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THE CENTRE AND THE DEPTH OF THE CENTRE OF A TREE MAP

XlANGDONG YE

Let X be a tree and / be a continuous map from X into itself. Denote by P{f)
and R(f) the set of periodic points and the set of recurrent points of / respectively.
We show in this note that the centre is P(f) and the depth of the centre is at
most 3. Furthermore we have P(f) = R{f)-

1. INTRODUCTION

Let X be a compact metric space and / € C(X, X). A point x £ X is said to be
a nonwandering point of f if for any neighbourhood Vx of x there exists n £ N such
that fn{Vx) D Vx ^ 0. The set of nonwandering points of / will be denoted by £)(/).

Let fix(/) = fi(/), n n ( / ) = n ( / In,..,), n ^ 2. Then O ^ / ) = R I M / ) is called the

centre of / . The minimal n € N U {oo} such that Cln(f) = fi<x>(/) will be called the
depth of the centre of f.

We say that x £ X is a periodic point of f of period n if there exists n € N such
that /"(as) = x but f'(x) ^ x, 1 ̂  i ^ n - 1. I f n = l then x will be called a fixed

point of f. A point x € X is a recurrent point of f if for every neighbourhood Vz of
x there is n £ N such that fn(x) £ 14. The sets of fixed points, periodic points and
recurrent points of / will be denoted by F(f), P(f) and R(f) respectively.

The notion of periodic point, recurrent point and centre of a continuous map / from
a compact metric space into itself is one of the most important notions in dynamical
systems. In general it is difficult to determine the centre and the depth of the centre
of / and it is not always true that P{f) = R{f) • For example, let / be an irrational
rotation from a circle into itself. Then we have that P(f) = 0 and R(f) is the circle.

If X = [0, 1] it is known that n 2 ( / ) = P{f) and the centre is P(f) and the
depth of the centre is at most 2 [1] (for a simple proof see [3]). In [2] this result is
extended to continuous maps from n-od to itself having zero as a fixed point, where
n-od — {z £ C : zn £ [0, 1]}. In this note we shall generalise these results to general
continuous tree maps. To state the results we start with some more notion.

By a tree we mean a compact connected one-dimensional branched manifold with-
out cycles. A point x £ X is a branched point of f if there is a neighbourhood of x

Received 24 November 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $A2.00+0.00.

347

https://doi.org/10.1017/S0004972700015768 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015768


348 X. Ye [2]

which is homeomorphic to {z £ C: zk £ [0, 1]} for some Jfe ^ 3. The set of branched
points of X is a finite subset of X and will be denoted by O = {01, 02, . . . , o n } . For
a; 6 l \ 0 , there is a neighbourhood Vx of x such that F r is homeomorphic to (0, 1)
or (0, 1]. In the latter case we say that x is an end point of X. We assume that the
set of end points of X is the finite set {ei, e2, ..., e<} C X.

Let p be a metric on a tree X. If Xi, X2 are two subsets of X then we de-
fine p(Xi, X2) = inf{p(xi, x2)' Xi £ Xi, i = 1, 2}. Furthermore we assume that
p(<2), X i ) > 0 for every subset X^ of X.

Now we are ready to state the main results of this note.

THEOREM 2 . 6 . Let X be a tree and f £ C(X, X). Then R{f) = P(f).

THEOREM 2 . 7 . Let X be a tree, f £ C(X, X) and O be the set of branched

points of X. Then Q2{f) = Pjf) U 0', where O' C O and p(o', ~P(ff\ > 0. ffence

the depth of the centre is at most 3 and the centre is P(f).

2. THE PROOFS

Through out this section we assume that X is a tree and / £ C(X, X). It is well
known that -f(/) ^ 0. In the following we give a partial order on the tree X which is
useful in dealing with continuous tree maps.

DEFINITION 2.1: Let X be a tree. Then for every pair x,y £ X, [x;y] will be the
unique segment connecting x and y.

DEFINITION 2.2: Let e be an end point of the tree X. A partial order < e on X

is defined by: x < e y if and only if x € [e : y] and i / y .
no

DEFINITION 2.3: Let e be an end point of the tree X and X \ O = f\ Ij. Define
1

<r=<r(;0 ,e) on X by: If 7jo = \yi;y2], 2/1 < e 1/2 and X2 = {x £ X: y2 <c x}U[y1;y2],
Xi = (X \ X2) U [2/1:2/2] then zx < r z2 if and only if either zx £ Xi \ [2/112/2]) ^2 G X2

or z2 <y3 zi if zi,Z2 £ Xi;zi <yi z2 if Z\,z2 £ X2 (we consider X\, X2 to be two
subtrees of X).

"o
LEMMA 2 . 4 . Let X be a tree, f £ C{X, X) and X \ O = f\Ij. If x <r y £

1

[2/1:2/2] - Ijo ™th * <r / ( * ) , f(y) <r V then F(f) n fay] ^ 0.

PROOF: Because f([x; y]) is a connected subset of X we know that there exist

*i <r 2/1 G fay] such that Xl <r f{xx), f{yx) <r yx and /(a;i), / ( y ^ £ Ijo . By the

continuity of / we can find x2 <r 2/2 £ fai^i] such that x2 <T f(*2), /(2/2) <r 2/2 and

/([*2;2/2]) C / , 0 • It is well known that F(f) n [*2;ite] ^ 0 [!]• D

LEMMA 2 . 5 . Let X be a tree and f £ C(X, X). If / ( f ay ] ) D [«;y] for some

x,y £ X and fay] D 0 = 0 tfien F(/) n [as;y] ^ 0.
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PROOF: From /([z;i/]) D [x;y] we know that there exist si,2/i G [x;y] such that
f(xi) = x, / ( t / i ) = y. By the connectedness of /([ssi, J/i]) we can choose x2, J/2 G
[zi;j/i] such that /([a^SJte]) C [zi, 3/1]. So we have reduced our case to the interval
case. The lemma follows from [1]. U

THEOREM 2 . 6 . Let X be a tree and / G C(X, X ) . Then P(f) = R(f).

PROOF: Let x G X \ P(f) and Vx be the open connected component of X \ P(f)

such that x £ Vx.
no

Suppose X \ O = f]Ij •
1

We claim that (Vx D Ijo) D R{f) = 0, V 1 ^ j0 ^ n0 .
If it is not the case let y G (Vx l~l /j0) D #( / ) . Then there exists m £ N such that

Z"1 (y) G Vx H / j 0 . Let 5 = /n» . Without loss of generality we assume y <e g(y) for
some end point e.

Suppose that Vx l~l J;o = [a; 6], a <e b. We have a <r y <T g(y) <r b. It follows
that z <T g{z), V2 G [a; 6]. Otherwise if there exists 1/1 G Vxf\Ij0 such that g(yi) > r 2/1
then [j/i; y] C /([yiJJ/]) if 2/1 <r 2/ or it is the case of Lemma 2.4. By Lemma 2.4 and
2.5 it is a contradiction.

Now suppose z <T gl(z), Vz G [a; b), 1 < t ^ n. It follows that t/ < r g(y) <r

gl+1(y), 1 ^ i ^ n. By the same reasoning 2 < r gn+1(z), Vz G [a;6]- So we conclude
that z <r gm{z), Vz G [a; 6] and m G N. Hence j / < r p(t/) < r gm(y)\/m G N. That is
to say y £ R{g) = R(f).

From (Vx D Ijo)n R(f) = %. Wljo n Vx ^ 0 we get F* n R{f) = 0 because if there
is io G N such that o,0 G Vj; then Oi0 £ R{f) (an isolated recurrent point is a periodic
point).

To sum up Pjf) = Rjf). D

THEOREM 2 . 7 . Let X be a tree and f G C(X, X). Then 02(/) = P(f) U O'

where O ' c O and p(o ' , P( / ) ) > 0. Fence the depth of the centre is at most 3 and

the centre is P(f) •

For this purpose we show the following lemma

LEMMA 2 . 8 . Let f G C(X, X) tor a tree X and X \ O = U"° Ij • If an open
interval J C Ij0 for some 1 ^ j0 ^ n0 satisfies J n P( / ) = 0, then J n / n ( J D n(/)) =
0,

PROOF: If it is not the case then there exists x G J (~l f2(/) and n G N such that
/"(») G J , P(x) £ J, 1 ^ i < n. It is easy to see that /*(z) ^ />'(z) if 0 ^ z < i ^ n.

Without loss of generality we assume that x <r fn{x). Choose the neighbourhood
Vi of p{x) for 0 < i < n such that VJ fl V; = 0 for 0 ^ i < j ^ n and Vn C J. Put
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V — n/~*(^«)> ^en V is a neighbourhood of x. Since x € H(/), there exists I > 0
o

such that V Df'(V) ^ 0. Obviously I > n. As fn(V) C Vn and fl~n(Vn) n F ^ f l ,
there is y £ Vn such that f'~n{y) € V. Hence f'~n(y) <r V- By the proof of Theorem
2.6, 2 < r fnTni{z), fm^l~n\z) <r z, Vz £ J , Vmi,m2 G N. It is a contradiction if
we choose mi = I — n, m.2 — n. D

PROOF OF THEOREM 2.7: Clearly P(f) c
Let C be a connected component of X \ P(f) and X \ O - \J"° Ij . By the above

Lemma 2.8 for every nonnegative integer n we have (C D Ij) n / n (C fl Ij (~l J7(/)) = 0
for all 1 ^ 7 ^ no. Hence C D Ij f"l fi(/ |n(/)) = 0. To sum up we have proved that
n(f ln(/)) C P ( / ) U O ' , where O' C O and Vx £ O', x is an isolated point of n2(f)
and x £ P(7). So p((9',P(7)) >0 and ns(/) = P(/). D
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