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Abstract

Let S be a Noetherian scheme of finite dimension and denote by ρ ∈ [1,Gm]SH(S) the
(additive inverse of the) morphism corresponding to −1 ∈ O×(S). Here SH(S) denotes
the motivic stable homotopy category. We show that the category obtained by inverting
ρ in SH(S) is canonically equivalent to the (simplicial) local stable homotopy category of
the site Srét, by which we mean the small real étale site of S, comprised of étale schemes
over S with the real étale topology. One immediate application is that SH(R)[ρ−1] is
equivalent to the classical stable homotopy category. In particular this computes all
the stable homotopy sheaves of the ρ-local sphere (over R). As further applications
we show that DA1(k,Z[1/2])− ' DMW (k)[1/2] (improving a result of Ananyevskiy–
Levine–Panin), reprove Röndigs’ result that πi(1[1/η, 1/2]) = 0 for i = 1, 2 and establish
some new rigidity results.
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1. Introduction

For a scheme S we denote by SH(S) the motivic stable homotopy category [MV99, Ayo07].
We recall that this is a triangulated category which is the homotopy category of a stable model
category that (roughly) is obtained from the homotopy theory of (smooth, pointed) schemes by
making the ‘Riemann sphere’ P1

S into an invertible object.
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If α : k ↪→ C is an embedding of a field k into the complex numbers, then we obtain a
complex realisation functor Rα,C : SH(k) → SH (where now SH denotes the classical stable
homotopy category) connecting the world of motivic stable homotopy theory to classical stable
homotopy theory [MV99, § 3.3.2]. This functor is induced from the functor which sends a smooth
scheme S over k to its topological space of complex points S(C) (this depends on α). Similarly
if β : k ↪→ R is an embedding into the real numbers, then there is a real realisation functor
Rβ,R : SH(k) → SH induced from S 7→ S(R) [MV99, § 3.3.3] [HO16, Proposition 4.8].

These functors serve as a good source of inspiration and a convenient test of conjectures in
stable motivic homotopy theory. For example, in order for a morphism f : E → F to be an
equivalence it is necessary that Rα,C(f) and Rβ,R(f) are equivalences, for all such embeddings
α, β. On the other hand, this criterion is clearly not sufficient; there are fields without any real
or complex embeddings!

It is thus a very natural question to ask how far these functors are from being an equivalence,
or what their ‘kernel’ is. The aim of this article is to give some kind of complete answer to this
question in the case of real realisation. We begin with the simplest formulation of our result.
Write RR for the (unique) real realisation functor for the field k = R. The first clue comes from
the observation that RR(Gm) = R\0 ' {±1} = S0. That is to say RR identifies Gm and S0. We
can even do better. Write ρ′ : S0

→ Gm for the map of pointed motivic spaces corresponding to
−1 ∈ R×. Then one may check easily that RR(ρ′) is an equivalence between S0 ' RR(S0) and
RR(Gm).

We prove that SH(R)[ρ′−1] ' SH via real realisation. That is to say RR is in some sense the
universal functor turning ρ′ into an equivalence. More precisely, the functor RR : SH(R) → SH
has a right adjoint R∗ (e.g. by Neeman’s version of Brown representability) and we show that
R∗ is fully faithful with image consisting of the ρ′-stable motivic spectra, i.e. those E ∈ SH(R)

such that E(X ∧Gm)
ρ∗−→ E(X) is an equivalence for all X ∈ Sm(R).

Of course, our description of SH(R)[ρ′−1] is just an explicit description of a certain Bousfield
localisation of SH(R). Moreover the element ρ′ exists not only over R but already over Z, so we
are lead to study more generally the category SH(S)[ρ′−1], for more or less arbitrary base schemes
S. Actually, for some formulas it is nicer to consider ρ := −ρ′ ∈ [S,Σ∞Gm] and we shall write this
from now on. Of course SH(S)[ρ′−1] = SH(S)[ρ−1]. In this generality we can no longer expect
that SH(S)[ρ−1] ' SH. Indeed as we have said before in general there is no real realisation! As a
first attempt, one might guess that if X is a scheme over R, then SH(S)[ρ−1] ' SH(S(R)), where
the right-hand side denotes some form of parametrised homotopy theory [MS06]. This cannot
be quite true unless S is proper, because the category SH(S(R)) will then not be compactly
generated. The way out is to use semi-algebraic topology. For this we have to recall that if S is
a scheme, then there exists a topological space R(S) [Sch94, (0.4.2)]. Its points are pairs (x, α)
with x ∈ S and α an ordering of the residue field k(x). This is given a topology incorporating
all of these orderings. Write Shv(RS) for the category of sheaves on this topological space.

Now, given any topos X , there is a naturally associated stable homotopy category SH(X ). If
X ' Set then SH(X ) is just the ordinary stable homotopy category. In general, if X ' Shv(C)
where C is a Grothendieck site, then SH(X) is the local homotopy category of presheaves of
spectra on C.

With this preparation out of the way, we can state our main result as follows.

Theorem (See Theorem 35). Let S be a Noetherian scheme of finite dimension. Then there is
a canonical equivalence of categories

SH(S)[ρ−1] ' SH(Shv(RS)).
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A more detailed formulation is given later in this introduction. For now let us mention
one application. We go back to S = Spec(R). In this case Proposition 36 in § 10 assures us
that the equivalence from the above theorem does indeed come from real realisation. But given
E ∈ SH(R), its ρ-localisation can be calculated quite explicitly (see Lemma 15). From this one
concludes that πi(RRE) = colimn πi(E)n(R), where the colimit is along multiplication by ρ in the
second grading of the bigraded homotopy sheaves of E. (Recall that πi(E)n(R) = [1[i], E ∧G∧nm ]
so ρ indeed induces ρ : πi(E)n(R) → πi(E)n+1(R).)

This may seem slightly esoteric, but actually SH(S)[ρ−1, 2−1] = SH(S)[η−1, 2−1] and so our
computations apply, after inverting two, to the more conventional η-localisation as well. As a
corollary, we obtain the following.

Theorem. The motivic stable 2-local, η-local stems over R agree with the classical stable 2-local
stems:

πi(1η,2)j(R) = πsi ⊗Z Z[1/2].

Some more applications will be described later in this introduction.

Overview of the proof. The proof uses a different description of the category Shv(RS). Namely,
there is a topology on all schemes called the real étale topology and abbreviated rét-topology
[Sch94, (1.2)]. (The covers are families of étale morphisms which induce a jointly surjective family
on the associated real spaces R(•).) We write Sm(S)rét for the site of all smooth schemes over
S with this topology, and Srét for the site of all étale schemes over S with this topology. Then
Shv(Srét) ' Shv(RS) [Sch94, Theorem (1.3)].

Write SH(S) for the motivic stable homotopy category, SH(S)[ρ−1] for the ρ-local motivic
stable homotopy category, SH(S)rét for the rét-local motivic stable homotopy category (i.e.
the category obtained from the site Sm(S)rét by precisely the same construction as is used

to build SH(S) from Sm(S)Nis), and SHS1
(S) for the motivic S1-stable homotopy category.

We trust that SHS1
(S)rét, SH(S)rét[ρ−1] and so on have evident meanings. Write SH(Srét) for

the rét-local stable homotopy category on the small real étale site. This is just the homotopy
category of the category of presheaves of spectra on Srét with the local model structure. Similarly
SH(Sm(S)rét) means the rét-local presheaves of spectra on Sm(S). Then for example SHS1

(S)rét

is the A1-localisation of SH(Sm(S)rét).
The canonical functor e : SH(Srét) → SH(Sm(S)rét) (extending a (pre)sheaf on the small site

to the large site) is fully faithful by general results (see Corollary 6). It is moreover t-exact: for
E ∈ SH(Srét) we have πi(eE) = eπi(E). Here π∗ denotes the homotopy sheaves.

If F is a sheaf on the small real étale site of a scheme Y , then Hp(Y × A1, F ) = Hp(Y, F )
and Hp(Y+∧Gm, F ) = Hp(Y, F ). If Y is of finite type over R and F is locally constant, then this
follows by comparison of real étale cohomology with Betti cohomology of the real points [Del91,
Theorem II.5.7]. For the general case, see Theorem 8.

Now the category SHS1
(S)rét[ρ−1] is obtained from SH(Sm(S)rét) by (A1, ρ)-localisation.

It follows from t-exactness of e, the descent spectral sequence, and the above result about
rét-cohomology that the composite SH(Srét) → SH(Sm(S)rét) → SHS1

(S)rét[ρ−1] is still fully
faithful.

The category SH(S)rét[ρ−1] is obtained from SHS1
(S)rét[ρ−1] by ⊗-inverting Gm. However

in the latter category we have Gm ' 1 (via ρ!), so Gm is already invertible, and inverting it has

no effect: SHS1
(S)rét[ρ−1] ' SH(S)rét[ρ−1]. We have thus shown that

SH(Srét) → SH(S)rét[ρ−1]

is fully faithful.

885

https://doi.org/10.1112/S0010437X17007710 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007710


T. Bachmann

The next step is to show that it is essentially surjective. This follows from the proper
base change theorem by a clever argument of Cisinski–Déglise. Of course this first requires
that we know that SH(Srét) and SH(S)rét[ρ−1] satisfy proper base change. For SH(Srét) this
is a consequence of the proper base change theorem in real étale cohomology established by
Scheiderer, see Theorem 9. For SH(S)rét[ρ−1] this would follow from the axiomatic six functors
formalism of Voevodsky/Ayoub/Cisinski–Déglise, see § 5. It is in fact not very hard to show
directly that SH(S)rét[ρ−1] satisfies the six functors formalism. Instead we shall show (without
assuming the six functors formalism) that SH(S)rét[ρ−1] ' SH(S)[ρ−1], and that this latter
category satisfies the six functors formalism.

The next step is thus to show that the localisation functor SH(S)[ρ−1] → SH(S)rét[ρ−1] is
an equivalence. It clearly has dense image, so it suffices to show that it is fully faithful. Using the
fact that SH(S)[ρ−1] satisfies continuity and gluing (which follows quite easily from the same
statement for SH(S)), we may reduce to the case where S is the spectrum of a field k. The case
where char(k) > 0 is easily dealt with (note that such fields are never orderable), so we may
assume that k has characteristic zero and so in particular is perfect.

The ρ-localisation can be described rather explicitly. For E ∈ SH(k), consider the directed
system

E
ρ−→ E ∧Gm

ρ−→ E ∧Gm ∧Gm
ρ−→ · · · .

Then hocolimnE ∧G∧nm is a model for the ρ-localisation E[ρ−1] of E (see Lemma 15). It follows
that its homotopy sheaves are given by

πi(E[ρ−1]) = πi(E)∗[ρ
−1] =: colimn πi(E)n.

Here the colimit is along multiplication by ρ. (Let us remark here that the homotopy sheaves
in SH(k) are bigraded, and so, technically, are those in SH(k)[ρ−1]. However inverting ρ means
that up to canonical isomorphism, the homotopy sheaf is independent of the second index, so
we suppress it.) It then follows from the descent spectral sequence that in order to prove that
the functor SH(k)[ρ−1] → SH(k)rét[ρ−1] is an equivalence, it is enough to prove that if F∗ is a
homotopy module (element in the heart of SH(k)) such that ρ : Fn → Fn+1 is an isomorphism
for all n (we call such a homotopy module ρ-stable), then Hn

rét(X,F∗) = Hn
Nis(X,F∗) for all X

smooth over k. In particular, we need to show that F∗ is a sheaf in the real étale topology. This
is actually sufficient, because Nisnevich, Zariski and real étale cohomology of real étale sheaves
all agree [Sch94, Proposition 19.2.1].

This ties in with work of Jacobson and Scheiderer. Recall that π0(1)∗ = KMW
∗ , i.e. the zeroth

stable motivic homotopy sheaf is unramified Milnor–Witt K-theory. A theorem of Jacobson
[Jac17] together with work of Morel implies that KMW

∗ [ρ−1] = colimn I
n = arétZ; here I is

the sheaf of fundamental ideals. Finally if F∗ is a general ρ-stable homotopy module, we use
properties of transfers for homotopy modules together with the structure of F∗ as a module over
KMW
∗ [ρ−1] = arétZ to show that F∗ is a sheaf in the real étale topology. This concludes the

overview of the proof.
Throughout the article we actually establish all our results for both the stable motivic

homotopy category SH(S) and the stable A1-derived category DA1(S). The proofs in the latter
case are essentially always the same as in the former, so we do not tend to give them. (In fact
in some cases proofs just for the latter category would be simpler.)

Overview of the article. In § 2 we recall some results from local homotopy theory, including
the existence and basic properties of the homotopy t-structure, a general compact generation
criterion and a fully faithfulness result.
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In § 3 we recall the real étale topology and establish some supplements.
In § 4 we recall some results about motivic stable homotopy categories and transfers for finite

étale morphisms. In particular we establish the base change and projection formulas for these.
In § 5 we recall the formalism of pre-motivic and motivic categories and how it can be used

to establish that a category satisfies the six functors formalism.
In § 6 we carefully prove some basic facts about monoidal Bousfield localisation.
We judge these five sections as preliminary and the results as not very original. The ‘real

work’ is contained in the next three sections. In § 7 we review Jacobson’s theorem on the colimit
of the powers of the sheaf of fundamental ideals and use it together with our results on transfers
to prove that ρ-stable homotopy modules are sheaves in the real étale topology.

Section 8 contains various preliminary observations and reductions.
Finally in § 9 we carry out the proof as outlined above.
The remaining three sections contain some applications. In § 10 we show that our functor

SH(R) → SH(R)[ρ−1] ' SH(Spec(R)rét) ' SH coincides with the real realisation functor. It
follows that the ρ-inverted stable homotopy sheaves of E ∈ SH(R) are just the stable homotopy
groups of its real realisation.

In § 11 we collect some consequences for the η-inverted sphere. We use that 1[1/2, 1/ρ] '
1[1/2, 1/η]. Since the classical stable stems πsi = Z/2 for i = 1, 2 are 2-torsion, it follows that
πi(1[1/2, 1/η])(R) = 0 for i = 1, 2. Since the ρ-local homotopy sheaves are unramified sheaves
in the real étale topology, this (more or less) implies that πi(1[1/2, 1/η]) = 0 for i = 1, 2. This
reproves a result of Röndigs [Rön16].

A different but related question is to determine rational motivic stable homotopy theory. By a
recent result of Ananyevskiy et al. [ALP17] we have SH(k)−Q 'DMW (k,Q), where the right-hand
side denotes a category of rational Witt-motives. Our results show easily that DMW (k,Z[1/2]) '
DA1(k,Z[1/2])− 'D(Spec(k)rét,Z[1/2]) and more generally thatDA1(k,Z)[1/ρ]'D(Spec(k)rét).
By the same proof as in classical rational stable homotopy theory we have SH(k)−Q ' DA1(k,

Q)−, and so we consider our results as one version of an integral strengthening of the result of
Ananyevskiy–Levine–Panin.

In § 12 we collect some applications to the rigidity problem. A sheaf F on Sm(k) is called
rigid if for every essentially smooth, Henselian local scheme X with closed point x we have
F (X) = F (x). For example, sheaves with transfers in the sense of Voevodsky which are of
torsion prime to the characteristic of the perfect base field are rigid (see [SV96, Theorem 4.4]).
Our results imply that the homotopy sheaves of any E ∈ SH(k)[ρ−1] are real étale sheaves
extended from the small real étale site of k. One might already call this a rigidity result, but it
is also not hard to see (and we show) that all such sheaves are rigid in the above sense. As an
application, we show that the motivic stable homotopy sheaves πi(1)0[1/e] are all rigid, where e
is the exponential characteristic. This ties up a loose end of the author’s PhD thesis.

Notation. If S is a scheme, we denote the motivic stable homotopy category by SH(S). We
denote the S1-stable motivic homotopy category (i.e. where Gm has not been inverted yet) by

SHS1
(S). If X is a topos or site, we denote by SH(X ) the associated stable homotopy category,

see § 2. In particular SH(Srét),SH(Sm(S)rét) and SH(S)rét should be carefully distinguished:
the first is the stable homotopy category of the small rét-site on S, the second is the stable
homotopy category of the site of all smooth schemes, with the rét-topology, and the latter is
the rét-localisation of the motivic stable homotopy category. This last category is A1-local and
Gm-stable, whereas the second category is neither, and these notions do not even make sense for
the first category.

887

https://doi.org/10.1112/S0010437X17007710 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007710


T. Bachmann

The classical stable homotopy category will still be denoted by SH.
We denote the unit of a monoidal category C by 1C or just by 1, if C is clear from the context.

Thus if C is a stable homotopy category of some sort, then 1 is the sphere spectrum.

2. Recollections on local homotopy theory

If (C, τ) is a Grothendieck site, we can consider the associated category Shv(Cτ ) of sheaves (a
topos), the category sPre(C) of simplicial presheaves on C, as well as the categories SH(C) of
presheaves of spectra and C(C) of presheaves of complexes of abelian groups on C. The latter
three categories carry various local model structures, in particular the injective and the projective
one [Jar15]. We denote the homotopy category of SH(Cτ ) by SH(Cτ ) and the homotopy category
of C(Cτ ) by D(Cτ ).

It is also possible to model SH(Cτ ) and so on by sheaves. For this, let sShv(Cτ ) denote the
category of sheaves of simplicial sets, and similarly let SHs(Cτ ) be the category of sheaves of
spectra, and let Cs(Cτ ) be the category of sheaves of chain complexes. (Here we mean sheaves
in the 1-categorical sense, so this category is equivalent to the category of chain complexes of
sheaves of abelian groups, and similarly for the spectra.) These also afford local model structures,
and Ho(sShv(Cτ )) ' Ho(sPre(Cτ )), and so on.

Given a functor f∗ : C → D, there is an induced restriction functor f∗ : Pre(D) → Pre(C),
where Pre(C) denotes the category of presheaves (of sets) on C (and similarly for D). The functor
f∗ has a left adjoint f∗ : Pre(C) → Pre(D). It is in fact the left Kan extension of f∗ : C → D.

If C,D are sites the functor f∗ is called continuous if f∗ : Pre(D) → Pre(C) preserves sheaves.
In this case the induced functor f∗ : Shv(D) → Shv(C) has a left adjoint still denoted f∗ :
Shv(C) → Shv(D). If this induced functor is left exact (commutes with finite limits) then f is
called a geometric morphism.

More generally, an adjunction f∗ : Shv(C)� Shv(D) : f∗ (where f∗ ` f∗ does not necessarily
come from a functor f∗ : C → D) is called a geometric morphism if f∗ preserves finite limits.

If f : C → D is any functor, then there are induced adjunctions f∗ : sPre(C)� sPre(D) : f∗,
and similarly for spectra and chain complexes. Similarly if f∗ : Shv(C) � Shv(D) : f∗ is any
adjunction, then there are induced adjunctions f∗ : sShv(C)� sShv(D) : f∗, and so on. If f∗ ` f∗
is a geometric morphism in either of the above senses, then the induced adjunctions on presheaves
(sheaves) of simplicial sets, spectra, and chain complexes are Quillen adjunctions in the local
model structure [Jar15, § 5.3] [CD09, Theorem 1.18].

The above discussion allows us to prove the following useful result.

Lemma 1. Let f∗ : Shv(C)� Shv(D) : f∗ be a geometric morphism such that f∗ is fully faithful
and f∗ preserves colimits. Then the induced functors

Lf∗ : SH(C) → SH(D)

and

Lf∗ : D(C) → D(D)

are fully faithful.

The same result also holds for Lf∗ : Ho(sPre(C)) → Ho(sPre(D)), with the same proof.

Proof. We give the proof for the derived categories, it is the same for spectra.
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Since f∗ preserves colimits it affords a right adjoint f !. Then f∗ ` f ! is a geometric morphism
in the opposite direction (note that f∗ preserves finite limits, and in fact all limits, since it is a
right adjoint) and consequently f∗ is bi -Quillen. It follows that f∗ : Cs(D) → Cs(C) preserves
weak equivalences, and consequently coincides (up to weak equivalence) with its derived functor.

Now to show that Lf∗ is fully faithful we need to show that Rf∗Lf
∗ ' id. But Rf∗ ' f∗ since

f∗ is bi-Quillen. Let E ∈ Cs(C) be cofibrant. Then Lf∗E ' f∗E and consequently Rf∗Lf
∗E '

f∗f
∗E. Since f∗ is fully faithful we have f∗f

∗E ∼= E. This concludes the proof. 2

We will also make use of t-structures. We shall use homological notation for t-structures
[Lur16, Definition 1.2.1.1]. Briefly, a t-structure on a triangulated category C consists of two
(strictly full) subcategories C>0 and C60, satisfying various axioms. We put C>n = C>0[n] and
C6n = C60[n]. One then has C>n+1 ⊂ C>n and C6n ⊂ C6n+1 and [C>n+1, C6n] = 0. In fact E ∈
C>n+1 if and only if for all F ∈ C6n we have [E,F ] = 0, and vice versa. The inclusion C>n ↪→ C has
a right adjoint which we denote E 7→ E>n, and the inclusion C6n ↪→ C has a left adjoint which
we denote E 7→ E6n. The adjunctions furnish map E>n+1 → E → E6n and this extends to a
distinguished triangle in a unique and functorial way. The intersection C♥ := C>0∩C60 called the
heart. It is an abelian category. We put πC0 (E) = (E60)>0 ' (E>0)60 ∈ C♥ and πCi (E) = πC0 (E[i]).
Then πC∗ is a homological functor on C. The t-structure is called non-degenerate if πCi (E) = 0
implies that E ' 0.

By a t-category we mean a triangulated category with a fixed t-structure.
Suppose that (C, τ) is a site. Let for E ∈ SH(Cτ ) and i ∈ Z the sheaf πi(E) ∈ Shv(Cτ ) be

defined as the sheaf associated with the presheaf C 3 X 7→ πi(E(X)). Here we view E as a
presheaf of spectra. By definition, local weak equivalences of spectra induce isomorphisms on πi,
so πi(E) is well defined for E ∈ SH(Cτ ). This is a sheaf of abelian groups. Put

SH(Cτ )>0 = {E ∈ SH(Cτ ) : πi(E) = 0 for i < 0},
SH(Cτ )60 = {E ∈ SH(Cτ ) : πi(E) = 0 for i > 0}.

We define similarly for E ∈ D(Cτ ) the sheaf hi(E), and then the subcategories D(Cτ )>0,
D(Cτ )60.

Lemma 2. If (C, τ) is a Grothendieck site, then the above construction provides SH(Cτ ) with a
non-degenerate t-structure. The functor π0 : SH(Cτ )♥ → Shv(Cτ ) is an equivalence of categories.
Moreover let F ∈ Shv(Cτ ) ' SH(C)♥. Then for X ∈ C there is a natural isomorphism [Σ∞X+,
F [n]] = Hn

τ (X,F ).
Similar statements hold for D(Cτ ) in place of SH(Cτ ).

Proof. For derived categories, this result is classical. For SH(Cτ ), the result is also fairly well
known, but the author does not know an explicit reference, so we sketch a proof.

Note that there is a Quillen adjunction (in the local model structures)

Σ∞ : sPre(Cτ )∗ � SH(Cτ ) : Ω∞.

By direct computation using the above adjunction, we find that πi(Ω
∞E) = πi(E), for E ∈

SH(Cτ ) and i > 0.
By [Lur16, Proposition 1.4.3.4 and Remark 1.4.3.5] the category SH(Cτ ) admits a t-structure,1

where E ∈ SH(Cτ )60 if and only if Ω∞(E) ' ∗, and the subcategory SH(Cτ )>0 is generated under

1 The author would like to thank Saul Glasman for pointing out this reference.
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homotopy colimits and extensions by Σ∞C+. We first need to show that this is the t-structure we
want, i.e. that the positive and negative parts are determined by vanishing of homotopy sheaves.
Since πi(Ω

∞E) = πi(E), this is correct for the negative part. I claim that if E ∈ SH(Cτ )>0, then
πi(E) = 0 for i < 0. If X ∈ sPre(Cτ )∗, then πi(Σ

∞X) = 0 for i < 0 by direct computation. It
thus remains to show that the subcategory of E ∈ SH(Cτ ) with πi(E) = 0 for i < 0 is closed
under homotopy colimits and extensions. For extensions this is clear. Homotopy colimits are
generated by pushouts and filtered colimits [Lur09, Propositions 4.4.2.6 and 4.4.2.7], so we need
only deal with cones and filtered colimits. For cones this is again clear, and for filtered colimits
it holds because homotopy groups of spectra commute with filtered colimits, and hence the same
is true for homotopy sheaves (see the proof of Corollary 3 for more details on this). This proves
the claim. Conversely, let E ∈ SH(Cτ ) with πi(E) = 0 for i < 0. Consider the decomposition
E>0 → E → E<0. Then πi(E>0) = 0 for i < 0, so 0 = πi(E) = πi(E<0) for i < 0. It follows that
E<0 ' 0 and so E ' E>0 ∈ SH(E)>0.

The t-structure is non-degenerate because it is defined in terms of homotopy sheaves, and
homotopy sheaves detect weak equivalences by definition.

We have an adjunction
M : SH(Cτ )� D(Cτ ) : U.

By construction U is t-exact and thus M is right t-exact. Consider the induced adjunction

M♥ : SH(Cτ )♥ � D(Cτ )♥ : U.

By direct computation using the classical Hurewicz isomorphism (and the above adjunction),
π0(UME) = π0(E) if E ∈ SH(Cτ )>0. It follows that UM♥ ' id. Since U is faithful by definition,
from this we deduce that M♥U ' id as well. Thus SH(Cτ )♥ ' D(Cτ )♥ ' Shv(Cτ ), the latter
equivalence being classical. Finally if X ∈ C and F ∈ Shv(Cτ ) then [Σ∞X+, F [n]] = [Σ∞X+,
UF [n]] = Hn

τ (X,F ), the first equality by definition and the second by adjunction and the same
result in D(Cτ ). 2

Corollary 3. Let (C, τ) be a Grothendieck site.

(1) Let X ∈ C. If τ -cohomology on X commutes with filtered colimits of sheaves and the
τ -cohomological dimension of X is finite, then Σ∞X+ ∈ SH(Cτ ) is a compact object.

(2) For any collection Ei ∈ SH(C) and j ∈ Z we have πj(
⊕

iEi) =
⊕

i πj(Ei).

Similarly for D(Cτ ).

Proof. Let us show that (1) reduces to (2). For E ∈ SH(Cτ ) there is a conditionally convergent
spectral sequence

Hp
τ (X,π−qE)⇒ [X,E[p+ q]].

Under our assumptions on the cohomological dimension of X, it converges strongly to the right-
hand side. Under the assumption of commutation of cohomology with filtered colimits, by spectral
sequence comparison, it thus suffices to show that for Ei ∈ SH(Cτ ) we have πn(

⊕
iEi) =

⊕
i πnEi.

Now we prove (2). For E ∈ SH(C) write πpj (E)(X) = πj(E(X)); this defines a presheaf of

abelian groups on C. By definition πj(E) = aτπ
p
j (E). Let {Ei}i ∈ SH(C). Then πpj (

⊕
iEi) =⊕

i π
p
j (Ei), since homotopy groups of spectra commute with filtered colimits. We may assume

that all the Ei are cofibrant, so their presheaf direct sum coincides with the derived direct sum.
In this case it remains to show that

aτ
⊕
i

πpj (Ei)
∼=

⊕
i

aτπ
p
j (Ei).
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(Note that here we write
⊕

i for both direct sums of presheaves and direct sums of sheaves,
depending on whether the terms on the right are presheaves or sheaves.) But this holds for any
collection of presheaves on any site (both sides satisfy the same universal property).

The proof for D is the same. 2

We can enhance the functoriality of the SH construction as follows. Recall that a triangulated
functor F : C→ D between t-categories is called right (respectively left) t-exact if F (C>0) ⊂ D>0

(respectively F (C60) ⊂ D60). The functor is called t-exact if it is both left and right t-exact.

Lemma 4. Let f∗ : Shv(C)� Shv(D) : f∗ be a geometric morphism, where Shv(D) has enough
points. Then in the adjunction

Lf∗ : SH(C)� SH(D) : Rf∗

the left adjoint Lf∗ is t-exact, the right adjoint Rf∗ is left t-exact, and the induced functors

(Lf∗)♥ : SH(C)♥ � SH(D)♥ : (Rf∗)
♥

coincide (under the identification from Lemma 2) with f∗ ` f∗.
Similar statements hold for D in place of SH.

The author contends that the assumption that D has enough points is not really necessary.
See also [Lur09, Remark 6.5.1.4].

Proof. Certainly Rf∗ is left t-exact if Lf∗ is t-exact by adjunction, and (Rf∗)
♥ is right adjoint

to (Lf∗)♥, so it suffices to prove the claims for Lf∗.
Since D has enough points, it is then enough to assume that Shv(D) = Set. (Indeed let

p : Set → Shv(D) be a point; we will have

p∗πi(Lf
∗E) = πi(Lp

∗Lf∗E) = p∗f∗πiE

for all E ∈ SH(C) by applying the reduced case to p and fp which are points of D and C,
respectively. Since D has enough points it follows that πi(Lf

∗E) = f∗πi(E), as was to be shown.)
Let p∗ : Shv(C)� Set : p∗ be a point of C. Then p∗ corresponds to a pro-object in C, which is to

say that there is a filtered family Xα ∈ C such that for F ∈ Shv(C) we have p∗(F ) = colimα F (Xα)
[GK15, Proposition 1.4 and Remark 1.5].

It follows that for E ∈ SHs(C) we have

πi(p
∗E) = πi(colimαE(Xα)) ∼= colimα πi(E(Xα)) = p∗πi(E),

where the isomorphism in the middle holds because homotopy groups commute with filtered
colimits of spectra. In particular p∗ preserves weak equivalences and so p∗ ' Lp∗. Thus the
previous equation is precisely what we intended to prove. 2

3. Recollections on real étale cohomology

If X is a scheme, let R(X) be the set of pairs (x, p) where x ∈X and p is an ordering of the residue
field k(x). For a ring A we put Sper(A) = R(Spec(A)). A family of morphisms {αi : Xi → X}i∈I
is called a real étale covering if each α is étale and R(X) =

⋃
i α(R(Xi)). (Note that for (x, p) ∈Xi

the extension k(x)/k(α(x)) defines by restriction an ordering of k(α(x)).) The real étale coverings
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define a topology on all schemes [Sch94, (1.1)] called the real étale topology. We often abbreviate
this name to ‘rét-topology’.

For a scheme X, we let Xrét denote the small real étale site on X and Sm(X)rét the site
of smooth (separated, finite type) schemes over X with the real étale topology. If f : X →

Y is any morphism of schemes, we get the usual base change functors f∗ : Yrét → Xrét and
f∗ : Sm(Y ) → Sm(X). Also the natural inclusion e : Xrét → Sm(X) induces an adjunction
ep : Pre(Xrét)� Pre(Sm(X)) : r = e∗.

Lemma 5. If X is a scheme, the above adjunction induces a geometric morphism e : Shv(Xrét)�
Shv(Sm(X)rét) : r where e is fully faithful and r preserves colimits.

Proof. The functor r is restriction and e is left Kan extension. Since e preserves covers, r preserves
sheaves. Moreover r commutes with taking the associated sheaf, because every cover of Y ∈ Xrét

in Sm(X) comes from a cover in Xrét (because étale morphisms are stable under composition).
It follows that r commutes with colimits. Since e : Xrét → Sm(X)rét preserves pullbacks (and
Xrét has pullbacks!), the adjunction is a geometric morphism [Sta17, Tag 00X6]. In order to see
that e is fully faithful, i.e. F → reF an isomorphism for every F ∈ Shv(Xrét), we note that for
the presheaf adjunction ep : Pre(Xrét) � Pre(Sm(k)) : r we have repF = F . Indeed this holds
for F representable by definition, every sheaf is a colimit of representables, and ep and f both
commute with taking colimits. Finally note that for a sheaf F we have eF = aréte

pF and thus
reF = raréte

pF = arétre
pF = arétF = F , where we have used again that r commutes with taking

the associated sheaf. 2

Corollary 6. If X is a scheme, the induced derived functor Le : SH(Xrét) → SH(Sm(X)rét)
is t-exact and fully faithful. Similarly for D in place of SH.

Proof. The functor is fully faithful by Lemmas 5 and 1. It is t-exact by Lemma 4. 2

Lemma 7. If f : X → Y is a morphism of schemes, then the induced functor f∗ : Yrét → Xrét is
the left adjoint of a geometric morphism of sites. Moreover the derived functor

Lf∗ : SH(Yrét) → SH(Xrét)

is t-exact, and similarly for Lf∗ : D(Yrét) → D(Xrét).

Proof. The ‘moreover’ part follows from Lemma 4.
Since f∗ : Yrét → Xrét preserves covers f∗ : Pre(Xrét) → Pre(Yrét) preserves sheaves and

the morphism is continuous. It is a geometric morphism of sites because f∗ preserves pullbacks
[Sta17, Tag 00X6]. 2

If X is a scheme, there is the natural map X → X × A1 corresponding to the point 0 ∈ A1.
Similarly there is the natural map X

∐
X → X×(A1\0) corresponding to the points ±1 ∈ A1\0.

Theorem 8. Let X be a scheme and F ∈ Shv(Xrét). Then for any p > 0 the natural maps
X → X × A1 and X

∐
X → X × (A1\0) induce isomorphisms

Hp
rét(X × A1, F ) → Hp

rét(X,F )

Hp
rét(X × (A1\0), F ) → Hp

rét(X,F )⊕Hp
rét(X,F ).
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Proof. The first statement is homotopy invariance, see [Sch94, Example 16.7.2].
For the second statement, we follow closely that proof. Let f : X

∐
X → X × (A1\0) be the

canonical map. It suffices to show that Rnf∗F = 0 for n > 0 and R0f∗F = F , where we identify
F with its pullback to X

∐
X and X×(A1\0) for notational convenience. All of these statements

are local on X, so we may assume that X is affine.
Then one may assume that F is constructible (since rét-cohomology commutes with filtered

colimits of sheaves, and all sheaves on a spectral space are filtered colimits of constructible
sheaves; see again [Sch94, Example 16.7.2]). Next, writing X = Spec(A) as the inverse limit of
the filtering system Spec(A′), with A′ ⊂ A finitely generated over Z, and using Proposition (A.9)
of [Sch94, Example 16.7.2], we may assume that X is of finite type over Z.

But Sper(Z) = Sper(Q) = Sper(R), whence Hp
rét(X,F ) = Hp

rét(X×ZR, F ), so we may assume
that X is of finite type over R.

We may further assume that F = MZ is the constant sheaf on a closed, constructible subset
of X (Proposition (A.6) of [Sch94, Example 16.7.2]).

It is thus enough to prove the analog of our result for an affine semi-algebraic space X over
R and F = M a constant sheaf. But then H∗rét(X,M) = H∗sing(X(R),M) [Del91, Theorem II.5.7]
and so on, so this is obvious. 2

Theorem 9 (Proper base change). Consider a cartesian square of schemes

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y,

with f proper and Y finite-dimensional Noetherian. Then for any E ∈ SH(Xrét) (respectively
E ∈ D(Xrét)) the canonical map

g∗Rf∗(E) → Rf ′∗g
′∗(E)

is a weak equivalence.

Proof. We prove the claim for SH, the proof we give will work just as well for D. We proceed in
several steps.

Step 0. If g is étale, then the claim follows from the observation that f∗g# = g′#f
′∗.

Step 1. If f : X → Y is any morphism and E ∈ SH(Xrét), then there is a conditionally convergent
spectral sequence

Epq2 = Rpf∗π−qE ⇒ π−p−q(Rf∗E).

For this, let E ∈ Spt(Xrét) also denote a fibrant model. Then Rf∗E ' f∗E and for U ∈ Yrét we
have f∗(E)(U) = E(f∗U). Since E is fibrant there is a conditionally convergent descent spectral
sequence

Hp(f∗U, π−q(E))⇒ π−p−q(E(f∗U)).

By varying U , this yields a presheaf of spectral sequences on Yrét. Equivalently, this is a spectral
sequence of presheaves. Taking the associated sheaf on both sides we obtain a conditionally
convergent spectral sequence

arétH
p
rét(f

∗•, π−q(E))⇒ π−p−q(f∗E).
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It remains to see that arétH
p
rét(f

∗•, F ) = Rpf∗F , for any sheaf F on Xrét. For this we view
F ∈ D(Xrét)

♥. Then by definition Rpf∗F = π−pRf∗F . Repeating the above argument with
D(Xrét) in place of SH(Xrét), we obtain a conditionally convergent spectral sequence

arétH
p
rét(f

∗•, π−qF )⇒ Rp+qf∗F.

Since π−qF = 0 for q 6= 0 this spectral sequence converges strongly, yielding the desired
identification.

Step 2. If f is proper and of relative dimension at most n, then for F ∈ Shv(Xrét) and p > n we
have Rpf∗F = 0.

Indeed in this situation, by the proper base change theorem in real étale cohomology [Sch94,
Theorem 16.2], for any real closed point y → Y we get (Rpf∗F )y = Hp

rét(Xy, F |Xy). Since real
closed fields are the stalks of the rét-topology, in order for a sheaf G ∈ Shv(Yrét) to be zero it
is necessary and sufficient that Gy = 0 for all such y. But real étale cohomological dimension
is bounded by Krull dimension [Sch94, Theorem 7.6], so we find that Rpf∗F = 0 for p > n, as
claimed.

Conclusion of proof. Since isomorphism in SH(Y ′rét) is local on Y ′, it is an easy consequence of
step 0 that we may assume that Y ′ is quasi-compact (e.g. affine). Then f ′ is of bounded relative
dimension (being of finite type).

Now let E ∈ SH(Xrét). By t-exactness of g∗ and g′∗ we get from step 1 conditionally
convergent spectral sequences

g∗Rpf∗π−qE ⇒ π−p−q(g
∗Rf∗E)

and
Rpf ′∗g

′∗π−qE ⇒ π−p−q(Rf
′
∗g
′∗E).

The exchange transformation g∗Rf∗(E) → Rf ′∗g
′∗(E) induces a morphism of spectral sequences

(i.e. respecting the differentials and filtrations). By proper base change for sheaves, we have
g∗Rpf∗ ∼= Rpf ′∗g

′∗. Thus the two spectral sequences are isomorphic. By step 2 the second one
converges strongly, and hence so does the first. Thus the result follows from spectral sequence
comparison. 2

Remark. The only place in the above proof where we have used the assumption on Y is in step 1,
namely in the construction of the conditionally convergent spectral sequence

Rpf∗π−qE ⇒ π−p−q(Rf∗E).

The author does not know how to construct such a spectral sequence in general. He nonetheless
contends that the proper base change theorem should be true without assumptions on Y , but
perhaps a different proof is needed.

Remark. In the above proof we deduce proper base change for spectra and unbounded complexes
from proper base change for bounded complexes. Since we are dealing with hypercomplete
toposes, this is not tautological; see for example [Lur09, Counterexample 6.5.4.2 and Remark
6.5.4.3]. The crucial property which seems to make the proof work is encapsulated in step 2 and
might be phrased as ‘a proper morphism is locally of finite relative rét-cohomological dimension’.
The same is true in étale (instead of real étale) cohomology and this seems to be what the proof
of proper base change for unbounded étale complexes [CD13, Theorem 1.2.1] ultimately rests
on, in the guise of [CD13, Lemma 1.1.7]. This fails for a general proper morphism of topological
spaces (consider for example an infinite product of compact positive dimensional spaces mapping
to the point).
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4. Recollections on motivic homotopy theory

We denote the stable motivic homotopy category over a base scheme X [Ayo07] by SH(X), and
the stable A1-derived category over X [CD12, § 5.3] by DA1(X). We write 1X ∈ SH(X) for the
monoidal unit. If the context is clear we may just write 1.

Let f : Y → X be a finite étale morphism of schemes. Then in the category SH(X) we
have an induced morphism f : f#1Y → 1X and consequently D(f) : D(1X) → D(f#1Y ). Here
DE := Hom(E,1). Now in fact whenever f : Y → X is smooth proper then D(f#1Y ) ' f∗1Y
[CD12, Proposition 2.4.31] and if f is étale then f∗(1Y ) ' f#(1Y ) [CD12, Example 2.4.3(2),
Definition 2.4.24 and Proposition 2.4.31]. Let us write αX,Y : f#1Y →D(f#1Y ) for this canonical
isomorphism. We can then form the commutative diagram

D(f#1Y ) f#1Y
αX,Yoo

D(1X)

D(f)

OO

1X
αX,Xoo

trf

OO

where trf is defined so that the diagram commutes. This is the duality transfer of f as defined
in [RØ08, § 2.3].

Now suppose that k is a perfect field. Recall that then SH(k) has a t-structure. To define it,
for E ∈ SH(k) denote by πi(E)j the Nisnevich sheaf associated with the presheaf X 7→ [Σ∞X+[i],

E ∧ G∧jm ]. Then E ∈ SH(k)>0 if and only if πi(E)j = 0 for all i < 0 and all j ∈ Z. This indeed
defines a t-structure [Mor03, § 5.2], and then its heart can be described explicitly: it is equivalent
to the category of homotopy modules [Mor03, Theorem 5.2.6].

Let F∗ ∈ SH(k) is a homotopy module, which we identify with an element in the heart of the
homotopy t-structure. Given a finite étale morphism f : Y → X of essentially k-smooth schemes,
write s : X → Spec(k) for the structure map. We then define trf : Fn(Y ) → Fn(X) as

trf (F ) := tr∗f : [f#1Y , s
∗F ∧G∧nm ] → [1X , s

∗F ∧G∧nm ].

This transfer has the usual properties, of which we recall two.

Proposition 10 (Base change). Let k be a perfect field, g : V →X be a morphism of essentially
k-smooth schemes and f : Y → X finite étale. Consider the following cartesian square.

W
q //

p

��

Y

f

��
V g

// X

Then for any homotopy module F∗, we have g∗trf = trpq
∗ : F∗(Y ) → F∗(V ).

Proof. Note that p : W → V is finite étale, so this makes sense. By continuity (of F ), we may
assume that X and V are smooth (and hence so are Y and W ). Write s : X → Spec(k) for the
structure map.

If t : A → B is any map in SH(X), then the canonical diagram

F∗(B) = [B, s∗F ]
◦t //

g∗

��

[A, s∗F ] = F∗(A)

g∗

��
F∗(g

∗B) = [g∗B, g∗s∗F ]
◦g(t) // [g∗A, g∗s∗F ] = F∗(g

∗A)
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commutes, since g∗ is a functor. Applying this to trf : 1X → f#1Y it is enough to prove that
g∗(trf ) = trp under the canonical identifications.

Let f+ : f#1Y ' Σ∞X Y+ → Σ∞XX+ = 1X be the canonical map (so that trf = D(f+) via
αX,Y ), and similarly for p+. Then g∗(f+) ' p+ and consequently g∗(D(f+)) ' D(p+). It thus
remains to show that α•,• is natural, i.e. that g∗αX,Y = αV,W : Σ∞V W+ → D(Σ∞V W+).

For this we use the notation of [CD12, Example 2.4.3(2), Definition 2.4.24 and Proposition
2.4.31]. The isomorphism αX,Y : f#1 → D(f#1) is factored into the isomorphisms D(f#1) →

f∗1, the Thom transformation f#Ωf1 → f∗1 [CD12, Definition 2.4.21] and Ωf1 → 1. All of
these are natural in the required sense. 2

Lemma 11 (Commutation of transfer with external product). Let f : X ′ → X and g : Y ′ → Y
be finite étale. Then

sX×Y#(trf×g) = sX#(trf ) ∧ sY#(trg) : Σ∞(X ′ × Y ′)+ ' Σ∞X ′+ ∧ Σ∞Y ′+
→ Σ∞(X × Y )+ ' Σ∞X+ ∧ Σ∞Y+.

Here we write sX : X → Spec(k) for the canonical map, and similarly for Y,X × Y .

Proof. Write pX : X×Y →X and pY : X×Y → Y for the projections. I claim that the following
diagram commutes up to natural isomorphism.

SH(X)× SH(Y )
p∗X∧p

∗
Y //

sX#∧sY#

��

SH(X × Y )

sX×Y#

��
SH(k) SH(k)

To prove the claim, first note that there is, for T ∈ SH(X), U ∈ SH(Y ), a natural map
sX×Y#(p∗XT ∧ p∗Y U) → sX#T ∧ sy#U , which can be obtained by adjunctions, using that the
pullback functors are monoidal, and that sX×Y = sX ◦ pX (and similarly for Y ). Then to prove
that the comparison map is an isomorphism it suffices to consider T = Σ∞X ′, U = Σ∞Y ′ for
X ′ →X smooth any Y ′ → Y smooth (note that all our functors are left adjoints and so commute
with arbitrary sums, and objects of the forms T,U are generators). But then the claim boils down
to

X ′ ×k Y ′ ∼= (X ′ × Y )×X×Y (X × Y ′)
which is clear.

To prove the lemma, we now specialise to f : X ′ → X and g : Y ′ → Y finite étale. Then

trf×g = sX×Y#(DΣ∞X×Y (f × g)+).

Note that

Σ∞X×Y (f × g)+ = p∗XΣ∞X f+ ∧ p∗Y Σ∞Y g+.

Since p∗X , p
∗
Y are monoidal we compute

trf×g = sX×Y#p
∗
XDΣ∞X f+ ∧ p∗YDΣ∞Y g+ = sX#DΣ∞X f+ ∧ sY#DΣ∞Y g+,

where in the last equality we have used the claim. Since sX#DΣ∞X f+ = trf by definition (and
similarly for Y ), this is what we wanted to prove. 2
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Recall also the homotopy module KMW
∗ = π0(1)∗ of Milnor–Witt K-theory [Mor12, ch. 3].

Every homotopy module F∗ is a module over KMW
∗ in the sense that there are natural pairings

KMW
∗ (X)⊗ F∗(X) → F∗+∗(X).

Corollary 12 (Projection formula). Let k be a perfect field, f : Y →X a finite étale morphism
of essentially k-smooth schemes, and F∗ a homotopy module. Then for a ∈ KMW

∗ (Y ) and
b ∈ F∗(X) we have trf (af∗b) = trf (a)b. Similarly for a ∈ KMW

∗ (X) and b ∈ F∗(Y ) we have
trf (f∗(a)b) = atrf (b).

Proof. The usual proof works, see for example [CF17, Proof of Corollary 3.5]. We review it. We
only show the first statement, the second is similar. Consider the cartesian square

Y
(id×f)δY //

f

��

Y ×X
f×id

��
X

δX
// X ×X

where δX :X →X×X is the diagonal and similarly for Y . We have the map β : Σ∞Y+∧Σ∞X+ →

KMW
∗ ∧ F → F , where KMW

∗ ∧ F → F is the module structure and the first map is the tensor
product of Σ∞Y+ → KMW

∗ (corresponding to a) and Σ∞X+ → F (corresponding to b). This
defines an element β ∈ F (Y × X). We have trf ((id×f)δY )∗β = trf (af∗b) and δ∗Xtrf×idY β =
trf (a)b (the latter since trid = id and trf×g(x ⊗ y) = trf (x) ⊗ trg(y) by Lemma 11). These two
elements are equal by the base change formula, i.e. Proposition 10. 2

5. Recollections on pre-motivic categories

The six functors formalism [CD12, §A.5] is a very strong, and very general, duality theory. As
such it is no surprise that proving that any theory satisfies it requires some work. Fortunately it
is now possible to reduce this to establishing a few axioms.

Let S be a base category of schemes. Recall that a pre-motivic category M over S consists of
[CD13, Definition A.1.1] a pseudofunctorM on S, taking values in triangulated, closed symmetric
monoidal categories. Often these categories will be obtained as the homotopy categories of a
pseudofunctor taking values in suitable Quillen model categories and left Quillen functors. For
f : X → Y ∈ S, the functor M(f) :M(Y ) →M(X) is denoted f∗. For any f , the functor f∗

has a triangulated right adjoint f∗ (which is not required to be monoidal). If f is smooth, then
f∗ has a triangulated left adjoint f# (also not required to be monoidal). Moreover, M needs to
satisfy smooth base change and the smooth projection formula, in the following sense.

Let

Y
q //

g

��

X

f

��
T

p // S

be a cartesian square in S, with p smooth. Then smooth base change means that the natural
transformation q#g

∗
→ f∗p# is required to be a natural isomorphism.

Finally, let f : Y → X be a smooth morphism in S. Then the smooth projection formula
means that, for E ∈M(X) and F ∈M(Y ) we have f#(F ⊗f∗E) ' f#(F )⊗E, via the canonical
map.
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Here are some further properties a pre-motivic category can satisfy. We say M satisfies the
homotopy property if for every X ∈ S the natural map p#1 → 1 ∈ M(X) is an isomorphism,
where p : A1 ×X → X is the canonical map.

Let now q : P1×X → X be the canonical map. We say thatM satisfies the stability property
if the cone of the canonical map q#1 → 1 ∈M(X) is a ⊗-invertible object. In this case we write
1(1) = fib(q#1 → 1)[−2] and then as usual E(n) = E ⊗ 1(1)⊗n for n ∈ Z, E ∈M(X).

Finally, let X ∈ S, j : U → X ∈ S an open immersion, and i : Z → S a complementary
closed immersion. Then for E ∈M(U) there are the adjunction maps

j#j
∗E → E → i∗i

∗E.

We say thatM satisfies the localisation property if these maps are always part of a distinguished
triangle.

One then has the following fundamental result. It was discovered by Voevodsky, first worked
out in detail by Ayoub, and then formalised by Cisinski–Déglise.

Theorem 13 (Ayoub, Cisinski–Déglise). Let S be the category of Noetherian schemes of finite
dimension and M a pre-motivic category which satisfies the homotopy property, the stability
property, and the localisation property. Then ifM(X) is a well-generated triangulated category
for every X, M satisfies the full six functors formalism.

Proof. This is proved for ‘adequate categories of schemes’ in [CD12, Theorem 2.4.50], of which
Noetherian finite dimensional schemes are an example. 2

One further property we will make use of is continuity. This can be formulated as follows. Let
{Sα}α∈A be an inverse system in S, where all the transition morphisms are affine and the limit
S := limα Sα exists in S. Write pα : S → Sα for the canonical projection. Let E ∈ M(Sα0) for
some α0 ∈ A and write for α > α0, Eα = (Sα → Sα0)∗E. We say thatM satisfies the continuity
property if for every affine inverse system Sα as above, every E and every i ∈ Z the canonical
map

colimα>α0 [1(i), Eα]M(Sα) → [1(i), p∗α0
E]M(S)

is an isomorphism.
We in particular use the following consequence of continuity and localisation.

Corollary 14. Suppose that M be a pre-motivic category over S (where S contains all
Henselizations of its schemes), coming from a pseudofunctor valued in model categories. Assume
that M satisfies continuity and localisation.

Let E ∈ M(X), where X is Noetherian of finite dimension. Then E ' 0 if and only if for
every morphism f : Spec(k) → X with k a field we have f∗E ' 0.

Proof. By localisation, we may assume that X is reduced (see for example [CD12, Proposition
2.3.6(1)]). By [CD12, Proposition 4.3.9] (this result requiresM to come from a model category)
we may assume that X is (Henselian) local with closed point x and open complement U . By
localisation, it suffices to show that E|x ' 0 and E|U ' 0. The former holds by assumption, and
the latter by induction on the dimension. This concludes the proof. 2

Example. The pseudofunctors X 7→ SH(X) and X 7→ DA1(X) satisfy the six functors formalism
and continuity (for the base category of Noetherian finite dimensional schemes) [Ayo07, CD12].
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6. Recollections on monoidal bousfield localisation

LetM be a monoidal model category and α : Y ′ → Y ∈M a morphism. We wish to ‘monoidally
invert α’, by which we mean passing to a model category L⊗αM obtained by localising M and
such that for every T ∈ L⊗αM the induced map αT : T ⊗L Y ′ → T ⊗L Y is a weak equivalence.
We will also write L⊗αM =:M[α−1] and even Ho(M[α−1]) =: Ho(M)[α−1].

The monoidal α-localisation exists very generally. Suppose that Y ′ and Y are cofibrant, and
thatM admits a set of cofibrant homotopy generators G (for exampleM combinatorial [Bar10,

Corollary 4.33]). Let Hα = {Y ′ ⊗ T α⊗id−−−→ Y ⊗ T | T ∈ G}. When no confusion can arise, we will
denote Hα just by H. Then the Bousfield localisation LHM, if it exists (for example ifM is left
proper and combinatorial) is M[α−1]. We will call Hα-local objects α-local. As a further sanity
check, the model category LHM is still monoidal as follows from [Bar10, Proposition 4.47].

The situation simplifies somewhat if Y ′ and Y are invertible and M is stable. Then we may
as well assume that Y ′ = 1. Given T ∈M cofibrant we can consider the directed system

T ∼= T ⊗ 1
id⊗α−−−→ T ⊗ Y ∼= T ⊗ Y ⊗ 1 → T ⊗ Y ⊗2

→ · · ·
and its homotopy colimit T [α−1] := hocolimn T ⊗X⊗n. More generally, if T is not cofibrant, we
can either first cofibrantly replace it, or use the derived tensor product. Either way, we denote the
result still by T [α−1]. The main point of this section is to show that under suitable conditions,
T [α−1] is the α-localisation of T .

Clearly this is only a reasonable expectation under some compact generation assumption.
More generally, one would expect a transfinite iteration of α. Since all our applications will be
in compactly generated situations, we refrain from giving the more general argument.

Recall that by a set of compact homotopy generators G for M we mean a set of (usually
cofibrant) objects G ⊂ Ob(M) such that M is generated by the objects in G under homotopy
colimits, and such that for any directed system X1 → X2 → · · · ∈ M and T ∈ G, the canonical
map hocolimi Mapd(T,Xi) → Mapd(T, hocolimiXi) is an equivalence.

Lemma 15. Let α : 1 → Y be a map between objects in a symmetric monoidal, stable model
category such that Y is invertible (in the homotopy category). Assume that M has a set of
compact homotopy generators G, and that M[α−1] exists.

Then for each U ∈M the object U [α−1] is α-local and α-locally weakly equivalent to U . In
other words, U 7→ U [α−1] is an α-localisation functor.

Also G defines a set of compact homotopy generators for M[α−1].

Proof. We first show that the images of G in Ho(M[α−1]) are compact homotopy generators.
Generation is clear, and for homotopy compactness it is enough to show that a filtered homotopy
colimit of α-local objects is α-local. But this follows from homotopy compactness of T ⊗ Y ⊗n
(for T ∈ G and n ∈ {0, 1}) and definition of α-locality.

In a model category N with compact homotopy generators, if T1 → T2 → · · · is a directed
system of weak equivalences then hocolimi Ti is weakly equivalent to T1. (This follows from the
same result in the category of simplicial sets.) Thus U [α−1] is α-locally weakly equivalent to U .

It remains to see that U [α−1] is α-local. This follows from the next two lemmas. 2

In the above lemma, we have defined an object X to be α-local if for all T ∈M the induced
map α∗ : Mapd(T ⊗L Y,X) → Mapd(T,X) is an equivalence, because this is the way Bousfield
localisation works. Another intuitively appealing property would be for the canonical map X →

X ⊗ Y to be an equivalence. As the next lemma shows, these two notions agree in our case.
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Lemma 16. Let M be a symmetric monoidal model category and α : 1 → Y a morphism with
Y invertible.

Call an object X ∈ M α′-local if X → X ⊗L Y is a weak equivalence. Then X is α-local if
and only if X is α′-local, if and only if X is α⊗ α-local.

Proof. We shall show that (1) X is α-local if and only if it is α ⊗ α-local, (2) X is α′-local if
and only if it is (α ⊗ α)′-local, (3) X is α′-local if it is α-local and (4) X is α ⊗ α-local if it is
(α⊗ α)′-local.

All tensor products and mapping spaces will be derived in this proof.
(1) Consider the string of maps

Map(T ⊗ Y ⊗3, X) → Map(T ⊗ Y ⊗2, X) → Map(T ⊗ Y,X) → Map(T,X).

If X is α⊗α-local, then the composite of any two consecutive maps is an equivalence, and hence
all maps are equivalences by 2-out-of-6. Consequently X is α-local. The converse is clear.

(2) Consider the string of maps

X → X ⊗ Y → X ⊗ Y ⊗2
→ X ⊗ Y ⊗3.

If X is (α ⊗ α)′-local then so is Z ⊗ X for any Z, since (derived) tensor product preserves
weak equivalences. It follows that X ⊗ Y is (α ⊗ α)′-local, and hence the composite of any two
consecutive maps is an equivalence. Again by 2-out-of-6 this implies that X is α′-local. The
converse is clear.

(3) An object X is α-local if (and only if) for all T ∈M the map Map(T⊗Y,X) → Map(T,X)
is a weak equivalence (of simplicial sets). In particular T → T ⊗Y is an α-local weak equivalence
for all T . It also follows that X ⊗ Y is α-local if X is (here we use invertibility of Y ). Since
X → X ⊗ Y is an α-local weak equivalence, it is a weak equivalence if X (and hence X ⊗ Y ) is
α-local. Thus X is α′-local if it is α-local.

(4) For any simplicial set K we have [K,Map(T,X)] = [K ⊗ T,X] (using a framing if the
model category is not simplicial). It follows that X is α-local if and only if for all T ∈ M the
map α∗ : [T ⊗ Y,X] → [T,X] is an isomorphism. In particular, this property can be checked
entirely in the homotopy category of M, in which we will work from now on.

Suppose, for now, that X is α′-local. (We will find that our strategy does not work, but it
will work for α ⊗ α, and this is all that is left to prove.) We can choose an inverse equivalence

β : X⊗Y → X. We consider the map β : [T,X] → [T ⊗Y,X] sending f : T → X to T ⊗Y f⊗id−−−→
X⊗Y β−→ X. We would like to say that β is inverse to α∗. Given f : T → X we get the following
commutative diagram.

T ⊗ Y f⊗id // X ⊗ Y

T

α

OO

f // X

α

OO

Consequently α∗α
∗β = α∗ : [T,X] → [T,X ⊗ Y ] and thus α∗β = id (note that α∗ means

composition with X → X ⊗ Y , which is an isomorphism).
The problem is with showing that βα∗ = id. For this we fix f : T ⊗Y → X and consider the

following diagram.

T ⊗ Y ⊗ Y f⊗id // X ⊗ Y

T ⊗ 1⊗ Y
id⊗α⊗id

OO

f // X

α

OO
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If it commutes for all such f , then βα∗ = id. But this is not clear; the two paths differ by a
switch of Y .

However, in any symmetric monoidal category, the switch isomorphism on the square of an
invertible object is the identity [Dug14, Propositions 4.20 and 4.21]. Consequently our argument
works for α⊗ α, and this is what we set out to prove. 2

Remark. The assumption that Y is invertible is necessary in general for the above result. For
example, if M is a cartesian symmetric monoidal model category, then there cannot be any
α′-local objects unless ∗ = 1 → Y is already an equivalence.

Lemma 17. Notations and assumptions as in Lemma 15.
For any (cofibrant) X ∈M, the object X[α−1] is α-local.

Proof. By the previous lemma, it suffices to show that X[α−1] is (α⊗α)′-local. Clearly X[α−1] '
X[(α⊗α)−1], i.e. we may assume without loss of generality that Y is a square, and so its switch
isomorphism (in the homotopy category) is the identity.

Since tensor product commutes with colimits (in each variable) we have X[1/f ] ' X ⊗L
1[1/f ], and we can simplify notation by assuming without loss of generality that X = 1.

What we need to prove is that the following diagram induces an equivalence on homotopy
colimits.

1
f1 //

h1

��

G
f2 //

h2

��

G⊗G f3 //

h3

��

G⊗G⊗G //

h4

��

· · ·

G
f ′2 // G⊗G f ′3 // G⊗G⊗G f ′4 // G⊗G⊗G // · · ·

Because of the domains and codomains, it is tempting to guess that fi ' hi ' f ′i . Here we
write f ' g to mean that the maps become equal in the homotopy category. We claim that this
guess is correct. Then if T is any homotopy compact object, applying [T, •] to our diagram we
get a diagram of abelian groups which we need to show induces an isomorphism on colimits.
Homotopic maps become equal when applying [T, •], and then the desired result follows from an
easy diagram chase. By compact generation and stability, this will conclude the proof.

It remains to prove the claim. For this we may work entirely in the homotopy category, which
we will do from now on. It is easy to see that indeed fi = hi. For general Y , it would not be
true that f ′i = fi; one may check that the maps differ by appropriate switches of Y . However,
we have assumed that the switch on Y is the identity, so indeed fi = f ′i as well. 2

Remark. The stability assumption was used in the above proof in the following form: if A → B
is any morphism inM and [T,A] → [T,B] is an isomorphism for all homotopy compact T , then
A → B is a weak equivalence. This fails for example in the homotopy category of spaces.

The stability assumption is in fact necessary for the above result. The author learned the
following counterexample from Marc Hoyois: let M be the model category of small, stable ∞-
categories, Y = 1 the category of finite spectra and α = 2, i.e. the functor which sends a finite
spectrum s to s ⊕ s. Then C ∈ M is α′-local only if it is trivial. Indeed for c ∈ C the map
[c, c] → [c ⊕ c, c ⊕ c] needs to be an isomorphism, which forces c ' 0. But one may show that
1[1/α] is not the zero category, and so is not α′-local (let alone α-local).

See [Hoy17, Theorem 3.8] for a criterion that can be applied in unstable situations.
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7. The theorem of Jacobson and ρ-stable homotopy modules

Throughout this section, k is a field of characteristic zero. Recall that the real étale topology is
finer than the Nisnevich topology; in particular every real étale sheaf is a Nisnevich sheaf.

Theorem 18 (Jacobson [Jac17, Theorem 8.5]). There is a canonical isomorphism (in ShvNis

(Sm(k)))

colimn I
n

→ arétZ,

where the transition maps In → In+1 are given by multiplication with 2 = 〈1, 1〉 ∈ I.

Here I denotes the sheaf of fundamental ideals on Sm(k)Nis, i.e. the sheaf associated with
the presheaf X 7→ I(X), where I(X) is the fundamental ideal of the Witt ring of X [Kne77]. We
similarly write W for the sheaf of Witt rings, etc.

Let us recall the construction of the isomorphism in Jacobson’s theorem. If φ ∈W (K), where
K is a field, and p is an ordering of K, then there is the signature σp(φ) ∈ Z. If φ ∈ W (X),
define σ(φ) : R(X) → Z as follows. For (x, p) ∈ R(X) put σ(φ)(x, p) = σp(φ|x). Then one shows
that σ(φ) is a continuous function from R(X) to Z, i.e. an element of H0

rét(X,Z).
Next if φ ∈ I(k) then σp(φ) ∈ 2Z. Consequently if φ ∈ I(X) also σ(φ) ∈ 2H0

rét(X,Z). We may
thus define σ̃(φ) = σ(φ)/2 and in this way we obtain σ̃ : I(X) → H0

rét(X,Z). Similarly we get
σ̃ : In(X) → H0

rét(X,Z) with σ̃(φ) = σ(φ)/2n for φ ∈ In(X). For each n there is a commutative
diagram as follows.

In(X)
σ̃ //

2
��

H0
rét(X,Z)

In+1(X)
σ̃ // H0

rét(X,Z)

Consequently there is an induced map σ̃ : colimn I
n(X) → H0

rét(X,Z). The claim is that this is
an isomorphism after sheafifying, i.e. for X local.

Corollary 19. Let KMW
n denote the nth unramified Milnor–Witt K-theory sheaf. Then there

is a canonical isomorphism colimnK
MW
n → arétZ. Here the colimit is along multiplication with

ρ := −[−1] ∈ KMW
1 (k).

Proof. Recall the element h ∈ KMW
0 (k) with the following properties: KMW

n /h = In [Mor04,
Théorème 2.1] and for a ∈ KMW

1 (k) we have a2h = 0 [Mor12, Corollary 3.8] (this relation is
the analogue of the fact that in a graded commutative ring R∗ with a ∈ R1 we have a2 = −a2

by graded commutativity, so 2a2 = 0). Consequently ρ2h = 0 and so colimnK
MW
n → colimn I

n

is an isomorphism. It remains to note that the image of ρ in KMW
1 /h(k) ∼= I(k) is given by

−(〈−1〉−1) = 2 ∈ I(k) ⊂W (k), so the induced transition maps in the colimit are precisely those
used in Jacobson’s theorem. 2

Note that the sheaves In form a homotopy module, namely the homotopy module of Witt K-
theory [Mor12, Examples 3.33 and 3.33] [Mor04, Theoreme 2.1]; see also [GSZ16]. Consequently
they have transfers for finite separable field extensions. The sheaf arétZ also has transfers for
finite (separable) field extensions. Indeed if l/k is finite then Sper(l) → Sper(k) is a finite-sheeted
local homeomorphism [Sch85, 3.5.6 Remark(ii)] and hence we transfer by ‘taking sums over the
values at the preimages’.
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Lemma 20. The isomorphism colimn I
n

→ arétZ is compatible with transfers on fields.

Proof. It suffices to prove that for a field k, the total signature W (k) → H0
rét(k,Z) is compatible

with transfer. Let l/k be a finite extension and R/k a real closure. There is a commutative
diagram

W (l) //

tr
��

W (R⊗k l)
tr
��

W (k) //W (R)

by the base change formula, i.e. Proposition 10. Note that Sper(R⊗k l) is the fibre of Sper(l) →

Sper(k) over the ordering corresponding to the inclusion k ⊂ R. Consequently we also have the
following commutative diagram.

H0
rét(l,Z) //

tr
��

H0
rét(R⊗k l,Z)

tr
��

H0
rét(k,Z) // H0

rét(R,Z)

Since the signature maps are determined by pulling back to a real closure, this means that we
may assume that k is real closed. (Since both sides we are trying to prove equal are additive, we
may still assume that l is a field.) But then either l = k or l = k[

√
−1]. In the former case the

transfer on both sides is the identity, and in the latter it is zero. 2

We will make good use of the following observation.

Corollary 21. Let l1, . . . , lr/k be finite extensions such that
∐
i Spec(li) → Spec(k) is a rét-

cover. Then tr :
⊕

iH
0
rét(li,Z) → H0

rét(k,Z) is surjective.

Proof. The map
∐
i Sper(li) → Sper(k) is a surjective local homeomorphism of compact,

Hausdorff, totally disconnected spaces [Sch85, Theorem 3.5.1 and Remarks 3.5.6]. The result
thus follows from the next lemma. 2

Lemma 22. Let φ : X → Y be a surjective local homeomorphism of compact, Hausdorff, totally
disconnected spaces. Then φ has finite fibers, and the ‘summing over preimages’ transfer H0(X,
Z) → H0(Y,Z) is surjective.

Proof. The claim that φ has finite fibers is well known. We include a proof for convenience of the
reader: since φ is a local homeomorphism the fibers are discrete, since Y is Hausdorff they are
closed, and since X is compact they are compact. Now observe that a compact discrete space is
finite.

We now prove the surjectivity of the transfer. First we make the following claim: if X is a
compact, Hausdorff, totally disconnected space, then given x ∈ U ⊂ X with U open, there exists
x ∈ V ⊂ U such that V is clopen in X. Indeed for y 6= x let Uy be a clopen neighbourhood of
y disjoint from x. Then

⋃
y∈X\U Uy is an open cover of the compact (since closed) complement

X\U . Let U1, . . . , Un be a finite subcover. Then V = X\⋃i Ui works.
Now consider the morphism φ : X → Y . For y ∈ Y choose a clopen neighbourhood Uy

of y ∈ Y such that there exists a clopen set Vy ⊂ X with φ(Vy) = Uy and φ : Vy → Uy a
homeomorphism. We will say in this situation that φ splits strongly over Uy. We note that such
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Vy, Uy exist: since φ is a local homeomorphism, there exists V ′y ⊂ X such that U ′y := φ(Vy) is an
open neighbourhood of y and φ : V ′y → U ′y is a homeomorphism. By the claim, we may assume
that V ′y is clopen. Now choose a clopen neighbourhood Uy ⊂ U ′y, using the claim again. Then
Vy := φ−1(Uy) ∩ V ′y is clopen in X and maps homeomorphically to Uy.

We obtain in this way an open cover {Uy}y∈Y of Y . Since Y is compact, we can choose a
finite subcover U1, . . . , Un. Using that all the Ui are clopen we can refine further until we have
found a disjoint clopen cover (replace Ui by Ui\(U1∪U2∪· · ·∪Ui−1)) over which φ splits strongly.
(Note that if φ splits strongly over a clopen U ⊂ Y , then it also splits strongly over any clopen
U ′ ⊂ U .)

Since H0(Y,Z) is the set of continuous functions from Y to Z, it suffices to prove that the
indicator function χUi : Y → Z of the clopen subset Ui is in the image of transfer (because
1 =

∑
i χUi , and the transfer is additive). But φ is strongly split over Ui by construction, so there

exists some clopen subset U ⊂X such that φ : U → Ui is a homeomorphism. Then χU ∈H0(X,Z)
and this is taken by transfer to χUi , as follows from the explicit description of transfer in terms
of ‘summing over preimages’. 2

We will want to show that certain presheaves are sheaves in the rét-topology. We find it
easiest to first develop a criterion for this. We start with the following result, which is surely well
known.

Lemma 23. Let τ be a topology on a category C and F a presheaf on C which is τ -separated. Let
X ∈ C and U•, V• → X be τ -coverings. Suppose that V• refines U•, i.e. we are given a morphism
f : V• → U• over X. Then if F satisfies the sheaf condition with respect to V•, it also satisfies
the sheaf condition with respect to U•.

Proof. The proof can be extracted from the proof of [Sta17, Tag 00VX]. We repeat the argument
for convenience. For simplicity, suppose that U• and V• use the same indexing set I, and that
the refinement is of the form Vi → Ui. We are given si ∈ F (Ui) for each i, such that si|Ui×XUj =
sj |Ui×XUj , and we need to show that there is a (necessarily unique) s ∈ F (X) with s|Ui = si.

Let ti = f∗si. Then t• is a compatible family for the covering V•, and hence there is s ∈ F (X)
with s|Vi = ti for all i. We need to show that also s|Ui = si. For this, fix i0 ∈ I and consider the
coverings U ′•, V

′
• → Ui0 obtained by base change. Then V ′• refines U ′•. We find that si0 |Ui0×XUi =

si|Ui0×XUi by assumption, and hence f∗(si0 |Ui0×XUi) = f∗(si|Ui0×XUi) = ti|Ui0×XVi = s|Ui0×XVi
by construction. But now because F is separated in the τ -topology and V ′• → Ui0 is a cover we
conclude that si0 = s|Ui0 , as needed. 2

Corollary 24. Let F be a sheaf on Sm(k)Nis. Then F is a sheaf in the rét-topology if and only
if F satisfies the sheaf condition for every rét-cover f : U → X, where X is (essentially) smooth,
Henselian local and f is finite étale.

Proof. For this proof, we call a morphism with the properties of f a frét-cover.
The condition is clearly necessary; we show the converse.
(∗) We first claim that every rét-cover U• → X with X smooth Henselian local can be

refined by a frét-cover. We can certainly refine U• by an affine cover, so assume that each Ui
is affine. Then by [Sta17, Tag 04GJ] each Ui splits as U ′i

∐
U ′′i with U ′i → X finite étale and

U ′′i → X not hitting the closed point m of X (note that Ui → X is everywhere quasi-finite).
I claim that U ′• is also a rét-cover. Indeed étale morphisms induce open maps on real spectra
[Sch94, Proposition 1.8] and U ′• covers R(m) ⊂ R(X) by construction. But the only open subset
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of R(X) containing R(m) is all of R(X), by [ABR12, Propositions II.2.1 and II.2.4]. Finally the
real spectrum of any ring is quasi-compact [ABR12, II.1.5] whence we can always refine by a
finite subcover, and then taking the disjoint union we refine by a singleton cover.

If X ∈ Sm(k), we write FX := F |XNis
for the restriction to the small site. Write Hom for the

internal mapping presheaf functor in this category. Recall that Hom(V, FX)(V ′) = F (V ×X V ′);
in particular this functor preserves sheaves.

Let U• → X be a rét-cover. To show that F (X) → F (U•) ⇒ F (U• ×X U•) is an equaliser
diagram (respectively the first map is injective), it is sufficient to show that FX → Hom(U•,
FX) ⇒ Hom(U• ×X U•, FX) is an equaliser diagram of sheaves (respectively the first map is
an injection of sheaves), since limits of sheaves are computed in presheaves. But finite limits
(respectively injectivity) are detected on stalks, whence in both situations we may assume that
X is Henselian local. (∗∗)

Now we show that F is rét-separated. Let U• → X be a rét-cover. By the above, to show
that F (X) → F (U•) is injective we may assume that X is Henselian local. Then U• → X is
refined by a frét-cover V → X, by (∗). But then F (X) → F (U•) → F (V ) is injective since F
satisfies the sheaf condition for V → X by assumption, so F (X) → F (U•) is injective and F is
rét-separated.

Finally let U• → X be any rét-cover. We wish to show that F satisfies the sheaf condition
for this cover. By (∗∗), we may assume that X is Henselian local. Then U• → X is refined by a
frét-cover V → X and F satisfies the sheaf condition with respect to V → X by assumption, so
it satisfies the sheaf condition with respect to U• → X by Lemma 23. 2

Remark. Using [ABR12, Corollary II.1.15], the claim (∗) can be extended as follows: Every
rét-cover U• → X with X arbitrary is refined by a cover V ′• → V• → X, where V• → X is a
Nisnevich cover and each V ′i → Vi is a frét-cover.

Theorem 25. Let F∗ be a homotopy module such that ρ : Fn → Fn+1 is an isomorphism for all
n. Then F∗ consists of rét-sheaves.

Proof. We apply Corollary 24. Hence let φ : U → X be a rét-cover with φ finite étale and X
essentially smooth, Henselian local. We need to show that F satisfies the sheaf condition with
respect to this cover. Note that U is then a finite disjoint union of essentially smooth, Henselian
local schemes, by [Sta17, Tag 04GH (1)].

We now use the transfer tr : F∗(U) → F∗(X) from § 4. Any homotopy module is a module
over KMW

∗ and satisfies the projection formula with respect to this module structure. It follows
from Corollary 19 and our assumption that ρ acts invertibly on F∗ that F∗ is a module over
arétZ, and satisfies the projection formula with respect to that module structure.

We know that for a Henselian local ring A with residue field κ, we have H0
rét(A,Z) = H0

rét(κ,
Z). This follows from [ABR12, Propositions II.2.2 and II.2.4] (the author learned this argument
from [KSW16, proof of Lemma 6.4]). Consequently by Corollary 21, Proposition 10 and stability
of rét-covers under base change, there exists a ∈ H0

rét(U,Z) such that tr(a) = 1.
Now suppose given b ∈ F∗(X) such that b|U = 0. Then b = 1b = tr(a)b = tr(a · b|U ) = 0 by

the projection formula (i.e. Corollary 12). Consequently F∗(X) → F∗(U) is injective.
Write p1, p2 : U ×X U → U for the two projections and suppose given b ∈ F∗(U) such that

p∗1b = p∗2b. We have to show that there is c ∈ F∗(X) such that b = c|U . I claim that c := tr(ab)
works. Indeed we have tr(ab)|U = φ∗(trφ(ab)) = trp2(p∗1(ab)) by Proposition 10. Now p∗1b = p∗2b
by assumption, and so trp2(p∗1(a)p∗1(b)) = trp2(p∗1(a)p∗2(b)) = trp2(p∗1a)b by the projection formula
again. Finally trp2(p∗1a) = φ∗trφ(a) = φ∗1 = 1 by base change again, so we are done. 2
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8. Preliminary observations

We are now almost ready to prove our main theorems. This section collects some preliminary
observations and reductions.

Lemma 15 from § 6 applies in particular to SH(S) and DA1(S) for a Noetherian base scheme
S. We will be particularly interested in the case Y = Gm and α = ρ : S → Gm the additive
inverse of the morphism corresponding to −1. What the lemma says is that the ρ-localisation
can be computed as the obvious colimit.

We write SH(S)rét for the real étale localisation of SH(S) and DA1(S)rét for the real étale
localisation of DA1(S). There is possibly a slight confusion as to what this means, since it could
mean the localisation at desuspensions of real étale (hyper-) covers, or the category obtained by
the same procedure as SH(S) but replacing the Nisnevich topology by the real étale one from
the start. This does not actually make a difference:

Lemma 26. LetM be a monoidal model category, T ∈M cofibrant and H a set of maps. There
is an isomorphism of Quillen model categories

Spt(LHM, T ) = LH′ Spt(M, T ),

provided that all the localisations exist (e.g. M left proper and combinatorial). Here H ′ =⋃
i∈Z Σ∞+iH and Spt(N , U) denotes the model category of (non-symmetric) U -spectra in N

with the local model structure.

Proof. We follow [Hov01]. Recall that Spt(N , U) denotes the category of sequences (X1, X2, X3,
. . . ) together with bonding maps Xi ⊗ U → Xi+1, and morphisms the compatible sequences of
morphisms. This is firstly provided with a global model structure Spt(N , U)gl in which a map
(X•) → (Y•) is a fibration or weak equivalence if and only if Xi → Yi is for all i. This is also
called a levelwise fibration or weak equivalence. The local model structure is then obtained by
localisation at a set of maps which is not important to us, because it only depends on a choice
of set of generators of M, and for LHM we can just choose the same generators.

Since in any model category LH1LH2N = LH1∪H2N , it is enough to show that LH′ Spt(M,
T )gl = Spt(LHM, T )gl. Note that an acyclic fibration in Spt(LHM, T )gl is the same as a levelwise
acyclic H-local fibration inM, i.e. a levelwise acyclic fibration. Consequently the cofibrations in
Spt(LHM, T )gl are the same as in Spt(M, T )gl, whereas the former has more weak equivalences.
Thus the former is a Bousfield localisation of the latter and hence it is enough to show that
LH′ Spt(M, T )gl and Spt(LHM, T )gl have the same fibrant objects. An object of Spt(LHM, T )gl

is fibrant if and only if it is levelwise H-locally fibrant. An object E of LH′ Spt(M, T )gl is fibrant
if and only if it is levelwise fibrant and H ′-local, which means that for each α : X → Y ∈ H and
every n ∈ Z the map

Mapd(Σ∞+nα,E) : Mapd(Σ∞+nY,E) → Mapd(Σ∞+nY,E)

is a weak equivalence. By adjunction, this is the same as Mapd(α,En) being an equivalence, i.e.
all En being H-local. This concludes the proof. 2

Write SHS1
(S) for the S1-stable homotopy category (i.e. obtained from motivic spaces by

just inverting S1, but not Gm).

Lemma 27. There are canonical Quillen equivalences SHS1
(S)[ρ−1] ' SH(S)[ρ−1] and similarly

for the real étale topology.
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Proof. By Lemma 26 we know that Spt(SHS1
(S)[ρ−1],Gm) = Spt(SHS1

(S),Gm)[ρ−1] '
SH(S)[ρ−1]. But the map ρ : S → Gm is invertible in SHS1

(S)[ρ−1] and thus Spt(SHS1
(S)[ρ−1],

Gm) ' SHS1
(S)[ρ−1], i.e. inverting an invertible object has no effect [Hov01, Theorem 5.1]. 2

We also observe the following.

Proposition 28. The pseudofunctor X 7→ SH(X)[ρ−1] satisfies the full six functors formalism
(on Noetherian schemes of finite dimension), compact generation, and continuity.

Proof. If i : Z → X is a closed immersion then the functor i∗ : SH(Z) → SH(X) commutes
with filtered homotopy colimits (being right adjoint to a functor preserving compact objects)
and satisfies i∗(X ⊗ Gm) ' i∗(X) ⊗ Gm [CD12, A.5.1(6) and (3)]. It follows from the explicit
description of ρ-localisation in Lemma 15 that i∗ commutes with L : SH(X) → SH(X)[ρ−1].
Thus SH(X)[ρ−1] satisfies localisation, by [CD12, Proposition 2.3.19]. Since SH(X)[ρ−1] clearly
satisfies the homotopy and stability properties, it satisfies the six functors formalism by
Theorem 13.

Since SH(X) is compactly generated so is SH(X)[ρ−1], by the last sentence of Lemma 15.
For any morphism f : X → Y the functor f∗ : SH(Y ) → SH(X) commutes with (filtered)

homotopy colimits (being a left adjoint), and consequently it commutes with ρ-localisation, as
above. Thus continuity for SH(X)[ρ−1] follows from continuity for SH(X). 2

For completeness, we include the following rather formal observation. It is not used in the
remainder of this text (except that it is restated as part of Theorem 35).

Proposition 29. The canonical functor SH(S)rét
→ SH(S)rét[ρ−1] is an equivalence. In other

words, ρ is a weak equivalence in SH(S)rét.

Proof. I claim that in SH(S)rét there is a splitting Gm ' 1 ∨ ∆ such that the composite 1
ρ−→

Gm ' 1 ∨∆ → 1 is the identity. It will follow from Lemma 30 below that ∆ ' 0, proving this
lemma.

Call a ∈ O×(X) totally positive if for every real closed field r and morphism α : Spec(r) → X
we have α∗(a) > 0. Note that in particular any square of a unit is totally positive.

This defines a sub-presheaf G+ ⊂ RA1\0 of the presheaf represented by A1\0. Define G−
analogously using totally negative units. I claim that arétRA1\0 = arétG+

∐
arétG−1. We may

prove this on stalks, which are Henselian rings with real closed residue fields [Sch94, (3.7.3)]. If
A is such a ring and a ∈ A×, then the reduction ā ∈ A/m is a unit and so either positive or
negative. It follows that either ā or −ā is a square, whence either a or −a is a square (A being
Henselian of characteristic zero). Consequently a is either totally positive or totally negative,
proving the claim.

We may thus define a map arétGm → arétS
0 = arét(∗

∐ ∗) by mapping arétG+ to the base
point and arétG− to the other point. Since −1 is totally negative this yields an unstable splitting
arétS

0
→ arétGm → arétS

0 of the required form. The stable splitting follows. 2

Lemma 30. Let C be an additive symmetric monoidal category in which ⊗ distributes over ⊕.
If G ∈ C is an invertible object, such that G ∼= 1⊕∆, then ∆ ∼= 0.

Proof. The object G is rigid (being invertible) and hence ∆ is rigid (being a summand of G).
We have 1 ∼= D(G) ⊗G ∼= (D1 ⊕D∆) ⊗ (1 ⊕∆) ∼= 1 ⊕∆ ⊕D(∆) ⊕D(∆) ⊗∆. Thus in order
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to prove the claim we may assume that G = 1. Now the splitting 1 ∼= 1 ⊕ ∆ corresponds to

morphisms 1
e−→ 1 ⊕ ∆

f−→ 1 with fe = id and ef ∈ End(1 ⊕ ∆) the projection. Fixing an

isomorphism 1
z−→ 1 ⊕ ∆ we get corresponding elements z−1e, fz ∈ [1, 1]. We have id = fe =

f(zz−1)e = (fz)(z−1e). But End(1) is commutative [Bal10, sentence before Proposition 2.2] so
id = (z−1e)(fz) and consequently ef = zz−1 = id and ∆ = 0. 2

9. Main theorems

Proposition 31. Let k be a field of characteristic zero. The functor L : SH(k)[ρ−1] →

SH(k)rét[ρ−1] is an equivalence.

Proof. It is enough to show that all objects in SH(k)[ρ−1] are rét-local. Let U• → X be a
rét-hypercover, and let X̂ be its homotopy colimit (in SH(k)). We need to show that if E ∈
SH(k)[ρ−1], then [X̂, E] = [X,E]. We have conditionally convergent descent spectral sequences

Hp
Nis(X,π−q(E)−i)⇒ [Σ∞X+ ∧G∧im , E[p+ q]] (1)

[X̂, π−q(E)−i[p]]⇒ [X̂ ∧G∧im , E[p+ q]]. (2)

Here we display the E2-pages on the left-hand side. We moreover have the conditionally
convergent homotopy colimit spectral sequence

[U∗, π−q(E)−i[p]]⇒ [X̂, π−q(E)−i[p+ ∗]]. (3)

Here the left-hand side is the E1-page. We have [Un, π−q(E)−i[p]] = Hp
Nis(Un, π−q(E)−i) =

Hp
rét(Un, π−q(E)−i); indeed since E is ρ-local each π−q(E)−i is a rét-sheaf, by Theorem 25, and

for any rét-sheaf F we have Hp
rét(Un, F ) = Hp

Nis(Un, F ) [Sch94, Proposition 19.2.1]. It follows that
spectral sequence (3) converges strongly (because the dimension of X is finite) and identifies with
the descent spectral sequence in rét-cohomology for the cover U•. In particular, it converges to
Hp+∗

rét (X,π−q(E)−i). Thus we find that [X̂, π−q(E)−i[p]] = Hp
rét(X,π−q(E)−i). Using [Sch94,

Proposition 19.2.1] again, we conclude that the evident map from spectral sequence (1) to
spectral sequence (2) induces an isomorphism on the E2-pages, and moreover both converge
strongly (again for cohomological dimension reasons). Thus the induced map on targets is an
isomorphism, which is what we wanted to show. 2

Corollary 32. The proposition holds for all fields.

Proof. We claim that if k has positive characteristic, then ρ is nilpotent in SH(k). By base
change, it suffices to prove this when k = Fp. That is to say, we wish to show that ρ is nilpotent
in KMW

∗ (Fp), or equivalently that colimnK
MW
n (Fp) = 0. By the same argument as in the proof

of Corollary 19 we know that colimnK
MW
n (Fp) = colimn I

n(Fp). Thus our claim follows from
nilpotence of the fundamental ideal of Fp, which is well known [MH73, III(5.9)]. 2

Corollary 33. Let S be a Noetherian scheme of finite dimension. The functor L :
SH(S)[ρ−1] → SH(S)rét[ρ−1] is an equivalence.

In particular SH(S)rét[ρ−1] satisfies the full six functors formalism.

Our initial proof of this statement contained a mistake; a correction and vast simplification
has kindly been communicated by Denis-Charles Cisinski.
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Proof. It suffices to prove that all objects of SH(S)[ρ−1] are rét-local. Thus let X ∈ Sm(S) and
U• → X a rét-hypercover. We need to show that

α : hocolim∆ Σ∞U• → Σ∞X

is an equivalence in SH(S)[ρ−1]. (See also Lemma 26.) Since SH(S)[ρ−1] satisfies the six
functors formalism by Proposition 28, it follows from Corollary 14 that suffices to show that
if f : Spec(k) → S is a morphism (with k a field), then f∗α is an equivalence. But f∗ is a left
adjoint so commutes with homotopy colimits (and Σ∞), so f∗α is isomorphic to the map

hocolim∆ Σ∞f∗U• → Σ∞f∗X

in SH(k)[ρ−1]. Since rét-covers are stable by pullback, this is an equivalence by Corollary 32. 2

Proposition 34. Let S be a Noetherian scheme of finite dimension. Then the canonical functor
SH(Srét) → SH(S)rét[ρ−1] is an equivalence.

Proof. The functor SH(Srét) → SH(Sm(S)rét) is fully faithful and t-exact by Corollary 6. The
image of SH(Srét) in SH(Sm(S)rét) consists of A1-local and ρ-local objects, by the descent spectral
sequence and Theorem 8 (and Corollary 6, which implies that the homotopy sheaves of LeE are

the extensions of the homotopy sheaves of E). Consequently SH(Srét) → SHS1
(S)rét[ρ−1] is fully

faithful. But SHS1
(S)rét[ρ−1] → SH(S)rét[ρ−1] is an equivalence by Lemma 27. We have thus

established that the functor is fully faithful. We need to show it is essentially surjective.
The category SH(S)rét[ρ−1] is generated by objects of the form p∗(1) where p : T → S

is projective [CD12, Proposition 4.2.13]. Since the functor e : SH(Srét) → SH(S)rét[ρ−1] has a
right adjoint it commutes with arbitrary sums, and hence it identifies SH(Srét) with a localising
subcategory of SH(S)rét[ρ−1]. It thus suffices to show that e commutes with p∗, where p : T → S is
a projective morphism. This is exactly the same as the proof of [CD13, Proposition 4.4.3]. It boils
down to the proper base change theorem holding both in SH(S)rét[ρ−1] (where it follows from
the six functors formalism which we have already established by showing that SH(S)rét[ρ−1] '
SH(S)[ρ−1]) and in SH(Srét); the latter is Theorem 9. 2

Remark. If S is the spectrum of a field, the above proof can be simplified greatly, by arguing
as in [Bac16, § 5]. See in particular Lemma 21, Corollary 26 and Proposition 28 of [Bac16, § 5].
This way we no longer need to use the proper base change theorems, and thus also do not need
to know that SH(X)rét[ρ−1] satisfies the six functors formalism.

One may also extract from [Bac16, § 5] a proof of Proposition 31 not relying on Theorem 25.
Thus if the base is a field, §§ 3, 5, and 7 can be dispensed with.

In summary, we have thus established the following result.

Theorem 35. Let S be a Noetherian scheme of finite dimension. In the following two diagrams,
all functors are the canonical ones, and are equivalences of categories.

SH(Srét)
a //

��

SHS1
(S)rét[ρ−1]

b
��

SHS1
(S)[ρ−1]oo

b′

��
SH(S)rét c // SH(S)rét[ρ−1] SH(S)[ρ−1]

doo
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DA1(Srét) //

��

DS1

A1(S)rét[ρ−1]

��

DS1

A1(S)[ρ−1]oo

��
DA1(S)rét // DA1(S)rét[ρ−1] DA1(S)[ρ−1]oo

In particular all these categories satisfy the full six functors formalism, and continuity.

Proof. The functor d is an equivalence by Corollary 33, b and b′ are equivalences by Corollary 27,
c is an equivalence by Proposition 29 and ba is an equivalence by Proposition 34. It follows that
a is an equivalence, and so are the two unlabelled functors.

By Proposition 28, SH(•)[ρ−1] satisfies the full six functors formalism, and hence so do all
the other pseudofunctors, being equivalent.

We have provided the proofs for SH, the ones for DA1 are exactly the same. 2

10. Real realisation

In this section we work over the field R of real numbers. We then have a composite

R1 : SH(R)
Lρ−→ SH(R)rét[ρ−1] ' SHS1

(R)rét[ρ−1]
r−→ SHs.

Here by SHs we mean the model of the stable homotopy category SH built from simplicial sets.
Of course SHs ' SH canonically (and this may be an equality depending, on our favourite model
of SH). Also r denotes the functor induced by the right adjoint of e : Pre(Rrét) → Pre(Sm(R))
from § 3.

Following Heller and Ormsby [HO16, § 4.4], there is also the real realisation functor LR2 :
SH(R) → SHt. Here SHt is the model of SH built from topological spaces. The functor LR2 is
defined by starting with the functor R2 : Sm(R) → Top, X 7→ X(R) assigning a smooth scheme
over R its set of real points with the strong topology. We then get a functor R2 : sPre(Sm(R))∗ →

Top by left Kan extension, i.e. demanding that R2(∆n
+∧X+) = ∆n

+∧X(R)+ and that R2 preserves
colimits. Using the projective model structure on sPre(Sm(R))∗ this functor is left Quillen and
then one promotes it to LR2 : SH(R) → SHt in the usual way.

Fortunately the two potential real realisation functors are the same. To state this result,
recall that there is an adjunction

| • | : sSet� Top : Singt,

and then by passing to homotopy categories of spectra one obtains the adjoint equivalence

L| • | : SHs � SHt : R Singt .

Proposition 36. The two functors L|R1(•)|, LR2(•) : SH(R) → SHt are canonically
isomorphic.

Proof. The functor R2 takes multiplication by ρ into a weak equivalence. Consequently it remains
left Quillen in the ρ-local model structure and hence LR2 canonically factors through the
localisation SH(R) → SH(R)[ρ−1]. Since SH(R)[ρ−1] ' SHS1

(R)rét[ρ−1] the obvious functor
R′2 : Spt(Sm(R)) → Sptt is left Quillen in the (ρ, rét,A1)-local model structure. (Here we have
used twice the following well-known observation: if L :M� N : R is a Quillen adjunction and
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H is a set of maps between cofibrant objects in M which is taken by L into weak equivalences,
then L : LHM� N : R is also a Quillen adjunction. This follows from [Hir09, Propositions 8.5.4
and 3.3.16].)

We now have the following diagram (which we do not know to be commutative so far).

SHS1
(R)rét[ρ−1]

R′2 //

r

��

SHt

SHs |•| // SHt

Here all the functors are derived; we omit the ‘L’ and ‘R’. The functor r is an equivalence
with inverse e by Theorem 35. Thus for E ∈ SHS1

(R)rét[ρ−1] we have a canonical isomorphism
R′2E ' R′2erE and so to prove the proposition it suffices to exhibit a canonical isomorphism of
functors R′2e ' | • |.

But this isomorphism exists on the level of underived functors, and then passes to the
homotopy categories. Indeed if E ∈ Spts then R′2eE and |E| are both computed by applying
functors (of the same names) levelwise to E, so we may just as well show that for E ∈ sSet∗ we
have R′2eE

∼= |E|. But now R′2, e and | • | all preserve colimits, so we may just deal with E = ∆n
+.

But then R′2eE∆n
+ = |∆n

+| holds basically by definition. 2

A similar result can be obtained for the A1-derived category. We have r : DA1(R)[ρ−1] →

D(Spec(R)rét) ' D(Ab). There is also R2 : DA1(R) → D(Ab) which is obtained by (derived) left
Kan extension from the functor Sm(R) → C(Ab) which sends a smooth scheme X the singular
complex of its real points C∗(X(R)). Then there is the following commutative diagram.

SH(R)
R2 //

C∗
��

SH

C∗
��

DA1(R)
R2 // D(Ab)

Proposition 37. The functors rLρ, R2 : DA1(R) → D(Ab) are canonically isomorphic.

Proof. As beforeR2 factors through Lρ asR′2 and we may show that r,R′2 :DA1(R)[ρ−1] →D(Ab)
are canonically isomorphic. The functor r is an equivalence with inverse e, so it is enough to
show that R′2e : D(Ab) → DA1(R)[ρ−1] ' DS1

A1(R)[ρ−1] → D(Ab) is canonically isomorphic to
the identity. This is the same argument as before. 2

Let us make explicit the following consequence.

Corollary 38. Let E ∈ SH(R). Then

πi(E)(R)[ρ−1] = πi(RE)

and
hA

1

i (E)(R)[ρ−1] = Hi(RE).

Here R : SH(R) → SH denotes any one of the (canonically isomorphic) real realisation functors

we have considered and hA
1

i (E) := hi(FE) where F : SH(R) → DA1(R) is the canonical functor.

Proof. Combine Lemma 15 (saying that LρE = E[ρ−1] = hocolimnE ∧G∧nm ) with compactness
of the units of SH, DA1 and the above two propositions. 2
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11. Application 1: the η-inverted sphere

From now on, k will denote a perfect field. Since essentially all our results concern the ρ-inverted
situation, they are really only interesting if k has characteristic zero, so this is not a big restriction.

Recall that the motivic Hopf map η : A2\0 → P1 defines an element of the same name in
motivic stable homotopy theory η : Σ∞Gm → 1. Here we use that Σ∞(A2\0) ' Σ∞Gm ∧Σ∞P1.
The element η ∈ π0(1)−1 is non-nilpotent, and so inverting it is very natural. The category
SH(k)[η−1] can be constructed very similarly to SH(k)[ρ−1]. In particular the localisation functor
L : SH(k) → SH(k)[η−1] is just the evident colimit, see Lemma 15. It is typically denoted
E 7→ Eη or E 7→ E[1/η]. One may similarly invert other endomorphisms of the sphere spectrum.
If 0 6= n ∈ Z then there is a corresponding automorphism of 1, and we denote the localisation
by E 7→ E[1/n].

At least after inverting 2, inverting η is essentially the same as inverting ρ.

Lemma 39. The endomorphism ring KMW
∗ (k)[1/2] = [1[1/2],1[1/2] ∧ G∧∗m ] splits canonically

into two summands KMW
∗ (k)[1/2] = K+ ⊕ K−. In fact K− = KMW

∗ (k)[1/2, 1/η] and K+ is
characterised by the fact that ηK+ = 0.

In K− we have the equality ηρ = 2, whereas in K+ we have ρ2 = 0. In particular

KMW
∗ (k)[1/2, 1/η] = K− = KMW

∗ (k)[1/2, 1/ρ].

Proof. This is well known, see for example [Mor12, § 3.1]. We summarise: for a ∈ k× let 〈a〉 =
1 + η[a] ∈ KMW

0 (k). Put ε = −〈−1〉. Then ε2 = 1 and so after inverting 2, KMW
∗ (k) splits into

the eigenspaces for ε. One puts h = 1− ε and then has ηh = 0. On K+ we have ε = −1, so h = 2
and consequently η = 0 (since 2 is invertible).

By definition ρ = −[−1] and consequently ηρ = 1+ε. Thus on K− where ε = 1 we find ηρ = 2
as claimed, and in particular η is invertible on K−.

Finally ρ2h = 0 in KMW
∗ (k) and thus 2ρ2 = 0 in K+. (This is just another expression of the

fact that K+ ∼= KM (k)[1/2] is graded-commutative and ρ has degree 1, so ρ2 = −ρ2.) But since
2 is invertible in K+ we find ρ2 = 0 (in K+). This concludes the proof. 2

Röndigs has studied the homotopy sheaves π1(1η) and π2(1η) and proved that they vanish
[Rön16]. (Note that πi(Eη)∗ is independent of ∗, because multiplication by η is an isomorphism,
so we shall suppress the second index.) He argues that πi(1)∗ → πi(1[1/2])∗ is injective for
i = 1, 2 (see his Lemma 8.2) and consequently an important part of his work is in showing that
πi(1[1/η, 1/2]) = 0 for i = 1, 2. We can deduce this as an easy corollary from our work.

Proposition 40. Let k be a perfect field. Then πi(1[1/η, 1/2]) = 0 for i = 1, 2.

Proof. By Lemma 39 we know that SH(k)[1/2, 1/η] = SH(k)[1/2, 1/ρ]. By Theorem 35, we
have SH(k)[1/2, 1/ρ] = SH(Spec(k)rét)[1/2]. In particular this category is trivial unless k has
characteristic zero, which we shall assume from now on.

The sheaves πi(1[1/2, 1/ρ]) are unramified [Mor05, Lemma 6.4.4], so it suffices to show that
πi(1[1/2, 1/ρ])(K) = 0 for i = 1, 2 and every K (of characteristic zero). Since k was also arbitrary,
we may just as well show the result for k = K, simplifying notation. We are dealing with
rét-sheaves by Theorem 25, and so if

Spec(l1)
∐

Spec(l2)
∐
· · ·

∐
Spec(ln) → Spec(k)

is a rét-cover, the canonical map

πi(1[1/2, 1/ρ])(k) →

∏
m

πi(1[1/2, 1/ρ])(lm)

912

https://doi.org/10.1112/S0010437X17007710 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007710


Motivic and real étale stable homotopy theory

is injective. Consequently we may assume that k is real closed. But then SH(Spec(k)rét) = SH
is just the ordinary stable homotopy category, so it suffices to show: πsi [1/2] = 0 for i = 1, 2,
where πsi are the classical stable homotopy groups. But πs1 = Z/2 = πs2 is well known, so we are
done. 2

In classical algebraic topology, it is well known that rational stable homotopy theory is
the same as rational homology theory: SHQ ' D(Q). In motivic stable homotopy theory, the
situation is not so simple. As is well known (and follows for example from Lemma 39) there is
a splitting SH(k)Q = SH(k)+

Q × SH(k)−Q. The + part has been identified with rational motivic

homology theory by Cisinski–Déglise [CD12, § 16]: SH(k)+
Q ' DM(k,Q).

The − part has been only identified recently with an appropriate category of rational Witt
motives by Ananyevskiy et al. [ALP17]: SH(k)−Q = DMW (k,Q). Here the category DMW (k,Q)
may be conveniently defined as the homotopy category of modules over the (strict ring spectrum
model of the) homotopy module of rational Witt theory. That is to say there is the homotopy
module WQ with (WQ)i = W ⊗Z Q for all i. This is the same as K− ⊗Z[1/2] Q, or equivalently
π0(1η,Q). Then corresponding to this homotopy module there is a strict ring spectrum, the
Eilenberg–MacLane spectrum EMWQ. Finally we may form the model category EMWQ-Mod
and its homotopy category Ho(EMWQ-Mod) =: DMW (k,Q).

More generally, one may define DMW (k,Z[1/2]) by replacing WQ = π0(1Q[1/η]) in the above
construction with W [1/2] = π0(1[1/η, 1/2]).

The theorem of Ananyevskiy–Levine–Panin essentially boils down to the computation that
πi(1η,Q) = 0 for i > 0. We can deduce this and more from our general theory. We write HA1Z
for the image of the tensor unit in DA1(k) under the ‘forgetful’ functor DA1(k) → SH(k).

Proposition 41. We have πi(HA1Z[1/ρ]) = 0 for i > 0, and consequently πi(HA1Z[1/2, 1/η]) = 0
for i > 0. Similarly πi(1Q[1/ρ]) = πi(1Q[1/η]) = 0 for i > 0.

Thus we have the equivalences

DA1(k,Z[1/2])− ' DMW (k,Z[1/2]) ' D(Spec(k)rét,Z[1/2])

SH(k)−Q ' DMW (k,Q) ' D(Spec(k)rét,Q).

Proof. As in the proof of Proposition 40 we have

DA1(k)[1/2]− := DA1(k)[1/2, 1/η] = DA1(k)[1/2, 1/ρ].

By Theorem 35, this is the same as D(Spec(k)rét)[1/2] = D(Spec(k)rét,Z[1/2]).
Similarly

SH(k)−Q := SH(k)Q[1/η] = SH(k)Q[1/ρ] = SH(Spec(k)rét)Q,

and the latter category is equivalent to D(Spec(k)rét)Q by classical stable rational homotopy
theory.

From this we can read off π∗(HA1Z[1/2, 1/η]) and so on. The main point is that πn(HA1Z[1/2,
1/η]) = 0 for n > 0. It suffices to check this on fields, so we may as well check it for k (k being
arbitrary), and we have πn(HA1Z[1/2, 1/η])(k) = [1[n], 1]D(Spec(k)rét,Z[1/2]) = H−nrét (k,Z[1/2]) = 0.

It remains to show that DA1(k,Z[1/2])− ' DMW (k,Z[1/2]). Our computation of homotopy
sheaves implies that HA1Z[1/ρ, 1/2] → EMW [1/2] is a weak equivalence. The result follows. 2

Let us also make explicit the following observation.

Corollary 42. Let k be a real closed field or Q. Then π∗(1[1/ρ])(k) = πs∗ and in particular
π∗(1[1/η, 1/2])(k) = πs∗ ⊗Z Z[1/2]. Here πs∗ denotes the classical stable homotopy groups.

Proof. This follows immediately from Shv(Spec(k)rét) = Set, Lemma 39 and Theorem 35. 2
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12. Application 2: some rigidity results

In this section we establish some rigidity results. We work with ρ-stable sheaves. These sheaves
are h-torsion (because ρ2h = 0), explaining to some extent why we do not need the usual torsion
assumptions.

There are various notions of rigidity for sheaves. We shall call a presheaf F on Sm(k) rigid
if for every essentially smooth, Henselian local scheme X with residue field x, the natural map
F (X) → F (x) is an isomorphism. This notion goes back to perhaps Gillet and Thomason [GT84]
and Gabber [Gab92].

Lemma 43. Let F ∈ Shv(Spec(k)rét). Then eF ∈ Shv(Sm(k)rét) is rigid.

Proof. Extension e and pullback are both left Kan extensions. From this it is easy to show that
they commute, and so we find that (eF )|Xrét

= f∗F ∈ Shv(Xrét), where X is (essentially) smooth
over k with structural morphism f .

If char(k) > 0 then Spec(k)rét and Sm(k)rét are both the trivial site, so we may assume
that k is of characteristic zero and consequently perfect. In this case, for an essentially k-smooth
Henselian local scheme X with closed point i : x→X, there exists a retraction s : X → x. (Write
k(x)/k as k(T1, . . . , Tn)[U ]/P with P ∈ k(T1, . . . , Tn)[U ] separable; this is possible because k(x)/k
is separable, k being perfect. Lift the elements Ti to OX arbitrarily and then use Hensel’s lemma
to produce a root of P in OX .)

It is thus enough to prove: if F ∈ Shv(xrét) then H0(x, F ) = H0(X, s∗F ). It follows from
[Sch94, Discussion after Proposition 19.2.1] and [ABR12, Propositions II.2.2 and II.2.4] that
for any G ∈ Shv(Xrét) we have H0(X,G) = H0(x, i∗G). Consequently H0(X, s∗F ) = H0(x,
i∗s∗F ) = H0(x, F ), because si = id by construction. 2

Corollary 44. If E ∈ SH(k)[ρ−1] then all the homotopy sheaves πi(E) are rigid.

Proof. By Theorem 35 and Corollary 6 we know that all the homotopy sheaves of E are of the
form eF , with F ∈ Shv(Spec(k)rét). Thus the claim follows immediately from Lemma 43. 2

Corollary 45. Let k be a perfect field of finite virtual 2-étale cohomological dimension and
exponential characteristic e 6= 2. Then the homotopy sheaves πi(1)0[1/e] are rigid.

Proof. We will first assume that e = 1, and explain the necessary changes in positive
characteristic at the end.

For i = 0 we have π0(1)0 = GW and this sheaf is known to be rigid [Gil17, Theorem 2.4].
We consider the arithmetic square [RSØ16, Lemma 3.9] as follows.

1 //

��

1[1/2]

��
1∧2 // 1∧2 [1/2]

Since rigid sheaves are stable under extension, kernel and cokernel, the five lemma implies that
it is enough to show that π∗(1[1/2])0, π∗(1

∧
2 )0 and π∗(1

∧
2 [1/2])0 are rigid. Since rigid sheaves are

stable by colimit, the case of 1∧2 [1/2] follows from 1∧2 .
By [HKO11, Theorem 1] and [Rön16, proof of Theorem 8.1], we know that 1∧2 is the target

of the convergent motivic Adams spectra sequence. The homotopy sheaves at the E1 page are
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all sheaves with transfers in the sense of Voevodsky and torsion prime to the characteristic, and
hence rigid, for example by [HY07, paragraph after Lemma 1.6]. Since rigid sheaves are stable
by extension etc., it follows that the E∞ page is rigid, and finally so are the homotopy sheaves
of 1∧2 .

By motivic Serre finiteness [ALP17, Theorem 6] (beware that their indexing convention for
motivic homotopy groups differs from ours!), πi(1[1/2])0 is torsion for i > 0. By design, it is of
odd torsion prime to the exponential characteristic. Consequently all of the l-torsion subsheaves
of πi(1[1/2]+)0 are rigid by the same argument as before, and so is the colimit πi(1[1/2]+)0.

It remains to deal with πi(1[1/2]−)0. But this is just the same as πi(1[1/2, 1/ρ])0 and so is
rigid by Corollary 44.

This concludes the proof if e = 1. If e > 2 the same proof works. The only problem might be
that we have torsion prime to the characteristic, but we excluded this possibility by inverting e.

2

Remark. We appeal to [ALP17] in order to know that πi(1)0 ⊗ Q = 0 for i > 0. This can also
be deduced from Proposition 41, using that SH(k)+

Q = DM(k,Q).

There is another (older) notion of rigidity first considered by Suslin [Sus83]. This corresponds
to (1) in the next result. It is a slightly silly property in our situation, but (2) is a replacement
in spirit. It is related to important results in semialgebraic topology due to Coste-Roy, Delfs
[Del91, see in particular Corollary II.6.2] and Scheiderer [Sch94].

Proposition 46. Let E ∈ SH(k)[ρ−1] and i ∈ Z.

(1) If L̄/K̄ is an extension of algebraically closed fields over k, then

πi(E)(K̄) = πi(E)(L̄) = 0.

(2) If Lr/Kr is an extension of real closed fields over k, then also

πi(E)(Kr) = πi(E)(Lr).

Proof. As before, by Theorem 35 and Corollary 6 we know that all the homotopy sheaves of E
are of the form eF , with F ∈ Shv(Spec(k)rét). For such sheaves we have eF (K̄) = 0 = eF (L̄),
so (1) holds. Since pullback Spec(Kr)rét → Spec(Lr)rét induces an isomorphism of sites, (2) also
follows immediately. (See also the first paragraph of the proof of Lemma 43.) 2
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