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In [1] D. W. Miller and the author established necessary and sufficient
conditions for the existence of a cancellative (ideal) extension of a commutative
cancellative semigroup by a cyclic group with zero. The purpose of this paper is
to extend these results to cancellative extensions by any finitely generated Abelian
group with zero and to establish in this general case conditions under which two
such extensions are equivalent.

1. Existence of extensions

If T is a commutative cancellative semigroup and S is a cancellative extension
of T by a group with zero G°, then S = G u T where T is an ideal in S. Since
any idempotent in the cancellative semigroup S is necessarily an identity for S it
follows that T cannot contain an idempotent. Furthermore (see [1]) 5 is neces-
sarily commutative and hence G must.be also. All of this then reduces the problem
of the existence of a cancellative extension of a commutative cancellative semi-
group T by a group with zero G° to a consideration of the case where T does not
contain an idempotent and G° is Abelian. The following theorem establishes
necessary and sufficient conditions for the existence of such an extension in case
G is finitely generated.

THEOREM 1. Let Tbe a commutative cancellative semigroup without idempotent
and let G be a finitely generated Abelian group. Suppose gt, • • •, gn is a basis for G
and let mt = o(gt) for i = 1, • • •, n \ {Allowing the possibility that m{ = <x> for
some i.) Then there exists a cancellative semigroup S = G u T if and only if there
exist n distinct pairs of elements a^bi, {i = 1, • • •, n) in T such that

(I) aiT = biT for i = 1, • • • , « .

XJIMJ if mf < oo.

o(gt) denotes the order of gt.
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188 Charles V. Heuer [2]

PROOF. Suppose a cancellative extension S = G u T exists. (Recall that S is
necessarily commutative.) Let alt • • •, an be any n distinct elements of Tand let
^ . - • • j . b e a basis for the group G such that o(g() = m{ for each i. For each i
choose bt = gtat. Then for any t e T,

so a{T £ b{T. Also btt = atgtteaiT so btT^ atT proving (I). Furthermore
since bt = g^i it follows from cancellation that if

the identity element in G. Since ^ , • • •, gn is a basis for G, (II) follows.
Conversely suppose there exist n distinct pairs of elements a,-, bt (i = 1, •••,«)

of T satisfying (I) and (II). It is shown in [1] that the desired extension S of T
by C7° exists if the group of quotients Q of T contains a subgroup G', isomorphic
to G, satisfying G'T £ T where T is the natural isomorph of T in Q. So let G'
be the subgroup of Q generated by the elements (alt b^), • • •, (an, bn). Condition
(II) guarantees that these elements are independent and that (at, bt) has order m{

for i = 1, • • • ,« . Hence G' is isomorphic to G.
It remains to show that G'T' S T' and to do so it is sufficient to establish

that (flj, bt)(zt, t) e T' for each i, where (zt, t) is a typical element of 7". By (I)
there exists w e Tsuch that atz = btw. Hence

(at, bi)(zt, t) = (atzt, b,t) = (btwt, brfeT',

completing the proof.

DEFINITION. The extension constructed in the above proof will be called the
extension of T by G° associated with a1,b1; • • •; an,bn.

2. Equivalence of extensions

If T is a semigroup and A is a semigroup with zero then extensions St and S2

of Thy A are called equivalent if there is an isomorphism of Sj onto S2 which maps
T onto itself. An extension S of T will be called an M-extension if T is a maximal
ideal in S and is unique with this property. It is easy to observe (or see [1]) that
any cancellative extension of a cancellative semigroup by a group with zero is an
M-extension.

LEMMA 2.1. Let T be a semigroup and A a semigroup with zero. If Sl and S2

are M-extensions of T by A then these extensions are equivalent if and only if they
are isomorphic.

PROOF. Let a be an isomorphism of Si onto S2. Since T is the unique maximal
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ideal in each of Si and S2 necessarily To. = T. Hence St and S2 are equivalent.
The converse is immediate from the definition of equivalence.

From the remarks preceding the lemma we have the following corollary.

COROLLARY. If 5 t and S2 are cancellative extensions of a cancellative semi-
group by a group with zero then St and S2 are equivalent if and only if they are
isomorphic.

Let T be a commutative cancellative semigroup and let Q be the group of
quotients of T. We identify T with its natural isomorph in Q, i.e. elements of T
will be denoted by (t, 1). (This is not to imply that T has an identity but rather
we use (t, 1) as opposed to (ta, a) for notational convenience.)

LEMMA 2.2. Let T be a commutative cancellative semigroup and let Q be its
group of quotients.

(i) Every automorphism a of T has a unique extension to an automorphism cp
of Q, namely

(a, b)q> = (a, l)a(b, l ^ T 1 for all (a,b) in Q.

(ii) More generally if St and S2 are subsemigroups of Q each of which contains
T and fi is an isomorphism of S} onto S2 such that Tfi = T then ft has a unique
extension to an automorphism of Q.

PROOF, (i) Let a be an automorphism of T and define q> as above. To show
that q> is well defined let (a, b) = (c, d). Then (a, \)(d, 1) = (b, l)(c, 1). Since a
is an automorphism of T,

[(a, l)a][(d, l)a] = [(b,
Equivalently

1 = [(c,

which says (a, b)q> = (c, d)q>. Hence <p is well defined.
For any (x, y) in Q there exists (a, 1), (b, 1) in T such that (a, l)a = (x, 1)

and (b, l)a = (y, 1). Then

(a,b)<p = [(a, l)a][(Z>, I )* ]" 1 = (JC, l ) ( j , I ) " 1 = (x,y).

Hence q> maps Q onto Q.
Now

0*1, bl)(a2, b2)]q> = [axa2, btb2)(p =

= [(alt l)a][(a2, l ) * ] ^ , l j a ] - 1 ^ , ^ a ] " 1 = (a1,b1)(P(a2,b2)(P

so (p is a homomorphism.
Finally if (al5 6x)<p = (a2, b2)q> then
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from which it follows that (a1b2, l)a = (a2^i> l) a- Since a is 1 — 1 (alb2, 1) =
(a2b1, 1) so 0^2 = aibi • Hence (alf i^) = (a2, 62) so q> is 1 — 1.

To show the uniqueness of q> let n be an automorphism of Q such that»/ is
an extension of a. Then

(a,b)r, = [(a, l)(b, I ) " 1 ] , = [(a, \)n)[{b, I ) / , ] - 1 = [(a, l

Hence rj = q>.

(ii) Let j? be an isomorphism of St onto 5 2 which maps T onto T. Then )5,
the restriction of P to T, is an automorphism of T and hence by (i) has a unique
extension <p to an automorphism of Q. It remains to show that (p is an extension
of p. Let (a, b)eSt. Then

Hence
{a,b)p= [(a, \)p][(b,

completing the proof of the lemma.

Before we can formulate the main theorem it is necessary to determine how
one can tell whether a given set of elements in a finitely generated Abelian group
G is a generating set for G or not.

DEFINITION. Let mt, • • •, mn be positive integers or the symbol oo. An n xn
matrix X = {xi}) over the integers will be called right (mt, • • •, mn)-invertible if
there exists an n x n matrix Y = {yti) over the integers such that

i _ ( 1 mod nij if i = j
Li Xikykj = { . . .

k=i 1 0 m o d » i j n i ^ j

where we interpret a = b mod oo to mean a = b. Equivalently if the /-th row
of AT is reduced modulo mt one obtains the usual identity matrix.

LEMMA 2.3. Let G be a finitely generated Abelian group with basis alt • • •, an

and let mt — o{a^)for i = 1, • • • , « . Then the elements

bi = a^'a?1 • • • ax
n

nl i = 1, • • •, n

generate G if and only if the matrix X = {xtj) is right (mt ,•••, mn)-invertible.

PROOF. Suppose b±, • • •, bn generate G. Then for each j there exist integers
ytJ such that

So
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where each sum ranges from k = 1 to k — n. Hence

mod nij if i = j
(2) 2_, ^ikykj = •

*=i \ 0 mod mt if i ^ j '

Conversely suppose there exists a matrix Y = (ytj) which satisfies (2).
Reversing the above argument shows that the equations (1) hold and hence
b\," ' ". bn generate G.

We are now ready to state the main theorem on the equivalence of extensions.

THEOREM 2. Let T be a commutative cancellative semigroup without idempotent
and G a finitely generated Abelian group with basis gy, • • •, gn where o{gt) = ni;
for i = 1, • • •, n. Let a1,bl;---;an,bn; and cl,dl;---;cn,dn\ be two sets of n
distinct pairs of elements of T satisfying conditions (I) and (II) of Theorem 1.

If S1 and S2 are the associated cancellative extensions of T by G° then St and
S2 are equivalent if and only if there is an automorphism <x of T such that

(*) (aj-a)diu • • • d*ni = (bJix)cx
1
u • • • c*"J for j = 1, • • •, n

where X = (xtj) is a right (wl5 • • •, mn)-invertible matrix.

PROOF. Identify T with its natural isomorph in its group of quotients Q. Let
Gj be the subgroup of Q with basis (aY, b^), • • •, (an, bn) and G2 the subgroup of
Q with basis ( q , J J , • • •, (cn, dn). Then S, = ^ u T and S2 = G2 u T.

If a is an automorphism of T satisfying (*) then by Lemma 2.2 a has a unique
extension to an automorphism of Q, namely the mapping (p defined by

(a, b)q> = [{a, l)a][(6, l ) a ] - x for all (a, b) in Q.

We then have forj = 1, • • •, n

(aj, b^cp = [(a,, l)a][(fc,, I )* ] " 1 = (c,, dtf" • • • (c,, dtf"*,

the last equality following from (*). Now since X = (xu) is right (OT15 • • •, mn)-
invertible Lemma 2.3 guarantees that the n elements (a}, bj)(p, j = 1, • • • , « ,
generate G2 and hence q> maps G1 onto G2. The restriction of <p to St is then an
isomorphism of St onto S2. Hence St and S2 are equivalent by Lemma 2.1.

Conversely suppose S1 and S2 are equivalent and let jS be an isomorphism of
St onto S2 such that Tft = T.lfcp is the unique extension of /? to an automorphism
of Q and a is the restriction of /? to T then a is an automorphism of T. Also, by
Lemma 2.2,

(3) (aj, bj)cp = [(aj, 1 )a] [(bj, 1 )a]~ l j = 1 , • • • , « .

But the n elements (at, b^cp, • • -, (an, bn)q> must be a basis for G2. Consequently
if we write

(4) (aJ,bj)(p = (cl,dir<---(cn,dny-" j = l, •••,/!
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it follows from Lemma 2.3 that the matrix X = (*y) is right (mt ,•••, mn)-
invertible. It now follows readily from (3) and (4) that a satisfies (*).

It is worthwhile to note the special case where G is cyclic of order ml. We
then have n = 1 and the condition that X = ( x u ) is right mi-invertible just
amounts to the condition that the congruence xitz = 1 mod wt is solvable for z,
i.e. x u and m± are relatively prime if mx is finite or x u = +1 if ml = oo.
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