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Abstract
Given an uncountable cardinal 𝜅, we consider the question of whether subsets of the power set of 𝜅 that are usually
constructed with the help of the axiom of choice are definable by Σ1-formulas that only use the cardinal 𝜅 and
sets of hereditary cardinality less than 𝜅 as parameters. For limits of measurable cardinals, we prove a perfect
set theorem for sets definable in this way and use it to generalize two classical nondefinability results to higher
cardinals. First, we show that a classical result of Mathias on the complexity of maximal almost disjoint families
of sets of natural numbers can be generalized to measurable limits of measurables. Second, we prove that for a
limit of countably many measurable cardinals, the existence of a simply definable well-ordering of subsets of 𝜅
of length at least 𝜅+ implies the existence of a projective well-ordering of the reals. In addition, we determine the
exact consistency strength of the nonexistence of Σ1-definitions of certain objects at singular strong limit cardinals.
Finally, we show that both large cardinal assumptions and forcing axioms cause analogs of these statements to hold
at the first uncountable cardinal 𝜔1.
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1. Introduction

Mathematical objects whose existence are usually proved with the axiom of choice are often referred to
as pathological sets. Important examples of such objects are Hamel bases of the vector space of real
numbers over the field of rational numbers, nonprincipal ultrafilters on infinite sets and bistationary, that
is, stationary and costationary) subsets of uncountable regular cardinals. For many types of pathological
sets of real numbers, it is possible to use results from descriptive set theory to show that these objects
cannot be defined by simple formulas in second-order arithmetic. Moreover, many canonical extensions
of the axioms of ZFC prove that these objects are not definable in second-order arithmetic at all and
this implication is often viewed as a desirable feature of such extensions because it allows us to clearly
separate pathological sets of real numbers from the explicitly constructed sets of reals.

In this paper, we study the set-theoretic definability of pathological sets of higher cardinalities. More
specifically, we aim to generalize classical nondefinability results for sets of real numbers to subsets of
the power set P (𝜅) of an uncountable cardinal 𝜅 that are definable by Σ1-formulas1 with parameters in
H(𝜅) ∪ {𝜅}. This bound on the complexity of the used formulas is motivated by the observation that
the assumption V = HOD implies the Σ2-definability of various pathological sets (see [34, Proposition
3.9]), and this assumption is compatible with many canonical extensions of ZFC. The restriction of the
set of parameters is motivated by the existence of highly potent coding forcings at uncountable regular
cardinals 𝜅 that can be used to make highly pathological subsets of P (𝜅) definable by a Σ1-formula with
parameters in H(𝜅+). For example, the results of [33, Section 3] show that, if 𝜅 is an uncountable cardinal
satisfying 𝜅 = 𝜅<𝜅 and A is a subset P (𝜅), then, in some cofinality-preserving forcing extension V[𝐺]
of the ground model V, the sets A and P (𝜅)V[𝐺 ] \ 𝐴 are definable by Σ1-formulas with parameters in
H(𝜅+). Moreover, the main result of [22] shows that for every cardinal 𝜅 with these properties, there is
a cofinality-preserving forcing extension in which a well-ordering of P (𝜅) is definable by a Σ1-formula
with parameters in H(𝜅+), and the results of [13] show that various large cardinal properties of 𝜅 can
be preserved by such coding forcings. Finally, results of Caicedo and Veličković in [5] show that the
bounded proper forcing axiom BPFA outright implies the existence of a well-ordering of P (𝜔1) that is
definable by a Σ1-formula with parameters in H(𝜔2) (see the proof of Proposition 10.6 below).

Previous work in this direction (see [34], [37] and [51]) has already provided important examples
that show that we can achieve the above aim when we work in one of the following scenarios:

◦ The cardinal 𝜅 is a limit of cardinals possessing certain large cardinal properties, like measurability.
◦ The cardinal 𝜅 is the first uncountable cardinal 𝜔1 and either certain large cardinals exist above 𝜅 or

strong forcing axioms hold.

In the following, we will derive structural results for simply definable sets that will allow us to prove
the nondefinability of several types of pathological sets in the above settings. These implications can
again be seen as desirable features of the corresponding axiom systems. Moreover, for most of our results
about singular limits of large cardinals, we prove that the used large cardinal assumption is optimal for
the corresponding nondefinability statement at singular cardinals.

The starting point of our work is a perfect set theorem for Σ1-definable sets at limits of measurable
cardinals. In order to formulate this result, we generalize some basic topological concepts to higher
function spaces and power sets. Given a cardinal 𝜅 > 0 and an infinite cardinal 𝜇, we equip the set 𝜇𝜅 of
all functions from 𝜇 to 𝜅 with the topology whose basic open sets consists of all functions that extend
a given function 𝑠 : 𝜉 −→ 𝜅 with 𝜉 < 𝜇. In the same way, we equip the power set P (𝜈) of an infinite
cardinal 𝜈 with the topology whose basic open sets consists of all subsets of 𝜈 whose intersection with
a given ordinal 𝜂 < 𝜈 is equal to a fixed subset of 𝜂. We then say that an injection 𝜄 : 𝜇𝜅 −→ P (𝜈) is
a perfect embedding if it induces a homeomorphism between 𝜇𝜅 and the subspace ran(𝜄) of P (𝜈). The
following result now shows that, analogously to the perfect set property of analytic sets of reals, simply
definable thin sets of subsets of limits of measurable cardinals have small cardinality.

1See [28, p. 5] for the definition of the Levy hierarchy of formulas.
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Theorem 1.1. Let 𝜅 be a limit of measurable cardinals, and let D be a subset of P (𝜅) that is definable
by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}. If D has cardinality greater than 𝜅, then there is a
perfect embedding 𝜄 : cof (𝜅) 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷.

In the case of singular limits of measurable cardinals, we will use core model theory developed in
[31] and, for example, in [53] to show that the consistency strength of the assumption of this theorem is
optimal for its conclusion.

Theorem 1.2. Let 𝜅 be a singular strong limit cardinal with the property that, for every subset D of
P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅},
there is a perfect embedding 𝜄 : cof (𝜅) 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷. Then there is an inner model with a
sequence of measurable cardinals of length cof (𝜅).

The next type of pathological sets that we will study in this paper are almost disjoint families of large
cardinalities. Given an infinite cardinal 𝜅, a set A of unbounded subsets of 𝜅 is an almost disjoint family in
P (𝜅) if 𝑥∩ 𝑦 is bounded in 𝜅 for all distinct 𝑥, 𝑦 ∈ 𝐴. In addition, we say that such a family A is maximal
if for every unbounded subset x of 𝜅, there exists 𝑦 ∈ 𝐴 with the property that 𝑥 ∩ 𝑦 is unbounded
in 𝜅. Motivated by a classical result of Mathias in [39] that shows that all analytic maximal almost
disjoint families in P (𝜔) are finite and many additional influential results on maximal almost disjoint
families by Mathias, A. Miller, Törnquist, Horowitz and Shelah, Neeman and Norwood, Bakke-Haga,
Fischer, Schrittesser, Weinert, and others (see [3, 12, 23, 39, 40, 42, 45, 50]), we will use the techniques
developed in the proof of Theorem 1.1 to prove that, if a cardinal 𝜅 possesses sufficiently strong large
cardinal properties, then every simply definable almost disjoint family in P (𝜅) has cardinality at most
𝜅. In particular, by a simple diagonalization argument, all simply definable maximal almost disjoint
families in P (𝜅) have cardinality less than 𝜅 in this case.

In order to reduce the large cardinal assumptions used in our arguments, we recall the notion
of iterable cardinals, introduced by Sharpe and Welch in [46] and studied extensively in [17]. An
uncountable cardinal 𝜅 is iterable if for every subset x of 𝜅, there exists a transitive model M of ZFC− of
cardinality 𝜅 with 𝜅, 𝑥 ∈ 𝑀 and a weakly amenable M-ultrafilter U on 𝜅 such that the structure 〈𝑀,𝑈〉 is
iterable. Note that all iterable cardinals are weakly compact and all Ramsey cardinals are iterable (see,
for example, [16, Theorem 1.3]). In particular, all measurable limits of measurable cardinals satisfy the
assumptions of the following result.

Theorem 1.3. Let 𝜅 be an iterable cardinal that is a limit of measurable cardinals, and let A be a subset
of P (𝜅) that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}. If A has cardinality greater
than 𝜅, then there exist distinct 𝑥, 𝑦 ∈ 𝐴 with the property that 𝑥 ∩ 𝑦 is unbounded in 𝜅.

The third type of pathological sets studied in this paper are long well-orders, that is, well-orderings
of subsets of the power set P (𝜅) of an infinite cardinal 𝜅 of order-type at least 𝜅+. The study of the
definability of these objects is motivated by the classical fact that projective determinacy implies that
all well-orderings definable in second-order arithmetic have countable length. In the case of limits of
measurable cardinals 𝜅, it is possible to use arguments contained in the proof of [38, Lemma 1.3] to
show that for every well-ordering of 𝜅, the collection of proper initial segments of the given order is
not definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}. In Section 7 below, we will show that
it is possible to use classical results of Dehornoy in [11] to show that for all such limits 𝜅, no well-
ordering of P (𝜅) is definable in the above way (see Corollary 7.4). We will then proceed by using
ideas from the proof of Theorem 1.1 to prove results about well-orderings whose domain is a large
proper subset of P (𝜅). The following theorem provides a scenario in which such orders have no simple
definition.

Theorem 1.4. Let 𝜅 be a cardinal of countable cofinality that is a limit of measurable cardinals. If there
exists a well-ordering of a subset of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula
with parameter 𝜅, then there is a 𝚺1

3-well-ordering of the reals.
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In addition, the theory developed in this paper allow us to determine the exact consistency strength
of the nonexistence of Σ1-definable long well-orderings of subsets of a singular strong limit cardinal of
countable cofinality. The following theorem is proven by combining our techniques with results about
short core models from [31] in one direction and diagonal Prikry forcing in the other direction.
Theorem 1.5. The following statements are equiconsistent over ZFC:
(i) There exist infinitely many measurable cardinals.

(ii) There exists a singular cardinal 𝜅 with the property that no well-ordering of a subset of P (𝜅) of
cardinality greater than 𝜅 is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}.

We now continue by considering analogues of the above results for pathological sets consisting of
subsets of the first uncountable cardinal 𝜔1. Using results of Woodin in [52], a perfect subset theorem
for subsets of P (𝜔1) definable by a Σ1-formula with parameters in H(ℵ1) ∪ {𝜔1} is provided by [37,
Theorem 4.9] that shows that if the nonstationary ideal on 𝜔1 is saturated and there is a measurable
cardinal, then every such subset either contains a continuous image of 𝜔1𝜔1 or is a subset of L(R). As
observed in [37], it is, in general, not possible to strengthen the second alternative to state that the given
set has cardinality at mostℵ1, because the failure of CH implies that {𝑥 ∈ 𝜔1𝜔1 | ∀𝛼 < 𝜔1 𝑥(𝜔 + 𝛼) = 0}
is a subset of 𝜔1𝜔1 of cardinality greater than ℵ1 that is definable by a Σ1-formula with parameter 𝜔1
and does not contain a perfect subset. The following result now shows that analogs of Theorems 1.3 and
1.4 for 𝜔1 follow both from strong large cardinal assumptions and the validity of strong forcing axioms.
Theorem 1.6. Assume that either there is a measurable cardinal above infinitely many Woodin cardinals
or Woodin’s axiom (∗) holds.
(i) No well-ordering of a subset of P (𝜔1) of cardinality greater than ℵ1 is definable by a Σ1-formula

with parameters in H(ℵ1) ∪ {𝜔1}.
(ii) If A is a set of cardinality greater than ℵ1 that consists of unbounded subsets of 𝜔1 and is definable

by a Σ1-formula with parameters in H(ℵ1)∪{𝜔1}, then there exist distinct 𝑥, 𝑦 ∈ 𝐴 with the property
that 𝑥 ∩ 𝑦 is unbounded in 𝜔1.

We will end this paper by observing that the above results cannot be generalized from 𝜔1 to 𝜔2.
More specifically, we will show that all large cardinal assumptions are compatible with the existence of
an almost disjoint family of cardinality 2ℵ2 in P (𝜔2) that is definable by a Σ1-formula with parameter
𝜔2 (see Proposition 10.6 below).

2. A perfect subset theorem for limits of measurable cardinals

In this section, we prove Theorem 1.1 with the help of iterated ultrapowers. Throughout this paper, we will
use two types of iterated ultrapower constructions for transitive ZFC−-models M: iterated ultrapowers of
M constructed using a single weakly amenable M-ultrafilter (as defined in [28, Section 19]) and iterated
ultrapowers of M constructed using a set of normal measures in M (as defined in [49, Section 3]). In
order to establish notation, we now discuss some details of the second type of construction. Given a
transitive model M of ZFC− and E ∈ 𝑀 with

𝑀 |= “E consists of normal ultrafilters on measurable cardinals ”,

a linear iteration of 〈𝑀, E〉 is a sequence 𝐼 = 〈𝑈𝛼 | 𝛼 < 𝜆〉 with 𝜆 > 0 and the property that there exists
a directed system

〈〈𝑀𝛼 | 𝛼 < 𝜆〉, 〈𝑖𝛼,𝛽 : 𝑀𝛼 −→ 𝑀𝛽 | 𝛼 ≤ 𝛽 < 𝜆〉〉

of transitive ZFC−-models and elementary embeddings such that the following statements hold:
(i) 𝑀0 = 𝑀 .

(ii) 𝑈𝛼 ∈ 𝑖0,𝛼 (E) for all 𝛼 < 𝜆.
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(iii) If 𝛼 is an ordinal with 𝛼 + 1 < 𝜆, then 𝑀𝛼+1 is the (transitive collapse) of the ultrapower of 𝑀𝛼

constructed using 𝑈𝛼 and 𝑖𝛼,𝛼+1 is the corresponding ultrapower embedding.
(iv) If 𝜂 < 𝜆 is a limit ordinal, then 〈𝑀𝜂 , 〈𝑖𝛼,𝜂 | 𝛼 < 𝜂〉〉 is a direct limit of the directed system

〈〈𝑀𝛼 | 𝛼 < 𝜂〉, 〈𝑖𝛼,𝛽 : 𝑀𝛼 −→ 𝑀𝛽 | 𝛼 ≤ 𝛽 < 𝜂〉〉.
The ordinal 𝜆 is then called the length of I, and we use lh(𝐼) to refer to this ordinal.

It is easy to see that the above system is uniquely determined by the sequence I, and there-
fore we write 𝑈 𝐼

𝛼 = 𝑈𝛼, 𝑀 𝐼
𝛼 = 𝑀𝛼 and 𝑖𝐼𝛼,𝛽 = 𝑖𝛼,𝛽 for all 𝛼 ≤ 𝛽 < lh(𝐼). We then let

〈𝑀 𝐼
∞, 〈𝑖

𝐼
𝛼,∞ : 𝑀 𝐼

𝛼 −→ 𝑀 𝐼
∞ | 𝛼 < lh(𝐼)〉〉 denote the direct limit of the above system and, if the model

𝑀 𝐼
∞ is well-founded, then we identify it with its transitive collapse. Finally, the pair 〈𝑀, E〉 is called

linearly iterable if the model 𝑀 𝐼
∞ is well-founded for every linear iteration I of 〈𝑀, E〉. Note that [49,

Theorem 3.3] shows that, if every element of E is 𝜎-complete in V, then the pair is 〈𝑀, E〉 is linearly
iterable. In particular, the pair 〈V, E〉 is linearly iterable for every set E of normal ultrafilters.

Given a transitive 𝑍𝐹𝐶−-model M and 𝑈 ∈ 𝑀 with

𝑀 |= “𝑈 is a normal ultrafilters on a measurable cardinal ”,

the set U is a weakly amenable M-ultrafilter and the pair 〈𝑀,𝑈〉 is iterable (in the sense of [28, Section
19]) if and only if the pair 〈𝑀, {𝑈}〉 is linearly iterable (in the above sense). Moreover, if 〈𝑀,𝑈〉 is
iterable,

〈〈𝑀𝛼 | 𝛼 ∈ On〉, 〈 𝑗𝛼,𝛽 : 𝑀𝛼 −→ 𝑀𝛽 | 𝛼 ≤ 𝛽 ∈ On〉〉

denotes the iteration of 〈𝑀,𝑈〉 (as defined in [28, Section 19]) and 𝜆 > 0 is an ordinal, then
〈 𝑗0,𝛼 (𝑈) | 𝛼 < 𝜆〉 is the unique linear iteration 𝐼 (𝑈, 𝜆) of 〈𝑀, {𝑈}〉 of length 𝜆 and we have
𝑀 𝐼 (𝑈,𝜆)

𝛼 = 𝑀𝛼 and 𝑖𝐼 (𝑈,𝜆)
𝛼,𝛽 = 𝑗𝛼,𝛽 for all 𝛼 ≤ 𝛽 < 𝜆.

The following technical lemma about the existence of certain systems of linear iterations is the starting
point of the proofs of most of the results about limits of measurable cardinals stated in the introduction:
Lemma 2.1. Let 𝜇 be an infinite regular cardinal, let 𝜅 be a limit of measurable cardinals with cof (𝜅) = 𝜇
and let E denote the collection of all normal ultrafilters on cardinals smaller than 𝜅. Given an element
z of H(𝜅) and a subset D of P (𝜅) of cardinality 𝜅+, there exists
◦ an element x of D,
◦ a system 〈𝜈𝑠 | 𝑠 ∈

<𝜇𝜅〉 of inaccessible cardinals smaller than 𝜅,
◦ a system 〈𝜅𝑠 | 𝑠 ∈

<𝜇𝜅〉 of measurable cardinals smaller than 𝜅,
◦ a system 〈𝑈𝑠 | 𝑠 ∈

<𝜇𝜅〉 of elements of E , and
◦ a system 〈𝐼𝑠 | 𝑠 ∈

<𝜇𝜅〉 of linear iterations of 〈V, E〉 of length less than 𝜅

such that the following statements hold for all 𝑠, 𝑡 ∈ <𝜇𝜅:
(i) 𝑧 ∈ H(𝜈∅) and 𝜇 < 𝜅 implies that 𝜇 < 𝜈∅.

(ii) 𝑈𝑠 is an ultrafilter on 𝜅𝑠 .
(iii) 𝐼𝑠 is a linear iteration of 〈V, {𝑈𝑠�𝜉 | 𝜉 ∈ dom(𝑠)}〉.
(iv) The sequence 〈min{𝜅𝑠 | 𝑠 ∈ 𝜉 𝜅} | 𝜉 < 𝜇〉 is cofinal in 𝜅.
(v) If 𝐼𝑠 is nontrivial, then lh(𝐼𝑠) ∈ Lim.

(vi) If 𝑠 � 𝑡, then lh(𝐼𝑠) < 𝜈𝑠 < 𝜅𝑠 < 𝜈𝑡 .
(vii) 𝑖𝐼𝑠0,∞(𝜈𝑠) = 𝜈𝑠 and 𝑖𝐼𝑠0,∞(𝜅𝑠) = 𝜅𝑠 .

(viii) 𝑖𝐼𝑠0,∞(𝜇) = 𝜇, 𝑖𝐼𝑠0,∞(𝜅) = 𝜅 and 𝑖𝐼𝑠0,∞(𝑧) = 𝑧.
(ix) If 𝑠 ⊆ 𝑡, then lh(𝐼𝑠) ≤ lh(𝐼𝑡 ) and 𝑈 𝐼𝑠

𝛼 = 𝑈 𝐼𝑡
𝛼 for all 𝛼 < lh(𝐼𝑠).2

2Note that this directly implies that 𝑀 𝐼𝑠
𝛼 = 𝑀 𝐼𝑡

𝛼 and 𝑖𝐼𝑠𝛼,𝛽 = 𝑖𝐼𝑡𝛼,𝛽 holds for all 𝛼 ≤ 𝛽 < lh(𝐼𝑠) . Moreover, if 1 < lh(𝐼𝑠) <

lh(𝐼𝑡 ) , then (v) implies that 𝑀 𝐼𝑠
∞ = 𝑀 𝐼𝑡

lh(𝐼𝑠 )
and 𝑖𝐼𝑠0,∞ = 𝑖𝐼𝑡0,lh(𝐼𝑠 )

. Finally, if lh(𝐼𝑠) = 1 < lh(𝐼𝑡 ) , then 𝑀 𝐼𝑠
∞ = 𝑀 𝐼𝑡

0 and

𝑖𝐼𝑠0,∞ = id
𝑀

𝐼𝑡
0

.
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(x) If 𝑠 ⊆ 𝑡 with lh(𝐼𝑠) < lh(𝐼𝑡 ), then H(𝜅𝑠)
𝑀 𝐼𝑠

∞ = H(𝜅𝑠)
𝑀

𝐼𝑡
∞ and

𝑖𝐼𝑡lh(𝐼𝑠) ,∞
� H(𝜅𝑠)

𝑀 𝐼𝑠
∞ = id

H(𝜅𝑠)
𝑀

𝐼𝑠
∞
.

(xi) If 𝜉 ∈ dom(𝑠) ∩ dom(𝑡) satisfying 𝑠 � 𝜉 = 𝑡 � 𝜉 and 𝑠(𝜉) < 𝑡 (𝜉), then 𝜈𝑠�( 𝜉+1) ≤ 𝜈𝑡�( 𝜉+1) and

𝑖𝐼𝑠0,∞(𝑥) ∩ 𝜈𝑠�( 𝜉+1) ≠ 𝑖𝐼𝑡0,∞(𝑥) ∩ 𝜈𝑠�( 𝜉+1) .

Proof. Pick a strictly increasing, cofinal sequence 〈𝜅𝜉 | 𝜉 < 𝜇〉 of measurable cardinals in 𝜅 with the
property that 𝜇 < 𝜅 implies that 𝜇 < 𝜅0. Given 𝜉 < 𝜇, fix a normal ultrafilter 𝑈𝜉 on 𝜅𝜉 and let

〈〈𝑁
𝜉
𝛼 | 𝛼 ∈ On〉, 〈 𝑗 𝜉𝛼,𝛽 : 𝑁 𝜉

𝛼 −→ 𝑁
𝜉
𝛽 | 𝛼 ≤ 𝛽 ∈ On〉〉

denote the iteration of 〈V,𝑈𝜉 〉. Given 𝜉 < 𝜇, we then have 𝑗
𝜉
0,𝜅 (𝜅𝜉 ) = 𝜅 and 𝑗

𝜉
0,𝛼 (𝜅) = 𝜅 for all 𝛼 < 𝜅.

In particular, we know that |P (𝜅)𝑁
𝜉
𝜅 | = 𝜅 holds for all 𝜉 < 𝜇. Therefore, we can find 𝑥 ∈ 𝐷 with 𝑥 ∉ 𝑁

𝜉
𝜅

for all 𝜉 < 𝜇. Given 𝜉 < 𝜇, we then have 𝑥 ≠ 𝑗
𝜉
0,𝜅 (𝑥) ∩ 𝜅 and hence we know that

𝑥 ∩ 𝑗
𝜉
0,𝜆(𝜅𝜉 ) ≠ 𝑗

𝜉
0,𝜆(𝑥 ∩ 𝜅𝜉 ) (1)

holds for all sufficiently large 𝜆 < 𝜅.
By earlier remarks, the pair 〈V, E〉 is linearly iterable. In the following, we inductively construct

systems with the properties listed above while also ensuring that for every 𝑠 ∈ <𝜇𝜅, there exists
dom(𝑠) ≤ 𝜉 < 𝜇 with 𝜅𝑠 = 𝜅𝜉 and 𝑈𝑠 = 𝑈𝜉 . Note that this additional property will directly ensure that
(iv) holds in the end.

First, we define 𝐼∅ to be the trivial linear iteration of 〈V, E〉. Moreover, we pick some inaccessible
cardinal 𝜈∅ < 𝜅 such that 𝑧 ∈ H(𝜈∅) and 𝜇 < 𝜅 implies 𝜇 < 𝜈∅.

Next, assume that 𝜁 ∈ Lim∩ 𝜇 and the objects 𝜈𝑡 , 𝜅𝑡 ,𝑈𝑡 and 𝐼𝑡 are defined for all 𝑡 ∈ <𝜁 𝜅. Fix 𝑠 ∈ 𝜁 𝜅,
and define 𝐼𝑠 to be the unique linear iteration of 〈V, {𝑈𝑠�𝜂 | 𝜂 < 𝜁 }〉 of length sup𝜂<𝜁 lh(𝐼𝑠�𝜂) < 𝜅

with the property that 𝑈 𝐼𝑠
𝛼 = 𝑈

𝐼𝑠�𝜂
𝛼 holds for all 𝜂 < 𝜁 and 𝛼 < lh(𝐼𝑠�𝜂). In addition, define 𝜈𝑠 to be an

inaccessible cardinal smaller than 𝜅 and bigger than both sup𝜂<𝜁 𝜅𝑠�𝜂 and lh(𝐼𝑠). This setup ensures that
lh(𝐼𝑠) > 1 implies that lh(𝐼𝑠) ∈ Lim, and therefore we know that (v) holds. Moreover, these definitions
directly ensure that the relevant parts of (vi) and (vii) hold in this case. In addition, since lh(𝐼𝑠) < 𝜈𝑠 and
𝐼𝑠 only makes use of ultrafilter on cardinals contained in the interval (𝜈∅, 𝜈𝑠), the fact that the cofinality
of 𝜅 is not contained in this interval allows us to conclude that (viii) holds in this case. Next, notice that
our construction directly ensures that (ix) holds in this case. Moreover, if 𝜂 < 𝜁 with lh(𝐼𝑠�𝜂) < lh(𝐼𝑠),
then the fact that (v) and (x) hold for all 𝜂 < 𝜌 < 𝜁 ensures that

H(𝜅𝑠�𝜂)
𝑀

𝐼𝑠�𝜂
∞ = H(𝜅𝑠�𝜂)

𝑀 𝐼𝑠
∞

and

𝑖𝐼𝑠lh(𝐼𝑠�𝜂 ) ,∞
� H(𝜅𝑠�𝜂)

𝑀 𝐼𝑠
∞ = id

H(𝜅𝑠�𝜂 )
𝑀

𝐼𝑠
∞
.

By the definition of 𝐼𝑠 , this shows that (x) also holds in this case. Finally, pick 𝑡 ∈ <𝜇𝜅 with dom(𝑡) ≤ 𝜁
and 𝜉 ∈ dom(𝑡) with 𝑠 � 𝜉 = 𝑡 � 𝜉 and 𝑠(𝜉) ≠ 𝑡 (𝜉). Set 𝜌 = min(𝜈𝑠�( 𝜉+1) , 𝜈𝑡�( 𝜉+1) ). Since we know
that 𝜌 < min(𝜅𝑠�( 𝜉+1) , 𝜅𝑡�( 𝜉+1) ), we can use (x) and (xi) to show that

𝑖𝐼𝑠0,∞(𝑥) ∩ 𝜌 = 𝑖
𝐼𝑠�(𝜉+1)
0,∞ (𝑥) ∩ 𝜌 ≠ 𝑖

𝐼𝑡�(𝜉+1)
0,∞ (𝑥) ∩ 𝜌 = 𝑖𝐼𝑡0,∞(𝑥) ∩ 𝜌.

By the properties of 𝜈𝑠�( 𝜉+1) ensured by our induction hypothesis, these computations show that (xi)
also holds in this case.
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Now, assume that 𝜁 < 𝜇 and the objects 𝜈𝑡 , 𝜅𝑢 , 𝑈𝑢 and 𝐼𝑡 are defined for all 𝑡, 𝑢 ∈ <𝜇𝜅 with
dom(𝑡) ≤ 𝜁 and dom(𝑢) < 𝜁 . Fix 𝑠 ∈ 𝜁 𝜅, and pick 𝜁 ≤ 𝜉 < 𝜇 with 𝜅𝜉 > 𝜈𝑠 . Set 𝜅𝑠 = 𝜅𝜉 and 𝑈𝑠 = 𝑈𝜉 .
By Equation (1), there exists a limit ordinal 𝜅𝑠 < 𝜆 < 𝜅 with the property that

𝑥 ∩ 𝑗
𝜉
0,𝜆 (𝜅𝑠) ≠ 𝑗

𝜉
0,𝜆(𝑥 ∩ 𝜅𝑠). (2)

Let 〈𝜆𝛽 | 𝛽 < 𝜅〉 denote the unique continuous sequence of ordinals with 𝜆0 = 0 and 𝜆𝛽+1 = 𝜆𝛽+ 𝑗
𝜉
0,𝜆𝛽

(𝜆)

for all 𝛽 < 𝜆. Since 𝜅 is a limit of inaccessible cardinals, we know that 𝜆𝛽 < 𝜅 holds for all 𝛽 < 𝜅.
Given 𝛽 < 𝜅, define 𝐼𝑠⌢ 〈𝛽〉 to be the unique linear iteration of 〈V, E〉 of length lh(𝐼𝑠) + 𝑖𝐼𝑠0,∞(𝜆𝛽) with
𝑈

𝐼𝑠⌢ 〈𝛽〉
𝛼 = 𝑈 𝐼𝑠

𝛼 for all 𝛼 < lh(𝐼𝑠) and 𝑈
𝐼𝑠⌢ 〈𝛽〉
𝛼 = 𝑖

𝐼𝑠⌢ 〈𝛽〉

0,𝛼 (𝑈𝑠) for all lh(𝐼𝑠) ≤ 𝛼 < lh(𝐼𝑠⌢ 〈𝛽〉). That means
we linearly iterate 𝑈𝑠 on top of what we already have to obtain 𝐼𝑠⌢ 〈𝛽〉 . Moreover, for every 𝛽 < 𝜅,
we define 𝜈𝑠⌢ 〈𝛽〉 to be the least inaccessible cardinal greater than lh(𝐼𝑠⌢ 〈𝛽+1〉). These definitions then
directly ensure that (v) and (ix) hold. In addition, for all 𝛽 < 𝜅, we have

lh(𝐼𝑠) < 𝜈𝑠 < 𝜅𝑠 < 𝜆 ≤ lh(𝐼𝑠⌢ 〈𝛽+1〉) < 𝜈𝑠⌢ 〈𝛽〉

and this can be used to conclude that 𝑖𝐼𝑠0,∞(𝜅𝑠) = 𝜅𝑠 and 𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝜈𝑠⌢ 〈𝛽〉) = 𝜈𝑠⌢ 〈𝛽〉 . This shows that the
relevant instances of (vi) and (vii) hold in this case. Moreover, the fact that all linear iterations of the
form 𝐼𝑠⌢ 〈𝛽〉 with 𝛽 < 𝜅 have length less than 𝜅 and only make use of ultrafilters on cardinals contained
in the interval [𝜅0, 𝜅) directly implies that (viii) holds in this case as 𝜇 < 𝜅0 in case 𝜇 < 𝜅. Next, notice
that, if 0 < 𝛽 < 𝜅 and lh(𝐼𝑠) ≤ 𝛼 < lh(𝐼𝑠⌢ 〈𝛽〉), then our construction ensures that

H(𝜅𝑠)
𝑀 𝐼𝑠

∞ = H(𝜅𝑠)
𝑀

𝐼𝑠⌢ 〈𝛽〉
lh(𝐼𝑠 ) = H(𝜅𝑠)

𝑀
𝐼𝑠⌢ 〈𝛽〉
𝛼

and

𝑖
𝐼𝑠⌢ 〈𝛽〉

lh(𝐼𝑠) ,𝛼
� H(𝜅𝑠)

𝑀 𝐼𝑠
∞ = id

H(𝜅𝑠)
𝑀

𝐼𝑠
∞
.

This directly implies that (x) holds in this case. Finally, fix 𝛽 < 𝛾 < 𝜅. Then lh(𝐼𝑠⌢ 〈𝛽+1〉) < lh(𝐼𝑠⌢ 〈𝛾+1〉),
and hence we know that 𝜈𝑠⌢ 〈𝛽〉 ≤ 𝜈𝑠⌢ 〈𝛾〉 .

Claim. 𝑖𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝑥) ∩ 𝜈𝑠⌢ 〈𝛽〉 ≠ 𝑖
𝐼𝑠⌢ 〈𝛾〉

0,∞ (𝑥) ∩ 𝜈𝑠⌢〈𝛽〉 .

Proof of the claim. Let

〈〈𝑁𝛼 | 𝛼 ∈ On〉, 〈 𝑗𝛼0 ,𝛼1 : 𝑁𝛼0 −→ 𝑁𝛼1 | 𝛼0 ≤ 𝛼1 ∈ On〉〉

denote the iteration of 〈𝑀 𝐼𝑠
∞ , 𝑖𝐼𝑠0,∞(𝑈𝑠)〉. Given 𝛿 < 𝜅 and 𝛼 < 𝑖𝐼𝑠0,∞(𝜆𝛿), the definition of 𝐼𝑠⌢ 〈𝛿 〉 ensures

that the following statements hold:

◦ 𝑀
𝐼𝑠⌢ 〈𝛿〉

lh(𝐼𝑠)+𝛼
= 𝑁𝛼 and 𝑀

𝐼𝑠⌢ 〈𝛿〉
∞ = 𝑁𝑖𝐼𝑠∞ (𝜆𝛿 )

.

◦ 𝑖
𝐼𝑠⌢ 〈𝛿〉

0,lh(𝐼𝑠)+𝛼
= 𝑗0,𝛼 ◦ 𝑖𝐼𝑠0,∞ and 𝑖

𝐼𝑠⌢ 〈𝛿〉

0,∞ = 𝑗0,𝑖𝐼𝑠0,∞ (𝜆𝛿 )
◦ 𝑖𝐼𝑠0,∞.

Now, set 𝑀∗ = 𝑀
𝐼𝑠⌢ 〈𝛽〉
∞ , 𝑥∗ = 𝑖

𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝑥), 𝜅∗ = 𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝜅𝑠), 𝜆∗ = 𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝜆) and 𝑈∗ = 𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝑈𝑠). Note
that elementarity ensures that

𝑖𝐼𝑠0,∞( 𝑗
𝜉
0,𝜆𝛽

(𝜆)) = 𝑗0,𝑖𝐼𝑠0,∞ (𝜆𝛽 )
(𝑖𝐼𝑠0,∞(𝜆)) = 𝑖

𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝜆) = 𝜆∗

and this allows us to conclude that

𝑖𝐼𝑠0,∞(𝜆𝛾) ≥ 𝑖𝐼𝑠0,∞(𝜆𝛽+1) = 𝑖𝐼𝑠0,∞(𝜆𝛽 + 𝑗
𝜉
0,𝜆𝛽

(𝜆)) = 𝑖𝐼𝑠0,∞(𝜆𝛽) + 𝜆∗.
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In particular, we know that

lh(𝐼𝑠⌢ 〈𝛽〉) + 𝜆∗ ≤ lh(𝐼𝑠⌢ 〈𝛾〉). (3)

Now, define

〈〈𝑁∗
𝛼 | 𝛼 ∈ On〉, 〈 𝑗∗𝛼0 ,𝛼1 : 𝑁∗

𝛼0 −→ 𝑁∗
𝛼1 | 𝛼0 ≤ 𝛼1 ∈ On〉〉

to be the iteration of 〈𝑀∗,𝑈∗〉. Given ordinals 𝛼0 ≤ 𝛼1, we then have 𝑁∗
𝛼0 = 𝑁𝑖𝐼𝑠∞ (𝜆𝛽 )+𝛼0

and 𝑗∗𝛼0 ,𝛼1 =

𝑗𝑖𝐼𝑠∞ (𝜆𝛽 )+𝛼0 ,𝑖
𝐼𝑠
∞ (𝜆𝛽 )+𝛼1

. In particular, we can use Equation (3) to find an ordinal 𝛼 ≥ 𝜆∗ with 𝑀
𝐼𝑠⌢ 〈𝛾〉
∞ = 𝑁∗

𝛼

and 𝑖
𝐼𝑠⌢ 〈𝛾〉

0,∞ = 𝑗∗0,𝛼 ◦ 𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ .
By elementarity, the inequality (2) implies that

𝑥∗ ∩ 𝑗∗0,𝜆∗
(𝜅∗) ≠ 𝑗∗0,𝜆∗

(𝑥∗ ∩ 𝜅∗).

Moreover, our setup ensures that

𝜈𝑠⌢ 〈𝛽〉 > lh(𝐼𝑠⌢ 〈𝛽+1〉) ≥ 𝑖𝐼𝑠0,∞(𝜆𝛽+1) ≥ 𝑖𝐼𝑠0,∞( 𝑗
𝜉
0,𝜆𝛽

(𝜆)) = 𝜆∗ > 𝜅∗

and

𝜈𝑠⌢ 〈𝛽〉 = 𝑗∗0,𝜆∗
(𝜈𝑠⌢ 〈𝛽〉) > 𝑗∗0,𝜆∗

(𝜅∗).

Since for 𝛼 ≥ 𝜆∗ as above

𝑖
𝐼𝑠⌢ 〈𝛾〉

0,∞ (𝑥) = 𝑗∗0,𝛼 (𝑖
𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝑥)) = ( 𝑗∗𝜆∗ ,𝛼
◦ 𝑗∗0,𝜆∗

) (𝑥∗)

and

𝑗∗𝜆∗ ,𝛼
� ( 𝑗∗0,𝜆∗

(𝜅∗)) = id 𝑗∗0,𝜆∗ (𝜅∗)
,

we know that

𝑖
𝐼𝑠⌢ 〈𝛾〉

0,∞ (𝑥) ∩ 𝑗∗0,𝜆∗
(𝜅∗) = 𝑗∗0,𝜆∗

(𝑥∗) ∩ 𝑗∗0,𝜆∗
(𝜅∗) = 𝑗∗0,𝜆∗

(𝑥∗ ∩ 𝜅∗)

≠ 𝑥∗ ∩ 𝑗∗0,𝜆∗
(𝜅∗) = 𝑖

𝐼𝑠⌢ 〈𝛽〉

0,∞ (𝑥) ∩ 𝑗∗0,𝜆∗
(𝜅∗)

and the fact that 𝜈𝑠⌢ 〈𝛽〉 > 𝑗∗0,𝜆∗
(𝜅∗) then yields the statement of the claim. �

The above claim now shows that (xi) also holds in this case. This completes the proof of the lemma. �

We now extend the above construction to obtain linear iterations indexed by sequences of length equal
to the cofinality of the given limit of measurable cardinals. In addition, we also allow these sequences
to exist in small forcing extensions of the ground model.

Lemma 2.2. In the situation of Lemma 2.1, let 𝜆 ≤ 𝜇 be a limit ordinal, let P be a partial order3 and
let G be P-generic over V. Given a function 𝑐 ∈ (𝜆𝜅)V[𝐺 ] with the property that all of its proper initial
segments are contained in V, we let 𝐼𝑐 denote the unique linear iteration of 〈V, {𝑈𝑐�𝜉 | 𝜉 < 𝜆}〉 of
length sup𝜉<𝜆 lh(𝐼𝑐�𝜉 ) in V[𝐺] with 𝑈 𝐼𝑐

𝛼 = 𝑈
𝐼𝑐�𝜉
𝛼 for all 𝜉 < 𝜆 and 𝛼 < lh(𝐼𝑐�𝜉 ).

If either P is an element of H(𝜅∅) or forcing with P does not add bounded subsets of 𝜅, then the
following statements hold in V[𝐺] for all functions 𝑐, 𝑑 ∈ 𝜆𝜅 with the property that all of their proper

3Note that P is allowed be the trivial partial order.

https://doi.org/10.1017/fms.2023.102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.102


Forum of Mathematics, Sigma 9

initial segments are contained in V:

(i) 𝑀 𝐼𝑐
∞ is well-founded.

(ii) 𝑖𝐼𝑐0,∞(𝜇) = 𝜇, 𝑖𝐼𝑐0,∞(𝜅) = 𝜅 and 𝑖𝐼𝑐0,∞(𝑧) = 𝑧.
(iii) If 𝜉 < 𝜆 with 𝑐 � 𝜉 = 𝑑 � 𝜉 and 𝑐(𝜉) ≠ 𝑑 (𝜉), then

𝑖𝐼𝑐0,∞(𝑥) ∩ 𝜅𝑐�𝜉 = 𝑖𝐼𝑑0,∞(𝑥) ∩ 𝜅𝑐�𝜉

and there is 𝜌 < min(𝜅𝑐�( 𝜉+1) , 𝜅𝑑�( 𝜉+1) ) with

𝑖𝐼𝑐0,∞(𝑥) ∩ 𝜌 ≠ 𝑖𝐼𝑑0,∞(𝑥) ∩ 𝜌. (4)

Proof. Work in V[𝐺], pick a function 𝑐 ∈ 𝜆𝜅 with the desired properties and define 𝐼𝑐 as above. If P
is contained in H(𝜅∅), then we can use the Lévy–Solovay theorem to show that for all 𝜉 < 𝜆, the set
{𝐵 ∈ P (𝜅𝜉 ) | ∃𝐴 ∈ 𝑈𝑐�𝜉 𝐴 ⊆ 𝐵} is a normal ultrafilter on 𝜅𝜉 , and therefore we know that 𝑈𝑐�𝜉 itself
is a 𝜎-complete V-ultrafilter. Since the same conclusion obviously holds true if forcing with P does not
add bounded subsets of 𝜅, we can apply [49, Theorem 3.3] to conclude that the pair 〈V, {𝑈𝑐�𝜉 | 𝜉 < 𝜆}〉

is linearly iterable, and therefore we know that 𝑀 𝐼𝑐
∞ is well-founded.

Next, since (x) of Lemma 2.1 ensures that

H(𝜅𝑐�𝜉 )
𝑀 𝐼𝑐

lh(𝐼𝑐�𝜉 ) = H(𝜅𝑐�𝜉 )
𝑀

𝐼𝑐�𝜉
∞ = H(𝜅𝑐�𝜉 )

𝑀
𝐼𝑐�𝜁
∞ = H(𝜅𝑐�𝜉 )

𝑀 𝐼𝑐
lh(𝐼𝑐�𝜁 )

and

𝑖𝐼𝑐lh(𝐼𝑐�𝜉 ) ,lh(𝐼𝑐�𝜁 )
� H(𝜅𝑐�𝜉 )

𝑀
𝐼𝑐�𝜉
∞ = 𝑖

𝐼𝑐�𝜁
lh(𝐼𝑐�𝜉 ) ,∞

� H(𝜅𝑐�𝜉 )
𝑀

𝐼𝑐�𝜉
∞ = id

H(𝜅𝑐�𝜉 )
𝑀

𝐼𝑐�𝜉
∞

hold for all 𝜉 < 𝜁 < 𝜆 with lh(𝐼𝑐�𝜉 ) < lh(𝐼𝑐�𝜁 ) < lh(𝐼𝑐), we know that

H(𝜅𝑐�𝜉 )
𝑀

𝐼𝑐�𝜉
∞ = H(𝜅𝑐�𝜉 )

𝑀 𝐼𝑐
∞

and

𝑖𝐼𝑐lh(𝐼𝑐�𝜉 ) ,∞
� H(𝜅𝑐�𝜉 )

𝑀
𝐼𝑐�𝜉
∞ = id

H(𝜅𝑐�𝜉 )
𝑀

𝐼𝑐�𝜉
∞

(5)

hold for all 𝜉 < 𝜆 with lh(𝐼𝑐�𝜉 ) < lh(𝐼𝑐). In particular, it follows that 𝑖𝐼𝑐0,∞(𝑧) = 𝑧 and, if 𝜇 < 𝜅, then
𝑖𝐼𝑐0,∞(𝜇) = 𝜇. In addition, for all 𝜉 < 𝜆 with the property that lh(𝐼𝑐�𝜉 ) < lh(𝐼𝑐), we have 𝑖𝐼𝑐0,lh(𝐼𝑐�𝜉 )

= 𝑖
𝐼𝑐�𝜉
0,∞

and therefore

𝑖𝐼𝑐0,lh(𝐼𝑐�𝜉 )
(𝛼) < 𝑖𝐼𝑐0,lh(𝐼𝑐�𝜉 )

(𝜅𝑐�𝜉 ) = 𝑖
𝐼𝑐�𝜉
0,∞ (𝜅𝑐�𝜉 ) = 𝜅𝑐�𝜉 (6)

for all 𝛼 < 𝜅𝑐�𝜉 . In particular, a combination of Equations (5) and (6) allows us to conclude that
𝑖𝐼𝑐0,∞[𝜅𝑐�𝜉 ] ⊆ 𝜅𝑐�𝜉 holds for all 𝜉 < 𝜆. If the sequence 〈𝜅𝑐�𝜉 | 𝜉 < 𝜆〉 is cofinal in 𝜅, then this observation
directly implies that 𝑖𝐼𝑐0,∞(𝜅) = 𝜅. In the other case, if the above sequence is bounded by 𝜌 < 𝜅, then 𝐼𝑐 is
a linear iteration of length less than 𝜅 that only uses ultrafilters on measurable cardinals in the interval
[𝜅∅, 𝜌] and, since 𝜅 is a limit of inaccessible cardinals whose cofinality is not contained in this interval,
we also know that 𝑖𝐼𝑐0,∞(𝜅) = 𝜅 holds in this case.

Finally, pick functions 𝑐, 𝑑 ∈ 𝜆𝜅 whose proper initial segments are all contained in V and 𝜉 < 𝜆 with
𝑐 � 𝜉 = 𝑑 � 𝜉 and 𝑐(𝜉) ≠ 𝑑 (𝜉). Then Equation (5) implies that

𝑖𝐼𝑐0,∞(𝑥) ∩ 𝜅𝑐�𝜉 = 𝑖
𝐼𝑐�𝜉
0,∞ (𝑥) ∩ 𝜅𝑐�𝜉 = 𝑖𝐼𝑑0,∞(𝑥) ∩ 𝜅𝑐�𝜉 .
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If we now define

𝜌 = min(𝜈𝑐�( 𝜉+1) , 𝜈𝑑�( 𝜉+1) ) < min(𝜅𝑐�( 𝜉+1) , 𝜅𝑑�( 𝜉+1) ),

then statement (xi) of Lemma 2.1 directly implies that Equation (4) holds. �

We now use the above constructions to derive the desired perfect subset result for Σ1-definable
subsets of power sets of limits of measurable cardinals.

Proof of Theorem 1.1. Let 𝜇 be an infinite regular cardinal, let 𝜅 be a limit of measurable cardinals
with cof (𝜅) = 𝜇, let z be an element of H(𝜅) and let D be a subset of P (𝜅) of cardinality greater than 𝜅
that is definable by a Σ1-formula with parameters 𝜅 and z. An application of Lemma 2.2 with the trivial
partial order now yields 𝑥 ∈ 𝐷 and systems 〈𝜅𝑠 | 𝑠 ∈ <𝜇𝜅〉, 〈𝑈𝑠 | 𝑠 ∈ <𝜇𝜅〉 and 〈𝐼𝑐 | 𝑐 ∈ 𝜇𝜅〉 such that
the following statements hold for all 𝑠, 𝑡 ∈ <𝜇𝜅 and all 𝑐, 𝑑 ∈ 𝜇𝜅:

◦ 𝜅𝑠 is a measurable cardinal smaller than 𝜅.
◦ 𝑈𝑠 is a normal ultrafilter on 𝜅𝑠 .
◦ 𝐼𝑐 is a linear iteration of 〈V, {𝑈𝑐�𝜉 | 𝜉 < 𝜇}〉 with 𝑀 𝐼𝑐

∞ well-founded.
◦ The sequence 〈𝜅𝑐�𝜉 | 𝜉 < 𝜇〉 is cofinal in 𝜅.
◦ 𝑖𝐼𝑐0,∞(𝜇) = 𝜇, 𝑖𝐼𝑐0,∞(𝜅) = 𝜅 and 𝑖𝐼𝑐0,∞(𝑧) = 𝑧.
◦ If 𝜉 < 𝜇 with 𝑐 � 𝜉 = 𝑑 � 𝜉 and 𝑐(𝜉) ≠ 𝑑 (𝜉), then

𝑖𝐼𝑐0,∞(𝑥) ∩ 𝜅𝑐�𝜉 = 𝑖𝐼𝑑0,∞(𝑥) ∩ 𝜅𝑐�𝜉

and

𝑖𝐼𝑐0,∞(𝑥) ∩ 𝜌 ≠ 𝑖𝐼𝑑0,∞(𝑥) ∩ 𝜌,

where 𝜌 = min(𝜅𝑐�( 𝜉+1) , 𝜅𝑑�( 𝜉+1) ).

We now define

𝜄 : 𝜇𝜅 −→ P (𝜅); 𝑐 ↦−→ 𝑖𝐼𝑐0,∞(𝑥).

Then 𝜄 is an injection.

Claim. The map 𝜄 is a perfect embedding.

Proof of the claim. Fix 𝑐 ∈ 𝜇𝜅. Given 𝛼 < 𝜅, there is 𝜉 < 𝜇 with 𝜅𝑐�𝜉 ≥ 𝛼 and, if 𝑑 ∈ 𝜇𝜅 with
𝑐 � 𝜉 = 𝑑 � 𝜉, then 𝜄(𝑐) ∩ 𝜅𝑐�𝜉 = 𝜄(𝑑) ∩ 𝜅𝑐�𝜉 . In the other direction, fix 𝜉 < 𝜈 and 𝑑 ∈ 𝜇𝜅 with
𝜄(𝑐) ∩ 𝜅𝑐�𝜉 = 𝜄(𝑑) ∩ 𝜅𝑐�𝜉 . Assume, towards a contradiction, that 𝑐 � 𝜉 ≠ 𝑑 � 𝜉. Then there is 𝜂 < 𝜉 with
𝑐 � 𝜂 = 𝑑 � 𝜂 and 𝑐(𝜂) ≠ 𝑑 (𝜂). Our construction then ensures that 𝜄(𝑐) ∩ 𝜅𝑐�(𝜂+1) ≠ 𝜄(𝑑) ∩ 𝜅𝑐�(𝜂+1)
and therefore 𝜄(𝑐) ∩ 𝜅𝑐�𝜉 ≠ 𝜄(𝑐) ∩ 𝜅𝑐�𝜉 , a contradiction. This proves the statement of the claim. �

Claim. ran(𝜄) ⊆ 𝐷.

Proof of the claim. Fix 𝑐 ∈ 𝜇𝜅. Pick a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) such that

𝐷 = {𝑦 ⊆ 𝜅 | 𝜑(𝜅, 𝑦, 𝑧)}.

As 𝑥 ∈ 𝐷, 𝜑(𝜅, 𝑥, 𝑧) holds in V and hence the properties listed above ensure that 𝜑(𝜅, 𝜄(𝑐), 𝑧) holds in
𝑀 𝐼𝑐

∞ . Since the upwards absoluteness of Σ1-statements directly implies that 𝜑(𝜅, 𝜄(𝑐), 𝑧) holds in V, we
can conclude that 𝜄(𝑐) is an element of D. �

This completes the proof of the theorem. �
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Note that, in general, the conclusion of Theorem 1.1 cannot be extended to Σ1-formulas using
arbitrary subsets of the cardinal 𝜅 as parameters. For example, if 𝜅 is a regular limit of measurable
cardinals, then, in a generic extension by some <𝜅-closed forcing, there exists a subset of P (𝜅) that
does not contain the range of a perfect embedding and is definable by a Σ1-formula with parameters in
P (𝜅) (see [33, Corollary 7.9]).

3. Local complexity of canonical inner models

As a first application of the results of Section 2, we prove a result that shows that canonical inner models
with infinitely many measurable cardinals are not locally Σ1-definable. Note that Gödel’s constructible
universe L, the Dodd–Jensen core model and Kunen’s model L[𝑈] all possess the property that for every
uncountable cardinal 𝜅, the H(𝜅+)𝑀 of the corresponding inner model M is definable by a Σ1-formula
with parameters in 𝜅 + 1 (see, for example, the proof of [34, Lemma 4.13]). In particular, these models
satisfy the assumptions of the next theorem.

Theorem 3.1. Assume that M is a class term with the property that ZFC proves the following statements:4

(i) The class M is a transitive model of ZFC + V = 𝑀 that contains all ordinals.
(ii) M is forcing invariant under Cohen forcing Add(𝜔, 1).

(iii) If 𝜅 is a limit of measurable cardinals with cof (𝜅) = 𝜔 and (𝜅+)𝑀 = 𝜅+, then there is a subset
of 𝑀 ∩ P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in
H(𝜅)𝑀 ∪ {𝜅}.

Then ZFC proves that M contains only finitely many measurable cardinals.

Proof. Assume, towards a contradiction, that the above conclusion fails. Then we may work in a model V
of ZFC+V = 𝑀 that contains infinitely many measurable cardinals. Let 𝜅 be the least limit of measurable
cardinals, and let G be Add(𝜔, 1)-generic over V. An application of (ii) and (iii) in V[𝐺] now yields
𝑧 ∈ H(𝜅)V and a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) with the property that the set {𝑦 ∈ V[𝐺] | V[𝐺] |= 𝜑(𝜅, 𝑦, 𝑧)}
is a subset of P (𝜅)V that has cardinality greater than 𝜅 in V[𝐺]. In this situation, the homogeneity of
Add(𝜔, 1) in V ensures that these statements about the class defined by the formula 𝜑 and the parameters
𝜅 and z hold in every Add(𝜔, 1)-generic extension of V.

Now, let 𝐺0×𝐺1 be (Add(𝜔, 1) ×Add(𝜔, 1))-generic over V. Then the above observations show that

𝐷 = {𝑦 ∈ V[𝐺0] | V[𝐺0] |= 𝜑(𝜅, 𝑦, 𝑧)}

is a subset of P (𝜅)V that has cardinality greater than 𝜅 in V[𝐺0]. An application of Lemma 2.1 in
V[𝐺0] then yields 𝑥 ∈ 𝐷 and systems 〈𝜈𝑠 | 𝑠 ∈ <𝜔𝜅〉, 〈𝜅𝑠 | 𝑠 ∈ <𝜔𝜅〉, 〈𝑈𝑠 | 𝑠 ∈

<𝜔𝜅〉 and 〈𝐼𝑠 | 𝑠 ∈
<𝜔𝜅〉

satisfying the statements listed in the lemma with respect to z and some subset of D of cardinality 𝜅+.
Define

𝑐 =
⋃

𝐺1 ∈ (𝜔2)𝑉 [𝐺0 ,𝐺1 ] \ V[𝐺0],

and let I denote the unique linear iteration of 〈V[𝐺0], {𝑈𝑐�𝑛 | 𝑛 < 𝜔}〉 of length sup𝑛<𝜔 lh(𝐼𝑐�𝑛) in
V[𝐺0, 𝐺1] with 𝑈 𝐼

𝛼 = 𝑈
𝐼𝑐�𝑛
𝛼 for all 𝑛 < 𝜔 and 𝛼 < lh(𝐼𝑐�𝑛). Then Lemma 2.2 shows that 𝑀 𝐼

∞ is well-
founded. Set 𝑥∗ = 𝑖𝐼0,∞(𝑥). Since Lemma 2.2 ensures that 𝑖𝐼0,∞(𝜅) = 𝜅 and 𝑖𝐼0,∞(𝑧) = 𝑧, we can use the
elementarity of 𝑖𝐼0,∞ and Σ1-upwards absoluteness to conclude that 𝜑(𝜅, 𝑥∗, 𝑧) holds in V[𝐺0, 𝐺1]. Since
V[𝐺0, 𝐺1] is an Add(𝜔, 1)-generic extension of V, our earlier observations allow us to conclude that
𝑥∗ is an element of P (𝜅)V. If we now pick 𝑛 < 𝜔 and set 𝜌 = min(𝜅 (𝑐�𝑛)⌢ 〈0〉 , 𝜅 (𝑐�𝑛)⌢ 〈1〉), then clause

4That is, there is a formula 𝜑 (𝑣) in the language of set theory with the property that ZFC proves the listed statements about
the class 𝑀 = {𝑥 | 𝜑 (𝑥) }.
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(iii) of Lemma 2.2 shows that 𝑐(𝑛) is the unique 𝑖 < 2 with

𝑥∗ ∩ 𝜌 = 𝑖
𝐼(𝑐�𝑛)⌢ 〈𝑖〉

0,∞ (𝑥) ∩ 𝜌.

This conclusion implies that c is an element of V[𝐺0], a contradiction. �

The above result can easily be shown to be optimal, in the sense that there exists a class term M
satisfying the above three properties that can consistently contain any finite number of measurable
cardinals. Ideas from the proof of Theorem 1.2 for singular cardinals of countable cofinality will allow
us to prove the following result in Section 4.

Proposition 3.2. There exists a class term M with the following properties:

(i) There is a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) with the property that ZFC proves the following statements:
(a) The class M is a transitive model of ZFC + V = 𝑀 that contains all ordinals.
(b) M is forcing invariant.
(c) If 𝜅 is an uncountable cardinal, then there exists 𝑧 ∈ H(𝜅)𝑀 with H(𝜅+)𝑀 = {𝑦 | 𝜑(𝜅, 𝑦, 𝑧)}.

(ii) Given a natural number n, if the theory

ZFC + “ There exist 𝑛 measurable cardinals ”

is consistent, then so is the theory

ZFC + V = 𝑀 + “ There exist 𝑛 measurable cardinals.”

4. The lower bound for singular cardinals of countable cofinality

In this section, we will prove the following result that covers the case of singular strong limit cardinals
of countable cofinality in the statement of Theorem 1.2:

Theorem 4.1. Assume that there is no inner model with infinitely many measurable cardinals, and let 𝜅
be a singular strong limit cardinal of countable cofinality. Then there is a subset D of P (𝜅) of cardinality
greater than 𝜅 that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅} such that there is no
continuous injection 𝜄 : 𝜔𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷.

The proof of the above theorem relies on the theory of short core models developed by Koepke
in [31] and generalizations of basic concepts from classical descriptive set theory to simply definable
collections of subsets of singular cardinals of countable cofinality. In the following, we will briefly
introduce these generalized notions.

Definition 4.2. Let 𝜅 be a limit cardinal of countable cofinality, and let 0 < 𝑛 < 𝜔 be a natural number.

(i) A subset T of (<𝜔𝜅)𝑛 is a subtree of (<𝜔𝜅)𝑛 if the following statements hold for all
〈𝑡0, . . . , 𝑡𝑛−1〉 ∈ 𝑇 :
(a) lh(𝑡0) = . . . = lh(𝑡𝑛−1).
(b) If 𝑚 < lh(𝑡0), then 〈𝑡0 � 𝑚, . . . , 𝑡𝑛−1 � 𝑚〉 ∈ 𝑇 .

(ii) If T is a subtree of (<𝜔𝜅)𝑛, then we define [𝑇] to be the set of all elements 〈𝑥0, . . . , 𝑥𝑛−1〉 of (𝜔𝜅)𝑛
with the property that 〈𝑥0 � 𝑚, . . . , 𝑥𝑛−1 � 𝑚〉 ∈ 𝑇 holds for all 𝑚 < 𝜔.

(iii) A subset X of (𝜔𝜅)𝑛 is a 𝚺1
1-subset if there exists a subtree T of (<𝜔𝜅)𝑛+1 with

𝑋 = 𝑝[𝑇] = {〈𝑥0, . . . , 𝑥𝑛−1〉 ∈ (𝜔𝜅)𝑛 | ∃𝑦 〈𝑥0, . . . , 𝑥𝑛−1, 𝑦〉 ∈ [𝑇]}.

(iv) A subset of (𝜔𝜅)𝑛 is a 𝚷1
1-subset if its complement in (𝜔𝜅)𝑛 is a 𝚺1

1-subset.

As in the classical case, we can use universal sets to show that the classes of 𝚺1
1- and 𝚷1

1-subsets do
not coincide at singular strong limits of countable cofinality.
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Proposition 4.3. If 𝜅 is a singular strong limit cardinal of countable cofinality, then there exists a
𝚺1

1-subset of 𝜔𝜅 that is not a 𝚷1
1-subset.

Proof. Pick a strictly increasing sequence 〈𝜅𝑚 | 𝑚 < 𝜔〉 of infinite cardinals that is cofinal in 𝜅. In
addition, fix an enumeration 〈𝑎𝛼 | 𝛼 < 𝜅〉 of H(𝜅). Define U to be the set of all pairs 〈𝑠, 𝑡〉 in <𝜔𝜅× <𝜔𝜅
with the property that lh(𝑠) = lh(𝑡) and 〈𝑠 � 𝑙, 𝑡 � 𝑙〉 ∈ 𝑎𝑠 (𝑚) for all 𝑙 ≤ 𝑚 < lh(𝑠) with 𝑠[𝑙] ∪ 𝑡 [𝑙] ⊆ 𝜅𝑚.
Then it is easy to see that U is a subtree of <𝜔𝜅 × <𝜔𝜅. Assume, towards a contradiction, that there
exists a subtree T of <𝜔𝜅 × <𝜔𝜅 with 𝑝[𝑇] = 𝜔𝜅 \ 𝑝[𝑈]. Pick a function 𝑥 ∈ 𝜔𝜅 with the property that
𝑎𝑥 (𝑚) = H(𝜅𝑚) ∩ 𝑇 holds for all 𝑚 < 𝜔.

Now, assume that there is 𝑦 ∈ 𝜔𝜅 with 〈𝑥, 𝑦〉 ∈ [𝑇]. Then 〈𝑥, 𝑦〉 ∉ [𝑈] and there exists 𝑙 < 𝜔 with
〈𝑥 � 𝑙, 𝑦 � 𝑙〉 ∉ 𝑈. Then there exists 𝑙 ≤ 𝑚 < 𝜔 with 𝑥 [𝑙] ∪ 𝑦[𝑙] ⊆ 𝜅𝑚 and 〈𝑥 � 𝑙, 𝑦 � 𝑙〉 ∉ 𝑎𝑥 (𝑚) =
H(𝜅𝑚) ∩ 𝑇 . But, this yields a contradiction because 〈𝑥 � 𝑙, 𝑦 � 𝑙〉 is an element of T. This shows that
there is 𝑦 ∈ 𝜔𝜅 with 〈𝑥, 𝑦〉 ∈ [𝑈]. Then 〈𝑥, 𝑦〉 ∉ [𝑇] and there is 𝑙 < 𝜔 with 〈𝑥 � 𝑙, 𝑦 � 𝑙〉 ∉ 𝑇 . Pick
𝑙 ≤ 𝑚 < 𝜔 with 𝑥 [𝑙]∪𝑦[𝑙] ⊆ 𝜅𝑚. Then the fact that 〈𝑥, 𝑦〉 ∈ [𝑈] implies that 〈𝑥 � 𝑙, 𝑦 � 𝑙〉 ∈ 𝑎𝑥 (𝑚) ⊆ 𝑇 ,
a contradiction. �

The proof of Theorem 4.1 relies on a generalization of the Boundedness Lemma to singular cardinals
of countable cofinality. Below, we introduce the definitions needed in the formulation of this result.

Definition 4.4. Let 𝜅 be an infinite cardinal, let �𝜅 = 〈𝜅𝜉 | 𝜉 < cof (𝜅)〉 be a strictly increasing sequence
of ordinals that is cofinal in 𝜅 and let �𝑎 = 〈𝑎𝛼 | 𝛼 < 𝜅〉 be a sequence of elements of H(𝜅).

(i) Given 𝑧 ⊆ 𝜅, we define �𝑧 to be the unique binary relation on 𝜅 with the property that

𝛼 �𝑧 𝛽 ⇐⇒ ≺𝛼, 𝛽� ∈ 𝑧

holds for all 𝛼, 𝛽 < 𝜅.5
(ii) We define WO𝜅 to be the set of all 𝑧 ∈ P (𝜅) with the property that �𝑧 is a well-ordering of 𝜅.

(iii) We let WO( �𝜅, �𝑎) denote the set of all 𝑥 ∈ cof (𝜅) 𝜅 with the property that there exists 𝑦 ∈ WO𝜅 such
that 𝑦 ∩ 𝜅𝜉 = 𝑎𝑥 ( 𝜉 ) holds for all 𝜉 < cof (𝜅).

(iv) Given an element x of WO( �𝜅, �𝑎), we let ‖𝑥‖ �𝑎 denote the order-type of the resulting well-order
〈𝜅,�⋃

{𝑎𝑥 (𝜉 ) | 𝜉<cof (𝜅) }〉.

Lemma 4.5. Let 𝜅 be a singular strong limit cardinal of countable cofinality, let �𝜅 = 〈𝜅𝑚 | 𝑚 < 𝜔〉 be a
strictly increasing sequence of cardinals that is cofinal in 𝜅 and let �𝑎 = 〈𝑎𝛼 | 𝛼 < 𝜅〉 be an enumeration
of H(𝜅). If B is a 𝚺1

1-subset of 𝜔𝜅 with 𝐵 ⊆ WO( �𝜅, �𝑎), then there exists an ordinal 𝛾 < 𝜅+ with ‖𝑦‖ �𝑎 < 𝛾
for all 𝑦 ∈ 𝐵.

Proof. Assume, towards a contradiction, that the set {‖𝑦‖ �𝑎 | 𝑦 ∈ 𝐵} is unbounded in 𝜅+. Pick a subtree
S of <𝜔𝜅 × <𝜔𝜅 with 𝑝[𝑆] = 𝐵. By Proposition 4.3, there exists a subtree T of <𝜔𝜅 × <𝜔𝜅 with the
property that the set 𝐴 = 𝜔𝜅 \ 𝑝[𝑇] is not a 𝚺1

1-subset of 𝜔𝜅. Given 𝑥 ∈ 𝜔𝜅, set

𝑇𝑥 = {𝑡 ∈ <𝜔𝜅 | 〈𝑥 � lh(𝑡), 𝑡〉 ∈ 𝑇}.

Then 𝑇𝑥 is a subtree of <𝜔𝜅 for all 𝑥 ∈ 𝜔𝜅 and 𝐴 = {𝑥 ∈ 𝜔𝜅 | [𝑇𝑥] = ∅}. By standard arguments (see
[30, Section 2.E]), we now know that a function 𝑥 ∈ 𝜔𝜅 is contained in A if and only if there exists
an ordinal 𝛾 < 𝜅+ and a function 𝑟 : 𝑇𝑥 −→ 𝛾 with 𝑟 (𝑠) > 𝑟 (𝑡) for all 𝑠, 𝑡 ∈ 𝑇𝑥 with 𝑠 � 𝑡. Since our
assumption implies that for every 𝛾 < 𝜅+, there is 𝑦 ∈ 𝐵 with the property that there exists an order-
preserving embedding of 〈𝛾, <〉 into 〈𝜅,�⋃

{𝑎𝑦 (𝜉 ) | 𝜉<cof (𝜅) }〉, we know that A consists of all 𝑥 ∈ 𝜔𝜅
with the property that there exists 𝑦 ∈ 𝐵 and a function 𝑓 : 𝑇𝑥 −→ 𝜅 such that for all 𝑠, 𝑡 ∈ 𝑇𝑥 with 𝑠 � 𝑡
and all 𝑚 < 𝜔 with 𝑓 (𝑠), 𝑓 (𝑡) < 𝜅𝑚, we have ≺ 𝑓 (𝑡), 𝑓 (𝑠)� ∈ 𝑎𝑦 (𝑚) .

Below, we aim to derive a contradiction from the above assumption by constructing a subtree U of
<𝜔𝜅 × <𝜔𝜅 with the property that a pair 〈𝑥, 𝑦〉 in 𝜔𝜅 × 𝜔𝜅 is an element of [𝑈] if and only if y codes

5Here, we let ≺·, ·� : On × On −→ On denote the Gödel pairing function.
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(in some fixed canonical way) functions 𝑐 : 𝑇𝑥 −→ 𝜔, 𝑓 : 𝑇𝑥 −→ 𝜅 and 𝑢, 𝑣 : 𝜔 −→ 𝜅 such that
𝑓 (𝑝) < 𝜅𝑐 (𝑝) for all 𝑝 ∈ 𝑇𝑥 , the pair 〈𝑢, 𝑣〉 is an element of [𝑆] and ≺ 𝑓 (𝑞), 𝑓 (𝑝)� ∈ 𝑎𝑢 (max(𝑐 (𝑝) ,𝑐 (𝑞)))
holds for all 𝑝, 𝑞 ∈ 𝑇𝑥 with 𝑝 � 𝑞. Note that if U is a tree with these properties, 〈𝑥, 𝑦〉 is an element
of U and c, f, u and v are the functions coded by y, then u is an element of B and the functions f and u
witness that x is an element of A. But this means that, if we succeed in constructing such a tree U, then
we derive a contradiction because the properties of U ensure that 𝑝[𝑈] = 𝐴 and hence such a tree U
witnesses that A is a 𝚺1

1-subset of 𝜔𝜅.
We now show that our assumptions allow us to construct a tree U with the properties described

above. For every 𝑠 ∈ <𝜔𝜅, we set

𝑇𝑠 = {𝑡 ∈ <𝜔𝜅 | lh(𝑡) ≤ lh(𝑠), 〈𝑠 � lh(𝑡), 𝑡〉 ∈ 𝑇}.

Define U to be the subset of <𝜔𝜅 × <𝜔𝜅 consisting of pairs 〈𝑠, 𝑡〉 with lh(𝑠) = lh(𝑡) and the property
that for all 𝑚 < lh(𝑠), there exist 𝑐𝑚, 𝑓𝑚, 𝑢𝑚, 𝑣𝑚 ∈ H(𝜅) such that 𝑎𝑡 (𝑚) = 〈𝑐𝑚, 𝑓𝑚, 𝑢𝑚, 𝑣𝑚〉 and the
following statements hold for all 𝑙 ≤ 𝑚:
◦ 〈𝑢𝑙 , 𝑣𝑙〉, 〈𝑢𝑚, 𝑣𝑚〉 ∈ 𝑆, lh(𝑢𝑚) = 𝑚 + 1, 𝑢𝑙 = 𝑢𝑚 � (𝑙 + 1) and 𝑣𝑙 = 𝑣𝑚 � (𝑙 + 1).
◦ 𝑐𝑚 : H(𝜅𝑚) ∩ 𝑇𝑠�𝑚 −→ 𝜔 with 𝑐𝑚 � dom(𝑐𝑙) = 𝑐𝑙 .
◦ 𝑓𝑚 : {𝑤 ∈ H(𝜅𝑚) ∩ 𝑇𝑠�𝑚 | 𝑐𝑚(𝑤) ≤ 𝑚} −→ 𝜅𝑚 with 𝑓𝑚 � dom( 𝑓𝑙) = 𝑓𝑙 and ≺ 𝑓𝑚(𝑞), 𝑓𝑚(𝑝)� ∈

𝑎𝑢𝑚 (𝑚) for all 𝑝, 𝑞 ∈ dom( 𝑓𝑚) with 𝑝 � 𝑞.
Then U is a subtree of <𝜔𝜅 × <𝜔𝜅.
Claim. 𝑝[𝑈] = 𝐴.
Proof of the Claim. First, fix 〈𝑥, 𝑦〉 ∈ [𝑈]. Then there are 𝑐 : 𝑇𝑥 −→ 𝜔, 𝑓 : 𝑇𝑥 −→ 𝜅 and 〈𝑢, 𝑣〉 ∈ [𝑆]
with the property that for all 𝑚 < 𝜔, the set 𝑎𝑦 (𝑚) is equal to the quadruple

〈𝑐 � (H(𝜅𝑚) ∩ 𝑇𝑥�𝑚), 𝑓 � {𝑤 ∈ H(𝜅𝑚) ∩ 𝑇𝑥�𝑚 | 𝑐(𝑤) ≤ 𝑚}, 𝑢 � (𝑚 + 1), 𝑣 � (𝑚 + 1)〉.

Then 𝑢 ∈ 𝐵 and ≺ 𝑓 (𝑞), 𝑓 (𝑝)� ∈ 𝑎𝑢 (𝑚) holds for all 𝑝, 𝑞 ∈ 𝑇𝑥 with 𝑝 � 𝑞 and all 𝑚 < 𝜔 with
𝑓 (𝑝), 𝑓 (𝑞) < 𝜅𝑚. By earlier observations, this shows that 𝑥 ∈ 𝐴.

Now, pick 𝑥 ∈ 𝐴. Then we can find 〈𝑢, 𝑣〉 ∈ 𝑆 and a function 𝑓 : 𝑇𝑥 −→ 𝜅 such that for all 𝑝, 𝑞 ∈ 𝑇𝑥

with 𝑝 � 𝑞 and all 𝑚 < 𝜔 with 𝑓 (𝑝), 𝑓 (𝑞) < 𝜅𝑚, we have ≺ 𝑓 (𝑞), 𝑓 (𝑝)� ∈ 𝑎𝑢 (𝑚) . Let 𝑐 : 𝑇𝑥 −→ 𝜔
denote the unique function with 𝑐(𝑝) = min{𝑚 < 𝜔 | 𝑓 (𝑝) < 𝜅𝑚}. If we then pick 𝑦 ∈ 𝜔𝜅 such that the
set 𝑎𝑦 (𝑚) is equal to the quadruple

〈𝑐 � (H(𝜅𝑚) ∩ 𝑇𝑥�𝑚), 𝑓 � {𝑤 ∈ H(𝜅𝑚) ∩ 𝑇𝑥�𝑚 | 𝑐(𝑤) ≤ 𝑚}, 𝑢 � (𝑚 + 1), 𝑣 � (𝑚 + 1)〉

for all 𝑚 < 𝜔, then we can conclude that 〈𝑥, 𝑦〉 ∈ [𝑈]. �

The above computations allow us to conclude that 𝐴 = 𝑝[𝑈], contradicting the fact that A is not a
𝚺1

1-subset of 𝜔𝜅. �

We are now ready to prove the main result of this section.

Proof of Theorem 4.1. Assume that there is no inner model with infinitely many measurable cardinals.
Then [31, Theorem 2.14] implies that 0long (as defined in [31, Definition 2.13]) does not exist. Let 𝑈can
denote the canonical sequence of measures, and let K[𝑈can] denote the canonical core model (as defined
in [31, Definition 3.15]). Then our assumption implies that dom(𝑈can) is finite and [31, Theorem 3.23]
shows that there is a generic extension K[𝑈can, 𝐺] of K[𝑈can] by finitely many Prikry forcings with the
property that for every ordinal 𝜏 ≥ 𝜔2 and every 𝑋 ⊆ 𝜏 such that |𝑋 | is a regular cardinal smaller than
|𝜏 |, there exists 𝑍 ∈ P (𝜏)K[𝑈can ,𝐺 ] with 𝑋 ⊆ 𝑍 and |𝑍 |K[𝑈can ,𝐺 ] < 𝜏.

Now, let 𝜅 be a singular strong limit cardinal of countable cofinality. Then 𝜅 is singular in K[𝑈can, 𝐺]
and 𝜅+ = (𝜅+)K[𝑈can ,𝐺 ] . Moreover, since forcing with a finite iteration of Prikry forcings preserves all
cardinals, we also know that 𝜅+ = (𝜅+)K[𝑈can ] . Set𝑈 = 𝑈can � 𝜅 and K = K[𝑈] (see [31, Definition 3.1]).
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Then [31, Theorem 3.2] shows that K is an inner model of ZFC. Moreover, we can use [31, Theorem
3.9.(iii)] to conclude that P (𝜅)K[𝑈can ] ⊆ K and therefore we know that 𝜅+ = (𝜅+)K.

Next, let <K denote the canonical well-ordering of K given by [31, Theorem 3.4]). For ev-
ery 𝜅 ≤ 𝛾 < 𝜅+, let 𝑏𝛾 : 𝜅 −→ 𝛾 denote the <K-least bijection between 𝜅 and 𝛾, and set
𝑦𝛾 = {≺𝛼, 𝛽� | 𝛼, 𝛽 < 𝜅, 𝑏𝛾 (𝛼) < 𝑏𝛾 (𝛽)}. Finally, we define 𝐷 = {𝑦𝛾 | 𝜅 ≤ 𝛾 < 𝜅+}. Then D is
a subset of WO𝜅 of cardinality 𝜅+.

Claim. The set D is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}.

Proof of the claim. First, note that our assumption implies that U is an element of H(𝜅)K. By arguing
as in the proof of [38, Lemma 2.3], we can combine [31, Theorem 2.7] with [31, Theorem 2.10] to
conclude that the collection of all initial segments of the restriction of <K to H(𝜅+)K is definable by a
Σ1-formula with parameters 𝜅 and U. This conclusion directly implies the statement of the claim. �

In the following, assume, towards a contradiction, that there is a continuous injection 𝜄 : 𝜔𝜅 −→ P (𝜅)
with ran(𝜄) ⊆ 𝐷. Fix a strictly increasing sequence �𝜅 = 〈𝜅𝑚 | 𝑚 < 𝜔〉 of cardinals that is cofinal in 𝜅
and an enumeration �𝑎 = 〈𝑎𝛼 | 𝛼 < 𝜅〉 of H(𝜅). Define T to be the set of all pairs 〈𝑠, 𝑡〉 in <𝜔𝜅 × <𝜔𝜅
such that lh(𝑠) = lh(𝑡), and the following statements hold for all 𝑙 ≤ 𝑚 < lh(𝑠):

◦ 𝑎𝑠 (𝑚) ⊆ 𝜅𝑚 and 𝑎𝑠 (𝑙) = 𝑎𝑠 (𝑚) ∩ 𝜅𝑙 .
◦ 𝑎𝑡 (𝑙) , 𝑎𝑡 (𝑚) ∈

<𝜔𝜅 with 𝑙 ≤ lh(𝑎𝑡 (𝑙) ) ≤ lh(𝑎𝑡 (𝑚) ), 𝑎𝑡 (𝑙) = 𝑎𝑡 (𝑚) � lh(𝑎𝑡 (𝑙) ) and 𝜄(𝑢) ∩ 𝜅𝑚 = 𝑎𝑠 (𝑚) for
all 𝑢 ∈ 𝜔𝜅 with 𝑎𝑡 (𝑚) ⊆ 𝑢.

This definition directly ensures that T is a subtree of <𝜔𝜅 × <𝜔𝜅. Pick 〈𝑥, 𝑦〉 ∈ [𝑇]. Set 𝑢 =⋃
{𝑎𝑦 (𝑚) | 𝑚 < 𝜔} ∈ 𝜔𝜅 and 𝑣 =

⋃
{𝑎𝑥 (𝑚) | 𝑚 < 𝜔} ⊆ 𝜅. By the definition of T, we then

have 𝜄(𝑢) = 𝑣 ∈ 𝐷 ⊆ WO𝜅 and this shows that x is an element of WO( �𝜅, �𝑎). This shows that
𝑝[𝑇] ⊆ WO( �𝜅, �𝑎), and therefore Lemma 4.5 yields an ordinal 𝛾 < 𝜅+ with ‖𝑥‖ �𝑎 < 𝛾 for all 𝑥 ∈ 𝑝[𝑇].

Since, for every ordinal 𝜅 ≤ 𝛿 < 𝜅+, there is a unique element y of D with otp
(
𝜅,�𝑦

)
= 𝛿, we know

that the map

𝑖 : 𝜔𝜅 −→ 𝜅+; 𝑢 ↦−→ otp
(
𝜅,� 𝜄 (𝑢)

)

is an injection and we can find 𝑢 ∈ 𝜔𝜅 with otp
(
𝜅,� 𝜄 (𝑢)

)
> 𝛾. Pick 𝑥 ∈ 𝜔𝜅 with 𝑎𝑥 (𝑚) = 𝜄(𝑢) ∩𝜅𝑚 for all

𝑚 < 𝜔. In addition, pick 𝑦 ∈ 𝜔𝜅 with the property that for all 𝑙 ≤ 𝑚 < 𝜔, we have 𝑎𝑦 (𝑙) , 𝑎𝑦 (𝑚) ∈
<𝜔𝜅,

𝑙 ≤ lh(𝑎𝑦 (𝑙) ) ≤ lh(𝑎𝑦 (𝑚) ), 𝑎𝑦 (𝑙) ⊆ 𝑎𝑦 (𝑚) = 𝑢 � lh(𝑎𝑦 (𝑚) ) and 𝜄(𝑤) ∩ 𝜅𝑚 = 𝜄(𝑢) ∩ 𝜅𝑚 for all 𝑤 ∈ 𝜔𝜅
with 𝑢 � lh(𝑎𝑦 (𝑚) ) ⊆ 𝑤. Note that this is possible as 𝜄 is a continuous injection. Then 〈𝑥, 𝑦〉 ∈ [𝑇] and
𝑥 ∈ 𝑝[𝑇] ⊆ WO( �𝜅, �𝑎) with ‖𝑥‖ �𝑎 = otp

(
𝜅,� 𝜄 (𝑢)

)
> 𝛾, a contradiction. �

We close this section by using ideas from the above proof to show that the assumptions of Theorem
3.1 are optimal. These arguments make use of the following observation that can be seen as a special
case of the generic absoluteness of the core model as, for example, in [43, Theorem 3.4], [26] or [47].

Lemma 4.6. Assume that 0long does not exist. If V[𝐺] is a generic extension of the ground model V,
then K[𝑈𝑐𝑎𝑛]

V = K[𝑈𝑐𝑎𝑛]
V[𝐺 ] .

Proof. The statement of the lemma will be a direct consequence of the following two claims:

Claim. If V[𝐺] is a generic extension of the ground model V, then K[𝑈𝑐𝑎𝑛]
V = K[𝑈V

𝑐𝑎𝑛]
V[𝐺 ] .

Proof of the claim. Since the property of being a U-mouse is upwards absolute between transitive
models of ZFC with the same ordinals, we know that K[𝑈𝑐𝑎𝑛]

V ⊆ K[𝑈V
𝑐𝑎𝑛]

V[𝐺 ] . Next, observe that
the fact that V[𝐺] is a set forcing extension of V implies that all sufficiently large singular cardinals in
V[𝐺] are singular in V. Moreover, an application of [31, Theorem 3.23] shows that all sufficiently large
singular cardinals in V are singular in K[𝑈𝑐𝑎𝑛]

V. In combination, this shows that for all sufficiently
large singular cardinals 𝜆 of uncountable cofinality in V[𝐺], every closed unbounded subset of 𝜆 in
V[𝐺] contains an element that is singular in K[𝑈𝑐𝑎𝑛]

V. This observation allows us to use [31, Theorem
3.24(ii)] to conclude that K[𝑈V

𝑐𝑎𝑛]
V[𝐺 ] ⊆ K[𝑈𝑐𝑎𝑛]

V. �
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Claim. Let P be a weakly homogeneous partial order. If G is P-generic over V, then K[𝑈𝑐𝑎𝑛]
V =

K[𝑈𝑐𝑎𝑛]
V[𝐺 ] .

Proof of the claim. First, the weak homogeneity of P in V ensures that

𝑈V[𝐺 ]
𝑐𝑎𝑛 ⊆ K[𝑈𝑐𝑎𝑛]

V[𝐺 ] ⊆ HODV[𝐺 ] ⊆ V.

In particular, we know that the set 𝑈V[𝐺 ]
𝑐𝑎𝑛 (𝜅) ∩ P (𝜅)V is an element of V for every 𝜅 ∈ dom(𝑈V[𝐺 ]

𝑐𝑎𝑛 ).
In this situation, we can now use the first claim to inductively show that the definition of the canonical
measure sequence ensures that 𝑈V

can � 𝜉 = 𝑈V[𝐺 ]
𝑐𝑎𝑛 � 𝜉 holds for all 𝜉 ∈ On. �

Now, let P be a partial order, and let G be P-generic over V. Pick a sufficiently large cardinal 𝛿
such that P × Col(𝜔, 𝛿) densely embeds into Col(𝜔, 𝛿), and let H be Col(𝜔, 𝛿)-generic over V[𝐺].
Since Col(𝜔, 𝛿) is weakly homogeneous in both V and V[𝐺], we can now use the above claim twice to
conclude that K[𝑈𝑐𝑎𝑛]

V = K[𝑈𝑐𝑎𝑛]
V[𝐺,𝐻 ] = K[𝑈𝑐𝑎𝑛]

V[𝐺 ] . �

Proof of Proposition 3.2. Let M denote the class term with the property that ZFC proves the following
statements:

◦ If either 0long exists or 0long does not exist and the model K[𝑈𝑐𝑎𝑛] contains infinitely many measurable
cardinals, then M is equal to the constructible universe L.

◦ Otherwise, M is equal to K[𝑈𝑐𝑎𝑛].

Then the standard results about L together with [31, Theorem 3.2] show that ZFC proves that M is
a transitive model of ZFC + V = 𝑀 that contains all ordinals. Moreover, Lemma 4.6 together with the
fact that 0long cannot be added by forcing show that M is forcing invariant.

Claim. Assume that 0long does not exist and K[𝑈𝑐𝑎𝑛] contains only finitely many measurable cardinals.
If 𝜅 is an uncountable cardinal, then H(𝜅+)K[𝑈𝑐𝑎𝑛 ] is definable by a Σ1-formula with parameters in
H(𝜅) ∪ {𝜅}.

Proof of the claim. Set 𝑈 = 𝑈𝑐𝑎𝑛 � 𝜅 and K = K[𝑈]. Then [31, Theorem 3.9] shows that
H(𝜅+)K[𝑈𝑐𝑎𝑛 ] = H(𝜅+)K. Moreover, if 𝜅 is not the successor of an element of dom(𝑈) in K, then U is
an element of H(𝜅) and we can repeat arguments from the proof of Theorem 4.1 to show that the class
of all U-mice M (see [31, Definition 2.9]) that contain 𝜅 in their lower part 𝑙 𝑝(𝑀) (see [31, Definition
2.1]) is definable by a Σ1-formula with parameters 𝜅 and U. Since every element of H(𝜅+)K is contained
in such a lower part, the statement of the claim follows in this case.

In the following, assume that there is 𝛿 ∈ dom(𝑈) with 𝜅 = (𝛿+)K. Let F be a simple predicate
with dom(𝐹) = dom(𝑈), and let M be an F-mouse such that 𝜅, 𝐹 ∈ 𝑙 𝑝(𝑀), 𝜅 = (𝛿+)𝑀 and 𝐹 (𝜇) is
an ultrafilter in M for every 𝜇 ∈ dom(𝐹). Since every subset of 𝛿 in K[𝐹] is contained in an F-mouse
of cardinality less than 𝜅, we can now apply [31, Theorem 2.10] to conclude that 𝐹 (𝜇) is an ultrafilter
in K[𝐹] for every 𝜇 ∈ dom(𝐹). This shows that K[𝐹] is a core model (in the sense of [31, Definition
3.6]) and therefore [31, Theorem 3.14] shows that K = K[𝐹] holds. Since every element of H(𝜅+)K is
contained in the lower part of a U-mouse M with 𝜅,𝑈 ∈ 𝑙 𝑝(𝑀) and 𝜅 = (𝛿+)𝑀 , we now know that
H(𝜅+)K consists of all sets x with the property that there exists a simple predicate F and an F-mouse
M such that dom(𝐹) = dom(𝑈), 𝐹 (𝜇) is an ultrafilter in M for every 𝜇 ∈ dom(𝐹), 𝜅 = (𝛿+)𝑀 and
𝜅, 𝐹, 𝑥 ∈ 𝑙 𝑝(𝑀). This allows us to conclude that the set H(𝜅+)K is definable by a Σ1-formula with
parameters 𝛿, 𝜅 and dom(𝑈) in this case. �

The above claim now allows us to find a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) with the property that for every
uncountable cardinal 𝜅, we have L𝜅+ = {𝑥 | 𝜑(𝜅, 𝜅, 𝑥)} and, if 0long does not exist and K[𝑈𝑐𝑎𝑛] contains
only finitely many measurable cardinals, then there exists 𝑧 ∈ H(𝜅) with H(𝜅+)K[𝑈𝑐𝑎𝑛 ] = {𝑥 | 𝜑(𝜅, 𝑥, 𝑧)}.
Finally, if the existence of n measurable cardinals is consistent with the axioms of ZFC for some natural
number n, then the existence of exactly n measurable cardinals in K[𝑈𝑐𝑎𝑛] is consistent with ZFC. �
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5. The lower bound for singular cardinals of uncountable cofinality

We now use ideas from [21] to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let 𝜅 be a singular strong limit cardinal with the property that for every subset
D of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅},
there exists a perfect embedding 𝜄 : cof (𝜅) 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷. Assume, towards a contradiction,
that there is no inner model with a sequence of measurable cardinals of length cof(𝜅). Then Theorem
4.1 implies that the cofinality of 𝜅 is uncountable. Moreover, we know that there is no inner model with
a measurable cardinal of Mitchell order 1 and therefore we can construct the canonical core model K
as in [53] (which is Steel’s core model [47] in this easier setting). Note that our hypothesis implies that,
in K, the sequence of measurable cardinals below 𝜅 is bounded below 𝜅. In addition, as 𝜅 is singular
in V, weak covering (see [53, Theorem 7.5.1]) holds for K at 𝜅, that is, we have (𝜅+)K = 𝜅+. Finally,
we know that 𝜅 is singular in K, because otherwise the fact that 𝜅 is a singular cardinal of uncountable
cofinality would allow us to apply the second part of [10, Theorem 1] to find an inner model in which 𝜅
has Mitchell order greater than 0.

We will now construct a tree of height cof (𝜅)K that is an element of K and then argue that this tree
does not have a perfect subtree in V. These arguments use ideas from [21] that ultimately go back to
Solovay’s argument for the consistency strength of the Kurepa hypothesis (see [24, Section 4]). Our tree
consists of hulls of initial segments of K of size 𝜅, and we will argue that we can obtain such initial
segments in a Σ1-definable way with parameters in H(𝜅) ∪ {𝜅}.

In the following, we say a premouse N (in the sense of [53, Section 4.1]) is good if the following
statements hold:

◦ N is iterable (in the sense of [53, Section 4.2]).
◦ 𝜅 + 1 ⊆ 𝑁 and |𝑁 | = 𝜅.
◦ cof (𝜅)𝑁 = cof (𝜅)K.
◦ 𝜅 is the largest cardinal in N.
◦ If 𝛾 < 𝜅 is the supremum of the measurable cardinals below 𝜅 in K, then

𝑁 |𝛾++ = K|𝛾++.

In particular, K and N have the same measurable cardinals and the same total measures below 𝜅.

Claim. Let N be a good premouse. Then 𝑁 � K.

Proof of the Claim. Compare N and K, and suppose, towards a contradiction, that the comparison is
not trivial. Consider the first measure that is used. As 𝑁 |𝛾++ = K|𝛾++, where 𝛾 < 𝜅 is the supremum
of the measurable cardinals below 𝜅 in N and K, the first measure that is used in the comparison has to
be a partial measure above 𝛾. Say this is a partial measure 𝜇 with critical point 𝜈 on the K-side of the
comparison. Then, in order to use this partial measure, we need to truncate K as 𝜇 does not measure
all subsets of 𝜈 in K. By the comparison lemma (see, for example, [53, Lemma 4.4.2] or [48, Theorem
3.11]), we obtain iterates 𝑁∗ of N and K∗ of K (or, in fact, of a truncation K|𝜉 of K) such that 𝑁∗ � K∗.
Note that truncations can only appear on one side of the comparison, and this side has to come out
longer in the end. In particular, the iteration from N to 𝑁∗ can only use total measures with critical point
above 𝜈 > 𝛾 and is therefore trivial, that is, we have 𝑁 = 𝑁∗.

Suppose that 𝜈 > 𝜅. Note that 𝜈 is a cardinal in K∗. As 𝜈 < 𝑁 ∩ On and 𝑁 � K∗, this implies that
there are cardinals above 𝜅 in N, contradicting the assumption that 𝜅 is the largest cardinal in N.

Now, suppose that 𝜈 < 𝜅. The iteration from K|𝜉 to K∗ cannot leave any total measures below 𝜅 behind
as 𝑁 �K∗ does not have any total measures between 𝛾 and 𝜅. As we suppose that there is no inner model
with a sequence of measurable cardinals of length cof (𝜅), this implies that the iteration from K|𝜉 to K∗

is a linear iteration of 𝜇 and its images. Again, as 𝑁 � K∗ does not have any total measures between 𝛾
and 𝜅 and 𝑁 ∩On ≥ 𝜅, this iteration needs to last at least 𝜅-many steps by [28, Corollary 19.7.(b)] since

https://doi.org/10.1017/fms.2023.102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.102


18 P. Lücke and S. Müller

𝜅 is a cardinal in V. Moreover, [28, Corollary 19.7.(b)] shows that 𝜅 is inaccessible in K∗. As 𝑁 � K∗,
this contradicts the fact that 𝜅 is singular in N. Therefore, 𝜇 is not used on the K-side of the comparison.

Similarly, we can argue that no partial measure on N gets used in the comparison and hence we can
conclude that 𝑁 � K. �

Claim. For every 𝑥 ∈
(cof (𝜅) 𝜅

)K, there is a good premouse N with 𝑥 ∈ 𝑁 .

Proof of the Claim. As K satisfies the GCH, there is some 𝜉 < (𝜅+)K = 𝜅+ such that 𝑥 ∈ K|𝜉 and K|𝜉
is a good premouse. �

Following [21], we say a pair 〈𝑀, 𝑥〉 is an active node at 𝜌 for some 𝜌 < cof (𝜅)K if there is a good
premouse N and some 𝑥 ∈

(cof (𝜅) 𝜅
)𝑁 with ran(𝑥) ⊆ Reg𝑁 , the regular cardinals in N, such that the

following statements hold:

◦ x is strictly increasing and cofinal in 𝜅.
◦ M is equal to the transitive collapse of Hull𝑁 (𝑥(𝜌) ∪ {𝑥}) and 𝑥 ∈ 𝑀 is the image of x under the

transitive collapse.
◦ If 𝜋 : 𝑀 −→ 𝑁 is the corresponding uncollapsing map, then crit(𝜋) = 𝑥(𝜌).

In addition, we say a pair 〈𝑀, 𝑥〉 is an active node if there is some ordinal 𝜌 < cof (𝜅)K such that 〈𝑀, 𝑥〉
is an active node at 𝜌.

We now let T denote the unique partial order defined by the following clauses:

(i) The elements of T are triples of the form 〈𝑀, 𝑥, 𝑠〉 satisfying the following properties:
(a) The pair 〈𝑀, 𝑥〉 is either an active node or equal to the pair 〈∅, ∅〉.
(b) s is an element of (<cof (𝜅) 𝜅)K with the property that the set

⋃
0<𝛼<𝜅

𝑠−1 ({𝛼})

is finite.
(c) If 〈𝑀, 𝑥〉 is an active node at 𝜌, then dom(𝑠) ≥ 𝜌.

(ii) The order of T is defined by

〈𝑀0, 𝑥0, 𝑠0〉 ≤𝑇 〈𝑀1, 𝑥1, 𝑠1〉

if and only if the following statements hold:
(a) 𝑀0 is the transitive collapse of Hull𝑀1 (𝑥1 (𝜌) ∪ {𝑥1}) for some ordinal 𝜌 and 𝑥0 is the image of

𝑥1 under the transitive collapse, or 𝑀0 = 𝑥0 = ∅. In the following, write 𝜌 for the minimal such
ordinal and 𝜌 = −1 if 𝑀0 = 𝑥0 = ∅.

(b) 𝑠0 is an initial segment of 𝑠1.
(c) There is no ordinal 𝜌′ between 𝜌 and dom(𝑠0) with the property that 〈Hull𝑀1 (𝑥1 (𝜌

′)∪{𝑥1}), 𝑥1〉
transitively collapses to an active node which, in case 𝜌 ≠ −1, is not 〈𝑀0, 𝑥0〉.

It is now easy to see that T is a tree of height cof (𝜅)K that is contained in K and has the property that
each node is splitting into 𝜅-many successors. Moreover, each 𝑥 ∈

(cof (𝜅) 𝜅
)K that is strictly increasing

and cofinal in 𝜅 with range contained in Reg𝑁 naturally gives rise to a cofinal branch 𝑏𝑥 through T and
two different such elements 𝑥, 𝑦 ∈

(cof (𝜅) 𝜅
)K give rise to different branches 𝑏𝑥 and 𝑏𝑦 . Hence, the fact

that the GCH holds in K implies that the set of cofinal branches through T has cardinality at least
(
𝜅cof (𝜅)

)K
= (𝜅+)K = 𝜅+.

Claim. Let b be a cofinal branch through T, and let 〈R𝑏 , 𝑥𝑏〉 denote the direct limit of models along b.
Then R𝑏 is well-founded and we can identify it with its transitive collapse. Moreover, R𝑏 � 𝐾 .
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Proof of the claim. As the proof of the well-foundedness of R𝑏 is easier, we focus on the argument that
R𝑏 �𝐾 . By our first claim, it suffices to show that R𝑏 is a good premouse. We obtain iterability for R𝑏

by reflecting countable elementary substructures of R𝑏 into models in the tree T, as in [21], using the
fact that

cof (cof (𝜅)K) = cof (𝜅) > 𝜔

(see [25, Lemma 3.7(ii)]). In the following, write 〈𝑀𝜌 | 𝜌 < cof(𝜅)K〉 for the sequence of models
appearing in active nodes at 𝜌 along the branch b. Then the definition of T ensures that for every 𝜉 < 𝜅,
there is some 𝜌 < cof (𝜅)K such that if 𝑀𝜌 is the transitive collapse of Hull𝑁𝜌 (𝑥𝜌 (𝜌) ∪ {𝑥𝜌}) for some
good premouse 𝑁𝜌 and some 𝑥𝜌 ∈

(cof (𝜅) 𝜅
)𝑁𝜌 , then 𝑥𝜌 (𝜌) > 𝜉. Therefore, we know that 𝜅 ⊆ R𝑏 and

elementarity implies that 𝜅 + 1 ⊆ R𝑏 . Our setup also directly ensures that |R𝑏 | = 𝜅. As 𝑁𝜌 � 𝐾 and the
critical point of the inverse of the collapse embedding 𝜋𝜌 : 𝑀𝜌 → 𝑁𝜌 is at least 𝑥𝜌 (𝜌), this also shows
that 𝑁𝜌 |𝛾

++ = 𝐾 |𝛾++, where 𝛾 < 𝜅 is the supremum of the measurable cardinals below 𝜅 in K and 𝑁𝜌.
Moreover, we know that 𝜅 has cofinality cof(𝜅)K in R𝑏 , as witnessed by 𝑥𝑏 . Finally, 𝜅 is the largest
cardinal in R𝑏 by elementarity as 𝜅 = sup(ran(𝑥𝜌)) is the largest cardinal in 𝑁𝜌 for all 𝜌 < cof (𝜅). �

Claim. The set T is Σ1-definable with parameters in H(𝜅) ∪ {𝜅}.

Proof of the claim. It clearly suffices to show that the set of all good mice N is definable in the above
way. As there is no inner model with cof (𝜅)-many measurable cardinals, the mice we consider are simple
and therefore iterability for N is Σ1-definable from the parameter 𝜔1, using [53, Theorem 4.5.5]. All
other conditions can obviously be stated by Σ1-formulas using the parameters 𝜅 and 𝐾 |𝛾++ ∈ H(𝜅). �

Claim. There is an injection 𝑖 : 𝑇 −→ H(𝜅) ∩ P (𝜅) that is definable by a Σ1-formula with parameters
in H(𝜅) ∪ {𝜅}.

Proof of the claim. It clearly suffices to construct an injection from the set of all active nodes to
H(𝜅) ∩ P (𝜅). Let 〈𝑀, 𝑥〉 be an active node at some 𝜌 < cof (𝜅)K. Since M is the transitive collapse
of an elementary submodel of some good premouse 𝑁 = 〈J �𝐸

𝛼 , �𝐸〉, we know that M is of the form
〈J𝐴𝜖 , 𝐴〉 and there is a well-ordering � of M that is definable in M. Let 𝜏 : 〈𝑀,�〉 −→ 〈𝜆, <〉 denote the
corresponding transitive collapse and associate 〈𝑀, 𝑥〉 with the element

{≺0, ≺𝛼, 𝛽�� | 𝛼, 𝛽 < 𝜆, 𝜏−1(𝛼) ∈ 𝜏−1(𝛽)}

∪ {≺1, 𝛼� | 𝛼 < 𝜆, 𝜏−1 (𝛼) ∈ 𝐴}

∪ {≺2, 𝛼� | 𝛼 < 𝜆, 𝜏−1(𝛼) ∈ 𝑥}

of H(𝜅) ∩ P (𝜅). It is now easy to see that the resulting injection is definable in the desired way. �

Claim. No countably closed forcing adds a cofinal branch through T.

Proof of the claim. Let P be a countably closed forcing notion, and let G be P-generic over V. Suppose,
towards a contradiction, that there is a cofinal branch b through T in V[𝐺] that is not contained in V. By
considering the direct limit of the active nodes along b and using the fact that cof (𝜅)V has uncountable
cofinality in V[𝐺], we obtain a pair 〈R𝑏 , 𝑥𝑏〉 such that b (modulo some choice of an almost zero
sequence s) can be recovered from R𝑏 and 𝑥𝑏 via the transitive collapses of models of the form

HullR𝑏 (𝑥𝑏 (𝜌) ∪ {𝑥𝑏}),

for 𝜌 < cof (𝜅)K. As cof (𝜅)V has uncountable cofinality in V[𝐺], the argument in one of our previous
claims then shows that R𝑏 � K𝑉 [𝐺 ] holds in 𝑉 [𝐺]. By [53, Theorem 7.4.11], the core model K is
forcing absolute, that is, we have KV = KV[𝐺 ] . Therefore, we know that R𝑏 and hence b is already an
element of V, a contradiction. �
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Fix a strictly increasing, cofinal function 𝑐 : cof (𝜅) −→ cof (𝜅)K, and let 𝑇∗ denote the unique partial
order defined by the following clauses:

(i) The elements of 𝑇∗ are functions t such that dom(𝑡) ∈ cof (𝜅) and the following statements hold:
(a) If 𝛼 ∈ dom(𝑡), then 𝑡 (𝛼) is a branch through T of order-type 𝑐(𝛼).
(b) If 𝛼 < 𝛽 ∈ dom(𝑡), then 𝑡 (𝛼) is an initial segment of 𝑡 (𝛽).

(ii) The ordering of 𝑇∗ is given by inclusion.

It then follows that 𝑇∗ is a tree of height cof (𝜅) with the property that every node has 𝜅-many
successors. Since the tree T has at least 𝜅+-many branches, it follows that 𝑇∗ also has at least 𝜅+-
many branches. Moreover, by using the injection i, it is possible to construct an injection 𝑖∗ : 𝑇∗ −→
H(𝜅) ∩ P (𝜅) with ∅ ∉ ran(𝑖∗) that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅}. Finally,
the above computations also imply that forcing with a countably closed partial order does not add a new
cofinal branch to 𝑇∗.

Define D to be the set of all subsets of 𝜅 of the form

𝑦𝑏 = {≺𝛼, ≺𝛽, sup(𝑖∗(𝑏 � 𝛼))�� | 𝛼 < cof (𝜅), 𝛽 ∈ 𝑖∗(𝑏 � 𝛼)}

for some function b with domain cof(𝜅) and the property that 𝑏 � 𝛼 ∈ 𝑇∗ for all 𝛼 < cof (𝜅). Since the
fact that the tree 𝑇∗ has at least 𝜅+-many cofinal branches implies that D has cardinality greater than 𝜅
and the above computations show that D is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅},
our assumption yields a perfect embedding 𝜄 : cof (𝜅) 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷. Using the fact that
cof (𝜅) is uncountable, a routine construction now allows us to find

◦ a system 〈𝑢𝑠 | 𝑠 ∈
<cof (𝜅)2〉 of elements of <cof (𝜅)2,

◦ a strictly increasing sequence 〈𝜅𝛼 | 𝛼 < cof (𝜅)〉 that is cofinal in 𝜅, and
◦ a system 〈𝑎𝑠 | 𝑠 ∈

<cof (𝜅)2〉 of bounded subsets of 𝜅

such that the following statements hold for all 𝑠, 𝑡 ∈ <cof (𝜅)2:

(i) If lh(𝑠) = lh(𝑡), then lh(𝑢𝑠) = lh(𝑢𝑡 ).
(ii) 𝑎𝑠 is a subset of 𝜅lh(𝑠) .

(iii) If 𝑠 ⊆ 𝑡, then 𝑎𝑠 = 𝑎𝑡 ∩ 𝜅lh(𝑠) and 𝑢𝑠 ⊆ 𝑢𝑡 .
(iv) 𝑎𝑠⌢ 〈0〉 ≠ 𝑎𝑠⌢ 〈1〉 and 𝑢𝑠⌢ 〈0〉 ≠ 𝑢𝑠⌢ 〈1〉 .
(v) 𝜄[{𝑥 ∈ cof (𝜅)2 | 𝑥 � lh(𝑠) = 𝑠}] = {𝑦 ∈ ran(𝜄) | 𝑦 ∩ 𝜅lh(𝑠) = 𝑎𝑠}.

(vi) If 𝛼 < lh(𝑠), then there are 𝛾 ≤ 𝛿 < 𝜅lh(𝑠) with ≺𝛼, ≺𝛾, 𝛿�� ∈ 𝑎𝑠 .

Now, let G be Add(cof (𝜅), 1)-generic over V. Set 𝑥𝐺 =
⋃

𝐺 ∈ (cof (𝜅)2)V[𝐺 ] and

𝑦𝐺 =
⋃

{𝑎𝑥𝐺�𝛼 | 𝛼 < cof (𝜅)} ∈ P (𝜅)V[𝐺 ] .

In this situation, our construction ensures that there is a function 𝑏𝐺 in V[𝐺] such that dom(𝑏𝐺) =
cof (𝜅), 𝑏𝐺 � 𝛼 ∈ 𝑇∗ for all 𝛼 < cof (𝜅) and 𝑦𝐺 = 𝑦𝑏𝐺 . By our earlier observations, the cofinal branch
through 𝑇∗ induced by 𝑏𝐺 is contained in V and hence 𝑏𝐺 is an element of V. But this implies that 𝑦𝐺
is also contained in the ground model V. Since 𝑥𝐺 is the unique element x of (cof (𝜅)2)V[𝐺 ] with the
property that 𝑦𝐺 ∩ 𝜅𝛼 = 𝑎𝑥�𝛼 holds for all 𝛼 < cof (𝜅), we can now conclude that 𝑥𝐺 is contained in V,
a contradiction. �

6. Almost disjoint families at limits of measurable cardinals

We now proceed by using the techniques developed in Section 2 to show that large almost disjoint
families at cardinals with sufficiently strong large cardinal properties are not simply definable.

Proof of Theorem 1.3. Let 𝜅 be an iterable cardinal that is a limit of measurable cardinals, let z be an
element of H(𝜅) and let A be a subset of P (𝜅) of cardinality greater than 𝜅 with the property that there
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exists a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) with 𝐴 = {𝑦 ⊆ 𝜅 | 𝜑(𝜅, 𝑦, 𝑧)}. Assume, towards a contradiction, that
A is an almost disjoint family in P (𝜅). Since 𝜅 is an inaccessible cardinal and the collection of all
bounded subsets of 𝜅 is definable by a Σ0-formula with parameter 𝜅, we may then also assume that A
consists of unbounded subsets of 𝜅. Fix an inaccessible cardinal 𝜆 < 𝜅 with 𝑧 ∈ H(𝜆), and use Lemma
2.1 to obtain 𝑥 ∈ 𝐴 and systems 〈𝜈𝑠 | 𝑠 ∈ <𝜅 𝜅〉, 〈𝜅𝑠 | 𝑠 ∈ <𝜅 𝜅〉, 〈𝑈𝑠 | 𝑠 ∈ <𝜅 𝜅〉 and 〈𝐼𝑠 | 𝑠 ∈ <𝜅 𝜅〉
with 𝜆 < 𝜅∅ and the properties listed in the lemma. Then there exists an Add(𝜆, 1)-nice name �𝑥 for
an unbounded subset of 𝜅 with the property that �𝑥𝐺 = 𝑖

𝐼𝑐𝐺
0,∞ (𝑥) holds whenever G is Add(𝜆, 1)-generic

over V, 𝑐𝐺 =
⋃

𝐺 ∈ (𝜆2)V[𝐺 ] and 𝐼𝑐𝐺 is the unique linear iteration of 〈V, {𝑈𝑐𝐺�𝜉 | 𝜉 < 𝜆}〉 of length
sup𝜉<𝜆 lh(𝐼𝑐𝐺�𝜉 ) in V[𝐺] with 𝑈 𝐼𝐺

𝛼 = 𝑈
𝐼𝑐𝐺�𝜉
𝛼 for all 𝜉 < 𝜆 and 𝛼 < lh(𝐼𝑐𝐺�𝜉 ). Note that, by Lemma

2.2, the elementarity of 𝑖𝐼𝑐𝐺0,∞ and the upwards absoluteness of Σ1-statements between 𝑀
𝐼𝑐𝐺
∞ and V[𝐺]

ensures that

1Add(𝜆,1) � 𝜑(𝜅, �𝑥, 𝑧) (7)

holds in V.

Claim. If 𝐺0 × 𝐺1 is (Add(𝜆, 1) × Add(𝜆, 1))-generic over V, then �𝑥𝐺0 ≠ �𝑥𝐺1 .

Proof of the claim. Given 𝑖 < 2, the absoluteness of the iterated ultrapower construction ensures that
(𝐼𝑐𝐺𝑖

)V[𝐺𝑖 ] = (𝐼𝑐𝐺𝑖
)V[𝐺0 ,𝐺1 ] holds, and this implies that

�𝑥𝐺𝑖 = (𝑖
𝐼𝑐𝐺𝑖

0,∞ (𝑥))V[𝐺0 ,𝐺1 ] .

Since mutual genericity implies that 𝑐𝐺0 ≠ 𝑐𝐺1 , the desired inequality now directly follows from an
application of statement (iii) of Lemma 2.2 in V[𝐺0, 𝐺1]. �

Pick an elementary submodel 𝑀0 of H(𝜅+) of cardinality 𝜅 with <𝜅𝑀0 ⊆ 𝑀0 that contains H(𝜅) and
all objects listed above. Since iterable cardinals are weakly compact, we can find a transitive set 𝑀1 of
cardinality 𝜅 and an elementary embedding 𝑗 : 𝑀0 −→ 𝑀1 with crit( 𝑗) = 𝜅 (see [20, Theorem 1.3]).
Then 𝑗 ( �𝑥) is an Add(𝜆, 1)-name for an unbounded subset of 𝑗 (𝜅) and there is a canonical Add(𝜆, 1)-
name �𝛾 for an ordinal in the interval [𝜅, 𝑗 (𝜅)) with the property that

�𝛾𝐺 = min( 𝑗 ( �𝑥)𝐺 \ 𝜅)

holds whenever G is Add(𝜆, 1)-generic over V.

Claim. If 𝐺0 × 𝐺1 is (Add(𝜆, 1) × Add(𝜆, 1))-generic over V, then �𝛾𝐺0 ≠ �𝛾𝐺1 .

Proof of the claim. Given an Add(𝜆, 1)-name �𝑎, let �𝑎𝑙 and �𝑎𝑟 denote the canonical (Add(𝜆, 1) ×
Add(𝜆, 1))-names such that �𝑎𝐺0×𝐺1

𝑙 = �𝑎𝐺0 and �𝑎𝐺0×𝐺1
𝑟 = �𝑎𝐺1 holds whenever 𝐺0 × 𝐺1 is

(Add(𝜆, 1) ×Add(𝜆, 1))-generic over V. Given an Add(𝜆, 1)-name �𝑎 in 𝑀0, we then have 𝑗 ( �𝑎𝑙) = 𝑗 ( �𝑎)𝑙
and 𝑗 ( �𝑎𝑟 ) = 𝑗 ( �𝑎)𝑟 .

Assume, towards a contradiction, that

〈𝑝, 𝑞〉 �Add(𝜆,1)×Add(𝜆,1) “ �𝛾𝑙 = �𝛾𝑟 ”

holds for some condition 〈𝑝, 𝑞〉 in (Add(𝜆, 1) × Add(𝜆, 1)).

Subclaim. 〈𝑝, 𝑞〉 �Add(𝜆,1)×Add(𝜆,1) “ �𝑥𝑙 ∩ �𝑥𝑟 is unbounded in 𝜅 ”.

Proof of the subclaim. Let 𝐺0 ×𝐺1 be (Add(𝜆, 1) ×Add(𝜆, 1))-generic over V with 〈𝑝, 𝑞〉 ∈ 𝐺0 ×𝐺1.
By standard arguments, there exists an elementary embedding

𝑗∗ : 𝑀0 [𝐺0, 𝐺1] −→ 𝑀1 [𝐺0, 𝐺1]
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with 𝑗∗( �𝑏
𝐺0×𝐺1) = 𝑗 ( �𝑏)𝐺0×𝐺1 for every (Add(𝜆, 1) × Add(𝜆, 1))-name �𝑏 in 𝑀0. Then our assumptions

ensure that

�𝛾𝐺0 = �𝛾𝐺1 ∈ 𝑗 ( �𝑥)𝐺0 ∩ 𝑗 ( �𝑥)𝐺1 ∩ [𝜅, 𝑗 (𝜅))

= 𝑗∗( �𝑥
𝐺0×𝐺1
𝑙 ) ∩ 𝑗∗( �𝑥

𝐺0×𝐺1
𝑟 ) ∩ [𝜅, 𝑗∗(𝜅)) ≠ ∅.

In particular, if 𝛼 < 𝜅, then the elementarity of 𝑗∗ and the fact that 𝑗∗(𝛼) = 𝛼 directly imply that

�𝑥𝐺0×𝐺1
𝑙 ∩ �𝑥𝐺0×𝐺1

𝑟 ∩ (𝛼, 𝜅) ≠ ∅.

This proves the statement of the subclaim. �

We now use the fact that 𝜅 is an iterable cardinal to find a transitive model M of ZFC− of cardinality
𝜅 with 𝑀0 ∈ 𝑀 and a weakly amenable M-ultrafilter F on 𝜅 such that 〈𝑀, 𝐹〉 is iterable. Pick an
elementary submodel 〈𝑋, ∈, �̄�〉 of 〈𝑀, ∈, 𝐹〉 of cardinality 𝜆 with <𝜆𝑋 ⊆ 𝑋 that contains H(𝜆), 𝑀0
and all other relevant objects. Let 𝜋 : 𝑋 −→ 𝑁0 denote the corresponding transitive collapse and
set 𝐹0 = 𝜋[�̄�]. By [28, Theorem 19.15], we know that 〈𝑁0, 𝐹0〉 is iterable. Let 〈𝑁1, 𝐹1〉 denote
the 𝜅-th iterate of 〈𝑁0, 𝐹0〉 and let 𝑖 : 𝑁0 −→ 𝑁1 denote the corresponding elementary embedding.
Then (𝑖 ◦ 𝜋) (𝜅) = 𝜅, (𝑖 ◦ 𝜋) (𝑧) = 𝑧, (𝑖 ◦ 𝜋) (〈𝑝, 𝑞〉) = 〈𝑝, 𝑞〉 and H(𝜋(𝜅))𝑁0 = H(𝜋(𝜅))𝑁1 . Since
Add(𝜆, 1) × Add(𝜆, 1) is <𝜆-closed and a subset of 𝑁0, we know that 𝑁0 contains all sequences of
conditions in Add(𝜆, 1) ×Add(𝜆, 1) of length less than 𝜆 and therefore the fact that |𝑁0 | = 𝜆 allows us to
find a filter 𝐻0×𝐻1 on Add(𝜆, 1) ×Add(𝜆, 1) that contains 〈𝑝, 𝑞〉 and is generic over 𝑁0 by constructing
a descending sequence of conditions in Add(𝜆, 1) × Add(𝜆, 1) below 〈𝑝, 𝑞〉 that has length 𝜆 and
intersects all dense subsets of Add(𝜆, 1) × Add(𝜆, 1) contained in 𝑁0. Moreover, since H(𝜆+)𝑁1 ⊆ 𝑁0,
we know that the filter 𝐻0 × 𝐻1 is also generic over 𝑁1.

Given 𝑖 < 2, we now define 𝑥𝑖 = (𝑖◦𝜋) ( �𝑥)𝐻𝑖 . Set 𝑁 = (𝑖◦𝜋) (𝑀0). Then Add(𝜆, 1) ⊆ 𝑁 , (𝑖◦𝜋) ( �𝑥) ∈ 𝑁
and 𝐻0 × 𝐻1 is (Add(𝜆, 1) × Add(𝜆, 1))-generic over N. Since our first claim and the above subclaim
show that

〈𝑝, 𝑞〉 �Add(𝜆,1)×Add(𝜆,1) “ �𝑥𝑙 ≠ �𝑥𝑟 and �𝑥𝑙 ∩ �𝑥𝑟 is unbounded in 𝜅 ”

holds in 𝑀0, elementarity implies that 𝑥0 and 𝑥1 are distinct subsets of 𝜅 and 𝑥0 ∩ 𝑥1 is unbounded in 𝜅.
Moreover, using Equation (7), Σ1-upwards absoluteness and the fact that Σ1-statements in the forcing
language can be expressed by Σ1-formulas, we know that

〈𝑝, 𝑞〉 �Add(𝜆,1)×Add(𝜆,1) “𝜑(𝜅, �𝑥𝑙 , 𝑧) ∧ 𝜑(𝜅, �𝑥𝑟 , 𝑧) ”

holds in 𝑀0 and therefore elementarity allows us to conclude that 𝜑(𝜅, 𝑥𝑖 , 𝑧) holds in 𝑁 [𝐻0, 𝐻1] for all
𝑖 < 2. By Σ1-upwards absoluteness, this implies that 𝑥0 and 𝑥1 are distinct elements of A, contradicting
the fact that A is an almost disjoint family. �

Now, let G be Add(𝜆, 𝜅+)-generic over V. Since 𝜆 is inaccessible, the model V[𝐺] has the same
cardinals as V. Let 〈𝐺 𝛿 | 𝛿 < 𝜅+〉 denote the induced sequence of filters on Add(𝜆, 1). Given 𝛿 < 𝜀 < 𝜅+,
the filter 𝐺 𝛿 ×𝐺 𝜀 on Add(𝜆, 1) × Add(𝜆, 1) is generic over V and therefore the previous claim implies
that �𝛾𝐺𝛿 ≠ �𝛾𝐺𝜀 . In particular, the map

𝜄 : 𝜅+ −→ 𝑗 (𝜅); 𝛿 ↦−→ �𝛾𝐺𝛿

is an injection. Since 𝑗 (𝜅) < 𝜅+, this yields a contradiction. �

The conclusion of Theorem 1.3 provably does not generalize to Σ1-definitions using arbitrary subsets
of 𝜅 as parameters. If 𝜅 is an infinite cardinal and 𝑧 ⊆ 𝜅 codes an injective sequence 〈𝑠𝛽 | 𝛽 < 𝜅〉 of
elements of <𝜅2 with the property that the set
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𝐼 = {𝑥 ∈ 𝜅2 | ∀𝛼 < 𝜅 ∃𝛽 < 𝜅 𝑥 � 𝛼 = 𝑠𝛽}

has cardinality greater than 𝜅, then the collection {{𝛽 < 𝜅 | 𝑠𝛽 ⊆ 𝑥} | 𝑥 ∈ 𝐼} is an almost disjoint family
of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameter z. Note that such sequences
exist for every strong limit cardinal 𝜅, or, more generally, for every cardinal 𝜅 that is a strong limit cardinal
in an inner model M satisfying (2𝜅 )𝑀 ≥ 𝜅+.

7. Long well-orders at limits of measurable cardinals

In order to motivate the statement of Theorem 1.4, we first show how classical results of Dehornoy can
easily be used to show that, if 𝜅 is a limit of measurable cardinals, then no well-ordering of P (𝜅) is
definable by a Σ1-formula with parameters in H(𝜅) ∪{𝜅}. Moreover, if 𝜅 has uncountable cofinality, then
we can also easily show that no injection from 𝜅+ into P (𝜅) is definable in this way. This nondefinability
result will be a direct consequence of the following theorem.

Theorem 7.1. If 𝛿 is a measurable cardinal, 𝑧 ∈ H(𝛿) and 𝜈 is a cardinal with cof (𝜈) ≠ 𝛿 and 𝜇𝛿 < 𝜈
for all 𝜇 < 𝜈, then the following statements hold for 𝜅 ∈ {𝜈, 𝜈+}:

(i) No well-ordering of P (𝜅) is definable by a Σ1-formula with parameters 𝜈, 𝜈+ and z.
(ii) If cof (𝜅) > 𝜔, then no injection from 𝜅+ into P (𝜅) is definable by a Σ1-formula with parameters 𝜅

and z.

The proof of the above theorem is based on two standard results about measurable cardinals. A proof
of the first of these lemmas is contained in the proof of [38, Lemma 1.3]:

Lemma 7.2. Let U be a normal ultrafilter on a measurable cardinal 𝛿, and let 𝜈 > 𝛿 be a cardinal with
cof (𝜈) ≠ 𝛿 and 𝜇𝛿 < 𝜈 for all 𝜇 < 𝜈. If 𝑗 : V −→ Ult(V,𝑈) is the induced ultrapower embedding, than
𝑗 (𝜈) = 𝜈 and 𝑗 (𝜈+) = 𝜈+. �

Lemma 7.3. Let U be a normal ultrafilter on a measurable cardinal 𝛿, and let

〈〈𝑁𝛼 | 𝛼 ∈ On〉, 〈 𝑗𝛼,𝛽 : 𝑁𝛼 −→ 𝑁𝛽 | 𝛼 ≤ 𝛽 ∈ On〉〉

denote the system of iterated ultrapowers of 〈V, ∈,𝑈〉. If 𝜈 is a cardinal with cof (𝜈) ≠ 𝛿 and 𝜇𝛿 < 𝜈 for
all 𝜇 < 𝜈, then 𝑗0,𝛼 (𝜅) = 𝜅 holds for 𝜅 ∈ {𝜈, 𝜈+} and all 𝛼 < 𝜅.

Proof. We start by using induction to show that 𝑗0,𝛼 (𝜈) = 𝜈 holds for all 𝛼 < 𝜈. In the successor case,
the desired conclusion follows directly from the induction hypothesis and an application of Lemma 7.2
in 𝑁𝛼. Hence, we may assume that 𝛼 is a limit ordinal. Pick �̄� < 𝛼 and 𝜉 < 𝜈. Then elementarity
allows us to apply [28, Corollary 19.7. (a)] in 𝑁 �̄� to conclude that 𝑗 �̄�,𝛼 (𝜉) < 𝜈. Since every element of
𝑗0,𝛼 (𝜈) ≥ 𝜈 is of the form 𝑗 �̄�,𝛼 (𝜉) for some �̄� < 𝛼 and 𝜉 < 𝑗0, �̄� (𝜈) = 𝜈, these computations show that
𝑗0,𝛼 (𝜈) = 𝜈 holds.

Next, we inductively show that 𝑗0,𝛼 (𝜈) < 𝜈+ holds for all 𝛼 < 𝜈+, where the successor step is again a
direct consequence of the induction hypothesis and Lemma 7.2. In the other case, if 𝛼 ∈ 𝜈+ ∩ Lim and
𝑗0, �̄� (𝜈) < 𝜈+ holds for all �̄� < 𝛼, then every element of 𝑗0,𝛼 (𝜈) is of the form 𝑗 �̄�,𝛼 (𝜉) with �̄� < 𝛼 and
𝜉 < 𝑗0, �̄� (𝜈) and this shows that | 𝑗0,𝛼 (𝜈) | ≤ 𝜈 · |𝛼 | < 𝜈+.

Finally, we have 𝜈+ ≤ 𝑗0,𝛼 (𝜈
+) ≤ | 𝑗0,𝛼 (𝜈) |

+ for all 𝛼 < 𝜈+. Since the above computations show that
| 𝑗0,𝛼 (𝜈) | = 𝜈 holds for all 𝛼 < 𝜈+, this shows that 𝑗0,𝛼 (𝜈+) = 𝜈+ holds for all 𝛼 < 𝜈+. �

Proof of Theorem 7.1. Let U be a normal ultrafilter on a measurable cardinal 𝛿, and let

〈〈𝑁𝛼 | 𝛼 ∈ On〉, 〈 𝑗𝛼,𝛽 : 𝑁𝛼 −→ 𝑁𝛽 | 𝛼 ≤ 𝛽 ∈ On〉〉

denote the system of iterated ultrapowers of 〈V, ∈,𝑈〉. Moreover, for every 𝛼 ∈ Lim, we define
𝑀𝛼 =

⋂
{𝑁𝜉 | 𝜉 < 𝛼}. Then [11, Proposition 1.6.1] shows that each 𝑀𝛼 is an inner model of ZF.
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(i) Assume, towards a contradiction, that there is a Σ1-formula 𝜑(𝑣0, . . . , 𝑣4) with the property that

� = {〈𝑥, 𝑦〉 | 𝜑(𝑥, 𝑦, 𝑧, 𝜈, 𝜈+)}

is a well-ordering of P (𝜅). For all 𝛼 ∈ On, we define �𝛼 = 𝑗0,𝛼 (�). Given 𝛼 < 𝜔2, Lemma 7.3 implies
that 𝑗0,𝛼 (𝜈) = 𝜈 and 𝑗0,𝛼 (𝜈

+) = 𝜈+. In particular, elementarity implies that �𝛼 is a well-ordering of
P (𝜅)𝑁𝛼 and the sequence 〈�𝛼+𝛽 | 𝛽 < 𝜔2〉 is an element of 𝑁𝛼. By our assumptions, elementarity and
Σ1-upwards absoluteness imply that �𝛽 ⊆ �𝛼 ⊆ � for all 𝛼 ≤ 𝛽 < 𝜔2. Define � =

⋂
{�𝛼 | 𝛼 < 𝜔2}.

If 𝛼 < 𝜔2, then � =
⋂
{�𝛼+𝛽 | 𝛽 < 𝜔2} and therefore � ∈ 𝑁𝛼. This shows that � is an element of

𝑀𝜔2 , and it follows that � is a well-ordering of P (𝜅)𝑀𝜔2 . But this yields a contradiction because [11,
Theorem 5.3.4] shows that 𝑀𝜔2 contains a subset G𝜔2 of P ( 𝑗0,𝜔2 (𝛿)) with the property that 𝑀𝜔2 does
not contain a well-ordering of the set G𝜔2 .

(ii) Assume, towards a contradiction, that cof (𝜅) > 𝜔 and there is an injection 𝜄 : 𝜅+ −→ P (𝜅) that
is definable by a Σ1-formula 𝜑(𝑣0, . . . , 𝑣3) and the parameters 𝜅 and z.

Claim. If 𝛼 < 𝜅, then 𝑗0,𝛼 (𝜄) = 𝜄.

Proof of the claim. Since Lemma 7.3 shows that 𝑗0,𝛼 (𝜅) = 𝜅, we also know that 𝑗0,𝛼 (𝜅
+) = 𝜅+ and

therefore elementarity implies that 𝑗0,𝛼 (𝜄) is an injection from 𝜅+ into P (𝜅) that is definable in 𝑁𝛼 by
the formula 𝜑 and the parameters 𝜅 and z. But then Σ1-upwards absoluteness implies that 𝑗0,𝛼 (𝜄) ⊆ 𝜄
and this allows us to conclude that 𝑗0,𝛼 (𝜄) = 𝜄. �

The above claim directly implies that the injection 𝜄 is an element of 𝑀𝜅 . By [11, Theorem B. (i)],
the fact that cof(𝜅) > 𝜔 implies that 𝑁𝜅 = 𝑀𝜅 =

⋂
𝛼<𝜅 𝑁𝛼 and hence |P (𝜅)𝑁𝜅 | ≥ 𝜅+. Since 𝑁𝜅 is a

direct limit and 𝑗0,𝜅 (𝛿) = 𝜅, we also know that

P (𝜅)𝑁𝜅 = { 𝑗𝛼,𝜅 (𝑥) | 𝛼 < 𝜅, 𝑥 ∈ P ( 𝑗0,𝛼 (𝛿))
𝑁𝛼 }.

But our assumptions imply that 2𝛿 < 𝜅 and therefore

|P ( 𝑗0,𝛼 (𝛿))
𝑁𝛼 | ≤ 𝑗0,𝛼 (2𝛿) < 𝑗0,𝛼 (𝜅) = 𝜅

holds for all 𝛼 < 𝜅. We can now conclude that |P (𝜅)𝑁𝜅 | = 𝜅, a contradiction. �

Corollary 7.4. Let 𝜅 be a limit of measurable cardinals.

(i) No well-ordering of P (𝜅) is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅, 𝜅+}.
(ii) If cof (𝜅) > 𝜔, then no injection from 𝜅+ into P (𝜅) is definable by a Σ1-formula with parameters in

H(𝜅) ∪ {𝜅}. �

We now proceed by proving our result on the nonexistence of long Σ1-well-orders.

Proof of Theorem 1.4. Let 𝜅 be a limit of measurable cardinals with cof(𝜅) = 𝜔, let D be a subset of
P (𝜅) of cardinality greater than 𝜅 and let � be a well-ordering of D that is definable by a Σ1-formula
with parameter 𝜅. Then D is definable in the same way and we can pick Σ1-formulas 𝜑(𝑣0, 𝑣1) and
𝜓(𝑣0, 𝑣1, 𝑣2) with 𝐷 = {𝑥 | 𝜑(𝑥, 𝜅)} and � = {〈𝑥, 𝑦〉 | 𝜓(𝑥, 𝑦, 𝜅)}. Now, use Lemma 2.1 to find 𝑥 ∈ 𝐷
and systems 〈𝜈𝑠 | 𝑠 ∈ <𝜔𝜅〉, 〈𝜅𝑠 | 𝑠 ∈ <𝜔𝜅〉, 〈𝑈𝑠 | 𝑠 ∈

<𝜔𝜅〉 and 〈𝐼𝑠 | 𝑠 ∈
<𝜔𝜅〉 with the listed properties.

Pick an Add(𝜔, 1)-nice name �𝑥 for a subset of 𝜅 such that �𝑥𝐺 = 𝑖
𝐼𝑐𝐺
0,∞ (𝑥) holds whenever G is Add(𝜔, 1)-

generic over V, 𝑐𝐺 =
⋃

𝐺 ∈ (𝜔2)V[𝐺 ] and 𝐼𝑐𝐺 is the unique linear iteration of 〈V, {𝑈𝑐𝐺�𝑛 | 𝑛 < 𝜔}〉 of
length sup𝑛<𝜔 lh(𝐼𝑐𝐺�𝑛) in V[𝐺] with𝑈 𝐼𝐺

𝛼 = 𝑈
𝐼𝑐𝐺�𝑛
𝛼 for all 𝑛 < 𝜔 and 𝛼 < lh(𝐼𝑐𝐺�𝑛). The elementarity

of 𝑖𝐼𝑐𝐺0,∞ and Σ1-upwards absoluteness between 𝑀
𝐼𝑐𝐺
∞ and V[𝐺] then imply that

1Add(𝜔,1) � 𝜑( �𝑥, 𝜅) (8)
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holds in V. Finally, let 𝑧 : 𝜔 −→ 2 denote the constant function with value 0 and for each 𝑛 < 𝜔, set
𝜅𝑛 = 𝜅𝑧�𝑛 and 𝑈𝑛 = 𝑈𝑧�𝑛. Then the sequence 〈𝜅𝑛 | 𝑛 < 𝜔〉 is strictly increasing and cofinal in 𝜅.

Pick a sufficiently large regular cardinal 𝜃 and a countable elementary submodel X of H(𝜃) containing
𝜅, �𝑥, 〈𝜅𝑠 | 𝑠 ∈ <𝜔𝜅〉, 〈𝑈𝑠 | 𝑠 ∈ <𝜔𝜅〉 and 〈𝐼𝑠 | 𝑠 ∈ <𝜔𝜅〉. Let 𝜋 : 𝑋 −→ 𝑀 denote the corresponding
transitive collapse. Define 𝜅 = 𝜋(𝜅) and, given 𝑛 < 𝜔, set 𝜅𝑛 = 𝜋(𝜅𝑛) and �̄�𝑛 = 𝜋(𝑈𝑛). Then [49,
Lemma 3.5] shows that the pair 〈𝑀, {�̄�𝑛 | 𝑛 < 𝜔}〉 is linearly iterable. Let 𝐼 denote the unique linear
iteration of 〈𝑀, {�̄�𝑛 | 𝑛 < 𝜔}〉 of length 𝜅 with the property that

𝑈 𝐼
𝛼 = 𝑖𝐼0,𝛼 (�̄�min{𝑛<𝜔 |𝛼<𝜅𝑛 })

holds for all 𝛼 < 𝜅. Set 𝑁 = 𝑀 𝐼
0,∞ and 𝑗 = 𝑖𝐼0,∞ : 𝑀 −→ 𝑁 . Then it is easy to see that 𝑗 (𝜅𝑛) = 𝜅𝑛 for all

𝑛 < 𝜔 and this implies that 𝑗 (𝜅) = 𝜅.
Now, pick 𝑐 ∈ 𝜔2 with the property that 𝐺𝑐 = {𝑐 � 𝑛 | 𝑛 < 𝜔} is Add(𝜔, 1)-generic over M. Then

𝐺𝑐 is also Add(𝜔, 1)-generic over N and we define

𝑥𝑐 = 𝑗 (𝜋( �𝑥))𝐺𝑐 ∈ P (𝜅)𝑁 [𝐺𝑐 ] .

Claim. If 𝑐 ∈ 𝜔2 has the property that 𝐺𝑐 is Add(𝜔, 1)-generic over M, then 𝑥𝑐 ∈ 𝐷.

Proof of the claim. By Σ1-absoluteness, we know that Equation (8) implies that the given forcing
statement also holds in H(𝜃). This shows that

1Add(𝜔,1) � 𝜑( 𝑗 (𝜋( �𝑥)), 𝜅)

holds in N. But this allows us to conclude that 𝜑(𝑥𝑐 , 𝜅) holds in 𝑁 [𝐺𝑐] and Σ1-upwards absoluteness
implies that this statement also holds in V. �

Let E denote the set of all pairs 〈𝑐, 𝑑〉 in 𝜔2 × 𝜔2 with the property that 𝐺𝑐 × 𝐺𝑑 is (Add(𝜔, 1) ×
Add(𝜔, 1))-generic over M. Then E is a comeager subset of 𝜔2× 𝜔2 and a classical result of Mycielski
(see [30, Theorem 19.1]) yields a continuous injection 𝑝 : 𝜔2 −→ 𝜔2 with 〈𝑝(𝑎), 𝑝(𝑏)〉 ∈ 𝐸 for all
distinct 𝑎, 𝑏 ∈ 𝜔2.

Claim. The map

𝜄 : 𝜔2 −→ 𝐷; 𝑎 ↦−→ 𝑥𝑝 (𝑎)

is an injection.

Proof of the claim. Given an Add(𝜔, 1)-name �𝑦, let �𝑦𝑙 and �𝑦𝑟 denote the canonical (Add(𝜔, 1) ×
Add(𝜔, 1))-names such that �𝑦𝐺0×𝐺1

𝑙 = �𝑦𝐺0 and �𝑦𝐺0×𝐺1
𝑟 = �𝑦𝐺1 holds whenever 𝐺0 ×𝐺1 is (Add(𝜔, 1) ×

Add(𝜔, 1))-generic over V. If 𝐺0 × 𝐺1 is (Add(𝜔, 1) × Add(𝜔, 1))-generic over V and 𝑖 < 2, then
(𝐼𝑐𝐺𝑖

)V[𝐺𝑖 ] = (𝐼𝑐𝐺𝑖
)V[𝐺0 ,𝐺1 ] and this shows that

�𝑥𝐺𝑖 = (𝑖
𝐼𝑐𝐺𝑖

0,∞ (𝑥))V[𝐺0 ,𝐺1 ]

holds for the Add(𝜔, 1)-name �𝑥 fixed at the beginning of the proof of Theorem 1.3. Therefore, we can
apply Lemma 2.2 to see that

1Add(𝜔,1)×Add(𝜔,1) � “ �𝑥𝑙 ≠ �𝑥𝑟 ”

holds in V and, by Σ1-absoluteness, this statement also holds in H(𝜃).
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Now, given 𝑎, 𝑏 ∈ 𝜔2 with 𝑎 ≠ 𝑏, we have

𝜄(𝑎) = 𝑥𝑝 (𝑎) = 𝑗 (𝜋( �𝑥))𝐺𝑝 (𝑎) = 𝑗 (𝜋( �𝑥𝑙))
𝐺𝑝 (𝑎) ×𝐺𝑝 (𝑏)

≠ 𝑗 (𝜋( �𝑥𝑟 ))
𝐺𝑝 (𝑎) ×𝐺𝑝 (𝑏) = 𝑗 (𝜋( �𝑥))𝐺𝑝 (𝑏) = 𝑥𝑝 (𝑏) = 𝜄(𝑏). �

In the following, let � denote the unique binary relation on 𝜔2 with

𝑎 � 𝑏 ⇐⇒ 𝑥𝑝 (𝑎) � 𝑥𝑝 (𝑏)

for all 𝑎, 𝑏 ∈ 𝜔2. Then the above claim implies that � is a well-ordering of 𝜔2.

Claim. The following statements are equivalent for all 𝑎, 𝑏 ∈ 𝜔2:

(i) 𝑎 � 𝑏.
(ii) There exists a countable transitive model W of ZFC− and elements 𝛿, �𝛿, �𝐹 and I of W such that the

following statements hold:
◦ W contains M, 𝑝(𝑎), 𝑝(𝑏) and a surjection from 𝜔 onto M.
◦ �𝛿 = 〈𝛿𝑛 | 𝑛 < 𝜔〉 is a strictly increasing sequence of cardinals in W with 𝛿 = sup𝑛<𝜔 𝛿𝑛.
◦ �𝐹 = 〈𝐹𝑛 | 𝑛 < 𝜔〉 is a sequence with the property that 𝐹𝑛 is a normal ultrafilter on 𝛿𝑛 in W for

all 𝑛 < 𝜔.
◦ If 𝑘 : �̄� −→ 𝑊 is an elementary embedding of a transitive model �̄� into W and E ∈ �̄� satisfies

𝑘 (E) = {𝐹𝑛 | 𝑛 < 𝜔}, then the pair 〈�̄�, E〉 is 𝛼-iterable (see [49, p. 131]) for all 𝛼 < 𝜔1.
◦ I is the unique linear iteration of 〈𝑀, {�̄�𝑛 | 𝑛 < 𝜔}〉 of length 𝛿 with the property that

𝑈 𝐼
𝛼 = 𝑖𝐼0,𝛼 (�̄�min{𝑛<𝜔 |𝛼<𝛿𝑛 })

holds for all 𝛼 < 𝛿.
◦ The statement

𝜓(𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑎) , 𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑏) , 𝛿)

holds in W.

Proof of the claim. First, assume that (i) holds. Pick a sufficiently large regular cardinal 𝜗 > 𝜃 and
a countable elementary submodel Y of H(𝜗) containing 𝜃, 𝑝(𝑎), 𝑝(𝑏), 〈𝑈𝑛 | 𝑛 < 𝜔〉, X and 𝐼. Let
𝜏 : 𝑌 −→ 𝑊 denote the the corresponding transitive collapse. Given 𝑛 < 𝜔, set 𝛿𝑛 = 𝜏(𝜅𝑛) and
𝐹𝑛 = 𝜏(𝑈𝑛). Moreover, define 𝛿 = 𝜏(𝜅) and 𝐼 = 𝜏(𝐼). In this situation, [49, Lemma 3.5] shows that the
pair 〈𝑊, {𝐹𝑛 | 𝑛 < 𝜔}〉 is linearly iterable. Another application of [49, Lemma 3.5] allows us to also
conclude that 〈�̄�, E〉 is 𝛼-iterable, whenever 𝛼 is a countable ordinal, �̄� is a transitive set, 𝑘 : �̄� −→ 𝑊
is an elementary embedding and E ∈ �̄� with 𝑘 (E) = {𝐹𝑛 | 𝑛 < 𝜔}. Next, since we have 𝛿 = sup𝑛<𝜔 𝛿𝑛
and 𝜏 � (𝑀 ∪ {𝑀}) = id𝑀∪{𝑀 }, elementarity directly implies that I is the unique linear iteration of
〈𝑀, {�̄�𝑛 | 𝑛 < 𝜔}〉 of length 𝛿 with the property that

𝑈 𝐼
𝛼 = 𝑖𝐼0,𝛼 (�̄�min{𝑛<𝜔 |𝛼<𝛿𝑛 })

holds for all 𝛼 < 𝛿. Finally, since (i) implies that

𝜓(𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑎) , 𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑏) , 𝜅)

holds in H(𝜗), elementarity directly implies that

𝜓(𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑎) , 𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑏) , 𝛿)
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holds in W. In combination, these observations show that W, 𝛿, 〈𝛿𝑛 | 𝑛 < 𝜔〉, 〈𝐹𝑛 | 𝑛 < 𝜔〉 and I witness
that (ii) holds.

Now, assume that W, 𝛿, 〈𝛿𝑛 | 𝑛 < 𝜔〉, 〈𝐹𝑛 | 𝑛 < 𝜔〉 and I witness that (ii) holds. By [49, Lemma 3.6],
our assumptions ensure that the pair 〈𝑊, {𝐹𝑛 | 𝑛 < 𝜔}〉 is linearly iterable. Let 𝐼∗ denote the unique
linear iteration of 〈𝑊, {𝐹𝑛 | 𝑛 < 𝜔}〉 of length 𝜅 with the property that

𝑈 𝐼∗
𝛼 = 𝑖𝐼∗0,𝛼 (𝐹min{𝑛<𝜔 |𝛼<𝜅𝑛 })

holds for all 𝛼 < 𝜅. Then we have 𝑖𝐼∗0,∞(𝛿𝑛) = 𝜅𝑛 for all 𝑛 < 𝜔 and 𝑖𝐼∗0,∞(𝛿) = 𝜅. Moreover, we know that

𝑖𝐼∗0,∞ � (𝑀 [𝐺 𝑝 (𝑎) , 𝐺 𝑝 (𝑏) ] ∪ {𝑀}) = id𝑀 [𝐺𝑝 (𝑎) ,𝐺𝑝 (𝑏) ]∪{𝑀 } .

This shows that 𝑖𝐼∗0,∞(𝐼) is a linear iteration of 〈𝑀, {�̄�𝑛 | 𝑛 < 𝜔}〉 of length 𝜅 with the property that

𝑈
𝑖𝐼∗0,∞ (𝐼 )
𝛼 = 𝑖

𝑖𝐼∗0,∞ (𝐼 )

0,𝛼 (�̄�min{𝑛<𝜔 |𝛼<𝜅𝑛 })

holds for all 𝛼 < 𝜅, and this implies that 𝑖𝐼∗0,∞(𝐼) = 𝐼 holds. In particular, it follows that

𝑖𝐼∗0,∞(𝑖𝐼0,∞(𝑦)) = 𝑖𝐼0,∞(𝑦)

holds for all 𝑦 ∈ 𝑀 . By our assumptions and the above observations, this shows that

𝜓(𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑎) , 𝑖𝐼0,∞(𝜋( �𝑥))𝐺𝑝 (𝑏) , 𝜅)

holds in 𝑀 𝐼∗
0,∞. Using Σ1-upwards absoluteness, we know that 𝜓(𝑥𝑝 (𝑎) , 𝑥𝑝 (𝑏) , 𝜅) holds in V and this

shows that (i) holds in this case. �

Since the above claim shows that the relation � is definable over H(ℵ1) by a Σ2-formula with
parameters, we can conclude that � is a 𝚺1

3-subset of 𝜔2× 𝜔2 (see [25, Lemma 25.25]). This completes
the proof of the theorem. �

We end this section by proving the equiconsistency stated in Theorem 1.5. One direction is given by
the following lemma that follows from arguments presented in the proof of Theorem 4.1.6

Lemma 7.5. Assume that there is no inner model with infinitely many measurable cardinals. If 𝜅 is a
singular cardinal, then there exists an injection from 𝜅+ into P (𝜅) that is definable by a Σ1-formula
with parameters in H(𝜅) ∪ {𝜅}.

Proof. As in the proof of Theorem 4.1 in Section 4, we know that 0long does not exist and we let 𝑈𝑐𝑎𝑛

denote the canonical sequence of measures as in [31]. We again set 𝑈 = 𝑈𝑐𝑎𝑛 � 𝜅 and K = K[𝑈].
Then our assumptions imply that 𝑈 ∈ H(𝜅)K and the results of [31] show that K is an inner model of
ZFC with a canonical well-ordering <K. Since the domain of 𝑈𝑐𝑎𝑛 is finite, we can again combine [31,
Theorem 3.9], [31, Theorem 3.19] and [31, Theorem 3.23] to show that 𝜅+ = (𝜅+)K.

Given 𝜅 ≤ 𝛾 < 𝜅+, we let 𝑦𝛾 denote the subset of 𝜅 that canonically codes the <K-least bijection
between 𝜅 and 𝛾. As in the proof of Theorem 4.1, we can now conclude that the unique injection
𝜄 : 𝜅+ −→ P (𝜅) with 𝜄 � 𝜅 = id𝜅 and 𝜄(𝛾) = 𝑦𝛾 for all 𝜅 ≤ 𝛾 < 𝜅+ can be defined by a Σ1-formula and
the parameters 𝜅 and U. �

6The construction of simply definable long well-orderings in the power sets of uncountable cardinals was the original motivation
for the work presented in [36]. In combination with ideas contained in the proof of Lemma 7.5, the results of [36] can be used
to show that, if 0† does not exist and the cardinal 𝜅 is either singular or weakly compact, then there exists a well-ordering of a
subset of P (𝜅) of order-type 𝜅+ · 𝜅 that is definable by a Σ1-formula with parameter 𝜅 .
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The next lemma is needed in the converse direction of our equiconsistency proof:

Lemma 7.6. Let U be a normal ultrafilter on a measurable cardinal 𝛿, let 𝛼 < 𝛿, let E be a set of normal
ultrafilters on cardinals smaller than 𝛼 and let I be a linear iteration of 〈V, E〉 of length less than 𝛼. If
𝐵 ∈ 𝑖𝐼0,∞(𝑈), then there is 𝐴 ∈ 𝑈 with 𝑖𝐼0,∞(𝐴) ⊆ 𝐵.

Proof. Using [28, Exercise 12], we find a function 𝑓 : [𝛼]<𝜔 −→ 𝑈 with the property that 𝐵 ∈
ran(𝑖𝐼0,∞( 𝑓 )). If we now define

𝐴 =
⋂

{ 𝑓 (𝑎) | 𝑎 ∈ [𝛼]<𝜔},

then A is an element of U with the desired properties. �

In order to complete the proof of Theorem 1.5, we will now use diagonal Prikry forcing and a
characterisation of generic sequences for this forcing due to Fuchs [14] to construct a model without
Σ1-definable long well-orderings from an infinite sequence of measurable cardinals.

Proof of Theorem 1.5. Assume that �𝜅 = 〈𝜅(𝑛) | 𝑛 < 𝜔〉 is a strictly increasing sequence of measurable
cardinals with limit 𝜅. Pick a sequence �𝑈 = 〈𝑈 (𝑛) | 𝑛 < 𝜔〉 with the property that 𝑈 (𝑛) is a normal
ultrafilter on 𝜅(𝑛) for each 𝑛 < 𝜔. Let P �𝑈 denote the diagonal Prikry forcing associated to the sequence
�𝑈 (see [15, Section 1.3]), that is, P �𝑈 is the partial order defined by the following clauses:

◦ Conditions in P �𝑈 are sequences 𝑝 = 〈𝑝𝑛 | 𝑛 < 𝜔〉 with the property that there exists a natural number
𝑙𝑝 such that 𝑝𝑛 ∈ 𝜅(𝑛) for all 𝑛 < 𝑙𝑝 and 𝑝𝑛 ∈ 𝑈 (𝑛) for all 𝑙𝑝 ≤ 𝑛 < 𝜔.

◦ Given conditions p and q in P �𝑈 , we have 𝑝 ≤P �𝑈
𝑞 if and only if 𝑙𝑞 ≤ 𝑙𝑝 , 𝑝𝑛 = 𝑞𝑛 for all 𝑛 < 𝑙𝑞 ,

𝑞𝑛 ∈ 𝑝𝑛 for all 𝑙𝑞 ≤ 𝑛 < 𝑙𝑝 and 𝑝𝑛 ⊆ 𝑞𝑛 for all 𝑙𝑝 ≤ 𝑛 < 𝜔.

By [15, Lemma 1.35], forcing with P �𝑈 does not add bounded subsets of 𝜅.
Given a filter G on P �𝑈 , we let 𝑐𝐺 denote the unique function with domain sup𝑝∈𝐺 𝑙𝑝 ≤ 𝜔 and

𝑐𝐺 (𝑛) = 𝑝𝑛 for all 𝑝 ∈ 𝐺 and 𝑛 < 𝑙𝑝 . In the other direction, given a sequence c contained in the set∏
�𝜅 of all functions 𝑑 ∈ 𝜔𝜅 with 𝑑 (𝑛) < 𝜅(𝑛) for all 𝑛 < 𝜔, we let 𝐺𝑐 denote the set of all conditions

p in P �𝑈 with 𝑝𝑛 = 𝑐(𝑛) for all 𝑛 < 𝑙𝑝 and 𝑐(𝑛) ∈ 𝑝𝑛 for all 𝑙𝑝 ≤ 𝑛 < 𝜔. It is easy to see that 𝐺𝑐 is a
filter on P �𝑈 with 𝑐𝐺𝑐 = 𝑐 in this situation. Given an inner model M that contains �𝑈 and 𝑐 ∈

∏
�𝜅, we say

that c is �𝑈-generic over M if 𝐺𝑐 is P �𝑈 -generic over M. The results of [14] then show that a sequence
𝑐 ∈

∏
�𝜅 is �𝑈-generic over an inner model M if and only if {𝑛 < 𝜔 | 𝑐(𝑛) ∈ 𝐴𝑛} is a cofinite subset of 𝜔

for every sequence 〈𝐴𝑛 ∈ 𝑈 (𝑛) | 𝑛 < 𝜔〉 in M. Using [19, Theorem 3.5.1], this characterization can be
used to show that the Boolean completion of P �𝑈 is weakly homogeneous and therefore every statement
in the forcing language of P �𝑈 that uses only ground model elements as parameters is decided by 1P �𝑈

.
Now, let G be P �𝑈 -generic over V and assume that, in V[𝐺], there exists a well-ordering � of a subset

D of P (𝜅) of cardinality greater than 𝜅 that can be defined by a Σ1-formula 𝜑(𝑣0, . . . , 𝑣3), a parameter
𝑧 ∈ H(𝜅) and the parameter 𝜅. Then we can find a Σ1-formula 𝜓(𝑣0, 𝑣1, 𝑣2) with the property that, in
V[𝐺], the set D can be defined by the formula 𝜓 and the parameters 𝜅 and z. In this situation, we know
that 𝑧 ∈ V and the homogeneity properties of P �𝑈 imply that 𝐷 ⊆ V, because, given 𝑦 ∈ 𝐷, we know that
y is the 𝛼-th element of the well-order 〈𝐷,�〉 for some ordinal 𝛼 and therefore the set {𝑦} is definable
in V[𝐺] by a formula with parameters in V. In addition, we know that

𝐷 = {𝑦 ∈ P (𝜅)V | 1P �𝑈
� 𝜓( �̌�, 𝑧, 𝜅)}. (9)

Let E denote the set of all normal ultrafilters on cardinals smaller than 𝜅 in V. Apply Lemma 2.1 to 𝜅,
z and D in V to obtain an element 𝑥∗ of D, a system 〈𝜈𝑠 | 𝑠 ∈

<𝜔𝜅〉 of inaccessible cardinals smaller than
𝜅, a system 〈𝜅𝑠 | 𝑠 ∈

<𝜔𝜅〉 of measurable cardinals smaller than 𝜅, a system 〈𝑈𝑠 | 𝑠 ∈
<𝜔𝜅〉 of elements

of E and a system 〈𝐼𝑠 | 𝑠 ∈ <𝜔𝜅〉 of linear iterations of 〈V, E〉 possessing the properties listed in the
lemma. Next, for each 𝑐 ∈ (𝜔𝜅)V[𝐺 ] , let 𝐼𝑐 denote the unique iteration of 〈V, {𝑈𝑐�𝑛 | 𝑛 < 𝜔}〉 of length
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sup𝑛<𝜔 lh(𝐼𝑐�𝑛) in V[𝐺] with 𝑈 𝐼𝑐
𝛼 = 𝑈𝑐�𝑛

𝛼 for all 𝑛 < 𝜔 and 𝛼 < lh(𝐼𝑐�𝑛). Then 𝑀 𝐼𝑐
lh(𝐼𝑐�𝑛)

= 𝑀
𝐼𝑐�𝑛
∞ and

𝑖𝐼𝑐0,lh(𝐼𝑐�𝑛)
= 𝑖

𝐼𝑐�𝑛
0,∞ for all 𝑐 ∈ (𝜔𝜅)V[𝐺 ] and 𝑛 < 𝜔 with lh(𝐼𝑐�𝑛) < lh(𝐼𝑐). Moreover, we have 𝑀 𝐼𝑐

∞ = 𝑀
𝐼𝑐�𝑛
∞

and 𝑖𝐼𝑐0,∞ = 𝑖
𝐼𝑐�𝑛
0,∞ for all 𝑐 ∈ (𝜔𝜅)V[𝐺 ] and 𝑛 < 𝜔 with lh(𝐼𝑐�𝑛) = lh(𝐼𝑐). Given 𝑐 ∈ (𝜔𝜅)V[𝐺 ] , we define

𝑀𝑐 = 𝑀 𝐼𝑐
∞ , 𝑐 = 𝑖𝐼𝑐0,∞ ◦ 𝑐𝐺 and 𝑥𝑐 = 𝑖𝐼𝑐0,∞(𝑥∗). In this situation, Lemma 2.2 shows that 𝑀𝑐 is well-founded

for all 𝑐 ∈ (𝜔𝜅)V[𝐺 ] .

Claim. If 𝑐 ∈ (𝜔𝜅)V[𝐺 ] , then 𝑐 is 𝑖𝐼𝑐0,∞( �𝑈)-generic over 𝑀𝑐 .

Proof of the Claim. Suppose that 𝑖𝐼𝑐0,∞( �𝑈) = 〈𝑈 ′′(𝑛) | 𝑛 < 𝜔〉 and fix a sequence �𝐶 =
〈𝐶𝑛 ∈ 𝑈 ′′(𝑛) | 𝑛 < 𝜔〉 in 𝑀𝑐 . Since 𝐼𝑐 is a linear iteration of length at most 𝜅, we can find 𝑛0 < 𝜔 and a
sequence �𝐵 = 〈𝐵𝑛 | 𝑛 < 𝜔〉 in 𝑀

𝐼𝑐�𝑛0
∞ such that either lh(𝐼𝑐) = lh(𝐼𝑐�𝑛0) and �𝐵 = �𝐶, or lh(𝐼𝑐) > lh(𝐼𝑐�𝑛0 )

and 𝑖𝐼𝑐lh(𝐼𝑐�𝑛0 ) ,∞
( �𝐵) = �𝐶. Now, pick 𝑛1 < 𝜔 with 𝜅(𝑛) > 𝜅𝑐�𝑛0 for all 𝑛1 ≤ 𝑛 < 𝜔. In this situation, the

conclusions of Lemma 2.1 ensure that we can apply Lemma 7.6 to find a sequence 〈𝐴𝑛 ∈ 𝑈 (𝑛) | 𝑛 < 𝜔〉
with 𝑖𝐼𝑐0,lh(𝐼𝑐�𝑛0 )

(𝐴𝑛) ⊆ 𝐵𝑛 for all 𝑛1 ≤ 𝑛 < 𝜔. Since 𝑐𝐺 is �𝑈-generic over V, we find 𝑛1 ≤ 𝑛2 < 𝜔 with
𝑐𝐺 (𝑛) ∈ 𝐴𝑛 for all 𝑛2 ≤ 𝑛 < 𝜔. But this shows that 𝑐(𝑛) ∈ 𝐶𝑛 holds for all 𝑛2 ≤ 𝑛 < 𝜔. Using the
characterization of generic sequences provided by [14], these computations prove the statement of the
claim. �

Claim. If 𝑐 ∈ (𝜔𝜅)V[𝐺 ] , then 𝑥𝑐 ∈ 𝐷.

Proof of the claim. By the previous claim, there exists a filter H on 𝑖𝐼𝑐0,∞(P �𝑈 ) in V[𝐺] that is generic
over 𝑀𝑐 . Since Lemma 2.2 shows that 𝑖𝐼𝑐0,∞(𝜅) = 𝜅 and 𝑖𝐼𝑐0,∞(𝑧) = 𝑧, we can use Equation (9) to show that

1𝑖𝐼𝑐0,∞
� 𝜓(𝑥𝑐 , 𝑧, 𝜅)

holds in 𝑀𝑐 . This shows that 𝜓(𝑥𝑐 , 𝑧, 𝜅) holds in 𝑀𝑐 [𝐻] and Σ1-upwards absoluteness implies that this
statement also holds in V[𝐺]. �

By Lemma 2.2, our definitions ensure that the map

𝜄 : (𝜔𝜅)V[𝐺 ] −→ 𝐷; 𝑐 ↦−→ 𝑥𝑐

is an injection that is definable in V[𝐺] from parameters contained in the ground model V. Since
𝜄(𝑐𝐺) ∈ 𝐷 ⊆ V, this shows that, in V[𝐺], the set {𝑐𝐺} is definable from parameters in V. Using the
homogeneity properties of P �𝑈 in V, we can now conclude that 𝑐𝐺 is an element of V, a contradiction. �

8. Long well-orderings in P (𝜔1)

We now show that both strong large cardinal assumptions and strong forcing axioms cause analogues
of the above results on the definability of long well-orders to hold for 𝜔1. In the following, we combine
well-known consequences of the axiom of determinacy AD with Woodin’s analysis of P𝑚𝑎𝑥-extensions
of determinacy models (see [32] and [52]).

Lemma 8.1 (ZF). Let 𝜅 be an infinite cardinal. If there is an injection from 𝜅+ into P (𝜅), then every
<𝜅+-complete ultrafilter on 𝜅+ is principal.

Proof. Let U be a <𝜅+-complete ultrafilter on 𝜅+, and let 𝜄 : 𝜅+ −→ P (𝜅) be an injection. Given 𝛼 < 𝜅,
set

𝐵𝛼 = {𝛾 < 𝜅+ | 𝛼 ∈ 𝜄(𝛾)}.
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Since U is an ultrafilter, there is 𝐴 ⊆ 𝜅 such that

𝛼 ∈ 𝐴 ⇐⇒ 𝐵𝛼 ∈ 𝑈

holds for all 𝛼 < 𝜅. The <𝜅+-completeness of U then ensures that the set

𝐵 =
⋂

{𝐵𝛼 | 𝛼 ∈ 𝐴} ∩
⋂

{𝜅+ \ 𝐵𝛼 | 𝛼 ∈ 𝜅 \ 𝐴}

is an element of U. We now know that 𝜄[𝐵] = {𝐴} and hence the injectivity of 𝜄 implies that B is a
singleton. �

Corollary 8.2 (ZF + DC + AD). There is no injection from 𝜔2 into P (𝜔1).

Proof. By results of Kleinberg and Martin–Paris (see [29, Section 13]), the restriction of the closed
unbounded filter on 𝜔2 to the set of all ordinals of countable cofinality is a <𝜔2-complete, nonprincipal
ultrafilter on 𝜔2. �

The following lemma will allow us to use the theory developed in [52] to prove Theorem 1.6.(i).

Lemma 8.3. Assume that AD holds in L(R) and V is a P𝑚𝑎𝑥-generic extension of L(R). Then no
well-ordering of a subset of P (𝜔1) of cardinality greater than ℵ1 is contained in OD(R).

Proof. Assume, towards a contradiction, that there exists a subset D of P (𝜔1) of cardinality greater
than ℵ1 and a well-ordering � of D that is contained in OD(R). Then the fact that P𝑚𝑎𝑥 is countably
closed and homogeneous in L(R) (see [52, Lemma 4.38] and [52, Lemma 4.43]) directly implies that D
and � are both contained in L(R). But this shows that L(R) is a model of ZF + DC + AD that contains
an injection from 𝜔2 into P (𝜔1), contradicting Corollary 8.2. �

Proof of Theorem 1.6.(i). Let � be a well-ordering of a subset of P (𝜔1) of cardinality greater than ℵ1
that is definable by a Σ1-formula 𝜑(𝑣0, . . . , 𝑣3) and parameters 𝜔1 and 𝑧 ∈ H(ℵ1).

First, assume that Woodin’s axiom (∗) holds, that is, AD holds in L(R) and L(P (𝜔1)) is a P𝑚𝑎𝑥-
generic extension of L(R). We now know that � and its domain are both elements of OD(R)L(P (𝜔1))

because Σ1-statements with parameters in H(ℵ2) are absolute between L(P (𝜔1)) and V. Since the
domain of � has cardinality greater than ℵ1 in L(P (𝜔1)), we can now use Lemma 8.3 to derive a
contradiction.

Now, assume that there is a measurable cardinal above infinitely many Woodin cardinals. Then AD
holds in L(R). Note that the formula 𝜑 and the parameters 𝜔1 and z also define � in H(ℵ2), and this
statement can be formulated by a Π2-formula with parameter z in the structure 〈H(ℵ2), ∈〉 Let G be
P𝑚𝑎𝑥-generic over L(R). Then the Π2-maximality of L(R) [𝐺] (see [32, Theorem 7.3]) implies that the
formula 𝜑 and the parameters 𝜔1 and z also define a well-ordering of a subset of P (𝜔1) of cardinality
greater than ℵ1 in the structure 〈H(ℵ2)

L(R) [𝐺 ] , ∈〉. In particular, such a well-ordering is contained in
OD(R)L(R) [𝐺 ] , again contradicting Lemma 8.3. �

9. Almost disjoint families in P (𝜔1)

Following the structure of the arguments in the previous section, we now show that both large cardinals
and forcing axioms imply that large almost disjoint families of subsets of 𝜔1 are not simply definable.
The first step in these proofs is the following unpublished result of William Chan, Stephen Jackson and
Nam Trang whose proof we include with their permission. This result is an application of their work
on the validity of the Kurepa hypothesis in determinacy models and continues a line of groundbreaking
results on definable combinatorics at 𝜔1 (see, for example, [6], [7], [8] and [9]).
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Theorem 9.1 (Chan–Jackson–Trang, ZF + DCR + AD+). Assume that V = L(P (R)) holds. If A is a set
of cofinal subsets of 𝜔1, then one of the following statements holds:

(i) A can be well-ordered and its cardinality is less than or equal to ℵ1.
(ii) There are distinct 𝑥, 𝑦 ∈ 𝐴 such that 𝑥 ∩ 𝑦 is unbounded in 𝜔1.

The proof of this result makes use of the following topological fact:

Proposition 9.2 (ZF +DC). If X is a Polish space and 〈𝐴𝛼 | 𝛼 < 𝜔1〉 is a sequence of pairwise disjoint
nonmeager subsets of X, then there is an 𝛼 < 𝜔1 such that the subset 𝐴𝛼 does not have the property of
Baire.

Proof. Assume, towards a contradiction, that 𝐴𝛼 has the property of Baire for all 𝛼 < 𝜔1. Given 𝛼 < 𝜔1,
our assumption implies that there is a nonempty open set U with the property that 𝑈 \ 𝐴𝛼 is meager.
Hence, there is a sequence 〈𝑁𝛼 | 𝛼 < 𝜔1〉 of nonempty basic open subsets of X such that 𝑁𝛼 \ 𝐴𝛼 is
meager. Pick 𝛼 < 𝛽 < 𝜔1 with 𝑁𝛼 = 𝑁𝛽 . Then 𝑁𝛼 \ (𝐴𝛼 ∩ 𝐴𝛽) = (𝑁𝛼 \ 𝐴𝛼) ∪ (𝑁𝛼 \ 𝐴𝛽) is meager
and hence 𝐴𝛼 ∩ 𝐴𝛽 ≠ ∅, a contradiction �

Proof of Theorem 9.1. Assume, towards a contradiction, that both conclusions fail.

Claim. The set A cannot be well-ordered.

Proof of the claim. Assume, towards a contradiction, that A can be well-ordered. Then our assumptions
imply that it has cardinality greater than ℵ1 and hence we obtain an injection of 𝜔2 into P (𝜔1). But this
yields a contradiction, because the assumption of Corollary 8.2 are satisfied in our setting. �

By combining the above claim with [4, Theorem 1.4], we now obtain an injection 𝜄 : R −→ 𝐴. Our
assumptions then ensure that the function

𝑐 : [R]2 −→ 𝜔1; {𝑥, 𝑦} ↦−→ min{𝛼 < 𝜔1 | 𝜄(𝑥) ∩ 𝜄(𝑦) ⊆ 𝛼}

is well-defined. Given 𝛼 < 𝜔1, set 𝐸𝛼 = 𝑐−1{𝛼} ⊆ R×R. Then
⋃
{𝐸𝛼 | 𝛼 < 𝜔1} is dense open in R×R.

Claim. There is a 𝜆 < 𝜔1 such that the set
⋃
{𝐸𝛼 | 𝛼 < 𝜆} is comeager in R × R.

Proof of the claim. Assume that there is no 𝜆 < 𝜔1 with the property that the set
⋃
{𝐸𝛼 | 𝛼 < 𝜆} is

comeager. Since the ideal of meager subsets of R×R is closed under well-ordered unions in our setting,
our assumption yields a strictly increasing function 𝑓 : 𝜔1 −→ 𝜔1 with the property that 𝐸 𝑓 (𝛼) is a
nonmeager subset of R × R for all 𝛼 < 𝜔1. In this situation, the sequence 〈𝐸 𝑓 (𝛼) | 𝛼 < 𝜔1〉 consists
of pairwise disjoint nonmeager subsets of R × R and, since we assume that AD holds, all of these sets
possess the property of Baire. This contradicts Proposition 9.2. �

By a classical result of Mycielski (see [30, Theorem 19.1]), we can now find an injection 𝑒 : R −→ R
such that for all 𝑥, 𝑦 ∈ R with 𝑥 ≠ 𝑦, there is an 𝛼 < 𝜆 with 〈𝑒(𝑥), 𝑒(𝑦)〉 ∈ 𝐸𝛼. In this situation, we
know that

(𝜄 ◦ 𝑒) (𝑥) ∩ (𝜄 ◦ 𝑒) (𝑦) ⊆ 𝜆

holds for all 𝑥, 𝑦 ∈ R with 𝑥 ≠ 𝑦. In particular, since the set A consists of unbounded subsets of 𝜔1, we
know that the map

𝑖 : R −→ 𝜔1; 𝑥 ↦−→ min((𝜄 ◦ 𝑒) (𝑥) \ 𝜆)

is an injection. But this shows that the reals can be well-ordered, contradicting our assumptions. �

In order to transfer the above result to models of the form HOD(R) of P𝑚𝑎𝑥-extensions, we make
use of another axiom introduced by Woodin, called

( ∗
∗

)
(see [52, Definition 5.69]).
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Lemma 9.3. Assume that AD holds in L(R) and V is a P𝑚𝑎𝑥-generic extension of L(R). If 𝐴 ∈ OD(R)
is a set of cardinality greater than ℵ1 that consists of unbounded subsets of 𝜔1, then there are distinct
𝑥, 𝑦 ∈ 𝐴 with the property that 𝑥 ∩ 𝑦 is unbounded in 𝜔1.

Proof. Assume, towards a contradiction, that the above conclusion fails.

Claim. 𝐴 ⊆ L(R).

Proof of the claim. Assume that 𝐴 � L(R). Since V = L(P (𝜔1)) holds and [52, Corollary 5.83] shows
that our assumptions imply that

( ∗
∗

)
holds, we can apply [52, Theorem 5.84] to find an unbounded subset

U of 𝜔1 and a function 𝜋 : <𝜔1 2 −→ [𝜔1]
𝜔 such that the following statements hold:

(i) If 𝑠, 𝑡 ∈ <𝜔1 2 with 𝑠 ⊆ 𝑡, then 𝜋(𝑠) ⊆ 𝜋(𝑡) and 𝜋(𝑠) ∩ 𝛼 = 𝜋(𝑡) ∩ 𝛼 for all 𝛼 ∈ 𝜋(𝑠).
(ii) Given 𝑠 ∈ <𝜔1 2 and 𝛼 ∈ dom(𝑠) ∩𝑈, we have 𝛼 ∈ 𝜋(𝑠) if and only if 𝑠(𝛼) = 1.

(iii) If 𝑥 ∈ 𝜔1 2, then �̄�(𝑥) =
⋃
{𝜋(𝑥 � 𝛼) | 𝛼 < 𝜔1} ∈ 𝐴.

Pick 𝑥, 𝑦 ∈ 𝜔1 2 such that x has constant value 1 and y is the characteristic function of 𝑈 \ {min(𝑈)}.
Since �̄�(𝑥), �̄�(𝑦) ∈ 𝐴 and 𝑈 \ {min(𝑈)} ⊆ �̄�(𝑥) ∩ �̄�(𝑦), we know that �̄�(𝑥) = �̄�(𝑦) as �̄�(𝑥) ∩ �̄�(𝑦) is
unbounded in 𝜔1. But min(𝑈) ∈ �̄�(𝑥) \ �̄�(𝑦), a contradiction. �

Claim. 𝐴 ∈ L(R).

Proof of the claim. Using the homogeneity of P𝑚𝑎𝑥 in L(R), this statement follows directly from the
previous claim and the fact that the set A is contained in the class OD(R). �

Since [4, Corollary 2.16] shows that L(R) is a model of DC+AD+, we can use Theorem 9.1 in L(R)
to conclude that, in L(R), the set A can be well-ordered and its cardinality is smaller than or equal to
ℵ1. But this shows that the cardinality of A in V is at most ℵ1, a contradiction. �

Proof of Theorem 1.6.(ii). Let A be a set of cardinality greater than ℵ1 that consists of unbounded
subsets of 𝜔1 and is definable by a Σ1-formula 𝜑(𝑣0, 𝑣1, 𝑣2) and parameters 𝜔1 and 𝑧 ∈ H(ℵ1).

First, assume that Woodin’s axiom (∗) holds. Then theΣ1-reflection principle implies that the formula
𝜑 and the parameters𝜔1 and z also define the set A in L(P (𝜔1)). But this shows that 𝐴 ∈ OD(R)L(P (𝜔1))

and, since AD holds in L(R) and L(P (𝜔1)) is a P𝑚𝑎𝑥-generic extension of L(R), we can now apply
Lemma 9.3 in L(P (𝜔1)) to find distinct 𝑥, 𝑦 ∈ 𝐴 with 𝑥 ∩ 𝑦 unbounded in 𝜔1.

Next, assume that there is a measurable cardinal above infinitely many Woodin cardinals. Then AD
holds in L(R). Note that the formula 𝜑 and the parameters 𝜔1 and z also define A in the structure
〈H(𝜔2), ∈〉. Assume, towards a contradiction, that 𝑥 ∩ 𝑦 is bounded in 𝜔1 for all distinct 𝑥, 𝑦 ∈ 𝐴.
Note that, in 〈H(𝜔2), ∈〉, the statement that 𝜑, 𝜔1 and z define a set of cardinality greater than ℵ1 that
consists of unbounded subsets of 𝜔1 whose pairwise intersections are countable can be expressed by a
Π2-formula with parameter z. Let G be P𝑚𝑎𝑥-generic over L(R). Then the Π2-maximality of L(R) [𝐺]
implies that, in the structure 〈H(ℵ2)

L(R) [𝐺 ] , ∈〉, the formula 𝜑 and the parameters 𝜔1 and z define a set
of cardinality greater than ℵ1 that consists of unbounded subsets of 𝜔1 whose pairwise intersections are
countable. In particular, such a subset of P (𝜔1) exists in OD(R)L(R) [𝐺 ] , contradicting Lemma 9.3. �

10. Concluding remarks and open questions

In the following, we discuss several questions raised by the above results, starting with questions about
the optimality of the assumption of Theorem 1.1. By Theorem 1.2, the consistency strength of this
assumption is optimal in the case of singular cardinals. In contrast, results of Schlicht in [44] show that,
if 𝜅 is an uncountable regular cardinal, 𝜃 > 𝜅 is inaccessible and G is Col(𝜅, <𝜃)-generic over V, then, in
V[𝐺], every subset of 𝜅 in OD(𝜅On) either has cardinality 𝜅 or contains a closed subset homeomorphic
to 𝜅2. In particular, if 𝜅 is not weakly compact in V, then, in V[𝐺], the cardinal 𝜅 is not weakly compact,
the spaces 𝜅2 and 𝜅 𝜅 are homeomorphic (see, for example, [35, Corollary 2.3]) and for every subset D
of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅},
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there is a perfect embedding 𝜄 : 𝜅 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷. This shows that our question is only
interesting when we also assume that the given cardinal 𝜅 possesses certain large cardinal properties.7
Question 10.1. Assume that 𝜅 is a weakly compact cardinal with the property that for every subset D
of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in H(𝜅) ∪ {𝜅},
there is a perfect embedding 𝜄 : 𝜅 𝜅 −→ P (𝜅) with ran(𝜄) ⊆ 𝐷. Is there an inner model that contains a
weakly compact limit of measurable cardinals?

In contrast to the singular case, we may also ask whether the conclusion of Theorem 1.1 can be
established from a sequences of measurable cardinals that are bounded in a regular cardinal, but whose
order type is equal their minimum.
Question 10.2. Does the assumption of Question 1.1 imply the existence of a set-sized transitive model
of ZFC containing a weakly compact cardinal 𝛿 and a sequence S of measurable cardinals less than 𝛿 of
order-type min(𝑆)?

We now consider the possibility to strengthen Theorem 1.4. Since the existence of infinitely many
measurable cardinals is compatible with the existence of a 𝚺1

3-well-ordering of the reals (see [41,
Theorem 3.6]), it is natural to ask whether the assumption of this theorem is actually consistent. The
model constructed in [41, Section 1] should be the natural candidate to look for an affirmative answer
to the following question.
Question 10.3. Is it consistent that there exists a limit 𝜅 of 𝜔-many measurable cardinals and a well-
ordering of a subset of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with
parameter 𝜅?

In addition, the equiconsistency given by Theorem 1.5 motivates the question whether such implica-
tions can be extended to cardinals of higher cofinalities.
Question 10.4. Is it consistent that there exists a limit of measurable cardinals 𝜅 and a well-ordering
of a subset of P (𝜅) of cardinality greater than 𝜅 that is definable by a Σ1-formula with parameters in
H(𝜅) ∪ {𝜅}?

Next, we consider simply definable almost disjoint families. The statements of Theorem 1.3 and
Theorem 1.6.(ii) are motivated by a classical result of Mathias in [39] showing that no maximal almost
disjoint family in P (𝜔) is analytic. In contrast, Miller [40] showed that the existence of coanalytic
maximal disjoint families in P (𝜔) is consistent. This motivates the following questions:
Question 10.5.
(i) Does the existence of sufficiently strong large cardinals imply that no almost disjoint family of

cardinality greater than ℵ1 in P (𝜔1) is definable by a Π1-formula with parameters in H(ℵ1)∪{𝜔1}?
(ii) Do sufficiently strong large cardinal properties of a cardinal 𝜅 imply that no almost disjoint family

of cardinality greater than 𝜅 in P (𝜅) is definable by a Π1-formula with parameters in H(𝜅) ∪ {𝜅}?
It should be noted that our proof of Theorem 1.6.(ii) in Section 9 already shows that Woodin’s axiom

(∗) (and therefore strong forcing axioms, see [2]) implies that no almost disjoint family of cardinality
greater than ℵ1 in P (𝜔1) is definable in the structure 〈H(ℵ2), ∈〉 by a formula with parameters in
H(ℵ1) ∪ 𝜔2, because all such families are elements of OD(R)L(P (𝜔1)) . In particular, no such family is
definable by a Π1-formula with parameters in H(ℵ1) ∪ {𝜔1} in this setting.

Finally, we consider the questions whether analogues of the above results hold for other types of
uncountable cardinals. The following observation uses ideas from [34, Section 6] and [37, Section 5] to
show that the results of Section 9 cannot be generalized from 𝜔1 to 𝜔2. Moreover, it shows that forcing
axioms outright imply the Σ1-definability of pathological objects at 𝜔2. Remember that a sequence
〈𝐶𝛼 | 𝛼 ∈ Lim ∩ 𝜔1〉 is a C-sequence if 𝐶𝛼 is an unbounded subset of 𝛼 of order-type 𝜔 for every
countable limit ordinal 𝛼.

7Note that the assumption that the weak compactness of a cardinal 𝜅 is preserved by forcing with partial orders of the form
Col(𝜅, <𝜃) has high consistency strength (see, for example, [21] and [27]).
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Proposition 10.6.

(i) If the Bounded proper forcing axiom BPFA holds and �𝐶 is a C-sequence, then there exists an almost
disjoint family of cardinality 2ℵ2 in P (𝜔2) that is definable by a Σ1-formula with parameters 𝜔2
and �𝐶.

(ii) If 𝜔1 = 𝜔L
1 and BPFA holds,8 then there exists an almost disjoint family of cardinality 2ℵ2 in

P (𝜔2) that is definable by a Σ1-formula with parameter 𝜔2.
(iii) If there is a supercompact cardinal, then, in a generic extension of the ground model, the proper

forcing axiom PFA holds and there exists an almost disjoint family of cardinality 2ℵ2 in P (𝜔2) that
is definable by a Σ1-formula and the parameter 𝜔2.

Proof. (i) By [5, Theorem 2], our assumption implies the existence of a well-ordering of H(ℵ2) of order-
type 𝜔2 that is definable by a Σ1-formula that only uses the sequence �𝐶 as a parameter. In particular,
there exists an injection 𝜄 : H(ℵ2) −→ 𝜔2 that is definable in the structure 〈H(ℵ2), ∈〉 by a formula with
parameter �𝐶. Since [34, Lemma 6.4] shows that our assumption implies that the set {H(ℵ2)} is definable
by a Σ1-formula with parameter 𝜔2, we know that 𝜄 is definable by a Σ1-formula with parameters 𝜔2
and �𝐶. Given 𝑥 ∈ 𝜔2 2, we now define

𝑥 = {𝜄(𝑥 � 𝛾) | 𝛾 < 𝜔2} ∈ P (𝜔2).

The above computations then show that the set 𝐴 = {𝑥 | 𝑥 ∈ 𝜔2 2} is definable by a Σ1-formula with
parameters 𝜔2 and �𝐶, and it is easy to see that A is an almost disjoint family of cardinality 2ℵ2 in P (𝜔2).

(ii) Assume that 𝜔1 = 𝜔L
1 and BPFA holds. Let �𝐶 denote the <L-least C-sequence in L. Then �𝐶 is a

C-sequence and the set { �𝐶} is definable by a Σ1-formula with parameter 𝜔2. Using (i), we can conclude
that there exists an almost disjoint family of cardinality 2ℵ2 in P (𝜔2) that is definable by a Σ1-formula
with parameter 𝜔2.

(iii) By [1, Theorem 5.2], it is possible to start in a model containing a supercompact cardinal and
force the validity of PFA together with the existence of a well-ordering of H(ℵ2) of order-type 𝜔2 that
is definable in 〈H(ℵ2), ∈〉 by a formula without parameters. We can now proceed as in (i) to obtain an
almost disjoint family of cardinality 2ℵ2 in P (𝜔2) that is definable by a Σ1-formula with parameter 𝜔2
in this generic extension. �
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