A COMMUTATIVITY THEOREM FOR DIVISION RINGS

Hazar Abu-Khuzam and Adil Yaqub

Abstract

The following theorem is proved: Let D be a division ring such that for all x, y in D there exists a positive integer $n=n(x, y)$ for which $(x y)^{n}-(y x)^{n}$ is in the center of D. Then D is commutative. This theorem also holds for semisimple rings.

It is well known [1] that a division ring D with the property that, for all x, y in $D, x y-y x$ is in the center of D must be commutative. Our objective is to generalize this theorem by assuming instead that $(x y)^{n(x, y)}-(y x)^{n(x, y)}$ is always in the center. Indeed, we prove the following:

THEOREM 1. Let D be a division ring such that for all x, y in D there exists a positive integer $n=n(x, y)$ for which $(x y)^{n}-(y x)^{n}$ is in the center Z of D. Then D is commutative.

We also show that this theorem holds for semisimple rings. As usual, for any a, b in $R,[a, b]=a b-b a$.

Proof of Theorem 1. Let x, y be any nonzero elements of D. By hypothesis, there exists a positive integer $n=n\left(x y^{-1}, y\right)$ such that

$$
\left(\left(x y^{-1}\right) y\right)^{n}-\left(y\left(x y^{-1}\right)\right)^{n} \in z
$$

This implies that $x^{n}-y x^{n} y^{-1} \in Z$ and hence
Received 2 August 1979.

$$
\left(x^{n}-y x^{n} y^{-1}\right) y=y\left(x^{n}-y x^{n} y^{-1}\right)
$$

Therefore, $x^{n} y-y x^{n}=y x^{n}-y^{2} x^{n} y^{-1}$, and hence

$$
\left(x^{n} y-y x^{n}\right) y=\left(y x^{n}-y^{2} x^{n} y^{-1}\right) y=y x^{n} y-y^{2} x^{n}=y\left(x^{n} y-y x^{n}\right) .
$$

We have thus shown that
(1) y commutes with $\left[x^{n}, y\right] \quad(x, y \in D, n=n(x, y) \geq 1)$.

We now distinguish two cases.
CASE 1. Characteristic of $D=p>0$.
By (1) and induction, we see that

$$
\begin{equation*}
\left[x^{n}, y^{k}\right]=k y^{k-1}\left[x^{n}, y\right] \text {, for all positive integers } k . \tag{2}
\end{equation*}
$$

Let $k=p$ in (2). Then, since D is of characteristic p,

$$
\left[x^{n}, y^{p}\right]=0, \text { for all } x, y \text { in } D .
$$

Hence, by a well known theorem of Herstein [2], D is commutative.
CASE 2. Characteristic of D is zero.
By (1),
(3) y commutes with $\left[x^{n}, y\right] \quad(n=n(x, y) \geq 1)$.

By (1) again,
(4) x^{n} commutes with $\left[x^{n}, y^{m}\right] \quad\left(m=m\left(x^{n}, y\right) \geq 1\right)$.

By (3) and induction, we see that

$$
\begin{equation*}
\left[x^{n}, y^{m}\right]=m y^{m-1}\left[x^{n}, y\right] . \tag{5}
\end{equation*}
$$

Combining (4) and (5), we obtain

$$
\left[x^{n}, m y^{m-1}\left[x^{n}, y\right]\right]=0=m\left[x^{n}, y^{m-1}\left[x^{n}, y\right]\right] .
$$

Since D is of characteristic zero, we get

$$
\left[x^{n}, y^{m-1}\left[x^{n}, y\right]\right]=0,
$$

and thus

$$
\begin{equation*}
x^{n} \text { commutes with } y^{m-1}\left[x^{n}, y\right] . \tag{6}
\end{equation*}
$$

Combining (3) and (6), we conclude that

$$
\begin{equation*}
y x^{n} \text { commutes with } y^{m-1}\left[x^{n}, y\right] \text {. } \tag{7}
\end{equation*}
$$

Now, by (1),
(8) $y x^{n}$ commutes with $\left[y x^{n},\left(y^{m}\right)^{k}\right] \quad\left(k=k\left(y x^{n}, y^{m}\right) \geq 1\right)$.

Moreover, as is readily verified,

$$
\begin{equation*}
\left[y x^{n}, y^{m k}\right]=y\left[x^{n}, y^{m k}\right] \tag{9}
\end{equation*}
$$

But, by (1), $\left[x^{n}, y^{m k}\right]=m k y^{m k-1}\left[x^{n}, y\right]$, and hence by (9),

$$
\begin{equation*}
\left[y x^{n}, y^{m k}\right]=m k y^{m k}\left[x^{n}, y\right] \tag{10}
\end{equation*}
$$

So, by (8) and (10),

$$
\begin{equation*}
y x^{n} \text { commutes with } m k y^{m k}\left[x^{n}, y\right] \text {. } \tag{11}
\end{equation*}
$$

Since D is of characteristic zero, (ll) implies that

$$
\begin{equation*}
y x^{n} \text { commutes with } y^{m k}\left[x^{n}, y\right] \text {. } \tag{12}
\end{equation*}
$$

Now suppose for the moment that $\left[x^{n}, y\right] \neq 0$. Then, by (7),

$$
\begin{equation*}
y x^{n} \text { commutes with }\left[x^{n}, y\right]^{-1} y^{-(m-1)} \tag{13}
\end{equation*}
$$

Combining (12) and (13), we conclude that

$$
\begin{equation*}
y x^{n} \text { commutes with } y^{m k-m+1} \text {. } \tag{14}
\end{equation*}
$$

Let $Z=m k-m+1$. Clearly $Z \geq 1$ and hence by (14), $\left(y x^{n}\right) y^{2}=y^{2}\left(y x^{n}\right)$. Therefore

$$
\begin{equation*}
x^{n} y^{Z}=y^{Z} x^{n} \quad(x, y \in D, Z \geq 1) \tag{15}
\end{equation*}
$$

Clearly (15) holds if $\left[x^{n}, y\right]=0$. Hence, by Herstein's Theorem [2], D is commutative. This proves the theorem.

Next we condiser the semisimple case. Thus suppose that R is a semisimple ring such that, for all x, y in R, there exists a positive integer $n=n(x, y)$ for which

$$
\begin{equation*}
(x y)^{n}-(y x)^{n} \in Z[=\text { center of } R] \tag{16}
\end{equation*}
$$

Note that the property in (16) is inherited by all subrings and all homomorphic images of R. Note also that no complete matrix ring D_{m} over a division ring D, with $m>1$, satisfies the property in (16), as a consideration of $x=E_{11}, y=E_{11}+E_{12}$ shows. Using these facts and the structure theory of rings, we see that Theorem l holds for semisimple rings as well. We omit the details.

References

[1] Israel N. Herstein, "Sugli anelli soddisfacenti ad una condizione de Engel", Atti Accad. Naz. Lincei Rend. Cl. Sci. Eis. Mat. Nat. (8) 32 (1962), 177-180.
[2] I.N. Herstein, "A commutativity theorem", J. Algebra 38 (1976), 112-118.

Department of Mathematics, University of California, Santa Barbara, California 93106, USA.

