
In vitro fermentability and prebiotic potential of soyabean Okara
by human faecal microbiota

E. Pérez-López1, D. Cela2, A. Costabile2,3, I. Mateos-Aparicio4* and P. Rupérez1*
1Metabolism and Nutrition Department, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior
de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
2Food & Nutritional Sciences Unit, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
3Life Sciences Department, Health Sciences Research Centre, Whitelands College, University of Roehampton, UK
4Departamento de Nutrición y Bromatología II, Bromatología, Facultad de Farmacia, Universidad Complutense de Madrid,
Ciudad Universitaria, E-28040 Madrid, Spain

(Submitted 11 May 2016 – Final revision received 16 June 2016 – Accepted 27 June 2016 – First published online 29 July 2016)

Abstract
At present, there is a huge interest in finding new prebiotics from agrofood industrial waste, such as the soyabean by-product Okara, rich in
insoluble dietary fibre. A previous treatment of Okara with high hydrostatic pressure assisted by the food-grade enzyme Ultraflo® L achieved a
58·2% increment in its soluble dietary fibre (SDF) contents. Therefore, potential prebiotic effect of both treated and native Okara was assayed
using 48 h, pH-controlled, anaerobic batch cultures inoculated with human faecal slurries, which simulate the human gut. Changes in faecal
microbiota were evaluated using 16S rRNA-based fluorescence in situ hybridisation, whereas release of SCFA and lactic acid was assessed
by HPLC. Both Okara samples exhibited potential prebiotic effects but Okara treated to maximise its SDF content showed higher SCFA
plus lactic acid, better growth promotion of beneficial bacteria, including bifidobacteria after 4 and 48 h and lactobacilli after 4 h of
fermentation, and a greater inhibition of potentially harmful bacterial groups such as clostridia and Bacteroides. Differences found between
fructo-oligosaccharides and Okara substrates could be attributed to the great complexity of Okara’s cell wall, which would need longer times
to be fermented than other easily digested molecules, thus allowing an extended potential prebiotic effect. These results support an in vitro
potential prebiotic effect of Okara.
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It is generally accepted that non-digestible dietary carbohydrates –
resistant to digestion in the small intestine – are the main
substrates available for fermentation by bacteria in the human
colon(1). When this fermentation is carried out by selective
bacteria, causing a beneficial effect on the gut microbiota and
consequently on the host, they are considered prebiotics(2–4).
Many of the beneficial health effects are related to soluble
dietary fibre (SDF) and non-digestible oligosaccharides, such as
the regulation of metabolic disorders related to obesity and
reduction of cancer risk(2,3,5). The most important health-
promoting bacteria of the gut microbiota are bifidobacteria
and lactobacilli. Both are common targets for dietary interven-
tion that improves health(1,6–8). Other bacteria such as strepto-
cocci, enterococci, eubacteria and Bacteroides can be classified
as potentially beneficial to health or as potentially harmful
depending on the species(7). Healthy bacteria are beneficial to
the host through their metabolisms such as SCFA formation

(principally acetate, propionate and butyrate), absence of toxin
production and synthesis of defensins or vitamins(9–11).

Typical prebiotics include SDF, inulin-derived fructans
(fructo-oligosaccharides; FOS) and galacto-oligosaccharides
(GOS)(3,7,9,12), but nowadays there is great interest in finding
novel prebiotics from waste biomass or by-products
from food industry(9,13–15). New candidates for prebiotics
include polydextrose, lactosucrose, malto-oligosaccharides,
gluco-oligosaccharides, xylo-oligosaccharides and soyabean
oligosaccharides(1,3,4,16). One of these promising potential
prebiotics is Okara, an abundant and inexpensive by-product
obtained after extraction of the soluble fraction from soyabean
seed for tofu or soyamilk production(17–20), and its
re-valorisation would be economically valuable. Okara is an
insoluble by-product and has a more complete nutritional
profile than current prebiotics in the market (inulin, FOS, GOS)
as it contains not only dietary fibre but also protein, oil and

Abbreviations: DNS; dinitrosalicylic acid method; FOS, fructo-oligosaccharides; HHP, high hydrostatic pressure; IDF; insoluble dietary fibre; SDF, soluble
dietary fibre.

* Corresponding authors: I. Mateos-Aparicio, email inmateos@ucm.es; P. Rupérez, email pruperez@ictan.csic.es

British Journal of Nutrition (2016), 116, 1116–1124 doi:10.1017/S0007114516002816
© The Authors 2016

https://doi.org/10.1017/S0007114516002816  Published online by Cam
bridge U

niversity Press

mailto:pruperez@ictan.csic.es
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516002816&domain=pdf
https://doi.org/10.1017/S0007114516002816


minerals. Okara has a high total dietary fibre (TDF) content of
54–55% (50–51% insoluble dietary fibre (IDF) and 4·5% SDF)
and 3·9 (SD 0·2)% of low molecular weight (MW) carbohydrates
(LMWC) (0·4 (SD 0·1)% inulin, 1·4 (SD 0·1)% stachyose+ raffinose,
0·2 (SD ≤0·1)% glucose)(17,20–23). Okara has been proven to be a
potential weight-loss supplement, with potential prebiotic effect
because of its high TDF content and beneficial effects on lipid
metabolism(18–20,24,25).
The traditional treatment of plant polysaccharides to obtain

prebiotic oligosaccharides is with enzymes, but recently there is
an increasing interest in the use of new technologies such as
autohydrolysis with elevated temperature and pressure
applied to by-products(9,13,26). Furthermore, new technologies
have been applied to soyabean and even to Okara. For
example, high-pressure microfluidisation and fermentation by
Lactobacillus delbrueckii subsp. bulgaricus of soyabean waste
produce an increase in SDF by degradation of insoluble
polymers into simple carbohydrates(27). Moreover, high hydrostatic
pressure (HHP) has been previously used for SDF maximisation in
Okara(21,22,28), with the advantage that it does not affect organo-
leptic attributes and can extend the shelf-life of products(29–31). In
addition, the use of enzymes to increase SDF content in food
products has been reported, including soyabean(32–35). A food-
grade enzyme (Ultraflo® L; Novozymes) has been used to digest
Okara at atmospheric pressure(23,36) and the combined effects of
both, HHP and Ultraflo® L, have been successfully applied to
maximise the SDF content of Okara by our group(28).
Evaluation of potential prebiotics includes different

approaches. First, the capacity of certain beneficial bacteria to
grow in culture media containing the selected ingredient has to be
verified(3,4). This effect as well as its non-digestible nature have
been proven in native and enzymatically treated Okara(20,23).
Next, the potential prebiotic ingredient could be fermented
in vitro, before an in vivo animal experiment followed by human
trials(3,4). Native Okara has demonstrated a beneficial effect on
lipid profiles of plasma in Syrian hamsters(24), as well as a
potential weight loss and prebiotic effect in Wistar rats(19,25).
However, as far as we know, a fermentative colonic model has
not been used to demonstrate the prebiotic effect of Okara.
Therefore, the present study aimed to evaluate – using in vitro

batch culture systems modelling the human gut – the potential
prebiotic properties of native Okara and after its treatment for SDF
maximisation via HHP assisted by a food-grade enzyme.

Methods

Substrate

Fresh Okara, obtained as an industrial by-product from
soyabean (Glycine max (L.) Merr), was provided by Toofu-Ya
S.L., a local food processing company (Arganda del Rey). At the
laboratory, fresh Okara was freeze-dried (Virtis Bench Top 3L;
Hucoa-Erlöss S.A.), then defatted by extraction with ethylic
diethyl ether in a Soxtec System (Tecator) and kept in airtight
containers at room temperature until use. Before enzymatic or
HHP treatment, Okara was re-hydrated in water (15%, w/v)
with constant shaking in a Heidolph Reax 2 rotatory shaker
(Heidolph Instruments GmbH & Co. KG) overnight.

All solutions, including dilutions and mobile phases for
HPLC, were prepared with ultrapure water.

High hydrostatic pressure treatment assisted by Ultraflo® L
applied to Okara

Pre-hydrated Okara solution, 15% (w/v), was treated simulta-
neously with Ultraflo® L (concentration of 0·025%), a food-grade
β-glucanase (endo-β-1,3(4)-), with both cellulase and xylanase
activities (Novozymes), under HHP (pressure of 600MPa) at 40°C
for 30min, not considering the pressure build up and release
time. These conditions were previously optimised(28).

The treatment was performed in vacuum-sealed plastic bags
(Doypack, 110× 200× 35-mm size, 75-μm-thick film, Polyskin
XL; Amcor Flexible Hispania) in Stansted SFP 7100:9/2C HHP
equipment (Stansted Fluid Power Ltd), using water as the
pressure-transmitting medium. After HHP+Ultraflo® L treat-
ment, samples were stored at −20°C and then freeze-dried.

Dietary fibre analysis of Okara treated with high hydrostatic
pressure and assisted by Ultraflo® L

After HHP and Ultraflo® L treatment, SDF and IDF in untreated
control and HHP+Ultraflo® L-treated samples were determined
according to the Association of Official Analytical Chemists(37)

enzymatic–gravimetric method with dialysis (12 kDa MW
cut-off)(21,38). In the SDF fraction, uronic acids (UA) were
spectrophotometrically quantified by the method of Scott(39),
with galacturonic acid as the standard and neutral sugars (NS)
by the anthrone method(40) with glucose as the standard.
Moreover, SDF and IDF were hydrolysed with H2SO4 (1 M) at
105°C for 1·5 h, and reducing sugars were spectro-
photometrically measured by the dinitrosalicylic acid method
(DNS)(41). Every spectrophotometric method was conveniently
adapted for microplate reading, and the absorbance was read
on a Biotek PowerWawe XS spectrophotometer (BioTek
Instruments, Inc.). Thus, SDF was calculated either as reducing
sugars (DNS method) or as UA+NS (from UA and anthrone
methods). IDF was calculated as reducing sugars (DNS) and
TDF was calculated as SDF plus IDF.

Batch culture fermentations

Batch culture fermentation vessels (100-ml working volume),
previously sterilised, were filled with 45ml of sterile complex
colonic model growth medium. The composition of this
medium included, among others, peptone water (5 g/l), yeast
extract (4·5 g/l), starch (5 g/l), tryptone (5 g/l), NaCl (4·5 g/l),
KCl (4·5 g/l), mucin (4 g/l), casein (3 g/l), pectin (2 g/l), xylan
(2 g/l), arabinogalactan (2 g/l) and inulin (1 g/l)(42,43), trying
to simulate a common and complex human diet. All media
and chemicals were purchased from Oxoid and Sigma.
Subsequently, the vessels were connected to a circulating water
bath at 37°C and sparged with O2-free N2 gas overnight to
create anaerobic conditions before inoculation. The pH was
adjusted between 6·7 and 6·9 using pH meter controllers with
NaOH or HCl (Electrolab260; Electrolab Ltd), and then 5ml of
faecal slurry, prepared as 10% w/v in 0·1 M sterile PBS (pH 7),
was inoculated into each vessel. Three different experiments,

Okara as a potential prebiotic 1117

https://doi.org/10.1017/S0007114516002816  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114516002816


with different healthy human donors, were completed.
The volunteers were free of any known metabolic and
gastrointestinal diseases, were not taking probiotic or prebiotic
supplements and had not taken antibiotics for 6 months before
faecal sample donation. Verbal informed consent was obtained
from all donors, according to the ethical guidelines of the
University of Reading. In total, four vessels were used, in
triplicate (four vessels per donor), with either 0·5 g of freeze-
dried HHP+Ultraflo® L Okara or native Okara samples, 0·5 g of
FOS (Orafti® P95; BENEO GmbH) as a positive control and
another vessel without any sample (negative control). Pre-
digestion of Okara was not needed according to our previous
studies(20). Batch cultures were run for 48 h, and 5-ml aliquots
were taken at times 0, 4, 8, 24 and 48 h for analysing bacterial
populations by fluorescent in situ hybridisation (FISH) and for
SCFA and lactic acid analyses by HPLC.

Enumeration of bacterial populations by fluorescence in situ
hybridisation analysis

The bacterial groups Chis 150 – Clostridium histolyticum(44),
Lab 158 – lactobacilli(45), Erec 482 – Clostridium coccoides and
Eubacterium rectale(44), Prop 853 – Clostridial cluster IX(46),
Rfla 729-Rbro 730 – Ruminococcus albus and Ruminococcus
flavefaciens/Clostridium sporosphaeroides, Ruminococcus
bromii and Clostridium leptum(47), Bac 303 – Bacteroides(48),
Bif 164 – Bifidobacterium ssp.(49) and Eub 338 I-II-III-domain
bacteria(50) were identified using synthetic oligonucleotide
probes targeting specific regions of the 16S ribosomal RNA
molecule, labelled with the fluorescent dye Cy3.
An aliquot (375 µl) from each vessel at each time point was

fixed during 4 h (4°C) in 1125-µl (4% w/v) paraformaldehyde.
Next, the samples were centrifuged at 13 000 g for 5min
and washed twice in 1-ml, sterilised PBS. The pellets were
re-suspended in 150-µl PBS + 150-µl ethanol and stored (−20°C).
For hybridisation, samples were diluted in an appropriate

amount of PBS/SDS for each probe. Aliquots (20 µl) were
applied in each well of a six-well polytetrafluoroethylene and
poly-L-lysine-coated six-well slide (Tekdon Inc.). After drying
for 15min in a drying chamber (at 46 or 50°C), the slides
were sequentially dehydrated in alcohol (50, 80 and 96% v/v,
ethanol) for 3min in each solution. Gram+bacterial groups
needed a previous treatment with lysozyme (20 µl), followed
by ethanol dehydration. A 50-µl aliquot of an appropriate
hybridisation buffer and 5 µl of a fluorescent-marked oligonu-
cleotide probe were added to the slide, and incubated for 4 h in a
microarray hybridisation incubator (Grant Boekel). Next, hybri-
disation slides were washed in 50-ml washing buffer, containing
20 µl of 4',6-diamidino-2-phenylindole dihydrochloride (50ng/µl;
Sigma), for 15min and dried with compressed air. The compo-
sition of the hybridisation and wash buffers depended on the
rRNA probe as reported in probe Base(51). A 5-µl aliquot of
anti-fade reagent (polyvinyl alcohol mounting medium with
DABCO® antifading; Sigma) was added to each well and a
coverslip was placed. Finally, the slides were counted (fifteen
different fields for each sample) with an epifluorescence micro-
scope (Eclipse 400; Nikon) using the Fluor 100 lens. The means of
the three donors were expressed as log10 cells/ml(52,53).

Analysis of SCFA and lactic acid

Samples (1ml) from each fermentation time point were
centrifuged (13 000 g, 10min), and supernatants were filtered
through 0·2-µm Acrodisc® Syringe Filters with hydrophilic
polyvinylidene fluoride membrane, 13mm (Pall Corporation).
Aliquots (20 µl) were injected into an HPLC system (Merck),
equipped with a refraction index detector. The column
used was an ion-exclusion REZEX-ROA organic acid column
(Phenomenex Inc.), maintained at a constant temperature of
85°C. The eluent was sulphuric acid in ultrapure water
(0·0025mmol/l), with a flow rate of 0·5ml/min. Calibration curves
for lactate, acetate, propionate and butyrate (12·5–100mM) were
accomplished for SCFA quantification. The mean metabolite
concentrations were expressed as mM

(43).

Statistical analysis

Results were expressed as means and standard deviations. At
least, three different measurements were accomplished for each
mean. Comparison of dietary fibre means was performed by
one-way ANOVA with a significance level of P< 0·05.
Statgraphic version 5.1 was used. Bacterial counts by FISH and
SCFA and lactic acid data were analysed by 2-way ANOVA with
Bonferroni post-tests with P< 0·05. In addition, a paired t test
was applied in order to assess the significance of the results of
single pairs of data using GraphPad Prism 5.0 (GraphPad
Software).

Results

Dietary fibre analysis

In order to obtain a SDF-enriched product, HHP treatment
assisted by Ultraflo® L was applied to Okara, and the dietary
fibre content was determined according to the AOAC(37)

enzymatic–gravimetric method with dialysis (12 kDa MW
cut-off)(21,38).

Dietary fibre contents in native Okara and after treatment
with HHP assisted by enzymes are shown in Table 1. An overall
increase in SDF was reported when Okara was treated with
HHP and Ultraflo® L. When SDF was expressed as the sum of
UA and NS, a SDF value that was 1·58-fold higher was reported.

Table 1. Dietary fibre in native Okara and after treatment with high
hydrostatic pressure assisted by Ultraflo® L
(Mean values and standard deviations, n 3)

Native Okara
(% d.w.)

Treated Okara
(% d.w.)

Analytical methods Dietary fibre Mean SD Mean SD

NS+UA SDF 2·20a 0·09 3·48b 0·01
DNS SDF 0·37a 0·15 2·34b <0·01

IDF 36·94b 0·76 22·16a 0·07
TDF 37·31b 0·77 24·50a 0·07

d.w., dry weight; NS, neutral sugars; UA, uronic acid; DNS, 3,5-dinitrosalicylic acid;
SDF, soluble dietary fibre; IDF, insoluble dietary fibre; TDF, total dietary fibre.

a,b Mean values within a row with unlike superscript letters were significantly different
(P<0·05).
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However, low SDF content was reported in native Okara when
reducing sugars were measured by the DNS method (6·32-fold
higher with the treatment). IDF and TDF showed a 0·60-
and 0·66-times reduction, respectively, when the treatment
was applied.

Enumeration of bacterial populations by fluorescence in situ
hybridisation analysis

The potential prebiotic effect of native Okara and HHP assisted
by Ultraflo® L-treated Okara on the main bacterial groups
constituting the human intestinal microbiota were assessed by
FISH analysis. Specific microbiota groups such as lactic acid
bacteria and butyrate producers were chosen as they are the
most important bacteria, whose growth has been related to the
prebiotic effect. Other bacterial groups, mainly related to
dietary fibre fermentation, were also included. Potentially
harmful bacterial groups were selected to monitorise a possible

decrease. The analyses were performed at 0, 4, 8, 24 and 48 h of
fermentation as reported in Fig. 1.

For total bacteria (Eub 338 I- II- III), no differences between
treatments were found by two-way ANOVA with Bonferroni
post-tests, but t test (P< 0·05) showed a prolonged growing
stage when HHP+Ultraflo® L-treated Okara was added as the
substrate. HHP+Ultraflo® L and native Okara showed an
in vitro bifidogenic activity (Bif 164) at 4 (both) and 48 h (only
HHP+Ultraflo® L Okara) of fermentation (4 h: HHP+Ultraflo®

L Okara, log10/ml 8·88 (SD 0·09) and native Okara, log10/ml 8·89
(SD 0·15), 48 h: HHP+Ultraflo® L Okara, log10/ml 9·34 (SD 0·06))
(Fig. 1 and 2) compared with negative control (4 h: log10/ml
8·62 (SD 0·18) and 48 h: log10/ml 9·02 (SD 0·15)). Both treated
and native Okara exhibited a significant increase in bifido-
bacteria up to 8 h (t test, P< 0·05).

For lactobacillus/enterococcus spp., an increase at 4 h was
noticed for treated and native Okara with two-way ANOVA
(log10/ml 8·73 (SD 0·08) and log10/ml 8·72 (SD 0·03) respectively),
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*

EUB 338 I-II-III

Lab 158

**
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Bac 303
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***

**

*
***

Fig. 1. Fluorescence in situ hybridisation analysis (FISH) of bacterial population in pH-controlled faecal batch cultures on Okara treated with high hydrostatic pressure
(HHP) and assisted by Ultraflo® L ( ), native Okara ( ), FOS ( ) and negative control ( ) as substrates. FOS (Orafti® P95): fructo-oligosaccharides. Results are
mean values of triplicate analyses and are expressed as log10 cells/ml, and standard deviations. * P< 0·05, ** P< 0·01, *** P< 0·001 are significantly different.
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compared with negative control (log10/ml 8·51 (SD 0·08)). With
HHP+Ultraflo® L-treated Okara, lactobacilli grew constantly,
whereas with native Okara the growth was mainly found
between 4 and 24h.
No statistical differences between treatments were found for

Bacteroides spp. (Bac 303), C. coccoides and E. rectale group
(Erec 482) and the C. histolyticum group (Chis 150). However,
Bacteroides spp. significantly increased after 24 h of incubation,
whereas treated Okara promoted a lower growth rate at 24 h
(HHP+Ultraflo® L Okara, log10/ml 9·16 (SD 0·13) and native
Okara, log10/ml 9·22 (SD 0·10)). An increase in Erec 482 was
noticed after 8 h of incubation when treated Okara or when
native Okara was added in both cases (t test, P< 0·05). Num-
bers of clostridia only increased in the first 4 h of incubation and
decreased after 24 h. Moreover, treated Okara had a smaller
Chis 150 population than native Okara, and both were lesser
than FOS and negative control. Rfla 729-Rbro 730 (R. albus and
R. flavefaciens – C. sporosphaeroides, R. bromii and C. leptum)
revealed a low growth rate, with statistical differences between
treated Okara and negative control at 4 h (the negative control
was higher) and 48 h (HHP+Ultraflo® L: log10/ml 7·73 (SD 0·08),
and negative control: log10/ml 7·53 (SD 0·07)) (Fig. 1). Differ-
ences in Clostridial cluster IX (Prop 853) between Okara treated
with HHP and assisted by Ultraflo® L, native Okara and nega-
tive control were appreciated at 8 h (HHP+Ultraflo® L: log10/ml
8·69 (SD 0·21), Okara: log10/ml 8·88 (SD 0·14) and negative
control: log10/ml 8·12 (SD 0·49)). Remarkable differences in
growth kinetics among all treatments and negative control
could be appreciated for Prop 853, as the increase in bacteria
was first appreciated at 8 h for every treatment except for
negative control, which started at 24 h.

Analysis of SCFA and lactic acid

Differences between both native and HHP+Ultraflo® L-treated
Okara and negative control (P< 0·05) and FOS (P< 0·01) were
appreciated in the production of acetic acid after 24 h of fer-
mentation, whereas changes in propionic acid production were
revealed at 8 and 48 h (P< 0·001) (Table 2). When comparing
total increase in organic acids, HHP+Ultraflo® L-treated Okara
produced 1·12- and 1·36-fold higher acetic acid and propionic
acid, respectively, compared with native Okara. No differences

in butyric acid production between treatments were appreciated.
An increase was only noticed (t test P< 0·05) in HHP assisted by
Ultraflo® L-treated Okara after 24h of fermentation. Nevertheless,
butyric acid production was 2·68-fold higher after 48h of fer-
mentation, and 1·55-fold higher when HHP+Ultraflo® L-treated
Okara was added instead of native Okara. Lactic acid presented
differences among treatments at 4 h (native Okara was 2·45- and
2·60-fold higher than FOS and negative control, respectively).
After 8 h, lactic acid was not detected. Considerable differences
between donors were found for all organic acids. No significant
levels of branched-chain fatty acids from the fermentation of
resistant protein were found(54).

Discussion

According to our present results, a potential prebiotic effect of
native Okara and HHP+Ultraflo® L-treated Okara has been
found, with capacity to promote the growth of beneficial bac-
teria, including bifidobacteria after 4 and 48 h (Fig. 2) and of
lactobacilli after 4 h of in vitro faecal batch culture fermentation
simulating the human gut. Previous digestion of Okara was not
necessary as it is indigestible(20).

Results obtained from the in vitro batch culture systems suggest
that potential prebiotic effect is shown by Okara of soyabean,
particularly after HHP treatment (600MPa, 40°C, 30min) assisted
by Ultraflo® L (0·025%), which needs further research to assess
the effect in vivo. In fact, differences between samples were
noticed, as a bifidogenic effect of treated Okara after 4 and 48h of
batch culture (Fig. 2), whereas native Okara did not bring about
such effects at 48h (Fig. 1). Moreover, even if there were no
statistical differences at 8h in lactobacilli, HHP+Ultraflo® L-treated
Okara performed better, whereas at 4h differences with the
negative control were observed in both Okara samples. Other
potentially beneficial bacteria such as the Ruminococcus group
showed an increase in HHP+Ultraflo® L Okara at 48 h. SCFA
values also suggested a better potential prebiotic response
when treated Okara was fermented, especially in acetic acid
(48 h) and butyrate (24–48 h) contents (Table 2).

The prebiotic effect of soyabean oligosaccharides has been
previously suggested. For example, raffinose and stachyose have
been found to be growth promoters of Bifidobacterium infantis(7).
Moreover, Okara can be fermented by Streptococcus thermophilus

(a) (b)

Fig. 2. Fluorescence in situ hybridisation (FISH) analysis of Bifidobacterium in batch culture at 48 h growing on (a) negative control, and (b) Okara treated with HHP
and assisted by Ultraflo® L. ** P< 0·001, significantly different.
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Table 2. SCFA and lactic acid contents of batch cultures with Okara treated with high hydrostatic pressure and assisted by Ultraflo® L, native Okara, fructo-oligosaccharides (FOS) and a negative control
(Mean values and standard deviations, n 3)

Substrate

Treated Okara Native Okara FOS Negative control

SCFA Time (h) Mean SD Mean SD Mean SD Mean SD

Acetic acid 0 68·21 13·59 48·77 21·85 37·02 1·59 40·42 21·55
4 52·88 29·53 56·71 9·85 36·65 12·73 47·95 1·00
8 142·48 19·98 155·63 72·28 122·88 30·69 107·19 72·19

24 229·14*†† 78·38 312·39*†† 77·94 165·73 51·94 208·09 73·53
48 244·97 21·09 206·36 62·30 238·92 17·33 214·35 50·89

Propionic acid 0 8·87 1·00 39·15 9·27 14·28 19·29 3·47 1·69
4 3·33 1·38 45·38 2·82 3·49 2·82 15·49 22·77
8 131·37***††† 5·64 162·88***††† 44·91 15·52 3·21 2·28 1·31

24 68·31 5·08 87·12 22·12 64·31 5·43 58·52 36·72
48 178·31***††† 116·05 163·61***††† 21·87 47·34 1·00 51·00 1·00

Butyric acid 0 14·88 5·59 10·92 2·69 10·33 5·03 7·44 5·11
4 9·58 5·51 9·92 5·73 12·95 4·45 9·27 4·45
8 11·1 1·23 17·16 4·90 13·63 0·88 13·18 0·87

24 29·58 14·83 27·25 17·35 18·90 10·98 22·55 10·32
48 39·87 8·39 27·00 8·68 32·12 12·73 25·30 6·60

Lactic acid 0 10·91 1·49 8·56 7·89 6·09 1·57 6·19 3·39
4 26·52 3·38 41·08***††† 16·97 16·77 6·64 15·79 7·97
8 26·75††† 3·89 18·87***††† 6·42 53·1 12·36 43·38 10·66

24 ND ND ND ND
48 ND ND ND ND

* P< 0·05, *** P<0·001, significantly different from negative control. †† P<0·01, ††† P<0·001, Significantly different from FOS.
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and L. delbrueckii subsp. bulgaricus(27) and in vitro fermenta-
tion by Bifidobacterium bifidum and Lactobacillus acidophilus
of native Okara or Okara treated by Ultraflo® L showed positive
results after 48, 72 and 96 h of incubation, with a significant
production of acetic, followed by propionic and butyric acids
(93:5:2 at 96 h)(20,23). In our batch culture experiments
(Table 2), acetic acid was also predominant, followed narrowly
by propionic acid, with a ratio of 13:12:1 after 8 h of incubation
with HHP+Ultraflo® L Okara and 18:19:2 with native Okara,
respectively. These SCFA are a source of energy for the colonic
mucosa, stimulate cell proliferation, reduce cholesterol levels
and have anti-proliferative effects in colorectal cancer as well as
beneficial effect within the muscles, kidneys, brain and
heart(10–12). In our study, however, acetic and propionic acid
levels showed differences between treatments (Table 2), only
butyrate increased with time. E. rectale is one of the main
producers of butyrate in the colon(55), and no statistically sig-
nificant differences have been detected in FISH (Erec 484)
(Fig. 1). On the other hand, the Ruminococcus group (Rfla
729-Rbro 730) also produces butyrate(56), and HHP+Ultraflo®

L-treated Okara was significantly higher than native Okara at
48 h (Fig. 1), despite the low growth rate, which was also found
previously by Walker et al.(46). This could explain the reason
why HHP+Ultraflo® L-treated Okara fermentation showed a
tendency to increase butyrate production (Table 2), which
is the preferred energy source for colonic epithelial cells and
promotes normal cell differentiation and proliferation(12).
Bifidobacteria are acetate producers, and acetate increase
according to their behaviour has been noticed. Furthermore, the
main producer of propionic acid has been reported to be
Clostridial cluster IX (Prop 853)(46). At 8 h of incubation, both
propionic acid levels and Clostridial cluster IX population were
higher in native Okara than HHP+Ultraflo® L-treated Okara
groups. Moreover, differences in SCFA production between
FOS and Okara substrates could be observed, especially in
propionic acid at 48 h (Table 2). This could be explained by the
great complexity of Okara’s cell wall(23,36,57), which needs
longer time to be fermented, allowing a longer growth rate, than
other easily digested molecules such as FOS. Lactic acid,
produced by lactic acid bacteria including lactobacilli, bifido-
bacteria, enterococci and streptococci, increased during the first
few hours of fermentation, and then it was no longer detected,
probably because of its utilisation by other bacteria. In fact, the
production of butyric acid from lactic acid has been previously
suggested(58), and agree with our results (Table 2). The results
also show that some potential pathogenic bacteria could be
inhibited when Okara is fermented. In fact, the C. histolyticum
group (Chis 150) exhibited a decrease after 24 h of incubation.
Other potentially harmful bacteria such as the Bacteroides–
Prevotella group (Bac 303) also showed a decrease after 24 h of
incubation and a lower rate at 24h when HHP+Ultraflo®

L-treated Okara was added instead native Okara. Total bacterial
levels remained unchanged among treatments, but with an
increase in time, and thus variations appear to be inter-population
only, as it has been previously appreciated in artichokes(59).
The potential prebiotic effect was enhanced by previous

treatment of Okara to maximise its SDF content. The effectivity
of HHP and enzymatic hydrolysis to increase the amount of SDF

(1·58-fold higher) has been previously reported on Okara(28).
HHP has already been used for the hydrolysis of IDF residue
from Okara without enzymatic assistance(21,22). Similarly, the
food-grade enzymes Ultraflo® L and cellulase were used at
atmospheric pressure on Okara as a substrate(23,35,36), with
similar results. In addition, LMWC have been identified after
Ultraflo® L hydrolysis of polysaccharides (arabinans, galactans,
arabinogalactans, xylogalactans or glucans) present in
Okara, and their potential fermentability by B. bifidus and
L. acidophilus has been assessed(20,23), which agree with the
results of our present study. Kasai et al.(36) found an increase in
NS after cellulase treatment of Okara. They reported the diffi-
culty to achieve extensive digestion of Okara, as it is composed
of indigestible and complex fibres, which could explain the low
amount of SDF found in native Okara (Table 1) by DNS
method. With this HHP assisted by Ultraflo® L treatment,
a partial hydrolysis of the indigestible fibre has been
achieved(28), as IDF value decreased with the treatment,
increasing the amount of terminal reducing sugars, measured
by DNS (Table 1). Besides, according to our previous analysis,
Okara contains approximately 32, 15 and 3 g/100 g DM of
protein, fat and ashes, respectively, before fat extraction(20).
Soluble soyabean carbohydrates released by this treatment
have other potential health benefits, such as reduction of
cholesterol levels(60,61), improvement of glucose tolerance in
diabetes, and anti-inflammatory and anti-carcinogenic effects
on the digestive tract(5,7,12).

All these in vitro fermentability data support the idea that
Okara from soyabean has potential prebiotic effects. According to
previous studies(1,3,62,63), soyabean-derived oligosaccharides have
not presented enough evidence to be considered as prebiotics
yet, but they are promising candidates. However, although in vivo
studies are needed to demonstrate that HHP+Ultraflo® L-treated
Okara selectively stimulates the growth of bacterial groups in
the gut that confer health benefits to the host, all these promising
results from the in vitro study, in combination with previous
results, support the idea that Okara from soyabean has, in
fact, potential prebiotic effects, attributable to its SDF
content(19,20,23–25). The batch culture fermentation methodology
was appropriate for studying the selectivity of fermentation,
changes in the main groups of the microbiota and SCFA pro-
duction(4,7). Treatment with HHP (600MPa, 40°C, 30min) assisted
by Ultraflo® L (0·025%) could have enhanced the potential
prebiotic effects of Okara according to our results. In addition to
its prebiotic effect, Okara is interesting from a nutritional point of
view as a complete and healthy by-product from soyabean.
Its re-valorisation would have an economic impact and could be
used for food applications in bakery and pastry industries as a
substitute of cereal flours or as a gluten-free flour for snacks(64).
These are preliminary results, but further in vivo studies are
needed to determine whether these potential prebiotic effects
possess beneficial health-promoting effects in humans.
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