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Computer aided determination

of a Fibonacci group

George Havas

The Fibonacci group F{2, j) has been known to be cyclic of

order 29 for about five years. This was first established by

computer coset enumerations which exhibit only the result,

without supporting proofs. The working in a coset enumeration

actually contains proofs of many relations that hold in the

group. A hand proof that F{2, 7) is cyclic of order 29 ,

based on the working in computer coset enumerations, is

presented here.

1 . Introduction

Interest in Fibonacci groups was aroused by Conway [3]. The groups

have been studied in detail by Johnson, Wamsley,and Wright [4]. The

Fibonacci groups F{2, n) may be presented

F{2, n) = <xx, x2, ..., xn | xxx2 = xy ..., V 2 V 1 = V xn~lxn = *1,

Vi = V •

A first question about these groups is whether they are finite or not;

this has been resolved (see Brunner [7]) for all bar F{2, 9) . [F(2, 9)

is still unknown although it is known to have a largest nilpotent quotient

of order 152 .)

The groups F(2, n) which are known to be finite have all been

identified. In spite of information to the contrary (in [4] and [7]),

F(2, 7) is cyclic of order 29 . This has been established by coset
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enumeration on computer, but till now no hand proof has been available.

Given a coset enumeration which shows that a subgroup is of finite

index in a certain group, Leech [5] describes a technique for expressing a

word in the generators of the group which is in the subgroup as a word in

the generators of the subgroup. He amplifies this method in [6] for the

proof of relations which hold in the group and describes a computer

implementation. This method is the basis of the proof that F{2, 7) is

cyclic of order 29 presented here.

2. Notation

For brevity x. is sometimes denoted by i and x~. by -i . The
If Is

group identity is denoted by e . Thus F{2, 7) may be presented

(1) F(2, 7) = <1, 2, 3, It, 5, 6, 7 I 12-3 = 23-lt = 3*t-5

= lt-5-6 = 56-7 = 67-1 = 71-2 = e> .

The terminology and notation used in discussion and description of

coset enumerations follows [2].

3. Computer considerations

It is moderately easy to establish that F(2, 7) is cyclic of order

29 by coset enumeration. The easiest way is to observe that the quotient

of F{2, 7) obtained by abelianizing the presentation is cyclic of order

29 , so it suffices to show that any one of the a;. alone generates

F(2, 7) . Each of the coset enumerations F(2, 7)|<x.> , though

pathological, is easy enough by machine and gives index 1 as required.

In the context of the Leech method of relation proof from coset

enumeration working the most important consideration is the avoidance of

coincidences (hence the minimization of total cosets defined). It follows

that the Felsch method of coset enumeration is preferred for machine

approach to this problem. A Canberra implementation, developed by W.A.

AI ford, is used for all coset enumerations mentioned here, and is the basis

of a computer implementation of Leech's procedure used for relation proof.

The Feisch method yields the following statistics for coset

enumerations in F{2, 7) presented as in (l).
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bgroup

<xx>

<x2>

<x3>

<V
<x5>

<x6>

<x?>

<e>

Index

1

1

1

1

1

1

1

29

Total cosets defined

kok

615

332

7^2

336

327

366

> 33000

It is easy to rewrite the presentation for F(2, 7) in terms of two

generators by the use of Tietze transformations. A two generator

presentation for F(2, 7) is:

(2) F{2, 7) = <1, 2 | 1121-2-21-2-21-2 = 12-12-122-12-122-122 = e) .

This presentation is much harder for coset enumeration over <1> and

<2> as the following statistics indicate. (Other easily obtained two

generator presentations are better, but all I have tried give significantly

worse enumerations than the best of the 7 generator enumerations.)

Subgroup Index

1

1

29

Total cosets defined

111+3

3103

75^98

Using Leech's method it is theoretically possible to obtain a proof

that F(2, 7) is cyclic of order 29 from any one of these enumerations.

However, as already mentioned, it is desirable to minimize coincidences so

the enumeration F(2, 7)|<av> looks the most attractive of the above

enumerations. As a starting point for application of Leech's method of

relation proof I am unable to find any substantially better enumeration

which yields the desired result.

Unfortunately direct application of Leech's method to this

enumeration, F(2, 7)|<6> , would lead to a tremendously long proof. The

problem arises from the large number of coincidences involved. By studying

the coset enumeration I have been aile to find a lemma which leads to a
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better coset enumeration (fewer coincidences). The lemma is reasonably

easily proved using Leech's method.

The lemma arises this way. In the enumeration F(2, 7)|<6> the first

coset coincidence (which precipitates the total collapse) implies

-X-3kk6k (. <6> . Let h = -1-34U6U. Promisingly, the enumeration

F{2, 7)|<6, h.> involves the definition of only 177 cosets, as against

327 for F(2, T) |< 6 > .

The proof, by Leech's method, of the relation corresponding to the

first coincidence involves only 29 of the 327 cosets defined, and of

course no other coincidence. The proof of Lemma 1 presented below is

essentially that given by Leech's method, abbreviated by the combination of

the 110 separate substitutions or reductions given by the method.

Still 177 cosets and coincidences would yield a terribly long proof

of the desired result, so I looked for another lemma. In the performance

of f(2, 7)|<6, h > the first coincidence, after the definition of 102

cosets, leads to a three coset collapse, and is not of great value.

However the fourth coincidence precipitates the total collapse and provides

a valuable lemma, -h-6-232h6k € < 6, 7i > . Let h2 = -k-6-232h6k .

The enumeration F{2, j) |< 6, h , h > involves the definition of 36

cosets.

Again proof of the corresponding relation is easy enough. The proof

involves 1+6 of the 177 cosets. (The subproof that

-l62fe~16"2^16
2-l-3Ult-2 = 63

involves the third coincidence, the only time one of the first three

coincidences is used.)

The processing of the 36 cosets and coincidences by Leech's method

is still too long, so I found one further lemma analogously (from the first

coincidence, which precipitates the total collapse) namely

-1+7-3UU6U € <6, h,, h2> • Let 7J = -1+7-3^61+ . The proof of the

corresponding relation involves 13 cosets.

The enumeration F{2, 7)|<6, h±, h , h > needs 8 cosets. From the
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deduction that generator 5 applied to coset 1 yields coset 1 , the

method gives a proof that 5 € <6, h , h , h > , involving all 8 cosets.

The method used here for lemma production looks nicely mechanical.

Find the first important coincidence and add the corresponding subgroup

generator to the initial subgroup to get an easier enumeration.

Unfortunately it does not always work with the enumeration method used.

o
The index 2 enumeration F{2, 9) + (1, 2) | (1, -23, 2-9> requires

the definition of 39 cosets. The first coincidence, which precipitates

the collapse to two cosets, implies that 1+-7-25 € (1, -23, 2-9 > .

However the enumeration F(2, 9) + (l, 2) I <1> -23, 2-9, ̂ -7-25>

requires the definition of kk cosets.

Note that the relations correspondxng to the coincidences and the

deduction actually give expressions for h , h^, h , and 5 in terms of

the corresponding subgroup generators, which is rather more than is

required for the proof that F{2, 7) is cyclic.

4. Theorem and proof

THEOREM. The group F{2, 7) is cyclic of order 29 .

P r o o f . The p r o o f f o l l o w s d i r e c t l y from f o u r lemmas .

LEMMA 1 . -l-3hk6k (= hj € < 6 > .

LEMMA 2 . -U-6-232U6U (= h2) € <6> .

LEMMA 3 . -1*7-31*1+61+ (= h^ € <6> .

L E M M A 4 . 5 € < 6 > .

Hence F(2, 7) is cyclic, and the result follows from

abelianizing the defining relations.

In the proofs of the lemmas underlined subwords in one line are

replaced by equivalents in the next. Where this is not by direct

application of one defining relation or by free reduction the annotations

describe how the equivalent is calculated. A dot in a word indicates that

a subword with freely trivial value will be inserted in the corresponding

position in the following line.
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Proof of Lemma 1. We prove -1-31+1+61+ = 6 by showing

_l t 3l61 O-lt-6-)4 = e :

-k31.666.666.666.6-k-6-h . (l)

= -k312-2h-h66l.i-2k-h66l.l-2k-k66l.l-2k-k6-h-6-k (2)

= -1+33-21+23-3,1-21+23-31-21+23-3. 1-21+5-1+-6-1+ (3)

= -1+3- 35-2.5-2.5-35-5-U!+-556^6l. 33-6-U (k)

= -k3-2235•-27-75•-27-75^-6-3771-133•-6-^ (5)

= -kl. 67-72-2-1-61-1-77-1-5-6. -372l4-55-6-'» (6)

= -lq-7711.-3.7.-3-22-3.-6-k-h (7)

= 5212-2-35-57-55-1*-l-77-6-'*-ii (8)

= 5U-2U+5-1+-2-2 (9)

= 56-7 (10)

(1) 6 = l^f. = 11-2

(2) ^i+66l = 561 = 71 = 2

(3) zgit.23 = 323. = 3k = 5

(5) 235 = ^5 = 6, =J3_k = -6k = - 5 , ̂ 133 = 23 = k

(6) -1-77-1-5-6 = -2-6-5-6 = -2-7-6 = -2-1 = - 3 , 72^5. = 72£3 = 7-1 = -6

(7) -ltl£L= -1+6 = 5

(8) 212_ = 23 = it, ^51-5 = 6-5 = k, 2^6-k-k = 3zh.-k = 3-k = -2

(9) k=2kk = 1*3̂ . = 1+5 = 6, 5-4-2-2 = 3^ -2 = 1-2 = -7

(10) defining re la t ion 5 •

Proof of Lemma 2. Let x = 6 hZ^tT h 6 (= 62) . We prove

_U-6-232lt6U = 6~35 by showing 2k6k\6kh1-6xh16~2xhJ]-k-6-23 = e :

2k6k6666h1=6_xhJ-6.=6xh1-k-6-23 ( l )

= 21+61*6666̂  7-la?-l-3ltlt-226U-6g-27-la;-l-3ltU-23 . (2)

Consider -lx-l-3l+l+-2 (3)

= -16.6-1+-6-1+-1+31-6-6-1. -3ltU6l+66-l-3l+l+-2 (k)

• -2 (5)

= 133-JA5-53-3-77-6-1+-1+. 51723-5.1+1+6-77-13-5 • H-55 • -2 (6)

= 116-1+-2-2-27-751723-57-72-63-57-725-1+1+5-53-3-2 (7)

= 116-1+-2-3772.361-6.361. il+-3i-7-l»-l+ (8)

= 116-1+33-1+1+551-6 • -l+l+551-7711*-31-7-1*-'* (9)
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= ll6-Ul651-6-55-U3U-31-7-U-U

= .1.165235.-2-7-H-14

= 6-6l-66-556-6ll-2-7-U-U

= 63 .

Substitute (13) for (3) in (2)

(l) = 2U6U. 666.6^. 76326^1^62-1633

(10)

(11)

(12)

(13)

(lU)

= 2U6. U-33U7-1-72-3556-1-3UU6. U 5-576326. -3-3-1633 (15)

= 2U6-77-1-2. -7-1-5 .UU6-771-166.632.6-55-UU-3-3-1633 (16)

= -1-6-2-11-7-1-57-722-7•6-55632-33U3-1-16.33 (17)

= -1-6-36-73-72-2U73• -1 • 51-6-5563 • 3 (18)

= .-7373-22-1-66773-223 (19)

= -66-7325121* (20)

= -6U5 (21)

= e ;

(1) -6 = 7-1 , h = -1-31*1*.61* = -I-3UU-226U,

x-k-G = -i-3kk6k-h-6 = -l-3l*l*

(k) -16 = -7 = 1-2, 1-6^6 = l-6£5.di. = l£7_-53 = 6^53 = 1*3,

similarly 66-1 = -3-1*, -1 = -27

(5) -kS-k = 5-1* = 3, l*-l*-3 = 23-5, l*-3 = 2 = -13

(6) 3 3 ^ = 3-2 = 1, £3-7 = -2-1-7 = -2-2, 7-6-1+-1* = _§-U_-U = 3-1* = -2 ,

similarly 1*1*6-7 = 2, UU-5_ = U-3 = 2

(7) -222X = -2-1 = - 3 , £711 = -6l = 7, 3^-hl = 3^223^31^16 = 1^-31-7

(8) -2-3772 = -2-37-61^13 = -2-33^63 = -2^353 = z^3 = 33,
36 = 5-UU5 = 55

(9) 33-^ = 3-2 = l , 1*551£L71 = 656.T1 = 6 m = 12 = 3

(10) -1*1651-6-5 = -Ul651£L = -U.1656 = ^11626161 = 571 = 52

(11) 65235 = 65̂ *5. = 65JL = 67 = 1

(12) -6l-66z55_6-6ll-2-7-l*-l* = 7-6l*77i-2-7-l*-l* = 51*72-2-7-1*-!* = 5-1* = 3

(lU) £6 = 1*56 = 1*7, 6 = .1*5 = ^22-33^5 = -1-72-355, U-62 = 1*̂ 5̂ 1*2. = -3-3

(15) h^QlzL = 25^6 = -13zlL = -1-2, 556-1-3 = 51^1-3 = 5^6-3 = -U-3 = -5

(16) 2l*6rj_ = 2Û 5_ = 2-3 = - 1 , UU6-X = UU£5 = U-3 = 2, U£3-3 = 2-3 = -1

(17) 1^-lzZL = 6 ^ = 6-7, £[22 = 12 = 3, 3-lzl6 = 3-1-7 = 3-2 = 1

(18) -l-6-36£L3£T2. = -1-6-3213.1 = - 1 - 6 - 3 ^ ^ 6 1 = -1-6£317 = -I-6U7

= - I 2 H = -16 = - 7 , 51=6=5. = 51£7 = 56 = 7

(19) 73£2 = 71 = 2, 2£l-6 = 7 - 6 = 5
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(20) 6=7325 = ;£325 = ^i+25 = -35 = k, 12> = 3** = 5

(21) defining re la t ion k .

Proof of Lemma 3. We prove -l*7-3ltl»61» = 6 by showing

= - 3 U . lt6U-U-6-U-2-32.6U-UT (2)

= -3U5-53-3-2-32-11-7767 (3)

= -36-U-5762 (1*)

= -312 (5)

(3) -53-3z2-3 = -53-h-3 = -l*-5, 767 = 71 = 2

(It) 6-1*̂ 57.6 = 6̂ 1*66 = 656 = 67 = 1

(5) defining relation 1 .

—1 2SS
Proof of Lemma 4. Let y = ̂ 1^^ • We prove 5 = 6 by showing

] = e .

= -5-63-2khn-k2-363-2k63-2h-6-3-63-2khn-k2-363-2k-6-3-63-2hh^-k2-363^ ^ d

k (2)

= -5-6l-6-232l*6-l63-2l*.6ll*-6-3-6l-6-232l*6-l63-2l*-6-3-6l-6-232l*6-l63

-2l*.6ll* (3)

= -232-2t*-556ll*-5-232-2U-5-232-2l»-556li* (1*)

= -27ll*-5-2-27ll* (5)

= -3-21* (6)

= e ;

(1) j / = ft^"1 =

( 2 ) Ufe2-U = 1 ^ - 6 -

= -2U = 3 , -1/ = - 3 = -1*2

^ = -6-2321*6

(3) -5-61-6 = - 5 I r i = -55 = e, 1*6̂ 163 = 1*6£L3 = i ^ 3 = -33 = e ,

-6-3^61-6 = -6-31^6 = -6^35. = -6k = -5

(1*) S i ^ l * ^ = 2k-5 = 5-5 = e

(5) -211 = -22 = e
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(6) defining relat ion 2 .
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