ON THE EQUIVALENCE OF CANCELLATIVE EXTENSIONS OF COMMUTATIVE CANCELLATIVE SEMIGROUPS BY GROUPS

CHARLES V. HEUER
(Received 30 January 1969; revised 3 May 1969)
Communicated by G. B. Preston

In [1] D. W. Miller and the author established necessary and sufficient conditions for the existence of a cancellative (ideal) extension of a commutative cancellative semigroup by a cyclic group with zero. The purpose of this paper is to extend these results to cancellative extensions by any finitely generated Abelian group with zero and to establish in this general case conditions under which two such extensions are equivalent.

1. Existence of extensions

If T is a commutative cancellative semigroup and S is a cancellative extension of T by a group with zero G^{0}, then $S=G \cup T$ where T is an ideal in S. Since any idempotent in the cancellative semigroup S is necessarily an identity for S it follows that T cannot contain an idempotent. Furthermore (see [1]) S is necessarily commutative and hence G must be also. All of this then reduces the problem of the existence of a cancellative extension of a commutative cancellative semigroup T by a group with zero G^{0} to a consideration of the case where T does not contain an idempotent and G^{0} is Abelian. The following theorem establishes necessary and sufficient conditions for the existence of such an extension in case G is finitely generated.

Theorem 1. Let T be a commutative cancellative semigroup without idempotent and let G be a finitely generated Abelian group. Suppose g_{1}, \cdots, g_{n} is a basis for G and let $m_{i}=o\left(g_{i}\right)$ for $i=1, \cdots, n^{1}$. (Allowing the possibility that $m_{i}=\infty$ for some i.) Then there exists a cancellative semigroup $S=G \cup T$ if and only if there exist n distinct pairs of elements $a_{i}, b_{i},(i=1, \cdots, n)$ in T such that

$$
\begin{equation*}
a_{i} T=b_{i} T \quad \text { for } \quad i=1, \cdots, n \tag{I}
\end{equation*}
$$

$$
\prod_{i=1}^{n} a_{i}^{u_{i}}=\prod_{i=1}^{n} b_{i}^{u_{i}} \Rightarrow \begin{cases}u_{i}=0 & \text { if } m_{i}=\infty \tag{II}\\ m_{i} \mid u_{i} & \text { if } m_{i}<\infty\end{cases}
$$

${ }^{1} o\left(g_{l}\right)$ denotes the order of g_{i}.

Proof. Suppose a cancellative extension $S=G \cup T$ exists. (Recall that S is necessarily commutative.) Let a_{1}, \cdots, a_{n} be any n distinct elements of T and let g_{1}, \cdots, g_{n} be a basis for the group G such that $o\left(g_{i}\right)=m_{i}$ for each i. For each i choose $b_{i}=g_{i} a_{i}$. Then for any $t \in T$,

$$
a_{i} t=a_{i} g_{i} g_{i}^{-1} t=b_{i} g_{i}^{-1} t \in b_{i} T
$$

so $a_{i} T \subseteq b_{i} T$. Also $b_{i} t=a_{i} g_{i} t \in a_{i} T$ so $b_{i} T \subseteq a_{i} T$ proving (I). Furthermore since $b_{i}=g_{i} a_{i}$ it follows from cancellation that if

$$
\prod_{i=1}^{n} a_{i}^{u_{i}}=\prod_{i=1}^{n} b_{i}^{u_{i}} \quad \text { then } \quad \prod_{i=1}^{n} g_{i}^{u_{i}}=e
$$

the identity element in G. Since g_{1}, \cdots, g_{n} is a basis for G, (II) follows.
Conversely suppose there exist n distinct pairs of elements $a_{i}, b_{i}(i=1, \cdots, n)$ of T satisfying (I) and (II). It is shown in [1] that the desired extension S of T by G^{0} exists if the group of quotients Q of T contains a subgroup G^{\prime}, isomorphic to G, satisfying $G^{\prime} T^{\prime} \subseteq T^{\prime}$ where T^{\prime} is the natural isomorph of T in Q. So let G^{\prime} be the subgroup of Q generated by the elements $\left(a_{1}, b_{1}\right), \cdots,\left(a_{n}, b_{n}\right)$. Condition (II) guarantees that these elements are independent and that (a_{i}, b_{i}) has order m_{i} for $i=1, \cdots, n$. Hence G^{\prime} is isomorphic to G.

It remains to show that $G^{\prime} T^{\prime} \subseteq T^{\prime}$ and to do so it is sufficient to establish that $\left(a_{i}, b_{i}\right)(z t, t) \in T^{\prime}$ for each i, where $(z t, t)$ is a typical element of T^{\prime}. By (I) there exists $w \in T$ such that $a_{i} z=b_{i} w$. Hence

$$
\left(a_{i}, b_{i}\right)(z t, t)=\left(a_{i} z t, b_{i} t\right)=\left(b_{i} w t, b_{i} t\right) \in T^{\prime},
$$

completing the proof.
Definition. The extension constructed in the above proof will be called the extension of T by G^{0} associated with $a_{1}, b_{1} ; \cdots ; a_{n}, b_{n}$.

2. Equivalence of extensions

If T is a semıgroup and A is a semigroup with zero then extensions S_{1} and S_{2} of T by A are called equivalent if there is an isomorphism of S_{1} onto S_{2} which maps T onto itself. An extension S of T will be called an M-extension if T is a maximal ideal in S and is unique with this property. It is easy to observe (or see [1]) that any cancellative extension of a cancellative semigroup by a group with zero is an M-extension.

Lemma 2.1. Let T be a semigroup and A a semigroup with zero. If S_{1} and S_{2} are M-extensions of T by A then these extensions are equivalent if and only if they are isomorphic.

Proof. Let α be an isomorphism of S_{1} onto S_{2}. Since T is the unique maximal
ideal in each of S_{1} and S_{2} necessarily $T \alpha=T$. Hence S_{1} and S_{2} are equivalent. The converse is immediate from the definition of equivalence.

From the remarks preceding the lemma we have the following corollary.
Corollary. If S_{1} and S_{2} are cancellative extensions of a cancellative semigroup by a group with zero then S_{1} and S_{2} are equivalent if and only if they are isomorphic.

Let T be a commutative cancellative semigroup and let Q be the group of quotients of T. We identify T with its natural isomorph in Q, i.e. elements of T will be denoted by $(t, 1)$. (This is not to imply that T has an identity but rather we use ($t, 1$) as opposed to ($t a, a$) for notational convenience.)

Lemma 2.2. Let T be a commutative cancellative semigroup and let Q be its group of quotients.
(i) Every automorphism α of T has a unique extension to an automorphism φ of Q, namely

$$
(a, b) \varphi=(a, 1) \alpha(b, 1) \alpha^{-1} \quad \text { for all }(a, b) \text { in } Q .
$$

(ii) More generally if S_{1} and S_{2} are subsemigroups of Q each of which contains T and β is an isomorphism of S_{1} onto S_{2} such that $T \beta=T$ then β has a unique extension to an automorphism of Q.

Proof. (i) Let α be an automorphism of T and define φ as above. To show that φ is well defined let $(a, b)=(c, d)$. Then $(a, 1)(d, 1)=(b, 1)(c, 1)$. Since α is an automorphism of T,

$$
[(a, 1) \alpha][(d, 1) \alpha]=[(b, 1) \alpha][(c, 1) \alpha] .
$$

Equivalently

$$
[(a, 1) \alpha][(b, 1) \alpha]^{-1}=[(c, 1) \alpha][(d, 1) \alpha]^{-1}
$$

which says $(a, b) \varphi=(c, d) \varphi$. Hence φ is well defined.
For any (x, y) in Q there exists $(a, 1),(b, 1)$ in T such that $(a, 1) \alpha=(x, 1)$ and $(b, 1) \alpha=(y, 1)$. Then

$$
(a, b) \varphi=[(a, 1) \alpha][(b, 1) \alpha]^{-1}=(x, 1)(y, 1)^{-1}=(x, y)
$$

Hence φ maps Q onto Q.
Now

$$
\begin{aligned}
& {\left[\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right] \varphi=\left(a_{1} a_{2}, b_{1} b_{2}\right) \varphi=\left[\left(a_{1} a_{2}, 1\right) \alpha\right]\left[\left(b_{1} b_{2}, 1\right) \alpha\right]^{-1}} \\
& \quad=\left[\left(a_{1}, 1\right) \alpha\right]\left[\left(a_{2}, 1\right) \alpha\right]\left[\left(b_{1}, 1\right) \alpha\right]^{-1}\left[\left(b_{2}, 1\right) \alpha\right]^{-1}=\left(a_{1}, b_{1}\right) \varphi\left(a_{2}, b_{2}\right) \varphi
\end{aligned}
$$

so φ is a homomorphism.
Finally if $\left(a_{1}, b_{1}\right) \varphi=\left(a_{2}, b_{2}\right) \varphi$ then

$$
\left[\left(a_{1}, 1\right) \alpha\right]\left[\left(b_{1}, 1\right) \alpha\right]^{-1}=\left[\left(a_{2}, 1\right) \alpha\right]\left[\left(b_{2}, 1\right) \alpha\right]^{-1}
$$

from which it follows that $\left(a_{1} b_{2}, 1\right) \alpha=\left(a_{2} b_{1}, 1\right) \alpha$. Since α is $1-1\left(a_{1} b_{2}, 1\right)=$ $\left(a_{2} b_{1}, 1\right)$ so $a_{1} b_{2}=a_{2} b_{1}$. Hence $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$ so φ is $1-1$.

To show the uniqueness of φ let η be an automorphism of Q such that η is an extension of α. Then

$$
(a, b) \eta=\left[(a, 1)(b, 1)^{-1}\right] \eta=[(a, 1) \eta][(b, 1) \eta]^{-1}=[(a, 1) \alpha][(b, 1) \alpha]^{-1}
$$

Hence $\eta=\varphi$.
(ii) Let β be an isomorphism of S_{1} onto S_{2} which maps T onto T. Then $\bar{\beta}$, the restriction of β to T, is an automorphism of T and hence by (i) has a unique extension φ to an automorphism of Q. It remains to show that φ is an extension of β. Let $(a, b) \in S_{1}$. Then

$$
[(a, b) \beta][(b, 1) \beta]=(a b, b) \beta=(a, 1) \beta
$$

Hence

$$
(a, b) \beta=[(a, 1) \beta][(b, 1) \beta]^{-1}=(a, b) \varphi
$$

completing the proof of the lemma.
Before we can formulate the main theorem it is necessary to determine how one can tell whether a given set of elements in a finitely generated Abelian group G is a generating set for G or not.

Definition. Let m_{1}, \cdots, m_{n} be positive integers or the symbol ∞. An $n \times n$ matrix $X=\left(x_{i j}\right)$ over the integers will be called right $\left(m_{1}, \cdots, m_{n}\right)$-invertible if there exists an $n \times n$ matrix $Y=\left(y_{i j}\right)$ over the integers such that

$$
\sum_{k=1}^{n} x_{i k} y_{k j} \equiv \begin{cases}1 \bmod m_{j} & \text { if } i=j \\ 0 \bmod m_{i} & \text { if } i \neq j\end{cases}
$$

where we interpret $a \equiv b \bmod \infty$ to mean $a=b$. Equivalently if the i-th row of $X Y$ is reduced modulo m_{i} one obtains the usual identity matrix.

Lemma 2.3. Let G be a finitely generated Abelian group with basis a_{1}, \cdots, a_{n} and let $m_{i}=o\left(a_{i}\right)$ for $i=1, \cdots, n$. Then the elements

$$
b_{i}=a_{1}^{x_{1 i}} a_{2}^{x_{2 i}} \cdots a_{n}^{x_{n i}} \quad i=1, \cdots, n
$$

generate G if and only if the matrix $X=\left(x_{i j}\right)$ is right $\left(m_{1}, \cdots, m_{n}\right)$-invertible.
Proof. Suppose b_{1}, \cdots, b_{n} generate G. Then for each j there exist integers $y_{i j}$ such that

$$
\begin{equation*}
a_{j}=b_{1}^{y_{1 j}} b_{2}^{y_{2 j}} \cdots b_{n}^{y_{n j}} \tag{1}
\end{equation*}
$$

So

$$
\begin{aligned}
a_{j} & =\left(a_{1}^{x_{11}} \cdots a_{n}^{x_{n 1}}\right)^{y_{1 j}} \cdots\left(a_{1}^{x_{1 n}} \cdots a_{n}^{x_{n n}}\right)^{y_{n j}} \\
& =a_{1}^{\Sigma x_{1 k} y_{k j}} \cdots a_{n}^{\Sigma x_{n k} y_{k j}}
\end{aligned}
$$

where each sum ranges from $k=1$ to $k=n$. Hence

$$
\sum_{k=1}^{n} x_{i k} y_{k j} \equiv \begin{cases}1 \bmod m_{j} & \text { if } i=j \tag{2}\\ 0 \bmod m_{i} & \text { if } i \neq j\end{cases}
$$

Conversely suppose there exists a matrix $Y=\left(y_{i j}\right)$ which satisfies (2). Reversing the above argument shows that the equations (1) hold and hence b_{1}, \cdots, b_{n} generate G.

We are now ready to state the main theorem on the equivalence of extensions.
THEOREM 2. Let T be a commutative cancellative semigroup without idempotent and G a finitely generated Abelian group with basis g_{1}, \cdots, g_{n} where $o\left(g_{i}\right)=m_{i}$ for $i=1, \cdots, n$. Let $a_{1}, b_{1} ; \cdots ; a_{n}, b_{n} ;$ and $c_{1}, d_{1} ; \cdots ; c_{n}, d_{n} ;$ be two sets of n distinct pairs of elements of T satisfying conditions (I) and (II) of Theorem 1.

If S_{1} and S_{2} are the associated cancellative extensions of T by G^{0} then S_{1} and S_{2} are equivalent if and only if there is an automorphism α of T such that

$$
\begin{equation*}
\left(a_{j} \alpha\right) d_{1}^{x_{1 j}} \cdots d_{n}^{x_{n j}}=\left(b_{j} \alpha\right) c_{1}^{x_{1 j}} \cdots c_{n}^{x_{n j}} \quad \text { for } j=1, \cdots, n \tag{*}
\end{equation*}
$$

where $X=\left(x_{i j}\right)$ is a right $\left(m_{1}, \cdots, m_{n}\right)$-invertible matrix.
Proof. Identify T with its natural isomorph in its group of quotients Q. Let G_{1} be the subgroup of Q with basis $\left(a_{1}, b_{1}\right), \cdots,\left(a_{n}, b_{n}\right)$ and G_{2} the subgroup of Q with basis $\left(c_{1}, d_{1}\right), \cdots,\left(c_{n}, d_{n}\right)$. Then $S_{1}=G_{1} \cup T$ and $S_{2}=G_{2} \cup T$.

If α is an automorphism of T satisfying ($*$) then by Lemma 2.2α has a unique extension to an automorphism of Q, namely the mapping φ defined by

$$
(a, b) \varphi=[(a, 1) \alpha][(b, 1) \alpha]^{-1} \quad \text { for all }(a, b) \text { in } Q
$$

We then have for $j=1, \cdots, n$

$$
\left(a_{j}, b_{j}\right) \varphi=\left[\left(a_{j}, 1\right) \alpha\right]\left[\left(b_{j}, 1\right) \alpha\right]^{-1}=\left(c_{1}, d_{1}\right)^{x_{1 j} \cdots\left(c_{n}, d_{n}\right)^{x_{n j}}, ~}
$$

the last equality following from (*). Now since $X=\left(x_{i j}\right)$ is right (m_{1}, \cdots, m_{n})invertible Lemma 2.3 guarantees that the n elements $\left(a_{j}, b_{j}\right) \varphi, j=1, \cdots, n$, generate G_{2} and hence φ maps G_{1} onto G_{2}. The restriction of φ to S_{1} is then an isomorphism of S_{1} onto S_{2}. Hence S_{1} and S_{2} are equivalent by Lemma 2.1.

Conversely suppose S_{1} and S_{2} are equivalent and let β be an isomorphism of S_{1} onto S_{2} such that $T \beta=T$. If φ is the unique extension of β to an automorphism of Q and α is the restriction of β to T then α is an automorphism of T. Also, by Lemma 2.2,

$$
\begin{equation*}
\left(a_{j}, b_{j}\right) \varphi=\left[\left(a_{j}, 1\right) \alpha\right]\left[\left(b_{j}, 1\right) \alpha\right]^{-1} \quad j=1, \cdots, n \tag{3}
\end{equation*}
$$

But the n elements $\left(a_{1}, b_{1}\right) \varphi, \cdots,\left(a_{n}, b_{n}\right) \varphi$ must be a basis for G_{2}. Consequently if we write

$$
\begin{equation*}
\left(a_{j}, b_{j}\right) \varphi=\left(c_{1}, d_{1}\right)^{x_{1 j}} \cdots\left(c_{n}, d_{n}\right)^{x_{n j}} \quad j=1, \cdots, n \tag{4}
\end{equation*}
$$

it follows from Lemma 2.3 that the matrix $X=\left(x_{i j}\right)$ is right (m_{1}, \cdots, m_{n})invertible. It now follows readily from (3) and (4) that α satisfies (*).

It is worthwhile to note the special case where G is cyclic of order m_{1}. We then have $n=1$ and the condition that $X=\left(x_{11}\right)$ is right m_{1}-invertible just amounts to the condition that the congruence $x_{11} z \equiv 1 \bmod m_{1}$ is solvable for z, i.e. x_{11} and m_{1} are relatively prime if m_{1} is finite or $x_{11}= \pm 1$ if $m_{1}=\infty$.

Reference

[1] Charles V. Heuer and Donald W. Miller, 'An extension problem for cancellative semigroups', Trans. Amer. Math. Soc. 122 (1966), 499-515.

Concordia College
Moorhead, Minnesota

