actions: in fact, the canonical Hamiltonian stratification can be thought
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of as an analogue of the canonical stratification on the leaf space of a proper Lie groupoid. In
this subsection we give analogues of Proposition 1.26. We start with a version for Lie groupoid
maps.

Proposition 1.52. Let J1 : H1 → G1 and J2 : H2 → G2 be maps of Lie groupoids and let a
Morita equivalence between them (denoted as in Definition 1.42) be given.

(a) The induced homeomorphisms between the orbit and leaf spaces (39) intertwine the maps
induced by J1 and J2. That is, we have the following commutative square.

Further, suppose that p1 ∈ S1 and p2 ∈ S2 belong to Q-related orbits and let q ∈ Q such that
β1(q) = p1 and β2(q) = p2. Let p = j(q), x1 = J1(p1) and x2 = J2(p2).

(b) The induced isomorphisms of isotropy groups (40) intertwine the maps induced by J1

and J2. That is, we have the following commutative square.

(c) The induced isomorphisms of normal representations (41) intertwine the maps induced by
J1 and J2. That is, we have the following commutative square.

The proof is straightforward.

Example 1.53. The Morita equivalence in Example 1.51 induces an identification (of maps of
topological spaces) between the transverse momentum map Jθ and (a restriction of) the map

Jp : (h0 ⊕ V )/H → g∗/G.

We now turn to Morita equivalences between Hamiltonian actions.

Proposition 1.54. Let a Hamiltonian (G1,Ω1)-action along J1 : (S1, ω1) →M1, a Hamiltonian
(G2,Ω2)-action along J2 : (S2, ω2) →M2 and a Hamiltonian Morita equivalence between them
(denoted as in Definitions 1.42 and 1.44) be given. Suppose that p1 ∈ S1 and p2 ∈ S2 belong to
Q-related orbits and let q ∈ Q such that β1(q) = p1 and β2(q) = p2. Let p = j(q), x1 = J(p1) and
x2 = J(p2).

(a) The isomorphism Φp : (G1)x1

∼−→ (G2)x2 restricts to an isomorphism

(G1)p1

∼−→ (G2)p2 .

(b) There is a compatible symplectic linear isomorphism

(SNp1 , (ω1)p1) ∼= (SNp2 , (ω2)p2)

between the symplectic normal representations at p1 and p2.
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Proof. Part (a) is immediate from Proposition 1.52(b). For the proof of part (b) observe that,
by Proposition 1.52(c), the isomorphism ϕq restricts to one between Ker(dJ1)p1 and Ker(dJ2)p2 ,
so that we obtain an isomorphism of representations, compatible with part (a), and given by

SNp2 → SNp1 , [v] �→ [dβ1(v̂)], (52)

where v̂ ∈ TqQ is any vector such that dβ2(v̂) = v and dj(v̂) = 0. Note here (to see that such v̂
exists) that, given v ∈ Ker(dJ2)p2 and ŵ ∈ TqQ such that dβ2(ŵ) = v, we have dj(ŵ) ∈ Ker(dα2),
hence by Lemma 1.50 there is a û ∈ Ker(dβ2)q such that dj(û) = dj(ŵ), so that v̂ := ŵ − û has
the desired properties. With this description of (52) it is immediate from (46) that (52) pulls
(ω1)p1 back to (ω2)p2 , which concludes the proof. �

We can now give a more conceptual proof of Lemma 1.41.

Proof of Lemma 1.41. Apply Proposition 1.54 to Example 1.46. �

For Hamiltonian Morita equivalences as in Example 1.51 (where one of the two groupoid
maps is not of action type) it is not clear to us whether there is a satisfactory generalization of
Proposition 1.54. The arguments in the proof of that proposition do show the following, which
will be enough for our purposes.

Proposition 1.55. Let a Hamiltonian Morita equivalence (denoted as in Definitions 1.42 and
1.44) between groupoids maps J1 : H1 → (G1,Ω1) and J2 : H2 → (G2,Ω2) of Hamiltonian type
be given. Suppose that p1 ∈ S1 and p2 ∈ S2 belong to Q-related orbits and let q ∈ Q such that
β1(q) = p1 and β2(q) = p2. Further, assume that J1 is of action type and the canonical injection

SNp2 :=
Ker(dJ2)p2

Ker(dJ2)p2 ∩ Tp2O
↪→ Ker(dJ2)p2

is an isomorphism. The form ω2 on the base S2 of H2 may be degenerate. Then:

(a) the form ω2 descends to a linear symplectic form (ω2)p2 on SNp2 , which is invariant under
the (H2)p2-action defined by declaring the isomorphism with Ker(dJ)p2 to be equivariant;

(b) there is a symplectic linear isomorphism (SNp1 , ωp1) ∼= (SNp2 , ωp2) that is compatible with
the isomorphism of Lie groups Φq : (H1)p1

∼−→ (H2)p2 .

2. The canonical Hamiltonian stratification

In this part we apply our normal form results to study stratifications on orbit spaces of
Hamiltonian actions. To elaborate: in § 2.1 we give background on Whitney stratifications of
reduced differentiable spaces and we discuss the canonical Whitney stratification of the leaf space
of a proper Lie groupoid. A novelty in our discussion is that we point out a criterion (Lemma 2.38)
for a partition of a reduced differentiable space into submanifolds to be Whitney (b)-regular,
which may be of independent interest. Furthermore, we give a similar criterion (Corollary 2.47)
for the fibers of a map between reduced differentiable spaces to inherit a natural Whitney stratifi-
cation from a constant rank partition of the map. In § 2.2 we introduce the canonical Hamiltonian
stratification and prove Theorems 2.52 and 2.53, by verifying that the canonical Hamiltonian
stratification of the orbit space and the Lerman–Sjamaar stratification of the symplectic reduced
spaces meet the aforementioned criteria, using basic features of Hamiltonian Morita equiva-
lence and the normal form theorem. In § 2.3 we study the regular (or principal) parts of these
stratifications. There we will also consider the infinitesimal analogue of the canonical Hamiltonian
stratification on S, because its regular part turns out to be better behaved. Section 2.4 concerns
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the Poisson structure on the orbit space. The main theorem of this section shows that the canon-
ical Hamiltonian stratification is a constant rank Poisson stratification of the orbit space, and
describes the symplectic leaves in terms of the fibers of the transverse momentum map. Finally, in
§ 2.5 we construct explicit proper integrations of the Poisson strata of the canonical Hamiltonian
stratification. Section 2.3 can be read independently of §§ 2.4 and 2.5.

2.1 Background on Whitney stratifications of reduced differentiable spaces
2.1.1 Stratifications of topological spaces. In this paper, by a stratification we mean the

following.

Definition 2.1. Let X be a Hausdorff, second-countable and paracompact topological space.
A stratification of X is a locally finite partition S of X into smooth manifolds (called strata),
that is required to satisfy:

(i) each stratum Σ ∈ S is a connected and locally closed topological subspace of X;
(ii) for each Σ ∈ S, the closure Σ in X is a union of Σ and strata of strictly smaller dimension.

The second of these is called the frontier condition. A pair (X,S) is called a stratified space. By
a map of stratified spaces ϕ : (X,SX) → (Y,SY) we mean a continuous map ϕ : X → Y with the
property that for each ΣX ∈ SX :

(i) there is a stratum ΣY ∈ SY such that ϕ(ΣX) ⊂ ΣY ;
(ii) the restriction ϕ : ΣX → ΣY is smooth.

Due to the connectedness assumption on the strata, the frontier condition (a priori of a
global nature) can be verified locally with the following lemma.

Lemma 2.2. Let X be a topological space and S a partition of X into connected manifolds
(equipped with the subspace topology). Then S satisfies the frontier condition if and only if for
every x ∈ X and every Σ ∈ S such that x ∈ Σ and x /∈ Σ the following hold:

(i) there is an open neighbourhood U of x such that U ∩ Σx ⊂ Σ;
(ii) dim(Σx) < dim(Σ).

Remark 2.3. Throughout, we will make reference to various texts that use slightly different defi-
nitions of stratifications. After restricting attention to Whitney stratifications (Definition 2.32),
the differences between these definitions become significantly smaller (also see Remark 2.34).
A comparison of Definition 2.1 with the notion of stratification in [Mat73, Pfl01] can be found
in [CM17].

The constructions of the stratifications in this paper follow a general pattern: one first defines
a partition P of X into manifolds (possibly disconnected, with connected components of varying,
but bounded, dimension) which in a local model for X have a particularly simple description.
This partition P is often natural to the given geometric situation from which X arises. Then,
one passes to the partition S := Pc consisting of the connected components of the members of
P, and verifies that S is a stratification of X.

Remark 2.4. When speaking of a manifold, we always mean that its connected components are
of one and the same dimension, unless explicitly stated otherwise (such as above).

Example 2.5. The leaf space of a proper Lie groupoid admits a canonical stratification. To
elaborate, let G ⇒ M be a proper Lie groupoid, meaning that G is Hausdorff and the map
(t, s) : G →M ×M is proper. This is equivalent to requiring that G is proper at every x ∈M
(as in Definition 1.7) and that its leaf space M is Hausdorff [dHo13, Proposition 5.1.3]. In fact,
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M is locally compact, second countable and Hausdorff (so, in particular, it is paracompact). To
define the stratifications of M and M , first consider the partition PM(M) of M by Morita types.
This is given by the equivalence relation: x1 ∼M x2 if and only if there are invariant opens V1

and V2 around Lx1 and Lx2 , respectively, together with a Morita equivalence

G|V1 � G|V2 ,

that relates Lx1 to Lx2 . Its members are invariant and therefore descend to a partition PM(M)
of the leaf space M . The partitions SGp(M) and SGp(M) obtained from PM(M) and PM(M)
after passing to connected components form the so-called canonical stratifications of the base M
and the leaf space M of the Lie groupoid G. These indeed form stratifications. This is proved
in [PPT14] and [CM17], using the local description given by the linearization theorem for proper
Lie groupoids (see [Wei02, Zun06, CS13, FdH18]). There, the partition by Morita types is defined
by declaring that x, y ∈M belong to the same Morita type if and only if there is an isomorphism
of Lie groups

Gx
∼= Gy

together with a compatible linear isomorphism

Nx
∼= Ny

between the normal representations of G at x and y, as in (10). This is equivalent to the
description given before, as a consequence of Proposition 1.26(b) and the linearization theorem.

Often there are various different partitions that, after passing to connected components,
induce the same stratification. This too can be checked locally, using the following lemma.

Lemma 2.6. Let P1 and P2 be partitions of a topological space X into manifolds (equipped
with the subspace topology) with connected components of possibly varying dimension. Then
the partitions Pc

1 and Pc
2, obtained after passing to connected components, coincide if and only

if every x ∈ X admits an open neighbourhood U in X such that

P1 ∩ U = P2 ∩ U,
where P1 and P2 are the members of P1 and P2 through x.

This lemma, which is proved in [CM17], is related to [Mat73, Lemma 2.1–2.2] (see also [Pfl01,
§ 1.2]). They were probably the reason for Mather to use a notion of stratification in terms of
germs [Mat73].

Example 2.7. Given a proper Lie groupoid G ⇒ M , there is a coarser partition ofM (respectively,
M) that yields the canonical stratification on M (respectively, M) after passing to connected
components: the partition by isomorphism types. On M , this partition is given by the equivalence
relation: x ∼= y if and only if the isotropy groups Gx and Gy are isomorphic (as Lie groups). We
denote this partition as P∼=(M). Its members are invariant and therefore descend to a partition
of P∼=(M) of the leaf space M . The fact that these indeed induce the canonical stratifications
SGp(M) and SGp(M) follows from Lemma 2.6 and the linearization theorem for proper Lie
groupoids.

Example 2.8. The canonical stratification on the orbit space of a proper Lie group action is
usually defined using the partition by orbit types. To elaborate, let M be a manifold, acted
upon by a Lie group G in a proper fashion. The partition P∼(M) by orbit types is defined
by the equivalence relation: x ∼ y if and only if the isotropy groups Gx and Gy are conjugate
subgroups of G. Its members are G-invariant and, hence, this induces a partition P∼(M) of the
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orbit space M := M/G as well. The partitions obtained from P∼(M) and P∼(M) after passing
to connected components coincide with the canonical stratifications SGp(M) and SGp(M) of
the action groupoid G�M (as in Example 2.5). Another interesting partition that induces the
canonical stratifications in this way is the partition by local types, defined by the equivalence
relation: x ≈ y if and only if there is a g ∈ G such that Gx = gGyg

−1, together with a compat-
ible linear isomorphism Nx

∼= Ny between the normal representations at x and y. That these
partitions induce the canonical stratifications follows from Lemma 2.6 and the tube theorem for
proper Lie group actions (see, e.g., [DK00]).

Remark 2.9. The discussion above is largely a recollection of parts of [CM17]. There the reader
can find most details and proofs of the claims made in this subsection. A further discussion on
the canonical stratifications in a Poisson geometric context will appear in the forthcoming paper
on non-regular Poisson manifolds of compact types, by Crainic, Fernandes and Mart́ınez Torres.

2.1.2 Reduced differentiable spaces. Further interesting properties of a stratified space can
be defined when the space X comes equipped with the structure of reduced differentiable space
(a notion of smooth structure on X) and the stratification is compatible with this structure. We
now recall what this means. Throughout, a sheaf will always mean a sheaf of R-algebras.

Definition 2.10. A reduced ringed space is a pair (X,OX) consisting of a topological space
X and a subsheaf OX of the sheaf of continuous functions CX on X that contains all constant
functions. We refer to OX as the structure sheaf. A morphism of reduced ringed spaces

ϕ : (X,OX) → (Y,OY) (53)

is a continuous map ϕ : X → Y with the property that for every open U in Y and every function
f ∈ OY (U), it holds that f ◦ ϕ ∈ OX(ϕ−1(U)). Given such a morphism, we let

ϕ∗ : OY → ϕ∗OX (54)

denote the induced map of sheaves over Y and we use the same notation for the corresponding
map of sheaves over X:

ϕ∗ : ϕ∗OY → OX . (55)

Example 2.11. Let M be a smooth manifold and C∞
M its sheaf of smooth functions. Then (M, C∞

M )
is a reduced ringed space. A map M → N between smooth manifolds is smooth precisely when
it is a morphism of reduced ringed spaces (M, C∞

M ) → (N, C∞
N ).

Example 2.12. Let Y be a subspace of R
n. We call a function defined on an open in Y smooth if

it extends to a smooth function on an open in R
n. This gives rise to the sheaf of smooth functions

C∞
Y on Y .

Example 2.13. The leaf space M of a Lie groupoid G ⇒ M is naturally a reduced ringed space,
with structure sheaf C∞

M given by

C∞
M (U) = {f ∈ CM (U) | f ◦ q ∈ C∞

M (U)},
where q : M →M denotes the projection onto the leaf space and U := q−1(U). We simply refer
to this as the sheaf of smooth functions on the leaf space. Often we implicitly identify C∞

M with the
sheaf that assigns to U the algebra of G-invariant smooth functions on U , via q∗ : CM → q∗CM .

Definition 2.14 [GS03]. A reduced differentiable space is a reduced ringed space (X,OX) with
the property that for every x ∈ X there is an open neighbourhood U , a locally closed subspace Y
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of R
n (where nmay depend on x) and a homeomorphism χ : U → Y that induces an isomorphism

of reduced ringed spaces:

(U,OX |U ) ∼= (Y, C∞
Y ).

We call such a homeomorphism χ a chart of the reduced differentiable space. A morphism of
reduced differentiable spaces is simply a morphism of the underlying reduced ringed spaces.

Example 2.15. A reduced differentiable space (X,OX) is an n-dimensional smooth manifold if
and only if around every x ∈ X there is a chart for (X,OX) that maps onto an open in R

n.

Example 2.16. The leaf space M of a proper Lie groupoid G ⇒ M , equipped with the structure
sheaf of Example 2.13, is a reduced differentiable space. The proof of this is recalled at the end
of this subsection.

Remark 2.17. A reduced differentiable space (X,OX) is locally compact. Thus, if it is Hausdorff
and second countable, then it is also paracompact. Moreover, it then admits OX -partitions of
unity subordinate to any open cover (this can be proved as for manifolds; see, e.g., [GS03]).

To say what it means for a stratification to be compatible with the structure of reduced
differentiable space, we will need an appropriate notion of submanifold.

Definition 2.18. Let (Y,OY) and (X,OX) be reduced ringed spaces and i : Y ↪→ X a topolog-
ical embedding. We call i an embedding of reduced ringed spaces if it is a morphism of reduced
ringed spaces and i∗ : OX |Y → OY is a surjective map of sheaves. In other words, OY coincides
with the image sheaf of the map i∗ : OX |Y → CY , meaning that for every open U in Y ,

OY (U) = {f ∈ CY (U) | ∀y ∈ U,∃(f̂)i(y) ∈ (OX)i(y) : (f)y = (f̂ |Y)y}.
Remark 2.19. Let us stress that for any subspace Y of a reduced ringed space (X,OX) there is
a unique subsheaf OY ⊂ CY making i : (Y,OY) ↪→ (X,OX) into an embedding of reduced ringed
spaces. We will call this the induced structure sheaf on Y . Note that, if (X,OX) is a reduced
differentiable space and Y is locally closed in X, then Y , equipped with its induced structure
sheaf, is a reduced differentiable space as well, because charts for X restrict to charts for Y .

Example 2.20. We now give some examples of embeddings.

(i) For maps between smooth manifolds, the above notion of embedding is the usual one.
(ii) In Example 2.12, the inclusion i : (Y, C∞

Y ) ↪→ (Rn, C∞
Rn) is an embedding.

(iii) Let (X,OX) be a reduced ringed space and U ⊂ X open. A homeomorphism χ : U → Y
onto a locally closed subspace Y of R

n is a chart if and only if χ : (U,OX |U ) → (Rn, C∞
Rn) is

an embedding.

Remark 2.21. Let ϕ : (X1,OX1) → (X2,OX2) be a morphism of reduced ringed spaces and let
Y1 ⊂ X1 and Y2 ⊂ X2 be subspaces such that ϕ(Y1) ⊂ Y2. Then ϕ restricts to a morphism of
reduced ringed spaces (Y1,OY1) → (Y2,OY2) with respect to the induced structure sheaves.

Definition 2.22. Let (X,OX) be a reduced differentiable space and Y a locally closed subspace
of X. We call Y a submanifold of (X,OX), when endowed with its induced structure sheaf it is
a smooth manifold.

Remark 2.23. Let (X,OX) be a reduced differentiable space. Let Y be a subspace of X. Then
Y is a d-dimensional submanifold of (X,OX) if and only if for every chart (U, χ) of (X,OX) the
image χ(U ∩ Y ) is a d-dimensional submanifold of R

n.
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Example 2.24. Let G ⇒ M be a proper Lie groupoid. Each Morita type in M is a submanifold
of the leaf space (M, C∞

M ). The same holds for each stratum of the canonical stratification.

We end this subsection by recalling proofs of the claims in Examples 2.16 and 2.24. The
following observation will be useful for this and for later reference.

Proposition 2.25. Let (Y,OY) be a reduced ringed space and let (X,OX) be a Hausdorff and
second countable reduced differentiable space. Suppose that i : Y ↪→ X is both a topological
embedding and a morphism of reduced ringed spaces. Then i is an embedding of reduced ringed
spaces if and only if every global function f ∈ OY (Y ) extends to a function g ∈ OX(U) defined
on some open neighbourhood U of i(Y ) in X. Moreover, if i(Y ) is closed in X, then U can be
chosen to be X.

Proof. For the forward implication, let f ∈ OY (Y ). Since i is an embedding of reduced ringed
spaces, for every y ∈ Y there is a local extension of f , defined on an open around i(y) in X. By
Remark 2.17, any open in X admits OX -partitions of unity subordinate to any open cover. Thus,
using the standard partition of unity argument we can construct, out of the local extensions, an
extension g ∈ OX(U) of f defined on an open neighbourhood U of i(Y ) in X, which can be taken
to be all of X if i(Y ) is closed in X. For the backward implication, it suffices to show that every
germ in OY can be represented by a globally defined function in OY (Y ). For this, it is enough
to show that for every y ∈ Y and every open neighbourhood U of y in Y , there is a function
ρ ∈ OY (Y ), supported in U , such that ρ = 1 on an open neighbourhood of y in U . To verify the
latter, let y and U be as above. Let V be an open in X around i(y) such that V ∩ i(Y ) = i(U).
Using a chart for (X,OX) around i(y), we can find a function ρX ∈ OX(X), supported in V , such
that ρX = 1 on an open neighbourhood of i(y) in V . Now, ρ := i∗(ρX) ∈ OY (Y ) is supported in
U and equal to 1 on an open neighbourhood of y in U . This proves the proposition. �

Returning to Example 2.16: first consider the case of a compact Lie group G acting linearly
on a real finite-dimensional vector space V (that is, V is a representation of G). The algebra
P (V )G of G-invariant polynomials on V is finitely generated. Given a finite set of generators
{ρ1, . . . , ρn} of P (V )G, one can consider the following polynomial map:

ρ = (ρ1, . . . , ρn) : V → R
n. (56)

We call this a Hilbert map for the representation V . Any such map factors through an embed-
ding of topological spaces ρ : V/G→ R

n onto a closed subset of R
n. Furthermore, we have the

following.

Theorem 2.26 [Sch75]. Let G be a compact Lie group, V a real finite-dimensional
representation of G and ρ : V → R

n a Hilbert map. Then the associated map (56)
satisfies

ρ∗(C∞(Rn)) = C∞(V )G.

Thus, in view of Proposition 2.25, the morphism of reduced ringed spaces,

ρ : (V/G, C∞
V/G) → (Rn, C∞

Rn), (57)

is, in fact, an embedding of reduced ringed spaces (Definition 2.18) and, hence, a globally defined
chart for the orbit space V/G (by Example 2.20). Next, we show how this leads to charts for the
leaf space of a proper Lie groupoid. Recall the following.
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Proposition 2.27. The homeomorphism of leaf spaces (39) induced by a Morita equivalence
of Lie groupoids is an isomorphism of reduced ringed spaces:

hP : (M1, C∞
M1

) ∼−→ (M2, C∞
M2

).

Proof. Suppose we are given a Morita equivalence between Lie groupoids:

G1

M1

P

M2

G2

α1 α2

Then, given two P -related invariant opens U1 ⊂M1 and U2 ⊂M2, we have algebra isomorphisms

C∞
M1

(U1)G1 C∞
M2

(U2)G2

C∞
P (α−1

1 (U1))G1 ∩ C∞
P (α−1

2 (U2))G2

C∞
M1

(U1) C∞
M2

(U2)

α∗
1 α∗

2

q∗1 q∗2

h∗P

that complete to a commutative diagram via h∗P : CM2
→ (hP )∗CM1

. �
Now, the linearization theorem for proper Lie groupoids implies that, given a proper Lie

groupoid G ⇒ M and an x ∈M , there is an invariant open neighbourhood U of x in M and a
Morita equivalence between G|U and the action groupoid Gx � Nx of the normal representation
at x, as in (10), that relates Lx to the origin in Nx. Thus, applying Proposition 2.27 we find an
isomorphism,

(U, C∞
M |U ) ∼= (Nx/Gx, C∞

Nx/Gx
), (58)

which composes with the embedding (57) to a chart for (M, C∞
M ), as desired. We conclude that

(X, C∞
X) is a reduced differentiable space, as claimed in Example 2.16. To see why the claims

in Example 2.24 hold true, let Σ ∈ PM(M) be a Morita type. Suppose that Lx ∈ Σ. The iso-
morphism (58) identifies U ∩ Σ with the Morita type of Gx � Nx through the origin, which is
the fixed point set N Gx

x —a submanifold of Nx/Gx. Therefore, Σ is a submanifold of M near Lx.
This being true for all points in Σ, it follows that Σ is a submanifold with connected compo-
nents of possibly varying dimension. The dimension of the connected component through Lx is
dim(N Gx

x ), hence it follows from Proposition 1.26(b) that all connected components of Σ in fact
have the same dimension. Thus, the Morita types are indeed submanifolds of the leaf space, and
so are their connected components.

2.1.3 Whitney stratifications of reduced differentiable spaces.

Definition 2.28. Let (X,OX) be a Hausdorff and second countable reduced differentiable space.
A stratification S of (X,OX) is a stratification of X by submanifolds of (X,OX). That is, S is a
stratification of X with the property that the given smooth structure on each stratum coincides
with its induced structure sheaf. We call the triple (X,OX ,S) a reduced differentiable stratified
space. A morphism of reduced differentiable stratified spaces is a morphism of the underlying
stratified spaces that is simultaneously a morphism of the underlying reduced ringed spaces.
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Remark 2.29. As noted in [PPT14], the notion of reduced differentiable stratified space is equiv-
alent (up to the slight difference pointed out in Remark 2.3) to the notion of stratified space with
smooth structure in [Pfl01], which is defined starting from an atlas of compatible singular charts,
rather than a structure sheaf. The notion of reduced differentiable stratified space considered
in [FPS23] is more general, in that the topological assumptions made there are weaker.

On stratifications of reduced differentiable spaces, we can impose an important extra
regularity condition: Whitney’s condition (b). We now recall this, starting with the following.

Definition 2.30. Let R and S be disjoint submanifolds of R
n, and let y ∈ S. Then R is called

Whitney (b)-regular over S at y if the following is satisfied. For any two sequences (xn) in R and
(yn) in S that both converge to y and satisfy:

(i) TxnR converges to some τ in the Grassmannian of dim(R)-dimensional subspaces of R
n;

(ii) the sequence of lines [xn − yn] in RPn−1 converges to some line �;

it must hold that � ⊂ τ .

Using charts, this generalizes to reduced differentiable spaces, as follows.

Definition 2.31. Let (X,OX) be a reduced differentiable space and let R and S be disjoint
submanifolds. Then R is called Whitney (b)-regular over S at y ∈ S if for every chart (U, χ)
around y, the submanifold χ(R ∩ U) of R

n is Whitney (b)-regular over χ(S ∩ U) at χ(y). We
call R Whitney (b)-regular over S if it is so at every y ∈ S. Moreover, we call a partition P
of (X,OX) into submanifolds Whitney (b)-regular if every member of P is so over each other
member.

Definition 2.32. A reduced differentiable stratified space (X,OX ,S) will be called a Whitney
stratified space when the partition S of (X,OX) is Whitney (b)-regular. In this case, we call S a
Whitney stratification of (X,OX).

To verify Whitney (b)-regularity of R over S at y, it is enough to do so in a single chart
around y. To see this, the key remark is the following proposition, combined with the fact
that Whitney (b)-regularity is invariant under smooth local coordinate changes of the ambient
space R

n.

Proposition 2.33. Let (X,OX) be a reduced differentiable space. Any two charts (U1, χ1) and
(U2, χ2) onto locally closed subsets of R

n are smoothly compatible, in the sense that for any
y ∈ U1 ∩ U2, there is a diffeomorphism H : O1 → O2 from an open neighbourhood O1 of χ1(y)
in R

n onto an open neighbourhood O2 of χ2(y) in R
n such that

H|O1∩χ1(U1∩U2) = χ2 ◦ (χ−1
1 )|O1∩χ1(U1∩U2).

Proof. Although this is surely known, we could not find a proof in the literature. The argument
here is closely inspired by that of [Pfl01, Proposition 1.3.10]. Turning to the proof, it is enough
to show that, given two subspaces Y1, Y2 ⊂ R

n and an isomorphism of reduced ringed spaces

ϕ : (Y1, C∞
Y1

) ∼−→ (Y2, C∞
Y2

),

there are, for every y ∈ Y1, an open U1 in R
n around y and a smooth open embedding ϕ̂ : U1 → R

n

such that ϕ̂|U1∩Y1 = ϕ|U1∩Y1 . To this end, let us first make a general remark. Given Y ⊂ R
n and

y ∈ Y , let mY
y and mR

n

y denote the respective maximal ideals in the stalks (C∞
Y )y and (C∞

Rn)y,
consisting of germs of those functions that vanish at y. Further, let (IY)y denote the ideal in
(C∞

Rn)y consisting of germs of those functions that vanish on Y . Note that we have a canonical
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short exact sequence:

0 → ((IY)y + (mR
n

y )2)/(mR
n

y )2 → mR
n

y /(mR
n

y )2
(iY)∗y−−−→ mY

y /(m
Y
y )2 → 0.

Furthermore, recall that there is a canonical isomorphism of vector spaces

mR
n

y /(mR
n

y )2 ∼−→ T ∗
y R

n, (f)y mod (mR
n

y )2 �→ dfy.

It follows that, for any (h1)y, . . . , (hk)y ∈ mR
n

y that project to a basis of mY
y /(m

Y
y )2, we can find

(hk+1)y, . . . , (hn)y ∈ (IY)y such that d(h1)y, . . . ,d(hn)y ∈ T ∗
y R

n form a basis or, in other words,
such that (h1, . . . , hn)y is the germ of a diffeomorphism from an open neighbourhood of y in
R

n onto an open neighbourhood of the origin in R
n. Now, we return to the isomorphism ϕ.

Let k be the dimension of mY2

ϕ(y)/(m
Y2

ϕ(y))
2. Using the above remark we can, first of all, find a

diffeomorphism

f = (f1, . . . , fn) : U2
∼−→ V2

from an open U2 in R
n around ϕ(y) onto an open V2 in R

n around the origin, such that

(f1)ϕ(y), . . . , (fk)ϕ(y) ∈ mR
n

ϕ(y)

project to a basis of mY2

ϕ(y)/(m
Y2

ϕ(y))
2 and such that fk+1, . . . , fn vanish on U2 ∩ Y2. Since ϕ is an

isomorphism of reduced ringed spaces, it induces an isomorphism

(ϕ∗)y : mY2

ϕ(y)/(m
Y2

ϕ(y))
2 ∼−→ mY1

y /(mY1
y )2,

which maps the above basis to a basis of mY1
y /(mY1

y )2. Using this and the remark above once
more, we can find a diffeomorphism

g = (g1, . . . , gn) : U1
∼−→ V1,

from an open U1 in R
n around y such that ϕ(U1 ∩ Y1) ⊂ U2, onto an open V1 ⊂ V2 around the

origin in R
n, with the property that

gj |U1∩Y1 = fj ◦ (ϕ|U1∩Y1), ∀j = 1, . . . , k,

and that gk+1, . . . , gn vanish on U1 ∩ Y1. Then, in fact, g|U1∩Y1 = f ◦ (ϕ|U1∩Y1), so that the smooth
open embedding

ϕ̂ := f−1 ◦ g : U1 → R
n,

restricts to ϕ on U1 ∩ Y1, as desired. �
Remark 2.34. We continue Remark 2.3 as follows.

(i) Let (X,OX) be a Hausdorff and second countable reduced differentiable space and let P be
a locally finite partition of (X,OX) into submanifolds. In the terminology of [GWdPL76],
such a partition P would be called a stratification. If P is Whitney (b)-regular, then the
partition Pc (obtained after passing to connected components) is locally finite and satisfies
the frontier condition. Hence, Pc is then a Whitney stratification of (X,OX). In the case
that (X,OX) is a locally closed subspace of R

n equipped with its induced structure sheaf,
this statement is proved in [GWdPL76] using the techniques developed in [Tho69, Mat73,
Mat12]. The general statement follows from this case by using charts and Lemma 2.2.

(ii) Combined with the discussion in [CM17, § 4.1] and [Pfl01, Proposition 1.2.7], the previous
remark shows that the notion of Whitney stratified space used here is actually equivalent to
that in [Pfl01].
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2.1.4 Semi-algebraic sets and homogeneity. For proofs of the facts on semi-algebraic sets
that we use throughout, we refer to [BCR98]; further see [GWdPL76] for a concise introduction.
By a semi-algebraic subset of R

n, we mean a finite union of subsets defined by real polynomial
equalities and inequalities. Semi-algebraic sets are rather rigid geometric objects. For instance,
any semi-algebraic set A ⊂ R

n has a finite number of connected components and admits a canon-
ical Whitney stratification with finitely many strata (in contrast, any closed subset of R

n is the
zero-set of some smooth function). As remarked in [GWdPL76], there is a useful criterion for
stratifications in R

n to be Whitney (b)-regular, when the strata are semi-algebraic. This criterion
can be extended to reduced differentiable stratified spaces, as follows.

Definition 2.35. We call a partition P of a reduced differentiable space (X,OX) locally semi-
algebraic at x ∈ X if there is a chart (U, χ) around x that maps every member of P|U onto a
semi-algebraic subset of R

n. We call the partition locally semi-algebraic if it is so at every x ∈ X.

Definition 2.36. We call a partition P of a topological space X homogeneous if for any two
x1, x2 ∈ X that belong to the same member of P, there is a homeomorphism

h : U1
∼−→ U2

from an open U1 around x1 onto an open U2 around x2 in X, with the property that h(x1) = x2

and for every Σ ∈ P,

h(U1 ∩ Σ) = U2 ∩ Σ.

If (X,OX) is a reduced differentiable space and the members of P are submanifolds, then we call
P smoothly homogeneous if the homeomorphisms h can, in fact, be chosen to be isomorphisms
of reduced differentiable spaces:

h : (U1,OX |U1)
∼−→ (U2,OX |U2).

Remark 2.37. Note the following.

(i) Homogeneity of a partition P of X implies that P satisfies the topological part of the frontier
condition: the closure of any member Σ ∈ P is a union of Σ with other members.

(ii) If P is smoothly homogeneous, then a map h as above restricts to diffeomorphisms between
the members of P|U1 and P|U2 (by Remark 2.21).

Together the above conditions give a criterion for Whitney (b)-regularity.

Lemma 2.38. Let (X,OX) be a reduced differentiable space and let P be a partition of (X,OX)
into submanifolds. If P is smoothly homogeneous and locally semi-algebraic, then it is Whitney
(b)-regular.

Proof. Let R,S ∈ P be two distinct members. Since P is smoothly homogeneous, either R is
Whitney (b)-regular over S at all points in S, or at no points at all. Indeed, this follows from the
simple fact that Whitney (b)-regularity is invariant under isomorphisms of reduced differentiable
spaces. As P is locally semi-algebraic, the latter option cannot happen and, hence, the partition
must be Whitney (b)-regular. In order to explain this, suppose first that R,S ⊂ R

n are semi-
algebraic and submanifolds of R

n (also called Nash submanifolds of R
n). Consider the set of bad

points,

B(R,S),

which consists of those y ∈ S at which R is not Whitney (b)-regular over S. The key fact is now
that, because R and S are semi-algebraic, the subset B(R,S) has empty interior in S (see [Wal75]
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for a concise proof), hence it cannot be all of S. In general, we can pass to a chart around any
y ∈ S in which the strata R and S are semi-algebraic and the same argument applies, because
Whitney (b)-regularity can be verified in a single chart. �

To exemplify the use of Lemma 2.38, let us point out how it leads to a concise proof of the
following.

Theorem 2.39 [PPT14]. The canonical stratification of the leaf space of a proper Lie groupoid
is a Whitney stratification.

To verify the criteria of Lemma 2.38, we use the following.

Proposition 2.40 [Bie75]. Let G be a compact Lie group and let V be a real finite-dimensional
representation of G. Then any Hilbert map ρ : V → R

n (see § 2.1.2) identifies the strata of the
canonical stratification SGp(V/G) with semi-algebraic subsets of R

n.

See also [Sch80, Theorem 1.5.2] for a more elementary proof.

Proof of Theorem 2.39. Let G ⇒ M be a proper Lie groupoid. We return to the discussion at
the end of § 2.1.2. As recalled there, for any x ∈M there is an open U around the leaf Lx ∈
M and an isomorphism (58) that identifies U , as a reduced differentiable space, with Nx/Gx.
Furthermore, (58) identifies the partition PM(M)|U by Morita types of G|U with the partition
of Nx/Gx by Morita types of Gx � Nx. Recall that the canonical stratification on the orbit space
of a real, finite-dimensional representation of a compact Lie group has finitely many strata
(see, e.g., [DK00, Proposition 2.7.1]). In combination with Proposition 2.40, this implies that
a Hilbert map ρ : Nx → R

n for the normal representation Nx maps the Morita types in Nx/Gx

onto semi-algebraic subsets of R
n. This shows that PM(M) is locally semi-algebraic. Second,

Proposition 2.27 implies that the partition by Morita types is homogeneous. To see this, note
that by the very definition of the partition by Morita types on M , for any two leaves L1 and
L2 in the same Morita type, there are invariant opens V1 around L1, V2 around L2 in M and
a Morita equivalence G|V1 � G|V2 relating L1 to L2. The homeomorphism of leaf spaces induced
by this Morita equivalence is an isomorphism of reduced differentiable spaces:

(V 1, C∞
M |V 1

) ∼= (V 2, C∞
M |V 2

)

that identifies L1 with L2 and V 1 ∩ Σ with V 2 ∩ Σ for every Morita type Σ. Thus, the partition
by Morita types is indeed smoothly homogeneous. In light of Lemma 2.38, it follows that the
partition by Morita types is Whitney (b)-regular. Hence, passing to connected components, we
find that SGp(M) is a Whitney stratification of the leaf space (M, C∞

M ) (as in Remark 2.34). �

2.1.5 Constant rank stratifications of maps. Finally, we turn to constant rank stratifications
of maps between reduced differentiable spaces. In this subsection, let (X,OX) and (Y,OY) be
Hausdorff, second countable reduced differentiable spaces.

Definition 2.41. By a partition of a morphism f : (X,OX) → (Y,OY) into submanifolds we
mean a pair (PX ,PY) consisting of a partition PX of (X,OX) and a partition PY of (Y,OY) into
submanifolds, such that f maps every member of PX into a member of PY . We call this a constant
rank partition of f if, in addition, for every ΣX ∈ PX and ΣY ∈ PY such that f(ΣX) ⊂ ΣY , the
smooth map f : ΣX → ΣY has constant rank. Furthermore, by a constant rank stratification of
f we mean a constant rank partition for which both partitions are stratifications.

In the remainder of this subsection we focus on the partition induced on the fibers of a
morphism f : (X,OX) → (Y,OY) by a constant rank partition. The fibers of such a morphism
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are the reduced differentiable spaces (f−1(y),Of−1(y)), equipped with the induced structure sheaf
as in Remark 2.19. Given a constant rank partition (PX ,PY) of f , its fibers have an induced
partition,

PX |f−1(y) = {ΣX ∩ f−1(y) | ΣX ∈ PX}, (59)

the members of which are submanifolds, being the fibers of the constant rank maps obtained
by restricting f to the members of (PX ,PY). The following example shows that the connected
components of the members of (59) need not form a stratification, even if Pc

X and Pc
Y are Whitney

stratifications.

Example 2.42. Consider the polynomial map

f : R
3 → R, f(x, y, z) = x2 − zy2.

The fiber of f over the origin in R is the Whitney umbrella. Consider the stratification of R
3

by the five strata {y < 0}, {y > 0}, {y = 0, x < 0}, {y = 0, x > 0} and the z-axis {x = y = 0}.
Together with the stratification of R consisting of a single stratum, this forms a constant rank
stratification of f . The induced partition (59) of the fiber of f over the origin consists of two
connected surfaces and the z-axis. This does not satisfy the frontier condition, because the
negative part of the z-axis is not contained in the closure of these surfaces.

We will now give a criterion that does ensure that the induced partitions (59) of the fibers
form stratifications. Recall that a map between semi-algebraic sets is called semi-algebraic when
its graph is a semi-algebraic set. In the following, let f : (X,OX) → (Y,OY) be a morphism and
(PX ,PY) a partition of f into submanifolds.

Definition 2.43. We call (f,PX ,PY) locally semi-algebraic at x ∈ X if there are a chart (U, χ)
around x and a chart (V, ϕ) around f(x) with f(U) ⊂ V , that map the respective members of
PX |U and PY |V onto semi-algebraic sets, and have the property that the coordinate representa-
tion ϕ ◦ f ◦ χ−1 restricts to semi-algebraic maps between the members of χ(PX |U ) and ϕ(PY |V).
We call (f,PX ,PY) locally semi-algebraic if it is so at every x ∈ X.

Definition 2.44. We call (f,PX ,PY) smoothly homogeneous if for any two x1, x2 ∈ X that
belong to the same member of PX , there are isomorphisms of reduced differentiable spaces

hX : (U1,OX |U1)
∼−→ (U2,OX |U2) and hY : (V1,OY |V1)

∼−→ (V2,OY |V2)

from an open U1 around x1 onto an open U2 around x2 in X, and from an open V1 around f(x1)
onto an open V2 around f(x2) in Y , that fit in a commutative diagram

and have the property that for all ΣX ∈ PX , ΣY ∈ PY ,

hX(U1 ∩ ΣX) = U2 ∩ ΣX and hY (V1 ∩ ΣY) = V2 ∩ ΣY .

Remark 2.45. Note that if (f,PX ,PY) is smoothly homogeneous, then (PX ,PY) is necessarily a
constant rank partition of f .

The following shows that, if both of these criteria are met, then the fibers of f meet the
criteria of Lemma 2.38.
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Proposition 2.46. Let f : (X,OX) → (Y,OY) be a morphism and (PX ,PY) a constant rank
partition of f . If (f,PX ,PY) is smoothly homogeneous and locally semi-algebraic, then so are
the induced partitions (59) of the fibers of f .

The proof of this is straightforward. Appealing to Lemma 2.38 and Remark 2.34 we obtain
the following.

Corollary 2.47. Let f : (X,OX) → (Y,OY) be a morphism and (PX ,PY) a constant rank
partition of f . Suppose that PX is locally finite and that (f,PX ,PY) is smoothly homogeneous
and locally semi-algebraic. Then the partitions of the fibers of f obtained from (59) after passing
to connected components are Whitney stratifications of the fibers.

2.2 The stratifications associated to Hamiltonian actions
2.2.1 The canonical Hamiltonian stratification and Hamiltonian Morita types. Throughout,

let (G,Ω) be a proper symplectic groupoid and suppose that we are given a Hamiltonian (G,Ω)-
action along J : (S, ω) →M . Let S := S/G denote the orbit space of the action and M := M/G
the leaf space of the groupoid. The construction of the canonical Hamiltonian stratifications on
S and S is of the sort outlined in § 2.1.1. To begin with, we give a natural partition that, after
passing to connected components, will induce the desired stratification.

Definition 2.48. The partition PHam(S) of S by Hamiltonian Morita types is defined by the
equivalence relation: p1 ∼ p2 if and only if there are invariant opens Vi around LJ(pi) in M ,
invariant opens Ui around Opi in J−1(Vi), together with a Hamiltonian Morita equivalence

(G,Ω)|V1

V1

(U1, ω) (G,Ω)|V2

V2

(U2, ω)

J � J

(as in Definition 1.45) that relates Op1 to Op2 . The members of PHam(S) are invariant with
respect to the G-action, so that PHam(S) descends to a partition PHam(S) of S.

Remark 2.49. Let us point out some immediate properties of these partitions.

(i) They are invariant under Hamiltonian Morita equivalence, meaning that the homeomorphism
of orbit spaces induced by a Hamiltonian Morita equivalence (Proposition 1.52(a)) identifies
the partitions by Hamiltonian Morita types.

(ii) The transverse momentum map sends each member of PHam(S) into a member of PM(M)
(the partition of M by Morita types of G; see Example 2.5).

In analogy with Example 2.5, the partition by Hamiltonian Morita types has the following
alternative characterization.

Proposition 2.50. Two points p, q ∈ S belong to the same Hamiltonian Morita type if and
only if there is an isomorphism of pairs of Lie groups

(GJ(p),Gp) ∼= (GJ(q),Gq)

together with a compatible symplectic linear isomorphism

(SNp, ωp) ∼= (SNq, ωq).

Proof. The forward implication is immediate from Proposition 1.54. For the converse, note
the following. Let p ∈ S, write x = J(p), G = Gx, H = Gp and (V, ωV) = (SNp, ωp), and let
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p : h∗ → g∗ be any choice of H-equivariant splitting of (33). Then from the normal form theorem
and Examples 1.51, 1.28 and 1.29, it follows that there are invariant opens W around Lx in
M and U around Op in J−1(W ), together with a Hamiltonian Morita equivalence between the
Hamiltonian (G,Ω)|W -action along J : (U, ω) →W and (a restriction of) the groupoid map of
Hamiltonian type (51) (to invariant opens around the respective origins in h0 ⊕ V and g∗), that
relates Op to the origin in h0 ⊕ V . From this, the backward implication is clear, since (51) is built
naturally out of the pair (G,H), the symplectic representation (V, ωV) and the splitting p. �

We now turn to the stratifications induced by the Hamiltonian Morita types.

Definition 2.51. Let SHam(S) and SHam(S) denote the partitions obtained from the
Hamiltonian Morita types on S and S, respectively, by passing to connected components. We
call SHam(S) and SHam(S) the canonical Hamiltonian stratifications.

The main aim of this section will be to prove the following.

Theorem 2.52. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose we are given a
Hamiltonian (G,Ω)-action along J : (S, ω) →M .

(a) The partition SHam(S) is a Whitney stratification of the orbit space (S, C∞
S ).

(b) The pair consisting of the canonical Hamiltonian stratification of the orbit space S and the
canonical stratification of the leaf space M of G

(SHam(S),SGp(M)) (60)

is a constant rank stratification (as in Definition 2.41) of the transverse momentum map

J : (S, C∞
S ) → (M, C∞

M ). (61)

The fiber of (61) over a leaf L of (G,Ω) is (as topological space) the quotient J−1(L)/G. This
is the reduced space at L appearing in the procedure of symplectic reduction. Throughout, we
will denote this as

SL := J−1(L),

and we will simply denote the induced structure sheaf on this space as C∞
SL

. As we will show,
(PHam(S),PM(M)) is a constant rank partition of the transverse momentum map (61), so that
(as discussed in § 2.1.5) the fiber (SL, C∞

SL
) has a natural partition into submanifolds:

PHam(SL) := {P ∩ SL | P ∈ PHam(S)}. (62)

In addition to Theorem 2.52, in this section we will prove the following.

Theorem 2.53. The fibers (SL, C∞
SL

) of the transverse momentum map, endowed with the

partition SHam(SL) obtained from (62) after passing to connected components, are Whitney
stratified spaces.

In the case of a Hamiltonian action of a compact Lie group, the stratification SHam(SL)
coincides with that in [LS91] (see also Remark 2.58).

The partition SHam(S) of the smooth manifold S turns out to be a Whitney stratification
as well. Furthermore, in contrast to the stratification SGp(S) associated to the action groupoid,
it is a constant rank stratification of the momentum map J : S →M . This can be proved using
the normal form theorem. Here we will not go into details on this, but rather focus on the proof
of the theorems concerning the transverse momentum map. We can already give an outline of
this.
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Outline of the proof of Theorems 2.52 and 2.53. In the coming subsection we will show that the
Hamiltonian Morita types are submanifolds of the orbit space. By part (ii) of Remark 2.49, it then
follows that the pair (PHam(S),PM(M)) is a partition of the transverse momentum map (61)
into submanifolds (as in Definition 2.41). In complete analogy with our proof of Theorem 2.39,
Propositions 1.52(a) and 2.27 imply that the triple (J,PHam(S),PM(M)) is smoothly homo-
geneous (as in Definition 2.44). In particular, (PHam(S),PM(M)) is a constant rank partition
of (61) (see Remark 2.45). In § 2.2.3 we further prove that PHam(S) is locally finite and that
(J,PHam(S),PM(M)) is locally semi-algebraic (as in Definition 2.43). Combining Lemma 2.38
with part (i) of Remark 2.34, it then follows that SHam(S) is indeed a Whitney stratification
of the orbit space, completing the proof of Theorem 2.52. Furthermore, Theorem 2.53 is then a
consequence of Corollary 2.47. �

In the coming subsections we will address the remaining parts of the proof. Before that, let
us make a final remark on Theorem 2.52.

Remark 2.54. A particularly well-studied class of constant rank stratifications of maps is that of
Thom stratifications (see, e.g., [Mat73, Mat12, GWdPL76, Ver84, Shi00, Shi10]). Although (60)
turns out to satisfy Thom’s regularity condition (aJ) (see Remark 2.95), it is often not a Thom
stratification of J , because J need not restrict to a submersion between strata. However, we
believe that when J is proper as map into its image Δ, there is a natural way to refine (60) to a
stratification of J : S → Δ for which J does restrict to a submersion between strata. This should
allow to appeal to results such as Thom’s first isotopy lemma, and possibly that of [Shi00], to
gain further insight into the transverse momentum map. Details of this are work in progress,
which we intend to present elsewhere.

2.2.2 Different partitions inducing the canonical stratifications. In this and the next subsec-
tion we study various local properties of the partition by Hamiltonian Morita types. To this end,
it will be useful to consider the coarser partitions

P∼=J (S) := P∼=(S) ∩ J−1(P∼=(M)) and P∼=J (S) := P∼=(S) ∩ J−1(P∼=(M)),

where we take memberwise pre-images and intersections. Explicitly, p, q ∈ S belong to the same
member of P∼=J (S) if and only if Gp

∼= Gq and GJ(p)
∼= GJ(q).

Definition 2.55. We call P∼=J (S) and P∼=J (S) the partitions by J-isomorphism types.

In the remainder of this subsection, we will prove the following.

Proposition 2.56. Both for S and S, the following hold.

(a) Each J-isomorphism type is a submanifold with connected components of possibly varying
dimension.

(b) The J-isomorphism types and the Hamiltonian Morita types yield the same partition after
passing to connected components.

(c) Each Hamiltonian Morita type is (in fact) a submanifold with connected components of a
single dimension.

Moreover, the orbit projection S → S restricts to a submersion between the Hamiltonian Morita
types (respectively, the J-isomorphism types).

To prove this proposition we will compute the Hamiltonian Morita types and the
J-isomorphism types in the local model for Hamiltonian actions. There are two important
remarks here that simplify this computation: first of all, the partitions by J-isomorphism types
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introduced above make sense for any groupoid map; and, second, they are invariant under Morita
equivalence of Lie groupoid maps. Therefore, the computation of these reduces to that for the
groupoid map Jp of Example 1.51, which is the content of the following lemma.

Lemma 2.57. Let G be a compact Lie group, H ⊂ G a closed subgroup and (V, ωV) a symplectic
H-representation. Fix an H-equivariant splitting p : h∗ → g∗ of (33). Consider the groupoid map
Jp defined in (51).

(a) The Jp-isomorphism type through the origin in h0 ⊕ V is equal to the linear subspace

(h0)G ⊕ V H ,

where (h0)G and V H are the sets of points in h0 and V that are fixed by G and H.
(b) The G-isomorphism type through the origin in g∗ is equal to (g∗)G.
(c) The restriction of Jp to these isomorphism types is given by

(h0)G ⊕ V H → (g∗)G, (α, v) �→ α. (63)

(d) Considered as subspace of the reduced differentiable space (h0 ⊕ V )/H (respectively, g∗/G),
the Jp-isomorphism type (h0)G ⊕ V H (respectively, G-isomorphism type (g∗)G) is a closed
submanifold.

Proof. We use a standard fact: given a compact Lie group H and a closed subgroup K, if K is
diffeomorphic to H, then K = H. Since the origin is fixed by H it follows from this fact that for
(α, v) ∈ h0 ⊕ V we have

(α, v) ∼= (0, 0) ⇐⇒ H(α,v)
∼= H

⇐⇒ H(α,v) = H

⇐⇒ α ∈ (h0)H and v ∈ V H .

Similarly, for α ∈ g∗, it follows that

α ∼= 0 ⇐⇒ α ∈ (g∗)G.

Moreover, (21) implies that JV vanishes on V H and, hence, Jp(α, v) = α for v ∈ V H . Therefore,

(α, v) ∼=J (0, 0) ⇐⇒ (α, v) ∼= (0, 0) and α ∼= 0,

⇐⇒ α ∈ (h0)G and v ∈ V H ,

and we conclude that both part (a) and part (b) hold. Since JV vanishes on V H , part (c) follows
as well. As for part (d), it is clear that the canonical inclusion (h0)G ⊕ V H ↪→ (h0 ⊕ V )/H is
a closed topological embedding and a morphism of reduced differentiable spaces with respect
to the standard manifold structure on the vector space (h0)G ⊕ V H . Furthermore, choosing an
H-invariant linear complement to (h0)G ⊕ V H , we can extend any smooth function defined on
an open in the vector space (h0)G ⊕ V H (by zero) to an H-invariant smooth function defined
on an open in h0 ⊕ V . Thus, (h0)G ⊕ V H is indeed a closed submanifold of (h0 ⊕ V )/H. The
argument for (g∗)G in g∗/G is the same. �

Proof of Proposition 2.56. Near a given orbit in S, we can identify the member of P∼=J (S)
(respectively, PHam(S)) through this orbit (via the normal form theorem) with the corresponding
member through the orbit O := P/H in the local model for the Hamiltonian action (in the nota-
tion of § 1.3.3). Using the Morita equivalence of Example 1.51, combined with Lemma 2.57 and
the Morita invariance of the partitions by isomorphism types, we find that the Jθ-isomorphism
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type through the orbit O in Sθ is a submanifold, being an open around O in

O × ((h0)G ⊕ V H). (64)

Therefore, the J-isomorphism types are submanifolds of S with connected components of possi-
bly varying dimension. Passing to the orbit space of the local model, we can again use the Morita
equivalence of Example 1.51 to identify the orbit space of the local model with an open neigh-
bourhood of the origin in (h0 ⊕ V )/H, as reduced differentiable spaces (see Proposition 2.27). By
Lemma 2.57 and Morita invariance of the partitions by isomorphism types, the Jθ-isomorphism
type through O is identified with an open neighbourhood of the origin in the submanifold
(h0)G ⊕ V H of (h0 ⊕ V )/H. Therefore, the J-isomorphism types are submanifolds of (S, C∞

S )
with connected components of possibly varying dimension. This proves part (a). For part (b),
it suffices to prove that the Hamiltonian Morita type through the orbit O in the local model
coincides with the Jθ-isomorphism type computed above (by Lemma 2.6 and the normal form
theorem). That is, we have to verify that all [p, α, v] ∈ Sθ such that (α, v) ∈ (h0)G ⊕ V H belong
to the same Hamiltonian Morita type. To this end, we again use the Hamiltonian Morita equiv-
alence of Example 1.51. Let [p, α, v] be as above. Then the Morita equivalence relates [p, α, v] to
(α, v). Since v ∈ V H , it holds for all w ∈ V that

JV (w + v) = JV (w), (65)

as follows from (21). This implies that SN(α,v) = V and, therefore, the conditions in
Proposition 1.55 are satisfied for the aforementioned Morita equivalence, at the points [p, α, v]
and (α, v). Moreover, we have H(α,v) = H, GJp(α,v) = G and, by linearity of the H-action,
SN(α,v) and V in fact coincide as H-representations. Thus, applying the proposition, we obtain
an isomorphism GJθ([p,α,v])

∼= G that restricts to an isomorphism G[p,α,v]
∼= H, and we obtain a

compatible isomorphism of symplectic representations:

(SN[p,α,v], ω[p,α,v]) ∼= (V, ωV).

Thus, all such [p, α, v] indeed belong to the same Hamiltonian Morita type. For part (c) it remains
to show that for each Hamiltonian Morita type in S or S, the connected components have the
same dimension. This follows from Proposition 1.54 and a dimension count. Finally, in the above
description of the Hamiltonian Morita types and J-isomorphism types in S and S through O,
the orbit projection is identified (near O) with the projection O × (h0)G ⊕ V H → (h0)G ⊕ V H .
This shows that it restricts to a submersion between the members in S and S. �
Remark 2.58. Let G be a compact Lie group and J : (S, ω) → g∗ a Hamiltonian G-space. The
partition in Example 1, which is an analogue of the partition by orbit types for proper Lie group
actions (cf. Example 2.8), induces the canonical Hamiltonian stratification as well after passing
to connected components. Another interesting partition that induces the canonical Hamiltonian
stratification in this way can be defined by the equivalence relation: p ∼ q if and only if there is
a g ∈ G such that Gp = gGqg

−1 and GJ(p) = gGJ(q)g
−1, together with a compatible symplectic

linear isomorphism (SNp, ωp) ∼= (SNq, ωq). This is an analogue of the partition by local types
for proper Lie group actions. The fact that these indeed induce the canonical Hamiltonian strat-
ification follows from the same arguments as in the proof above, using the normal form theorem
with the explicit isomorphism of symplectic groupoids (38) (see Remark 1.24). Similarly, the
partition (62) of SL and the partition used in [LS91] (given by Op ∼ Oq if and only if there is a
g ∈ G such that Gp = gGqg

−1) yield the same partition after passing to connected components.

Example 2.59. Let G be a compact Lie group and J : (S, ω) → g∗ a Hamiltonian G-space. The
fixed point set MG is a member of the partition in Example 1 (provided it is non-empty).
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From the above remark we recover the well-known fact that for any two points p, q ∈ S belong-
ing to the same connected component of MG, the symplectic G-representations (TpM,ωp) and
(TqM,ωq) are isomorphic.

Example 2.60. Let T be a torus and J : (S, ω) → t∗ a Hamiltonian T -space. In this case, the
partition in Example 1 coincides with the partition by orbit types of the T -action. Furthermore,
the above remark implies that for any two points p, q ∈ S belonging to the same connected
component of an orbit type with isotropy group H, the symplectic normal representations at p
and q are isomorphic as symplectic H-representations.

2.2.3 End of the proof. To complete the proof of Theorems 2.52 and 2.53, it remains to show
the following.

Proposition 2.61. The partition by Hamiltonian Morita types PHam(S) is locally finite and
the triple (J,PHam(S),PM(M)) is locally semi-algebraic (as in Definition 2.43).

Proof of Proposition 2.61. Let p ∈ S, let Op be the orbit through p and let Lx = J(Op) be the
corresponding leaf through x = J(p). Further, let G = Gx denote the isotropy group of G at x,
H = Gp the isotropy group of the action at p, and let (V, ωV) = (SNp, ωp) denote the symplectic
normal representation at p. As in the proof of Proposition 2.50, there are invariant opens W
around Lx in M and U around Op in J−1(W ), together with a Hamiltonian Morita equivalence
between the action of (G,Ω)|W along J : U →W and a restriction of the groupoid map (51),
that relates Op to the origin in h0 ⊕ V . Here, we can arrange the opens in h0 ⊕ V and g∗ to which
(51) is restricted to be invariant open balls Bg∗ ⊂ g∗ and Bh0⊕V ⊂ J−1

p (Bg∗) (with respect to a
choice of invariant inner products) centered around the respective origins. Let ρ : h0 ⊕ V → R

n

and σ : g∗ → R
m be Hilbert maps (see § 2.1.2). By the same reasoning as in [LS91, Example 6.5],

since Jp : h0 ⊕ V → g∗ is an H-equivariant and polynomial map, there is a polynomial map
P : R

n → R
m that fits into the following commutative square.

In view of Proposition 1.52(a), Proposition 2.27 and the discussion at the end of § 2.1.2, we
obtain a diagram of reduced differentiable spaces

in which all horizontal arrows are isomorphisms. Due to Morita invariance of the partitions by
isomorphism types, the partition of U by J-isomorphism types is identified with the partition of
ρ(Bh0⊕V ) consisting of the subsets of the form

ρ(Bh0⊕V ) ∩ ρ(Σh0⊕V ) ∩ P−1(σ(Σg∗)), Σh0⊕V ∈ P∼=(h0 ⊕ V ), Σg∗ ∈ P∼=(g∗).

Recall from the proof of Theorem 2.39 that the canonical stratification of the orbit space of a
real, finite-dimensional representation of a compact Lie group has finitely many strata, each of
which is mapped onto a semi-algebraic set by any Hilbert map. The same must then hold for
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the partition by isomorphism types of such a representation. The above partition of ρ(Bh0⊕V )
therefore also has finitely many members, each of which is semi-algebraic, for P is polynomial
and ρ(Bh0⊕V ) is semi-algebraic (being the image of a semi-algebraic set under a semi-algebraic
map). The same then holds for the partition obtained after passing to connected components,
because any semi-algebraic set has finitely many connected components, each of which is again
semi-algebraic. By Proposition 2.56(b), the members of PHam(S)|U are unions of the connected
components of the J-isomorphism types in U . Thus, PHam(S)|U has finitely many members,
each of which is mapped onto a semi-algebraic set by the above chart for (S, C∞

S ), the image
being a finite union of semi-algebraic sets. By similar reasoning, the above chart for (M, C∞

M )
maps the members of PM(M)|W onto semi-algebraic sets. Since P is polynomial, it restricts to
semi-algebraic maps between the images of these members under the above charts. Thus, this
proves the proposition. �

We end this section with a concrete example, similar to that in [ACG91].

Example 2.62. Let G = SU(2) × SU(2) and consider the circle in G given by the closed
subgroup

H =
{((

eiθ 0
0 e−iθ

)
,

(
eiθ 0
0 e−iθ

))
∈ SU(2) × SU(2)

∣∣∣∣ θ ∈ R

}
.

The cotangent bundle T ∗(G/H) of the homogeneous space G/H is naturally a Hamiltonian
G-space, and the canonical Hamiltonian strata can be realized as concrete semi-algebraic sub-
manifolds of R

5, as follows. The orbit space of the G-action on T ∗(G/H) can be canonically
identified with the orbit space of the linear H-action on h0 induced by the coadjoint action of
G on g∗, and the transverse momentum map becomes the map J : h0/H → g∗/G induced by
the inclusion h0 ↪→ g∗. To find Hilbert maps for g∗ and h0, consider the SU(2)-invariant inner
product on su(2) given by

〈A,B〉su(2) = −Trace(AB) ∈ R, (66)

and note that under the identification of su(2) with R × C obtained by writing

su(2) =
{ (

iθ −z̄
z −iθ

)
∈ gl(2,C)

∣∣∣∣ θ ∈ R, z ∈ C

}
,

(66) corresponds (up to a factor) to the standard Euclidean inner product. Using the induced
G-invariant inner product on g = su(2) × su(2), we identify g∗ with g. The orbits of the adjoint
SU(2)-action on su(2) are the origin and the concentric spheres centered at the origin. Using
this, one readily sees that the algebra of SU(2)-invariant polynomials on su(2) is generated by
the single polynomial given by the square of the norm induced by (66). Thus, the algebra of
G-invariant polynomials on g∗ is generated by

σ1(θ1, z1, θ2, z2) = θ2
1 + |z1|2, σ2(θ1, z1, θ2, z2) = θ2

2 + |z2|2, θ1, θ2 ∈ R, z1, z2 ∈ C.

On the other hand, h0 is identified with the orthogonal complement

h⊥ =
{((

iθ −z̄1
z1 −iθ

)
,

(−iθ −z̄2
z2 iθ

) )
∈ su(2) × su(2)

∣∣∣∣ θ ∈ R, z1, z2 ∈ C

}
.

Identifying h⊥ with R × C
2 accordingly, the H-orbits are identified with those of the S

1-action

λ · (θ, z1, z2) = (θ, λz1, λz2), λ ∈ S
1, (θ, z1, z2) ∈ R × C

2.
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In light of this, the algebra of H-invariant polynomials on h0 is generated by

ρ1(θ, z1, z2) = θ, ρ2(θ, z1, z2) = |z1|2, ρ3(θ, z1, z2) = |z2|2,
ρ4(θ, z1, z2) = Re(z1z̄2), ρ5(θ, z1, z2) = Im(z1z̄2).

Now, consider the polynomial map

P : R
5 → R

2, P (x1, . . . , x5) = (x2
1 + x2, x

2
1 + x3).

Then we have the following commutative square

The image of h0/H under ρ is the semi-algebraic subset of R
5 given by

{x2 ≥ 0, x3 ≥ 0, x2
4 + x2

5 = x2x3},
whereas the image of g∗/G under σ is the semi-algebraic subset of R

2 given by

{y1 ≥ 0, y2 ≥ 0}.
The canonical stratification of the orbit space of the G-action on T ∗(G/H) has two strata,
corresponding to the semi-algebraic submanifolds of R

5 given by

{x2 = x3 = x4 = x5 = 0}, (67)

{x2
4 + x2

5 = x2x3} ∩ ({x2 > 0} ∪ {x3 > 0}). (68)

On the other hand, the canonical stratification of g∗/G has four strata, corresponding to the
semi-algebraic submanifolds of R

2 given by

{y1 = y2 = 0}, {y1 > 0, y2 = 0}, {y1 = 0, y2 > 0}, {y1 > 0, y2 > 0}.
From this we see that the canonical Hamiltonian stratification of the orbit space of the
Hamiltonian G-space T ∗(G/H) has six strata, three of which correspond to the semi-algebraic
submanifolds of (67) given by the respective intersections of (67) with {x1 < 0}, {x1 = 0} and
{x1 > 0}, and the other three of which correspond to the semi-algebraic submanifolds of (68)
given by

{x1 = 0, x2 > 0, x3 = x4 = x5 = 0}, {x1 = x2 = 0, x3 > 0, x4 = x5 = 0},
{x2

1 + x2 > 0, x2
1 + x3 > 0, x2

4 + x2
5 = x2x3} ∩ ({x2 > 0} ∪ {x3 > 0}).

The restriction of P to any of the first five strata is injective, hence its fibers are points. The
restriction of P to the last stratum has 2-dimensional fibers. In fact, given y1, y2 > 0 the fiber
of this restricted map over (y1, y2) ∈ R

2 is projected diffeomorphically onto the semi-algebraic
submanifold of R

3 given by

{(x1, x4, x5) ∈ R
3 | x2

4 + x2
5 = (y1 − x2

1)(y2 − x2
1), x

2
1 < max(y1, y2)},

which is semi-algebraically diffeomorphic to a 2-sphere if y1 �= y2, whereas it is semi-algebraically
diffeomorphic to a 2-sphere with two points removed if y1 = y2.
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2.3 The regular parts of the stratifications
2.3.1 The regular part of a stratification. To start with, we give a reminder on the regular

part of a stratification, mostly following the exposition in [CM17]. A stratification S of a space
X comes with a natural partial order given by

Σ ≤ Σ′ ⇐⇒ Σ ⊂ Σ′. (69)

We say that a stratum Σ ∈ S is maximal if it is maximal with respect to this partial order.
Maximal strata can be characterized as follows.

Proposition 2.63. Let (X,S) be a stratified space. Then Σ ∈ S is maximal if and only if it is
open in X. Moreover, the union of all maximal strata is open and dense in X.

Definition 2.64. The union of all maximal strata of a stratified space (X,S) is called the
regular part of the stratified space.

Given a stratification S, an interesting question is whether it admits a greatest element with
respect to the partial order (69). This is equivalent to asking whether the regular part of S is
connected.

Example 2.65. Let G be a Lie group acting properly on a manifold M . The partition by orbit
types P∼(M) (see Example 2.8) comes with a partial order of its own. Namely, if Mx and My

denote the orbit types containing the respective orbits Ox and Oy, then, by definition,

Mx ≤My ⇐⇒ Gy is conjugate in G to a subgroup of Gx.

The principal orbit type theorem states that, if M is connected, then there is a greatest element
with respect to this partial order, called the principal orbit type, which is connected, open and
dense in M . In this case, the regular part of SGp(M) coincides with the principal orbit type; in
particular, it is connected. On the other hand, the regular part of SGp(M) need not be connected,
even if M is connected.

Example 2.66. Let G ⇒ M be a proper Lie groupoid. We denote the respective regular parts
of SGp(M) and SGp(M) as Mprinc and Mprinc. From the linearization theorem it follows that
a point x in M belongs to Mprinc if and only if the action of Gx on Nx is trivial. From this it
is clear that Mprinc and Mprinc are unions of Morita types. The analogue of the principal orbit
type theorem for Lie groupoids [CM17, Theorem 15] states that, if M is connected, then Mprinc

is connected.

The following lemma gives a useful criterion for the regular part to be connected.

Lemma 2.67. LetM be a connected manifold and let S be a stratification ofM by submanifolds.
If S has no codimension-one strata, then the regular part of S is connected.

Proof. As in the proof of [DK00, Theorem 2.8.5], by a transversality principle [GP74, p. 73] any
smooth path γ that starts and ends in the regular part is homotopic in M to a path γ̃ that
intersects only strata of codimension at most 1 and starts and ends at the same points as γ. �
Example 2.68. Although SGp(M) may have codimension-one strata, the base M of a proper Lie
groupoid G admits a second interesting Whitney stratification that does not have codimension-
one strata: the infinitesimal stratification S inf

Gp(M). As for the canonical stratification, the
infinitesimal stratification is induced by various different partitions ofM . Indeed, each of the par-
titions mentioned in § 2.1.1 has an infinitesimal analogue, obtained by replacing the Lie groups
in their defining equivalence relations by the corresponding Lie algebras. Yet another partition
that induces the infinitesimal stratification on M is the partition Pdim(M) of M by dimension
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types, defined by the equivalence relation: x ∼ y if and only if dim(Lx) = dim(Ly) or, equiv-
alently, dim(gx) = dim(gy). The members of each of these partitions are invariant. Therefore,
each of these descends to a partition of M . However, the members of S inf

Gp(M) may fail to be
submanifolds of the leaf space. For this reason we only consider the stratification on M . We
let M reg denote the regular part of the infinitesimal stratification S inf

Gp(M). As for the canonical
stratification, this has a Lie theoretic description: a point x in M belongs to M reg if and only
if the action of gx on Nx is trivial. Since the infinitesimal stratification has no codimension one
strata, Lemma 2.67 applies. Therefore, M reg is connected if M is connected.

2.3.2 The infinitesimal Hamiltonian stratification. In the remainder of this section we will
study the regular part of both the canonical Hamiltonian stratification and of a second strat-
ification associated to a Hamiltonian action of a proper symplectic groupoid, that we call the
infinitesimal Hamiltonian stratification. We include the latter in this section, because a particu-
larly interesting property of this stratification is that its regular part is better behaved than that
of the canonical Hamiltonian stratification. To introduce the infinitesimal Hamiltonian strat-
ification, let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we are given a
Hamiltonian (G,Ω)-action along J : (S, ω) →M . Each of the partitions of S defined in § 2.2 has
an infinitesimal counterpart, obtained by replacing the role of the isotropy Lie groups by the
corresponding isotropy Lie algebras. For example, by definition two points p, q ∈ S belong to the
same infinitesimal Hamiltonian Morita type if there is an isomorphism of pairs of Lie algebras

(gJ(p), gp) ∼= (gJ(q), gq)

together with a compatible symplectic linear isomorphism

(SNp, ωp) ∼= (SNq, ωq),

where compatibility is now meant with respect to the Lie algebra actions. These partitions induce,
after passing to connected components, one and the same Whitney stratification S inf

Ham(S) of S:
the infinitesimal Hamiltonian stratification. There is, in fact, an even simpler partition that
induces this stratification, obtained from the partitions by dimensions of the orbits on S and the
leaves of M (see Example 2.68):

PdimJ
(S) := Pdim(S) ∩ J−1(Pdim(M)), (70)

where we take memberwise intersections. Explicitly, two points p, q ∈ S belong to the same mem-
ber of (70) if and only if dim(Op) = dim(Oq) and dim(LJ(p)) = dim(LJ(q)). That the members
of the above partitions are submanifolds of S (with connected components of possibly varying
dimension) and that all of these partitions indeed yield one and the same partition S inf

Ham(S)
after passing to connected components follows from the same type of arguments as in the proof
of Proposition 2.56. From the normal form theorem it further follows that S inf

Ham(S) is a constant
rank stratification of the momentum map.

2.3.3 Lie theoretic description of the regular parts. Given a proper symplectic groupoid
(G,Ω) and a Hamiltonian (G,Ω)-action along J : (S, ω) →M , we will use the following notation
for the regular parts of the various stratifications that we consider.

• For the canonical Hamiltonian stratifications SHam(S) and SHam(S), and the infinitesimal
Hamiltonian stratification S inf

Ham(S) of the Hamiltonian (G,Ω)-action we use

Sprinc
Ham , Sprinc

Ham , Sreg
Ham.
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• For the canonical stratifications SGp(S) and SGp(S) and the infinitesimal stratification S inf
Gp(S)

of the G-action we use
Sprinc, Sprinc, Sreg.

• For the stratification SHam(SL) on the reduced space over a leaf L we use

Sprinc
L .

Remark 2.69. Proposition 2.63, together with the fact that the orbit projection q is open,
implies

Sprinc = q−1(Sprinc) and Sprinc
Ham = q−1(Sprinc

Ham ).

Furthermore, there are obvious inclusions

We have the following Lie theoretic description of the regular parts.

Proposition 2.70. Let p ∈ S and denote x = J(p) ∈M . Then the following hold:

(a) p ∈ Sprinc if and only if the actions of Gp on both g0
p and on SNp are trivial;

(b) p ∈ Sreg if and only if the actions of gp on both g0
p and on SNp are trivial;

(c) p ∈ Sprinc
Ham if and only if p ∈ Sprinc and Gx fixes g0

p;
(d) p ∈ Sreg

Ham if and only if p ∈ Sreg and gx fixes g0
p;

(e) Op ∈ Sprinc
L if and only if the action of Gp on (JSNp)

−1(0) is trivial.

Proof. We will only prove statement (c), as the other statements follow by entirely similar
reasoning. In view of the above remark, we may as well work on the level of S. Let G = Gx,
H = Gp and V = SNp. As in the proof of Proposition 2.56, near Op we can identify the orbit
space S with an open neighbourhood of the origin in (h0 ⊕ V )/H, in such a way that Op is
identified with the origin and the stratum Σ ∈ SHam(S) through Op is identified (near Op) with
an open in (h0)G ⊕ V H . By invariance under scaling, the origin lies in the interior of (h0)G ⊕ V H

in (h0 ⊕ V )/H if and only if (h0)G = h0 and V = V H . Thus, statement (c) follows. �
Proposition 2.70 has the following direct consequence.

Corollary 2.71. The canonical Hamiltonian stratification SHam(Sprinc) of the restriction of
the Hamiltonian (G,Ω)-action on S to Sprinc consists of strata of SHam(S). In particular, the
regular part of SHam(Sprinc) coincides with Sprinc

Ham . The same goes for the stratifications on S and
the infinitesimal counterparts on S.

2.3.4 Principal type theorems. Next, for each of the stratifications listed before, we address
the question of whether the regular part is connected. As in [DK00, § 2.8], our strategy to answer
this will be to study the occurrence of codimension-one strata. First of all, we have the following.

Theorem 2.72. The infinitesimal Hamiltonian stratification S inf
Ham(S) has no codimension-one

strata. In particular, if S is connected, then Sreg
Ham is connected as well.
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The following will be useful to prove this.

Lemma 2.73. Let H be a compact Lie group and W a real one-dimensional representation of H.
Then H acts by reflection in the origin. In particular, if H is connected, then H acts trivially.

Proof. By compactness of H, there is an H-invariant inner product g on W . Therefore, the
representation H → GL(W ) takes image in the orthogonal group O(W, g) = {±1}. �
Proof of Theorem 2.72. We will argue by contradiction. Suppose that p ∈ S belongs to a
codimension-one stratum. Let H and G denote the respective identity components of Gp and
GJ(p), and let V = SNp. The normal form theorem and a computation analogous to that for
Lemma 2.57 show that (h0)G ⊕ V H must have codimension one in h0 ⊕ V . Since H is compact,
V H ⊂ V is a symplectic linear subspace, and so it has even codimension. Therefore, it must be
so that V H = V and (h0)G has codimension one in h0. Appealing to Lemma 2.73, we find that
H acts trivially on any H-invariant linear complement to (h0)G in h0. By compactness of H we
can always find such a complement, hence H fixes all of h0. Therefore, h is a Lie algebra ideal
in g. Since G is connected, this means that h0 is invariant under the coadjoint action of G. As
for H, it now follows that G must actually fix all of h0, contradicting the fact that (h0)G has
positive codimension in h0. �

The situation for SHam(S) and SHam(S) is more subtle. Indeed, the regular parts of the
canonical Hamiltonian stratification on both S and S can be disconnected, even if both S, as
well as the source fibers and the base of G are connected. This is shown by the following example.

Example 2.74. Consider the circle S
1, the real line R and the 2-dimensional torus T

2 equipped
with the Z2-actions given by

(±1) · eiθ = e±iθ, (±1) · x = ±x, (±1) · (eiθ1 , eiθ2) = (±eiθ1 , eiθ2).

Now, consider the proper Lie groupoid

(T2 × T
2) ×Z2 (S1 × R) ⇒ T

2 ×Z2 R (71)

with source, target and multiplication given by

s([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x]) = [eiθ3 , eiθ4 , x],

t([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x]) = [eiθ1 , eiθ2 , x],

m([eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x], [eiθ3 , eiθ4 , eiθ5 , eiθ6 , eiϕ, x]) = [eiθ1 , eiθ2 , eiθ5 , eiθ6 , ei(θ+ϕ), x].

This becomes a symplectic groupoid when equipped with the symplectic form induced by

dθ1 ∧ dθ2 − dθ3 ∧ dθ4 − dθ ∧ dx ∈ Ω2(T2 × T
2 × S

1 × R).

Furthermore, this symplectic groupoid acts in a Hamiltonian fashion along

J : (T2 × S
1 × R,dθ1 ∧ dθ2 − dθ ∧ dx) → T

2 ×Z2 R, (eiθ1 , eiθ2 , eiθ, x) �→ [eiθ1 , eiθ2 , x],

with the action given by

[eiθ1 , eiθ2 , eiθ3 , eiθ4 , eiθ, x] · (eiθ3 , eiθ4 , eiϕ, x) = (eiθ1 , eiθ2 , ei(θ+ϕ), x).

This action is free and its orbit space is canonically diffeomorphic to R. The canonical
Hamiltonian stratification on the orbit space consists of three strata, {x > 0}, {x < 0} and
the origin {x = 0}, because the isotropy groups of (71) at points in T

2 ×Z2 R with x �= 0 are
isomorphic to S

1, whilst those at points with x = 0 are isomorphic to Z2 � S
1. Thus, we see that

its regular part is disconnected.
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The following theorem provides a criterion that does ensure connectedness of the regular
part.

Theorem 2.75. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we are given
a Hamiltonian (G,Ω)-action along J : (S, ω) →M . The following conditions are equivalent.

(a) For every p ∈ S that belongs to a codimension-one stratum of the canonical Hamiltonian
stratification SHam(S), the action of Gp on g0

p is non-trivial.

(b) The regular part Sprinc of SGp(S) (as in § 2.3.3) does not contain codimension-one strata of
SHam(S).

Furthermore, if S is connected and the above conditions hold, then Sprinc
Ham is connected as well.

If, in addition, the orbits of the action are connected, then Sprinc
Ham is also connected.

Proof. As in the proof of Theorem 2.72 it follows that if p ∈ S belongs to a codimension-one
stratum of SHam(S), then the action of Gp on SNp is trivial. Thus, by Proposition 2.70(a), for
such p ∈ S the action of Gp on g0

p is trivial if and only if p ∈ Sprinc. From this it is clear that
the two given conditions are equivalent. Furthermore, if S is connected, then by the principal
type theorem for proper Lie groupoids (see Example 2.66), Sprinc is connected. Thus, in light of
Corollary 2.71 and Lemma 2.67, Sprinc

Ham will be connected if, in addition, Sprinc does not contain
codimension-one strata of SHam(S) or, equivalently, if in addition condition (b) holds. �

The following proposition gives a criterion for the conditions in the previous theorem to hold.

Proposition 2.76. If p ∈ S belongs to a codimension-one stratum of SHam(S) and the coadjoint
orbits of GJ(p) are connected, then the action of Gp on g0

p is non-trivial.

Proof. The same reasoning as in the proof of Theorem 2.72 shows that if the action of Gp on g0
p

would be trivial, then the identity component of GJ(p) would fix all of g0
p. By connectedness of its

coadjoint orbits, the entire group GJ(p) would then fix all of g0
p, which, as in the aforementioned

proof, leads to a contradiction. �
Corollary 2.77. Let G be a compact and connected Lie group and let J : (S, ω) → g∗ be a
connected Hamiltonian G-space. Then Sprinc

Ham is connected.

Proof. For G compact and connected, the isotropy groups of the coadjoint G-action are
connected. Thus, the previous proposition ensures that condition (a) in Theorem 2.75 is
satisfied. �
Example 2.78. Let G be a compact and connected Lie group and let J : (S, ω) → g∗ be a con-
nected Hamiltonian G-space. We return to the partition in Example 1. This comes with a partial
order, defined as follows. If Sp and Sq denote the members through the respective orbits Op and
Oq, then, by definition,

Sp ≤ Sq ⇐⇒ (GJ(q), Gq) is conjugate in G to a pair of subgroups of (GJ(p), Gp).

In analogy with the principal orbit type theorem (see Example 2.65), this partial order has a
greatest element, namely Sprinc

Ham . To see this, note that from the normal form theorem as in
Remark 1.24 it follows that every Op ∈ S admits an open neighbourhood U with the property
that Sp ≤ Sq for all Oq ∈ U . From this and the fact that Sprinc

Ham is connected and dense in S,
it follows that it is indeed a member of the partition in Example 1, and that it is the greatest
element with respect to the above partial order.

To end with, we note that the following generalization of [LS91, Theorem 5.9, Remark 5.10]
holds.
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Theorem 2.79. Let L be a leaf of G and suppose that SL is connected. Then the regular part
Sprinc
L of SHam(SL) is connected as well.

Proof. Since Sprinc
L is dense in SL and SL is connected, it is enough to show that every point in

SL admits an open neighbourhood that intersects Sprinc
L in a connected subspace. To this end, let

Op ∈ SL, let H = Gp and V = SNp. Consider a Hamiltonian Morita equivalence as in the proof
of Proposition 2.61, so that the induced homeomorphism of orbit spaces identifies an open U
around Op in S with an open Bh0⊕V around the origin in (h0 ⊕ V )/H. Let B be the intersection
of Bh0⊕V with V and consider the Hamiltonian H-space

JB = JV |B : (B,ωV) → h∗.

Then U ∩ SL is identified with J−1
B (0)/H, and U ∩ Sprinc

L is identified with the principal part
of J−1

B (0)/H (as follows from Morita invariance of the partitions by isomorphism types).
Since J−1

B (0) is star-shaped with respect to the origin, J−1
B (0)/H is connected and, hence, by

[LS91, Theorem 5.9, Remark 5.10], so is its principal part. Thus, we have found the desired
neighbourhood of Op. �

2.3.5 Relations amongst the regular parts. In this last subsection we discuss another rela-
tionship between the regular parts of the various stratifications, starting with the following
observation.

Proposition 2.80. Suppose that J is a submersion on Sreg. Then the various regular and
principal parts on S, M , S and M are related as

Sreg
Ham = Sreg ∩ J−1(M reg), Sprinc

Ham = Sprinc ∩ J−1(Mprinc), Sprinc
Ham = Sprinc ∩ (J)−1(Mprinc).

Proof. We prove the equality for Sreg
Ham; the others are proved similarly. Let p ∈ S, x = J(p) and

consider the strata ΣHam
p ∈ S inf

Ham(S), ΣGp
p ∈ S inf

Gp(S) and ΣGp
x ∈ S inf

Gp(M) through p and x. Then

ΣHam
p ⊂ ΣGp

p ∩ J−1(ΣGp
x ) (72)

is open in the right-hand space. This, combined with the fact that J : Sreg →M is open and
continuous, implies that ΣHam

p is open at p in S if and only if ΣGp
p is open at p in S and ΣGp

x is
open at x in M . In light of Proposition 2.63 this means that

Sreg
Ham = Sreg ∩ J−1(M reg),

as claimed. �
In general (that is, if J is not submersive on Sreg) one would hope for a similar result. Since

the image of J need not intersect M reg, one however needs an appropriate replacement for it.
The following proposition gives a sufficient condition for the existence of such a replacement.

Proposition 2.81. Suppose that Sreg
Ham is connected. Then there is a unique stratum Σ ∈

S inf
Gp(M) with the property that Σ ∩ J(S) is open and dense in J(S). Moreover, it holds that

Sreg
Ham = Sreg ∩ J−1(Σ), (73)

and J−1(Σ) is connected, open and dense in S. Similar conclusions hold for the principal part
on S (respectively, S), under the assumption that Sprinc

Ham (respectively, Sprinc
Ham ) is connected.

Proof. Note that for any map of stratified spaces f : (X,SX) → (Y,SY) (as in Definition 2.1),
it holds that if SX has an open and dense stratum ΣX , then the stratum ΣY ∈ SY containing
f(ΣX) has the property that ΣY ∩ f(X) is open and dense in f(X) (and it is clearly the unique
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such stratum). Indeed, that the intersection is dense in f(X) follows from density of ΣX and
continuity of f , and that it is open in f(X) then follows using its density and the fact that ΣY is
locally closed in Y . Further observe that f−1(ΣY) is connected and dense in X since it contains
the connected and dense subspace ΣX , and it is open in X since ΣY ∩ f(X) is open in f(X).
It remains to prove (73) and its analogues for the other cases in the proposition. Again, we will
prove this only for Sreg

Ham since the other proofs are analogous. The inclusion from left to right is
clear from the construction of Σ. The other inclusion follows from (72), because Sreg ∩ J−1(Σ)
is open in S. �
Example 2.82. Let G be a compact and connected Lie group and let J : (S, ω) → g∗ be a con-
nected Hamiltonian G-space. Let T ⊂ G be a maximal torus, t∗+ a choice of closed Weyl chamber
in t∗ and J+(S) := J(S) ∩ t∗+, where t∗ is canonically identified with the T -fixed point set (g∗)T

in g∗. According to [LMTW98, Theorem 3.1], there is a unique open face of the Weyl cham-
ber (called the principal face) that intersects J+(S) in a dense subset of J+(S). Combining
Corollary 2.77 with Proposition 2.81, we recover the existence of the principal face.

2.4 The Poisson structure on the orbit space
2.4.1 Poisson structures on reduced differentiable spaces and Poisson stratifications. In this

section we discuss the Poisson structure on the orbit space of a Hamiltonian action and discuss
basic Poisson geometric properties of the various stratifications associated to such an action.
First, we give some more general background.

Definition 2.83. A Poisson reduced ringed space is a reduced ringed space (X,OX) together
with a Poisson bracket {·, ·} on the structure sheaf OX . A morphism of Poisson reduced ringed
spaces is a morphism of reduced ringed spaces

ϕ : (X,OX) → (Y,OY)

with the property that, for every open U in Y ,

ϕ∗ : (OY (U), {·, ·}U ) → (OX(ϕ−1(U)), {·, ·}ϕ−1(U))

is a Poisson algebra map. We will also call such ϕ simply a Poisson map. When (X,OX) is a
reduced differentiable space, we call (X,OX , {·, ·}) a Poisson reduced differentiable space.

Remark 2.84. The Poisson reduced ringed spaces in this paper will all be Hausdorff and sec-
ond countable reduced differentiable spaces. For such reduced ringed spaces (X,OX) the data
of a Poisson bracket on the sheaf OX is the same as the data of a Poisson bracket on the
R-algebra OX(X), so that when convenient we can restrict attention to the Poisson algebra
of globally defined functions. This follows as for manifolds, using bump functions in OX(X)
(cf. Remark 2.17).

Next, we turn to subspaces and stratifications of Poisson reduced differentiable spaces.

Definition 2.85. Let (X,OX , {·, ·}X) be a Poisson reduced differentiable space. A locally closed
subspace Y of (X,OX) is a Poisson reduced differentiable subspace if the induced structure sheaf
OY admits a (necessarily unique) Poisson bracket for which the inclusion of Y into X becomes
a Poisson map. If Y is also a submanifold of (X,OX), then we call it a Poisson submanifold.

As in [FOR09], we use the following definition.

Definition 2.86. Let (X,OX , {·, ·}X) be a Hausdorff and second countable Poisson reduced
differentiable space. A Poisson stratification of (X,OX , {·, ·}X) is a stratification S of (X,OX)
with the property that every stratum is a Poisson submanifold. We call (X,OX , {·, ·}X ,S) a
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Poisson stratified space. A symplectic stratified space is a Poisson stratified space for which the
strata are symplectic. A morphism of Poisson stratified spaces is a morphism of the underlying
stratified spaces that is simultaneously a morphism of the underlying Poisson reduced ringed
spaces.

As for manifolds, we have the following useful characterization.

Proposition 2.87. Let (X,OX , {·, ·}X) be a Hausdorff and second countable Poisson reduced
differentiable space and let Y be a locally closed subspace. Then Y is a Poisson reduced differen-
tiable subspace if and only if the vanishing ideal IY (X) in OX(X) (consisting of f ∈ OX(X) such
that f |Y = 0) is a Poisson ideal (meaning that if f, h ∈ OX(X) and h|Y = 0, then {f, h}X |Y = 0).

Proof. The forward implication is immediate. For the backward implication the same argument
as for manifolds applies: given f, h ∈ OY (Y ), by Proposition 2.25 we can choose extensions
f̂ , ĥ ∈ OX(U) of f and h defined on some open neighbourhood U of Y and set

{f, h}Y := {f̂ , ĥ}U |Y .
This does not depend on the choice of extensions, because for any open U in X the ideal IY (U) in
OX(U), consisting of functions that vanish on U ∩ Y , is a Poisson ideal. Indeed, this follows from
the assumption that IY (X) is a Poisson ideal in OX(X), using bump functions (cf. Remark 2.17).
By construction, {·, ·}Y defines a Poisson bracket on OY (Y ) (and, hence, on OY , by Remark 2.84)
for which the inclusion of Y into X becomes a Poisson map. �

2.4.2 The Poisson algebras of invariant functions. Next, we turn to the definition of
the Poisson bracket on the orbit space of a Hamiltonian action, starting with the following
observation.

Proposition 2.88. Let (G,Ω) be a symplectic groupoid and suppose that we are given a
Hamiltonian (G,Ω)-action along J : (S, ω) →M . The algebra of invariant smooth functions

C∞(S)G = {f ∈ C∞(S) | f(g · p) = f(p), ∀(g, p) ∈ G ×M S}.
is a Poisson subalgebra of (C∞(S), {·, ·}ω).

Proof. Although this is surely known, let us give a proof. Let f, h ∈ C∞(S)G and let Φf denote
the Hamiltonian flow of f . Using the following lemma we find that for all (g, p) ∈ G ×M S,

{f, h}ω(g · p) =
d
dt

∣∣∣∣
t=0

h(Φt
f (g · p))

=
d
dt

∣∣∣∣
t=0

h(g · Φt
f (p))

=
d
dt

∣∣∣∣
t=0

h(Φt
f (p)) = {f, h}ω(p),

so that {f, g}ω ∈ C∞(S)G , as required. �

Here we used the following lemma, which will also be useful later.

Lemma 2.89. Let f ∈ C∞(S)G and let Φf denote its Hamiltonian flow. Then, for every t ∈ R,
the domain Ut and the image Vt of Φt

f are G-invariant and Φt
f is an isomorphism of Hamiltonian
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(G,Ω)-spaces:

Proof. Invariance of f implies thatXf (p) ∈ TpOω for all p ∈ S. From this and Proposition 1.12(a)
it follows that J(Φt

f (p)) = J(p) for any p ∈ S and any time t at which the flow through p is
defined. Thus, for any (g, p) ∈ G ×M S we can consider the curve

t �→ (g,Φt
f (p)) ∈ G ×M S.

Given such (g, p), let v ∈ Tg·pS and take a tangent vector v̂ to G ×M S at (g, p) such that
dm(v̂) = v. Then we find

ω

(
d
dt

∣∣∣∣
t=0

g · Φt
f (p), v

)
= (m∗

Sω)
(

d
dt

∣∣∣∣
t=0

(g,Φt
f (p)), v̂

)
.

Using (5) this is further seen to be equal to

ω
(
Xf (p),d(prS)(v̂)

)
= d(f ◦ prS)(v̂) = df(v),

where in the last step we used invariance of f . As this holds for all such v, we deduce that

Xf (g · p) =
d
dt

∣∣∣∣
t=0

g · Φt
f (p).

This being true for all p in the fiber of J over s(g) and, in particular, for all points on a maximal
integral curve of Xf starting in this fiber, it follows that the maximal integral curve of Xf

through g · p is given by t �→ g · Φt
f (p). The lemma readily follows from this. �

Given a proper symplectic groupoid (G,Ω) and a Hamiltonian (G,Ω)-action along J :
(S, ω) →M , the Poisson bracket {·, ·}ω on the algebra C∞(S)G in Proposition 2.88 gives the
orbit space (S, C∞

S ) the structure of a Poisson reduced differentiable space, with Poisson bracket
determined by the fact that the orbit projection becomes a Poisson map. Moreover, for each
leaf L of G in M , the reduced space SL is a Poisson reduced differentiable subspace. Indeed,
identifying the algebra of globally defined smooth functions on S with C∞(S)G , the vanishing
ideal of SL is identified with the ideal IG

L of invariant smooth functions that vanish on J−1(L),
which is a Poisson ideal by the following proposition. This observation is due to [ACG91] in the
setting of Hamiltonian group actions.

Proposition 2.90. The ideal IG
L is a Poisson ideal of (C∞(S)G , {·, ·}ω).

Proof. If f ∈ C∞(S)G and h ∈ IG
L , then by Lemma 2.89 the Hamiltonian flow of f starting at

p ∈ J−1(L) is contained in a single fiber of J , and hence in J−1(L), so that {f, h}ω(p) = 0. �

We will denote the respective Poisson structures on (S, C∞
S ) and (SL, C∞

SL
) by {·, ·}S and

{·, ·}SL .

2.4.3 The Poisson stratification theorem. Now, we move to the main theorem of this section.

Theorem 2.91. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we are
given a Hamiltonian (G,Ω)-action along J : (S, ω) →M . Then the following hold.
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(a) The stratification SGp(S) is a Poisson stratification of the orbit space

(S, C∞
S , {·, ·}S).

(b) The stratification SHam(S) is a Poisson stratification of the orbit space

(S, C∞
S , {·, ·}S),

the strata of which are regular Poisson submanifolds.
(c) For each leaf L of G in M , the stratification SHam(SL) is a symplectic stratification of the

reduced space at L:

(SL, C∞
SL , {·, ·}SL).

These are related as follows. First of all, the inclusions of reduced differentiable stratified
spaces

(SL, C∞
SL , {·, ·}SL ,SHam(SL)) ↪→ (S, C∞

S , {·, ·}S ,SHam(S)) ↪→ (S, C∞
S , {·, ·}S ,SGp(S))

are Poisson maps that map symplectic leaves onto symplectic leaves. Moreover, for each stratum
ΣS ∈ SHam(S), the symplectic leaves in ΣS are the connected components of the fibers of the
constant rank map J : ΣS → ΣM , where ΣM ∈ SGp(M) is the stratum such that J(ΣS) ⊂ ΣM .

Proof of Theorem 2.91. Let Σ ∈ SHam(S) be a stratum and let Σ := q−1(Σ) where q : S → S
denotes the orbit projection. Identifying the algebra of globally defined smooth functions on S
with C∞(S)G , the vanishing ideal of Σ is identified with the ideal

IG
Σ = {f ∈ C∞(S)G | f |Σ = 0}.

This is a Poisson ideal of C∞(S)G , for if f ∈ C∞(S)G and h ∈ IG
Σ, then as an immediate

consequence of Lemma 2.89, the Hamiltonian flow of f leaves Σ invariant and, therefore,

{f, h}ω|Σ = (LXf
h)|Σ = 0.

By Proposition 2.87 this means that Σ is a Poisson submanifold (in the sense of Definition 2.85).
Thus, SHam(S) is a Poisson stratification of the orbit space. By the same reasoning it follows that
the stratifications in statements (a) and (c) are Poisson stratifications. From the construction
of the Poisson brackets on the orbit space and the reduced spaces, it is immediate that the
inclusions given in the statement of the theorem are Poisson. Hence, each stratum of SGp(S)
is partitioned into Poisson submanifolds by strata of SHam(S) and each stratum of SHam(S) is
partitioned into Poisson submanifolds by strata of SHam(SL), for varying L ∈M . If (N, π) is
a Poisson manifold partitioned by Poisson submanifolds, then the symplectic leaves of each of
the Poisson submanifolds in the partition are symplectic leaves of (N, π). This follows from the
fact that each symplectic leaf of a Poisson submanifold is an open inside a symplectic leaf of
the ambient Poisson manifold. Therefore, each of the inclusions given in the statement of the
theorem indeed maps symplectic leaves onto symplectic leaves.

It remains to see that for each stratum ΣS ∈ SHam(S) the foliation by symplectic leaves of
the Poisson structure πΣS

on ΣS coincides with that by the connected components of the fibers
of the constant rank map J : ΣS → ΣM , because the claims on regularity and non-degeneracy
made in statements (b) and (c) follow from this as well. To this end, we have to show that for
every orbit O ∈ ΣS the tangent space to the symplectic leaf at O coincides with Ker(dJ |ΣS

)O.
Here the language of Dirac geometry comes in useful. We refer the reader to [Cou90, Bur13] for
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background on this. Let ΣS = q−1(ΣS) and consider the pre-symplectic form

ωΣS
:= ω|ΣS

∈ Ω2(ΣS).

We claim that the orbit projection

q : (ΣS , ωΣS
) → (ΣS , πΣS

) (74)

is a forward Dirac map. To see this, we will use the fact that a map ϕ : (Y, ωY) → (N, πN ) from
a pre-symplectic manifold into a Poisson manifold is forward Dirac if for every f ∈ C∞(N) there
is a vector field Xϕ∗f ∈ X (Y ) such that

ιXϕ∗f
ωY = d(ϕ∗f) and ϕ∗(Xϕ∗f ) = Xf .

Given an f ∈ C∞(ΣS), choose a smooth extension f̂ defined on an open U around ΣS in S.
Because q∗f̂ is G-invariant, its Hamiltonian flow leaves ΣS invariant (as before). Therefore, we can
consider

Xq∗f := (X
q∗f̂

)|ΣS
∈ X (ΣS)

and as is readily verified this satisfies

ι(Xq∗f )ωΣS
= d(q∗f) and q∗(Xq∗f ) = Xf .

Thus, (74) is indeed a forward Dirac map. From the equality of Dirac structures LπΣS
= q∗(LωΣS

)
we read off that the tangent space to the symplectic leaf at an orbit O through p ∈ S is given by

TpO(ωΣS
)

TpO ∩ TpO(ωΣS
)
⊂ TpΣS

TpO = TO(ΣS). (75)

It follows from Proposition 1.12(a) that TpO(ωΣS
) = Ker(dJ |ΣS

)p. This implies that (75) equals

Ker(dJ |ΣS
)p

TpO ∩ Ker(dJ |ΣS
)p

= Ker(dJ |ΣS
)O ⊂ TO(ΣS),

as we wished to show. �
From the proof we also see the following.

Corollary 2.92. For every stratum ΣS ∈ SHam(S), the orbit projection (74) is forward Dirac.
The same holds for the strata of SGp(S).

2.4.4 Dimension of the symplectic leaves. In the remainder of this section we make some
further observations on the Poisson geometry of the orbit space, starting with the following
result.

Proposition 2.93. Let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose that we are
given a Hamiltonian (G,Ω)-action along J : (S, ω) →M . The dimension of the symplectic leaves
in the orbit space S is locally non-decreasing. That is, every O ∈ S admits an open neighbourhood
U in S such that any symplectic leaf intersecting U has dimension greater than or equal to that
of the symplectic leaf through O.

Proof. First, let us make a more general remark. Let p ∈ S, let ΣS ∈ SHam(S) be the stratum
through Op and let ΣM ∈ SGp(M) be such that J(ΣS) ⊂ ΣM . From a Hamiltonian Morita equiv-
alence as in the proof of Proposition 2.50 we obtain (via Proposition 1.52(a)) an identification of
smooth maps between J : ΣS → ΣM near Op and the map (63) near the origin. Therefore, the
dimension of the fibers of the former map is equal to that of the latter, which is dim(SN Gp

p ) or,
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equivalently, dim(Ker(dJp)Gp) (see the proof of Proposition 1.11(b)). In view of Theorem 2.91,
this is also the dimension of the symplectic leaf through Op. To prove the proposition, it is
therefore enough to show that each p ∈ S admits an invariant open neighbourhood U with
the property that Ker(dJp)Gp has dimension less than or equal to that of Ker(dJq)Gq for each
q ∈ U . To this end, given p ∈ S, choose an invariant open neighbourhood U for which there is a
Hamiltonian Morita equivalence as in the proof of Proposition 2.50. Then U has the desired
property. Indeed, in light of Proposition 1.52(c), it suffices to show (using the notation of the
proof of Proposition 2.50) that for each α ∈ h0 and v ∈ V ,

dim(V H) ≤ dim(Ker(dJp)
H(α,v)

(α,v) ).

To this end, consider the linear map

V H → Ker(dJp)
H(α,v)

(α,v) , w �→
[

d
dt

∣∣∣∣
t=0

(α, v + tw)
]
. (76)

Note here that this indeed takes values in Ker(dJp)(α,v), because for all w ∈ V H ,

d
dt

∣∣∣∣
t=0

v + tw ∈ Ker(dJV)v,

as follows from (65). To complete the proof, we will now show that (76) is injective. Suppose
that

d
dt

∣∣∣∣
t=0

(α, v + tw) ∈ T(α,v)O.

Then
d
dt

∣∣∣∣
t=0

v + tw ∈ TvO ∩ Tv(v + V H).

Because H is compact, V H admits an H-invariant linear complement in V , which implies that

TvO ∩ Tv(v + V H) = 0.

Therefore w = 0, proving that (76) is indeed injective. �
Remark 2.94. In the above proof we have seen that the dimension of the symplectic leaf (L, ωL)
through Op is dim(SN Gp

p ). In fact, there is a canonical isomorphism of symplectic vector spaces

(TOpL, (ωL)Op) ∼= (SN Gp
p , ωp).

Remark 2.95. Similar arguments as in the proof of Proposition 2.93 show that, in fact, the
constant rank stratification (SHam(S),SGp(M)) of J satisfies Thom’s condition (aJ) (see,
e.g., [Mat12]), which can be made sense of in the setting of reduced differentiable spaces in
the same way as Whitney’s conditions (cf. Definition 2.31).

2.4.5 Morita invariance of the Poisson stratifications. We end this section with the following.

Proposition 2.96. Each of the stratifications in Theorem 2.91 is invariant under Hamiltonian
Morita equivalence, as Poisson stratification.

Proof. Suppose we are given a Morita equivalence between two Hamiltonian actions of two proper
symplectic groupoids; we use the notation of Definitions 1.42 and 1.44. It is immediate that the
induced homeomorphism hQ (see Proposition 1.52(a)) maps strata of SHam(S1) onto strata of
SHam(S2), and the same goes for SGp(S1) and SGp(S2). Thus, in view of Proposition 2.27 hQ is
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an isomorphism of reduced differentiable stratified spaces, for both of these stratifications. By
Proposition 1.52(a), hQ identifies the reduced space at a leaf L1 with the reduced space at the
leaf L2 := hP (L1) (these being the fibers of J1 and J2) and it is clear that it maps strata of
SHam(SL1

) onto strata of SHam(SL2
). Thus, by Remark 2.21 it restricts to an isomorphism of

reduced differentiable stratified spaces between these reduced spaces. To prove the proposition
we are left to show that hQ is a Poisson map, for it will then restrict to a Poisson map between the
reduced spaces and between the strata as well. To this end, let U1 and U2 be Q-related invariant
opens in S1 and S2. By the proof of Proposition 2.27, the Hamiltonian Morita equivalence induces
isomorphisms

C∞
S1

(U1)G1 C∞
S2

(U2)G2

C∞
Q (β−1

1 (U1))G1 ∩ C∞
Q (β−1

2 (U2))G2

β∗1 β∗2

and to prove that hQ is a Poisson map we have to show that (β∗2)−1 ◦ β∗1 is an isomorphism
of Poisson algebras. To see this, let f1, h1 ∈ C∞

S1
(U1)G1 and f2, h2 ∈ C∞

S2
(U2)G2 such that β∗1f1 =

β∗2f2 and β∗1h1 = β∗2h2. Let p1 ∈ U1, p2 ∈ U2 and q ∈ Q such that p1 = β1(q) and p2 = β2(q).
As we have shown in Lemma 2.89 it holds that Xf1(p1) ∈ Ker(dJ1). Thus, as in the proof of
Proposition 1.54 we can find v̂ ∈ Ker(djq) such that dβ1(v̂) = Xf1(p1). It follows from (46) that

ω2(Xf2(p2),dβ2(·)) = d(β∗2f2)q

= d(β∗1f1)q

= (β∗1ω1)(v̂, ·)
= (β∗2ω2)(v̂, ·) = ω2(dβ2(v̂),dβ2(·)),

so that, since β2 is a submersion, we find that dβ2(v̂) = Xf2(p2). Using this we see that

{f1, h1}ω1(p1) = dh1(Xf1(p1))

= d(β∗1h1)(v̂)

= d(β∗2h2)(v̂)

= dh2(Xf2(p2)) = {f2, h2}ω2(p2),

which proves that (β∗2)−1 ◦ β∗1 is indeed an isomorphism of Poisson algebras. �

Remark 2.97. From the above proposition it follows that PHam(S) and PHam(SL) are, in fact,
Poisson homogeneous, meaning that they are smoothly homogeneous as in Definition 2.36, with
the extra requirement that the isomorphisms h can be chosen to be Poisson maps. This gives
another proof of the fact that the Poisson structures on the strata of SHam(S) must be regular.

2.5 Symplectic integration of the canonical Hamiltonian strata
2.5.1 The integration theorem. The main theorem of this section is as follows.

Theorem 2.98. Let (G,Ω) be a proper symplectic groupoid and suppose that we are given a
Hamiltonian (G,Ω)-action along J : (S, ω) →M . Let ΣS ∈ SHam(S) and let πΣS

be the Poisson
structure on ΣS of Theorem 2.91. There is a naturally associated proper symplectic groupoid
(the symplectic leaves of which may be disconnected) that integrates (ΣS , πΣS

).

Our proof consists of two main steps: first we prove the theorem for Hamiltonian actions of
principal type (defined below), and then we show how to reduce to actions of this type.
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2.5.2 Hamiltonian actions of principal type.

Definition 2.99. We say that:

(i) a proper Lie groupoid G ⇒ M is of principal type if Mprinc = M (see Example 2.66);
(ii) a Hamiltonian action of a proper symplectic groupoid (G,Ω) along J : (S, ω) →M is of

principal type if Sprinc
Ham = S and Mprinc = M (see § 2.3.3).

Remark 2.100. Note that:

(i) a proper Lie groupoid G ⇒ M with connected leaf space M is of principal type if and only
if Gx is isomorphic to Gy for all x, y ∈M ;

(ii) a Hamiltonian action of a proper symplectic groupoid (G,Ω) along J : (S, ω) →M with
connected orbit space S and connected leaf space M is of principal type if and only if Gp is
isomorphic to Gq for all p, q ∈ S and Gx is isomorphic to Gy for all x, y ∈M .

For the rest of this subsection, let (G,Ω) ⇒ M be a proper symplectic groupoid and suppose
that we are given a Hamiltonian (G,Ω)-action of principal type along J : (S, ω) →M , for which
both the orbit space S and the leaf space M are connected. Then both S and M are smooth
manifolds and J : S →M , as well as J : S →M , is of constant rank. If the action happens to
be free, then J is a submersion and the gauge construction [Xu91, Theorem 3.2] yields a proper
symplectic groupoid integrating (S, πS). This groupoid is obtained as quotient of the submersion
groupoid

S ×M S ⇒ S

by the diagonal action of G on S ×M S along J ◦ pr1. As we will now show, this construction
can be generalized to arbitrary Hamiltonian actions of principal type (for which the action need
not be free). To this end, we consider the subgroupoid

R = {(p1, p2) ∈ S × S | J(p1) = J(p2) and Gp1 = Gp2}
of the pair groupoid S × S.

Theorem 2.101. The groupoid R has the following properties.

(a) It is a closed embedded Lie subgroupoid of the pair groupoid S × S.
(b) It is invariant under the diagonal action of G on S ×M S, the restriction of the action to R

is smooth, R := R/G is a smooth manifold and the orbit projection R → R is a submersion.
(c) The symplectic pair groupoid (S × S, ω ⊕−ω) descends to give a proper symplectic groupoid,

(R,ΩR) ⇒ S,

that integrates (S, πS).

Proof of Theorem 2.101(a). We will first use the normal form to study the subspace S ×M S. To
this end, let (p1, p2) ∈ S ×M S and let x := J(p1) = J(p2). Then, as in the proof of Theorem 1.21,
we can find two neighbourhood equivalences (Φ,Ψ1) and (Φ,Ψ2) between the given Hamiltonian
action and the two local models for it around the respective orbits Op1 and Op2 through p1

and p2, using one and the same isomorphism of symplectic groupoids Φ for both neighbour-
hood equivalences. Using this, the subset S ×M S of S × S is identified near (p1, p2) with the
subset Sθ,1 ×Mθ

Sθ,2 of the product Sθ,1 × Sθ,2 of the local models around Op1 and Op2 (using
the notation of § 1.3.3) near (Ψ1(p1),Ψ2(p2)). Since we assume the Hamiltonian action to be of
principal type, the coadjoint Gx-action and the actions underlying the symplectic normal repre-
sentations at p1 and p2 are trivial (cf. Proposition 1.10(b), Example 2.66 and Proposition 2.70).
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Thus, denoting by P the source-fiber of G over x, the momentum maps Jθ,i : Sθ,i →Mθ in the
local model become

P/Gpi × (g0
pi
⊕ SNpi) → P/Gx × g∗x, ([q], α, v) �→ ([q], α), (77)

(or, rather, a restriction of this to an open neighbourhood of the central orbit P/Gpi) for i ∈ {1, 2}.
From this we see that Sθ,1 ×Mθ

Sθ,2 is a submanifold of Sθ,1 × Sθ,2 with tangent space given by
all pairs of tangent vectors (v1, v2) satisfying dJθ,1(v1) = dJθ,2(v2). Passing back to S × S via
(Ψ1,Ψ2), we find that S ×M S is an embedded submanifold of S × S at (p1, p2) with tangent
space

{(v1, v2) ∈ Tp1S × Tp2S | dJp1(v1) = dJp2(v2)}. (78)

We now turn to R. As we will show in a moment, R is both open and closed in S ×M S.
Together with the above, this would show that R is a closed embedded submanifold of S × S
(with connected components of possibly varying dimension), the tangent space of which is given
by (78). To then show that R is an embedded Lie subgroupoid (with connected components
of one and the same dimension), it would be enough to show the two projections R → S are
submersions. In view of the description (78) of the tangent space of R this is equivalent to the
requirement that Im(dJp1) = Im(dJp2) for all (p1, p2) ∈ R, which is indeed satisfied, as follows
from Proposition 1.12(b). Thus, to prove part (a) it remains to show that R is both open and
closed in S ×M S.

To prove that R is closed in S ×M S, we will show that every (p1, p2) ∈ S ×M S admits
an open neighbourhood that intersects R in a closed subset of this neighbourhood. Given such
(p1, p2), as before, we pass to the local models around Op1 and Op2 using (Φ,Ψ1) and (Φ,Ψ2).
From the description (77) we find that Sθ,1 ×Mθ

Sθ,2 is the subset of Sθ,1 × Sθ,2 consisting of
pairs

(([q1], α1, v1), ([q2], α2, v2))

satisfying
[q1] = [q2] ∈ P/Gx and α1 = α2 ∈ g∗x.

Furthermore, a straightforward verification shows that (Ψ1,Ψ2) identifies R near (p1, p2) with
the subset of those pairs that, in addition, satisfy

[q1 : q2] ∈ NGx(Gp1 ,Gp2) := {g ∈ Gx | gGp1g
−1 = Gp2}. (79)

Note that NGx(Gp1 ,Gp2) is closed in Gx and invariant under left multiplication by elements of Gp2

and under right multiplication by elements of Gp1 , so that it corresponds to a closed subset of

Gp2\Gx/Gp1 .

Hence, by continuity of the map

(P/Gp1) ×P/Gx
(P/Gp2) → Gp2\Gx/Gp1 , ([q1], [q2]) �→ [q1 : q2] mod Gp2 × Gp1 ,

it follows that (79) is a closed condition in Sθ,1 ×Mθ
Sθ,2. Thus, R is indeed closed in S ×M S.

To show that R is open in S ×M S we can argue in exactly the same way, now restricting
attention to pairs (p1, p2) ∈ R, so that the condition (79) becomes

[q1 : q2] ∈ NGx(Gp1),

where NGx(Gp1) denotes the normalizer of Gp1 in Gx, and we are left to show that NGx(Gp1) is
open in Gx. To this end, recall from before that the coadjoint action of Gx on g∗x is trivial. Thus,
the action by conjugation of Gx on its identity component G0

x is trivial. This can be rephrased
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as saying that the action by conjugation of G0
x on Gx is trivial. In particular, G0

x is contained
in NGx(Gp1) and therefore the Lie subgroup NGx(Gp1) is indeed open in Gx. This concludes the
proof of part (a). �

For the proof of part (b) we recall the following lemma, which follows from the linearization
theorem for proper Lie groupoids (see, e.g., the proof of [CM17, Proposition 23] for details).

Lemma 2.102. Let G ⇒ M be a proper Lie groupoid with a single isomorphism type, meaning
that Gx is isomorphic to Gy for all x, y ∈M (see Example 2.7). Then the leaf space (M, C∞

M ) is
a smooth manifold and the projection M →M is a submersion.

Proof of Theorem 2.101(b) and (c). It is readily verified that R is invariant under the diagonal
G-action along J ◦ pr1 : S ×M S →M and that the restricted action is smooth. Since G is proper,
so is the action groupoid G � R. Furthermore, the isotropy group of the G-action at (p, q) ∈ R
is the isotropy of the G-action on S at p. Thus, since the isotropy groups of the action on S are
all isomorphic (by Remark 2.100), the same holds for the isotropy groups of the action on R. In
view of Lemma 2.102, we conclude that part (b) holds.

We turn to part (c). One readily verifies that R inherits the structure of a Lie groupoid over
S from the Lie groupoid R ⇒ S. To see that the Lie groupoid R is proper, suppose that we are
given a sequence of [pn, qn] ∈ R with the property that tR([pn, qn]) = [pn] and sR([pn, qn]) = [qn]
converge in S as n→ ∞. We have to show that the given sequence in R admits a convergent
subsequence. Since the orbit projection S → S is a surjective submersion, it admits local sec-
tions around all points in S. Using this, we can (for n large enough) find gn, hn ∈ G in the
source fiber over J(pn) = J(qn) such that gn · pn and hn · qn converge in S as n→ ∞. Then
tG(gnh

−1
n ) = J(gn · pn) and sG(gnh

−1
n ) = J(hn · qn) both converge in M as n→ ∞. By proper-

ness of G, it follows that there is a subsequence gnk
h−1

nk
that converges in G as k → ∞. Together

with convergence of hnk
· qnk

, this implies that gnk
· qnk

converges in S as well. Thus, since R
is closed in S × S, it follows that gnk

· (pnk
, qnk

) converges in R. Therefore, [pnk
, qnk

] converges
in R. This shows that the required subsequence exists and, hence, proves properness of the Lie
groupoid R.

To complete the proof of part (c), we are left to show that the symplectic structure on the
pair groupoid S × S descends to a symplectic structure ΩR on R, and that (R,ΩR) integrates
(S, πS). To see that the restriction ΩR ∈ Ω2(R) of ω ⊕−ω to R descends to a 2-form on R, recall
that this is equivalent to asking that ΩR is basic with respect to the G-action on R (in the sense
of [PPT14, Wat19, Yud16]), which means that m∗

RΩR = pr∗RΩR, where mR,prR : G � R → R
denote the target and source map of the action groupoid. This equality is readily verified. Thus,
ΩR indeed descends to a 2-form ΩR on R. Further notice that ΩR is closed (because ω is closed)
and it inherits multiplicativity from the multiplicative form ω ⊕−ω on the pair groupoid S × S.
Moreover, using the momentum map condition (6), Proposition 1.12 and the description (78) of
the tangent space to R, it is straightforward to check that ΩR is non-degenerate. Thus, (R,ΩR)
is a symplectic groupoid. We leave it to the reader to verify that (R,ΩR) integrates (S, πS). �

2.5.3 Reduction to Hamiltonian actions of principal type. The aim of this subsection is to
show that the restriction of a given Hamiltonian action (by a proper symplectic groupoid) to any
stratum of SHam(S) can be reduced to a Hamiltonian action of principal type. More precisely,
we prove the following.

Theorem 2.103. Let (G,Ω) be a proper symplectic groupoid and suppose that we are given
a Hamiltonian (G,Ω)-action along J : (S, ω) →M . Let ΣS ∈ SHam(S) and let ΣM ∈ SGp(M) be
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such that J(ΣS) ⊂ ΣM . Finally, let qS : S → S and qM : M →M be the orbit and leaf space
projections, and consider ΣS = q−1

S (ΣS) and ΣM = q−1
M (ΣM ). Then the following hold.

(a) The restriction ωΣS
∈ Ω2(ΣS) of the symplectic form ω to ΣS has constant rank. Moreover,

the null foliation integrating Ker(ωΣS
) is simple, meaning that its leaf space admits a smooth

manifold structure with respect to which the leaf space projection is a submersion.

Let SΣ denote this leaf space and let ωSΣ
denote the induced symplectic form on SΣ.

(b) The restriction of Ω to G|ΣM
has constant rank and the leaf space of its null foliation is

naturally a proper symplectic groupoid (GΣM
,ΩΣM

) over ΣM .
(c) The map J descends to a map

JSΣ
: (SΣ, ωSΣ

) → ΣM

and the Hamiltonian (G,Ω)-action along J descends to a Hamiltonian (GΣM
,ΩΣM

)-action
along JSΣ

, which is of principal type.
(d) There is a canonical Poisson diffeomorphism

(ΣS , πΣS
) ∼= (SΣ, πSΣ

).

Together with Theorem 2.101, this would prove Theorem 2.98. To prove Theorem 2.103,
we use the following Lie theoretic description of the null foliation of ωΣS

. Recall that, given a
real finite-dimensional representation V of a compact Lie group G, the fixed-point set V G has a
canonical G-invariant linear complement cV in V , given by the linear span of the collection

{v − g · v | v ∈ V, g ∈ G}.
To see that cV is indeed a linear complement to V G, note that for any choice of G-invariant
inner product on V , cV coincides with the orthogonal complement to V G in V . We will call cV

the fixed-point complement of V . For the dual representation V ∗, it holds that

(V ∗)G = (cV)0, (80)

the annihilator of cV in V . Of particular interest will be the adjoint representation.

Proposition 2.104. Let G be a compact Lie group. The fixed-point complement cg of the
adjoint representation is a Lie subalgebra of g, given by

cg = cZ(g) ⊕ gss,

where Z(g) is the center (viewed as G-representation) and gss = [g, g] is the semi-simple part
of g.

Proof. This follows from the observation that Z(g) is the fixed-point set for the adjoint action of
the identity component of G and [g, g] is the orthogonal complement to Z(g) in g with respect
to any invariant inner product. �

We now give the aforementioned description of the null foliation.

Lemma 2.105. Let p ∈ ΣS and x = J(p) ∈ ΣM , with notation as in Theorem 2.103. Let

aJ : J∗(T ∗M) → TS

be the bundle map underlying the infinitesimal action (7) associated to the Hamiltonian action.
Further, let cgx denote the fixed-point complement of the adjoint representation of Gx. Then

Ker(ωΣS
)p = (aJ)p(cgx),

where we view gx ⊂ T ∗
xM via (4).
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Proof. Because (by Corollary 2.92) the orbit projection (74) is a forward Dirac map from the
pre-symplectic manifold (ΣS , ωΣS

) into a Poisson manifold, it must hold that

Ker(ωΣS
)p ⊂ TpO.

Since TpO ⊂ TpΣS , it also holds that

Ker(ωΣS
)p ⊂ TpOω.

For any Hamiltonian action, we have the equality

TpO ∩ TpOω = (aJ)p(gx),

as is readily derived from the momentum map condition (6). Thus, we conclude that

Ker(ωΣS
)p ⊂ (aJ)p(gx).

Now consider the composition of maps

TpΣS

TpO ↪→ Np

dJp−−→ Nx
∼−→ g∗x, (81)

where the third map is dual to the canonical isomorphism between gx (which via (4) we view
as the annihilator of TxL in T ∗

xM) and N ∗
x . Using a Hamiltonian Morita equivalence as in the

proof of Proposition 2.50, together with Proposition 1.11(b), Proposition 1.52(c), Lemma 2.57
and Morita invariance of the J-isomorphism types, it is readily verified that the image of (81) is
(g0

p)
Gx . From this and the momentum map condition (6) it follows that, given α ∈ gx, the tangent

vector (aJ)p(α) belongs to Ker(ωΣS
)p if and only if α belongs to the annihilator of (g0

p)
Gx . This

annihilator equals gp + cgx , as (80) implies that

(g0
p)

Gx := g0
p ∩ (g∗x)Gx = (gp + cgx)0.

Thus, all together it follows that

Ker(ωΣS
)p = (aJ)p(gp + cgx) = (aJ)p(cgx),

which proves the lemma. �
We can interpret this as follows: the T ∗

πM -action associated to the momentum map J restricts
to an infinitesimal action of the bundle of Lie algebras⊔

x∈ΣM

cgx ⊂ T ∗M |ΣM

and the orbit distribution of this infinitesimal action coincides with the distribution Ker(ωΣS
).

The proof of Theorem 2.103 therefore boils down to showing that this infinitesimal action inte-
grates to an action of a bundle of Lie groups in G, the orbit space of which is smooth. For this we
will use the following unpublished proposition, due to Crainic, Fernandes and Mart́ınez Torres.

Proposition 2.106. Let (G,Ω) ⇒ M be a proper symplectic groupoid, let Σ ∈ SGp(M) and let
Σ = q−1(Σ), for q : M →M the leaf space projection. Consider the family of Lie groups⊔

x∈Σ

Cgx ⊂ G|Σ,

where Cgx is the unique connected Lie subgroup of Gx that integrates cgx . This defines a closed,
embedded and normal Lie subgroupoid of G|Σ and the quotient of G|Σ by this bundle of Lie
groups is naturally a proper symplectic groupoid over Σ of principal type.
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Proof. First, observe that for any compact Lie group G, the connected Lie subgroup Cg of G with
Lie algebra cg is compact. To see this, let Gss be the connected Lie subgroup of G with Lie algebra
the compact and semisimple Lie subalgebra gss = [g, g] of g, let G0 be the identity component of
G and let Z(G0)0 denote the identity component of the center of G0. Fix g1, . . . , gn ∈ G such that
G/G0 = {[g1], . . . , [gn]}. It follows from Proposition 2.104 that Cg is the image of the morphism
of Lie groups

(Z(G0)0)n ×Gss → G, (h1, . . . , hn, g) �→ [h1, g1] · · · · · [hn, gn] · g,
where [hi, gi] = higih

−1
i g−1

i is the commutator (which again belongs to Z(G0)0). Thus, since both
Gss and Z(G0)0 are compact, Cg is compact as well. Using this and the linearization theorem for
proper Lie groupoids (see § 1.3.2 for the local model) one sees that the family of the Lie groups
Cgx is a closed embedded Lie subgroupoid of G|Σ over Σ. Furthermore, for every g ∈ G|Σ starting
at x and ending at y, it holds that

gCgxg
−1 = Cgy .

This follows from the observation that an isomorphism of compact Lie groups G1 → G2 maps
Cg1 onto Cg2 . Thus, the family of Lie groups is also a normal subgroupoid of G|Σ. Therefore,
the quotient of the proper Lie groupoid G|Σ by this bundle of Lie groups is again a proper Lie
groupoid. It follows from Lemma 2.105, applied to the Hamiltonian action of Example 2, that
the pre-symplectic form Ω|(G|Σ) on G|Σ has constant rank and its null foliation coincides with the
foliation by orbits of the action on G|Σ of this bundle of Lie groups. Thus, the quotient groupoid
inherits a symplectic form. This symplectic form inherits multiplicativity from Ω. Hence, the
quotient is a symplectic groupoid. Finally, in light of Remark 2.100 the quotient groupoid is
of principal type, because for any x, y ∈ Σ there is an isomorphism between Gx and Gy, and
any such isomorphism descends to one between the isotropy groups Gx/Cgx and Gy/Cgy of the
quotient groupoid. �

We are now ready to complete the proof of the reduction theorem.

Proof of Theorem 2.103. Consider the family of Lie groups

HΣM
:=

⊔
x∈ΣM

Cgx ⊂ G|ΣM

of Proposition 2.106. Being a closed embedded Lie subgroupoid of the proper Lie groupoid
G|ΣM

, the Lie groupoid HΣM
is proper as well. Hence, so is any smooth action of HΣM

. It acts
along J : ΣS → ΣM via the action of G. Proposition 2.50 implies that for any p, q ∈ ΣS , writing
x = J(p) and y = J(q), there is an isomorphism of pairs of Lie groups:

(Gx,Gp) ∼= (Gy,Gq). (82)

Such an isomorphism restricts to an isomorphism between the isotropy groups of the HΣM
-action:

(HΣM
)p = Cgx ∩ Gp

∼= Cgy ∩ Gq = (HΣM
)q.

Thus, appealing to Lemma 2.102, we find that the orbit space admits a smooth manifold structure
for which the orbit projection is a submersion. It follows from Lemma 2.105 that the orbits of
this action are the leaves of the null foliation of ωΣS

, so this proves part (a) of the theorem. Part
(b) of the theorem is proved in Proposition 2.106. For part (c), note that J factors through to
a map JSΣ

(since the source and target of any element in HΣM
coincide) and the action of G

along J descends to an action of GΣM
along JSΣ

. As the action of (G,Ω) along J is Hamiltonian,
the same follows for the action of (GΣM

,ΩΣM
) along JSΣ

. By the previous proposition, GΣM
is
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of principal type. Furthermore, for any two [p], [q] ∈ SΣ there is, as before, an isomorphism of
pairs (82), and this descends to an isomorphism between the Lie groups

Gp/(Cgx ∩ Gp) ∼= Gq/(Cgy ∩ Gq),

which are canonically isomorphic to the respective isotropy groups of the GΣM
-action at [p]

and [q]. In view of Remark 2.100 we conclude that the Hamiltonian (GΣM
,ΩΣM

)-action is of
principal type. This completes the proof of parts (a)−(c). For the final statement, consider the
following diagram.

All arrows are surjective submersions and by construction (in particular, Corollary 2.92) each is
forward Dirac. Evidently, the left vertical map factors through the composition of the other two,
and vice versa. Hence, by functoriality of the push-forward construction for Dirac structures, the
diagram completes to give the desired Poisson diffeomorphism. �
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