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VARIETIES GENERATED BY
FINITE BCK-ALGEBRAS

WILLIAM H. CORNISH

Iseki's BCK-algebras form a quasivariety of groupoids and a

finite BCK-algebra must satisfy the identity (E J : xy = xy ,

for a suitable positive integer n . The class of BCK-algebras

which satisfy (E ) is a variety which has strongly equationally

definable principal congruences, congruence-3-distributivity, and

congruence-3-permutability. Thus, a finite BCK-algebra generates

a 3-based variety of BCK-algebras. The variety of bounded

commutative BCK-algebras which satisfy (E ) is generated by n

finite algebras, each of which is semiprimal.

Introduction

BCK-algebras were introduced as an algebraic formulation of certain

implicational fragments of the propositional calculus by Iseki in [I/].

They form a quasivariety of algebras amongst whose subclasses can be found

the earlier implicational models of Henkin [70], algebras of sets closed

under set-subtraction, and dual relatively pseudocomplemented upper semi-

lattices. Many of the articles in the Mathematics Seminar Notes of Kobe

University, Volume 3 (1975) onwards, are devoted to these algebras; the

papers [74] and [7 5] of Iseki and Tanaka give excellent introductions to

their ideal theory and first-order theory, respectively, while Iseki's

survey [7 2] contains many references. Recently, Traczyk [26] and
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Romanowska and Traczyk [23] have done much to elucidate the nature of the

so-called commutative BCK-algebras. Independent of these developments,

Komori [7S], [79], at Shizuoka, has considered the subdirectly irreducible

algebras in a variety whose members are the groupoid-opposites and order-

duals of the algebras in an important subvariety of commutative BCK-

algebras. This work was done in connection with his investigations of the

Lukasiewicz many-valued logics. In [3] and [4], the present author

considered an interaction between BCK-algebras, Universal Algebra and

Lattice Theory.

Section 1 is devoted to showing that the BCK-algebras which satisfy

the identity (E ) form a variety. Section 2 uses Malcev conditions to

determine congruence-phenomena in this variety. Section 3 contains

examples and is concerned with commutative BCK-algebras. We exploit the

connection with Komori's work, and use the information on congruences to

give an alternative proof to the main result of Romanowska and Traczyk

[23], which determines the nature of finite bounded commutative BCK-

algebras .

1. The variety E

Let (A; 0) be a groupoid with a distinguished element 0 ; the

multiplication of the groupoid is denoted by juxtaposition. On the under-

lying set, a derived binary relation is defined by

(1.1) x < y if and only if xy = 0 .

Then, U ; 0) is a BCK-algebra if it satisfies the following universally

quantified sentences:

(1.2) {xy){xz) 5 zy ;

(1.3) x(xy) 5 y ;

(l.lt) x 5 x ;

(1.5) 0 5 x ;

(1.6) if x 5 y and y < x , then x = y .

Thus, a BCK-algebra is an algebra of type (2, 0) which satisfies the

identities (l.2)-(l.5) and the quasi-identity (1.6). It is customary to

regard the nullary operation as a fundamental operation even though it is
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given equationally by ( l .U) , tha t i s , xx = 0 .

From (1.2) and (1 .5 ) , i t follows tha t

(1.7) y - s implies xz S xy .

Using t h i s and (1 .2 ) , we obtain

(1.8) x 5 y and y 5 z imply x < z .

Thus, (l.U)-(l.6) and (1.8) say that (A; 5, 0) is a partially ordered set

with 0 as the smallest element. It is possible to interpret the above

information in terms of Galois connections; Shmuely [25] is a good up-to-

date reference. Recall a Galois connection between two partially ordered

sets P and Q is a pair (£, g) of mappings t : P -*• Q , g : Q -* P

such that

(i) t and g are antitone, and

(ii) for each p £ P and q € Q , gt(p) > p and tg{q) > q .

Thus, let x be an arbitrary element in a BCK-algebra A , t : A -*• A be

given by t (y) = xy for each y € A , and A denote the order-dual of

the partially ordered set {A; S) . Then, because of (1.3), the pair

[t , t J is a Galois connection between A and itself. Thus we must have

t = t , that is, x[x(xy)) = xy for all x and y in the BCK-algebra.

Other important consequences of the axioms are:

(1.9) xO = x ;

(1.10) y 5 z implies yx 2 zx ;

and the crucial identity

(1.11) {xy)z = (xz)y .

We also have

(1.12) xy 5 x .

The details can be found in Iseki and Tanaka [15]. It is the anti-symmetry

property of (1.6) which forces us to say that the class of BCK-algebras is

merely a quasivariety, although it is unknown whether this class is

equationally definable.
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For any integer n > 1 , we define the polynomials xy inductively

toy: xy = xy , xy = [xy jy for k > 1 . Their behaviour is

summarized below.

LEMMA 1.1. For any integers m, n > 1 , the following are BCK-

identities:

(i) 0xn = 0 ;

(ii) xO = x ;

(iii) xx = 0 ;

... r n\ m n+m i rrt\ n
(%v) [xy )y = xy = [xy )y ;

, . r n\ m r m\ n
(v) [xy jz = [xz )y ;

. . . i n\ , •. ^ n
(in.) [xy J (xz) S zy •

(vii) [xz ) [yz ) 5 xy ;

(viii) xy 5 xy , when m > n .

Proof. (i) follows from (1.5); (ii) follows from (1.9) and

induction; (iii) is a consequence of (1.**), (1.5) and induction; both

(iv) and (v) follow from (1.11).

(vi) When n = 1 , (vi) is (1.2). Suppose (vi) holds for n = k .

Then

[xy + 1 ) ( x s ) = [[xy )y)(xz) = [[xy ){xz))y 5 [zy )y = zy + 1 ,

by (1.11) and (1 .2 ) .

(vii) Because of (1.2) and ( l . l l ) , (xz)(yz) 5 xy , t ha t i s (vii)

holds when n = 1 . Suppose (vii) i s an ident i ty when n = k . Then, by

(iv) above, we obtain

[xzk+1][yzk+1] = [(xz)zk)[{yz)zk) 5 (xz)(yz) ^ xy .

(viii) Suppose m > n and so m = n + k for a suitable k 2 1 .

Then

[xym)[xyn] - [xyn+k)[xy") = [[xyn)yk] [xyn] = [[xyn] [xyn))yk = 0yk = 0 ,
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by (Hi), ( l . l l ) , (l .U) and (i) . Due to ( l . l ) , xy" 5 xy1 .

For any integer n > 1 , we introduce the iden t i ty

,_ •> n n+1
l E

n J xy = xy

We now give some identities which are equivalent to IE J •
n

PROPOSITION 1.2. A BCK-algebra satisfies the identity (E ) if and

only if it satisfies any one of the following identities:

,., c n\ n n

(i) [xy )y = xy ;

(ii) {xyn)ym = xyn , for any fixed m > 1 ;

(Hi) x[[xy )yn) = x{xy ) ;

(iv) {xy)z = [xz )[yz }.

Proof. (ii) is an immediate consequence of (E J and (i) is an

instance of (ii). Due to the (viii) of Lemma 1.1, [xy )y 5 xy and

xy - xy Hence, (ii) implies (E J .

Of course, (i) implies (Hi). Conversely, assume that (iii) holds.

Then (iii) yields [x[[xy )y ))y = [x[xy )}yn, and due to (v) of Lemma 1.1,

we obtain [xyn) ([xyn]y ) = [xy ) [xyn] = 0 . Due to (l.l),

xy 5 [xy )y . By Lemma 1.1 (viii), the reverse inequality always holds.

Hence we obtain (i).

Of course, (iv) yields an instance of (ii). The proof that (iv)

follows from [E ) is along the lines of the proof of Theorem 8 in [15].

We will include the details. Firstly, the inequality {xy)zn 5 [xzn] [yzn]

always holds. Indeed, due to (v) of Lemma 1.1, (1.2) and (1.12),

[ixy)zn)[[xzn)[yzn)) = [[xzn)y)[[xzn)[yzn)) 5 [yzn)y - 0 .

Secondly, using (1.2) and (l.ll), we get identity (31) of [J5], namely

[(xy)u)(xz) 2 (zy)u . How replace the role of x by xz1 , y by yzn ,

z by [xz )z , and u by (xy)z to obtain:
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[((»") (yzn)) {(xy)zn)2 \_{xzn) {(xzn)zn)]

2 [{(xzn)zn){yzn)]l(xy)zn]

- W.xz )y\ [(xy)z ] by (vii) of Lemma 1.3.,

= [(xy)zn] l(xy)zn] = 0 .

Due to (E ) , or rather (i), xz = [xz )z . Hence (l.U) and the

above inequality gives

l((Xz
n)[yzn))((xy)zn)]O = O .

Due to (1.9), we have ((xs ) [yz )) [[xy)z ] = 0 , which is equivalent to

the desired reverse inequality.

The next lemma can be regarded as a generalization of Proposition 5 in

Iseki and Tanaka [75]; i t is vital to both this section and the next.

LEMMA 1.3. If a BCK-algebra satisfies the identity (E ) , then it

also satisfies

(Cj [x(xyf)(yx)n = [y{yx)n){xy)n .

Proof. Due to (E ] , (v) and (vi) of Lemma 1.1, and (1.10),

[x(xy)n)(yx)n = [x(xy)n+1)(yxf = ([x(xy)n) (xy)) (yx)n

5 [y(xy)n)(yx)n = {y(yxf) (xy f.

By symmetry, we get the reverse inequality and so (1.6) ensures that fc ]
v n'

holds.

Let E and C denote the classes of all BCK-algebras which satisfy

(E ) and (c ) , respectively.

THEOREM 1.4. The classes C and E are varieties. The following

identities form a base for the variety C

(i) [(xy)(xz))(zy) = 0 ,

(ii) Ox = 0 ,

(Hi) xO = x ,
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(iv) (Cn) .

These identities together with (E ) form a base for E .

Proof. We must show that (1.3), (l.h) and (1.6) follow from (i)-(iv),

above. Putting y = z = 0 in (i), yields (l.U) via (ii) and (iii).

Replacing y by 0 in (i), yields (1.3). Finally, suppose I 5 j and

y 5 x , that is, xy = 0 = yx . Substituting in (C ) , we obtain

(xO Jon = (yO )o . Induction and (iii) enables us to deduce that x = y .

The technique of the above proof is related to that of Yutani [27] in

the proof of his Theorem 1.

We will defer giving examples until Section 3. The next section is

devoted to congruence-properties of the varieties E and _C

2. Congruences

Let A be a finitary algebra, Con(A) its lattice of congruences and

n - 2 be an integer. Then A is n-permutable if for any

9, * 6 Con{A) , the n-fold alternating relational products 9* ... and

$0 ... are equal. This concept is a generalization of permutability

(equals 2-pennutability). A variety is called n-permutable if each of

its members is n-permutable. In [9], Hagemann and Mitschke characterized

tt-percnutable varieties in terms of the existence of n - 1 ternary

polynomials satisfying certain identities. In particular, a variety is

3-permutable if and only if there are two ternary polynomials r(x, y, z)

and s(x, z/, z) such that each algebra in the variety satisfies the

identities r(x, z, z) = x , s(x, x, z) = z and r{x, x, z) = s(x, z, z) .

While weaker than permutability, 3-permutability still implies modularity

of the congruence lattice and a number of other properties. The author has

already considered 3-permutability in relation to BCK-algebras and

universal algebras in [41 and we refer to that paper for details and

additional references.

A variety is congruence-distributive if the lattice of congruences 6f

each of its algebras is distributive. In [76, Theorem 2.1], Jonsson showed

that a variety is congruence-distributive if and only if it is congruence-

n-distributive, or more briefly n-distributive, in the sense that there
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exists an integer n > 2 and n - 1 ternary polynomials satisfying

certain identities. For example, a variety is 2-distributive if and only

if there is a polynomial m(x, y, z) such that

m(x, x, y) = m{x, y, x) - m(y, x, x) = x

on each member of the variety. More importantly for us, a variety is

3-distributive if and only if there exist polynomials tAx, y, z) ,

t Ax, y, z) such that each algebra in the variety satisfies the

identities:

tA.x, y, x) = x = t2(x, y, x) ; tA.x, x, z) = x ; tA.x, x, z) = z ;

t (x, z, z) = tA.x, z, z) .

In [4, Theorem 2.6], the author showed that an n-permutable variety is

congruence-distributive if and only if it is n-distributive. Important

for our aim is Theorem 1 of Padmanabhan and Quackenbush [21], which states

that a finitely based n-distributive variety is n-based. Combining the

above results and notation with Theorem l.U, we can now give the following

result whose proof amounts to checking that the given polynomials satisfy

the identities that ensure 3-permutability and 3-distributivity. It

should be noted that it is the identity [C J which ensures the non-

trivial identities r(x, x, z) - s(x, z, z) and

tA.x, z, z) - tA.x, z, z) .

THEOREM 2.1. The variety C , and so each of its subvarieties and,

in particular, the variety E , is 3-perrmtable, ^-distributive and

3-based.

The polynomials which ensure 3-permutability are

r(x, y, z) = [x{yz)n)(xy)n and s(x, y, z) = r(z, y, x) = [z{yx)n)(xy)n .

The polynomials which ensure 3-distributivity are

t±(x, y, z) = {x{(xy)(zy))
n)[(yx)(yz))n

and

t(x, y, z) = {z{{yx){yz))n){(xy)(zy))n .
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We now turn to finite BCK-algebras. Because of (viii) of Lemma 1.1,

we must have, for any ordered pair (a, b) of elements in a finite BCK-

algebra A , an integer n(a, b) > 1 such that abn{a'b) = afc*^'^*1 .

Put n = max{n(a, b) : (a, b) € A x A} . Then 4 satisfies the identity

(E ) . This has also been observed by Iseki [73]. It follows that a

finite BCK-algebra generates a variety (and not just a quasivariety) of

BCK-algebras, which is a subvariety of a suitable variety C , or E

Due to Theorem 2.1, this variety is congruence-distributive and even

^-distributive. Then Baker's Theorem ensures that the variety is finitely

based; for a proof of Baker's Theorem, and references to other proofs, we

refer to Burr is [/]. We thus arrive at

THEOREM 2.2. Any finite BCK-algebra generates a variety of BCK-

algebras, which is 3-permutable, 3-distributive and 3-based.

In connection with Theorems 2.1 and 2.2, we should mention that no

non-trivial variety of BCK-algebras is either permutable or

2-distributive. The reason for this is as follows. Firstly, any non-

trivial BCK-algebra must contain the 2-element BCK-algebra

{0, a : Oa = aa = 00 = 0, aO = a} . The variety generated by this

2-element algebra is the variety of so-called implicative BCK-algebras; it

can be regarded as the subvariety of C (or E ) of all algebras which

satisfy the additional identity x(yx) = x . Its members are simply

subalgebras of Boolean algebras (B; A, V, ', 0, l) with respect to the

derived operation ab - a A b' ; for a proof and a history see [2]. And,

in effect, Mitschke [20] showed that this variety is neither permutable

nor 2-distributive; see also [S, Theorems 3.I1*, 3.15].

We now turn to another congruence-property of the variety E . The

following results generalize some of those in [4]; their importance rests

in their wide range of applicability.

An ideal of a BCK-algebra A is a subset K of A such that

(i) 0 i K and

(ii) a i. K whenever ab, b € K .

The ideals of A form a complete lattice J{A) . Because of Iseki and
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Tanaka [14, Theorem 2] the ideal <a , ..., a > of A generated by

a , a. is the set of a l l d € A such that
"0

((... ((dbjbj ...)bkjbk = o

for suitable b , b , ..., b, t {a , ..., a } . When A is within E ,

we can give a much better description of this ideal.

LEMMA 2.3. Let A € E , K € J U ) and a, an , . . . , a € 4 . Then

t?ze supremum K v < a> in J"(̂ 4) is {& € A : Z?an € ̂ } . Consequently

Proof. Because of ('iU/' in Proposition 1.2, it is easy to check that

{b € A : ba € K\ is an ideal. Of course, this ideal is within any ideal

which contains both a and K , and so it is the supremum in the ideal-

lattice. The second assertion follows from the first via induction.

Any ideal K € J(A) gives rise to a congruence Q(K) on A , defined

by a = b[Q(K)) if and only if ab, ba € K . Moreover, the quotient

algebra is a BCK-algebra; see [74, Theorem 2]. On the other hand, when

* € ConU) , ker(*) = {a € A : a H 0(*)} is an ideal, but the quotient

algebra may not be a BCK-algebra. When the quotient algebra is a BCK-

algebra, the validity of (1.6) in the quotient ensures that a = fc(*)

(a, b € A) if and only if ab, ba € ker($) . Of course, this hypothesis

is ensured when A is within a variety of BCK-algebras. Hence, if a BCK-

algebra A is within a variety of BCK-algebras, the maps K -*• Q{K) and

$ -*• ker($) are mutually inverse lattice-isomorphisms between the ideal-

lattice J{A) and the congruence-lattice Con(A) . It is Theorem l.U

which makes this applicable to algebras satisfying [E J .

THEOREM 2.4. Let ^ E ^ , a, b, e, d € A , and Q(a, b) denote

the smallest congruence identifying a and b . Then c = d[0(a, b)) if "

and only if

[(cd)(ab)n)(ba)n = 0 = [(dc)(ab)n)(ba)n .

Proof. Because of our preceding remarks, e = d(Q(a, b)) i f and only

i f cd, dc € (ab, ba> . Hence Lemma 2.3 yields the r e s u l t .

https://doi.org/10.1017/S0004972700006730 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006730


Finite BCK-algebras 421

Following Kchler and Pigozzi [/7], a variety V; has strongly

equationally definable principal congruences if there exists a set

{(p., q.) : i € J} of pairs of quaternary polynomials such that, for all

A € V̂  and all a, b, a, d € A , c = d[Q(a, b)) if and only if

p.(a, b, c, d) = q.(a, b, c, d) for each i £ I . Thus Theorem 2.k says

that the variety E has strongly equalionally definable principal

congruences. As these authors mention, strongly equaltionally definable

principal congruences implies the congruence extension property due to a

well known result of Day [5]. A class H. of algebras has congruence

extension property if each congruence on a subalgebra of an algebra A € ^

is the restriction of a congruence on A ; see Fried [S] for some recent

results on congruence extension properties.

The main result of Kohler and Pigozzi [77] states that a variety has

strongly equaltionally definable principal congruences if and only if the

compact congruences on each algebra in the variety form a (dual) relatively

pseudocomplemented upper semilattice, and from this the congruence-

distributivity of the variety can be inferred. In connection with this,

recall that an upper semilattice (5; v) is (dual) relatively pseudo-

complemented if, for each a, b € S , the subset {e € 5 : a S b V c} has

a (necessarily unique) smallest element, which is denoted by ab . Here

there is an important link with BCK-algebras. For if (5; v) is such a

semilattice and 0 = aa for any a d S , then (S; 0) , with respect to

the above product ab , is an E -BCK-algebra - a detailed analysis can be

found in the author's paper [4].

Thus, there are entirely different reasons for the congruence-

distributivity of E . We will not state the obvious consequence for E

of Kb'hler and Pigozzi's Theorem. Instead, we give a related ideal-

theoretic result which extends part of Theorem 1.3 in [4]; it is, in fact,

a direct consequence of Lemma 2.3, above.

THEOREM 2.5. Let H E and H = <a1, ..., a, > ,

K = (.b , ..., bp) be tuo finitely generated ideals of A . For

i = 1, ..., t , let di = ... U ^ " •••\b* • 27zen the (dual) relative

pseudocomplement, HK of H and K in the upper semilattice of finitely
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generated ideals is the ideal < <2. , . . . , d, > .

3. Commutative BCK-algebras

A BCK-algebra (A; 0) is called bounded if the underlying partially

ordered set (.A; s) has a largest element, which is denoted by 1 . In

other words, there is an element 1 € A such that

(B) xl = 0 ,

for all x € A . When dealing with bounded BCK-algebras, we shall consider

then as algebras (A; 0, l) of type (2, 0, 0) ; that is, 1 becomes a

nullary operation and (B) becomes an identity satisfied by the bounded

algebra.

A commutative BCK-algebra, or Tanaka algebra, is a BCK-algebra which

satisfies the identity

(T) x(xy) = y{yx) .

When the derived operation x A y = x{xy) is introduced, a commutative

BCK-algebra (A; 0) has, as a reduct, the lower semilattice (A; A) and

the partial order of (l.l) is consistent with the semilattice-order; that

is, for any a, b € A , a 5 b when and only when a = a A b . When

(A; 0, l) is a bounded commutative BCK-algebra, the algebra

(A; A, v, ~, 0, l) is a bounded lattice with an involution, wherein the

supremum is x V y = ~(~a; A ~j/) and the involution is -^x = Xx ; this is

a fundamental result of Iseki and Tanaka [7 5, Theorem 6]. Actually this

lattice is distributive and x A -xc 5 y v ~j/ is an identity; see Traczyk

[26] and [3, Theorems 3.9, 3.11].

The class T? of all commutative BCK-algebras is a variety;

identities (i) , (ii) and (Hi) of Theorem 1.1*, together with (T), provide

an equational base. In [3] it was shown that this variety is 3-permutable

and 3-distributive. On the other hand, the variety T̂ of bounded

commutative BCK-algebras is permutable; p(x, y, z) = x(yz) V z(yx) is a

suitable (2/3)-minority polynomial; cf. [3, Lemma 1.6].

In the presence of commutativity, we can add to Proposition 1.2.

PROPOSITION 3.1. A commutative BCK-algebra satisfies (E ) if and

onlu if it satisfies
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(i) x A [yxn] = 0 .

A boimded commutative BCK-algebra satisfies (E ) if and only if it

satisfies any one of the following identities:

,... n n ., n+l
(ii) la: = la; ,

(Hi) x A [lxn] = 0 ,

(iv) x[lx ) = x .

Proof. It is easy to see that in any commutative BCK-algebra,

x A y = 0 if and only if x = xy , or alternatively y = yx . Hence, (i)

is equivalent to yx = [yx )x ; that is, [E ) . For the same reason,

(ii) , (Hi) , and (iv) are equivalent.

Of course, (ii) is a specialization of [E J , and so it remains to

prove that (ii) implies (E ) .

Because of (B) and (T), x = l(Lx) . Hence, (ii) and Lemma 1.1 (v)

imply

/ + 1 = xyn+1xyn = (l(lx))yn = (l^j(lx) = (l/+1)(lx) = (l(lx))/+1 = xy

COROLLARY 3.2. A subdirectly commutative algebra in E is simple.

Proof. Suppose B is such an algebra and a is a non-zero element

of B . Let b be any element of 5 . Then a A (ban) = 0 . As ideals

are herditary, {0} = <a> n <ba > . Due to the correspondence between

ideal and congruences and the fact that S is subdirectly irreducible,

<ba > = {0} . Hence b € <a> . Thus B has only two ideals and is, thus,

simple.

All of the hypotheses of the above corollary are necessary. Indeed,

let us firstly consider the variety IS of so-called positive implicative

BCK-algebra; it is the class of implicational models of Henkin [10]. As

Iseki and Tanaka observed in [14, Example 7, p. 356], any partially ordered

set {A; 5, 0) with a smallest element 0 can be converted into a BCK-

algebra by defining db = 0 when a S b and ab = a when a $ b . The
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resulting algebra is positive implicative. Moreover, it is easy to see

that the ideals of this algebra are precisely hereditary subsets of the

original poset. Hence we get a subdirectly irreducible algebra which is

not simple when the poset has at least three elements and a unique atom.

On the other hand, subdirectly irreducible commutative BCK-algebras, which

are not simple, are hard to come by. We now describe an example.

Let A be a chain aQ < <2, < .. . < a < ... of order type u , A

be its dual . .. a < . . . < a < a , and A be the ordinal sum A © A .

The BCK-multiplication is defined on A by:

anam = a (n-m,O) 'max

a a = 0 = a. ,n m 0

n m (m-n,O) 'max '

a a = an m n+m

The resulting algebra turns out to be in ^ and as a T? -algebra it is

generated by a ; a = 1 la , a = la , where 1 = a . The algebra
X ft ^ X j Tt ft U

is subdirectly irreducible and not simple; its non-trivial smallest ideal

is A = < a,> = {a : n € w} .
1 L n '

In this connection, let A be the T?-subalgebra whose underlying

poset is the chain a. < .. . < a of length n > 1 . We also let A

denote the associated G? -algebra. These algebras are important in the

study of the varieties E . Indeed, using part (ii) of Proposition 3.1,

it is easy to see that / I C E if and only if m 5 n , for any

m, n 2 1 . As E c E whenever m 2 n , the varieties E , E n T_ ,

and E n ̂  each form an increasing infinite chain.

Before continuing, we will tidy up a connection between chains and

subdirectly irreducible ^-algebras. At the end of the paper [3], we

showed a theory of prime ideals could be developed for commutative
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BCK-algebras. The relevant part for us here is as follows:

An ideal P of a commutative BCK-algebra A is called prime if
P # A and either a ? P or b € P , whenever a A b 6 P . Then, when 4
is not t r iv i a l , fl{P : P is a prime ideal} = {0} . Hence, with the
notation of Section 2, A becomes a subdirect product of the quotient
algebras A/Q(P) . We now easily obtain:

THEOREM 3.3. Let A be a commutative BCK-algebra which satisfies

the identity

(L) (xy) A (yx) = 0 .

Then an ideal P + A is prime if and only if its associated quotient is a

chain.

Hence, a commutative BCK-algebra satisfies (L) if and only if it is

isomorphic to a subdirect product of totally ordered algebras.

As a matter of fact there are simple T-algebras which are not chains.

Let J be an index set with at least two elements and A be the tree

{o, a, a. : 0 < a < a., a .\\a . for any i ± j, i, j €. i} . Then Seto [24]

showed that A can be converted into a ^-algebra by defining the products

a.a . = a when i $• j and the others in the obvious manner. The resulting

algebra is simple and in E_ . Consequently, the variety E^ n T̂  is not

residually small; that is, it does not possess a set of subdirectly

irreducible algebras. For any n ^ 2 , the algebras of Example 5 in Iseki

and Tanaka [74] provide another class, as opposed to set, of simple

algebras, which are trees but not chains, in the variety E n T? .

In [7£] and [79], Komori considered a variety of groupoids which turn

out to be the groupoid-duals (opposites) and order-duals of commutative

BCK-algebras satisfying (L). His Theorem 2.10 in [7S] thus states that the

subdirectly irreducible BCK-algebras satisfying (T) and (L) are chains;

the method in our Theorem 3-3 is quite different. The effect of the dual

of equation (i) in Proposition 3.1 is considered in [79]. In fact, Theorem

3.13 of [79] can be interpreted as the following non-trivial important

result.

LEMMA 3.4 (Komori [79]). A commutative totally ordered E -algebra
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is isomorphic to the algebra A for some m 5 n .

Combining the results of our results, we obtain

THEOREM 3.5. The subvariety of E determined by the identities (T)

and (L) is the variety of BCK-algebras generated, by A

We now turn to bounded algebras. Traczyk [26] has already proved that

the subdirectly algebras in T. are totally ordered. In fact in the proof

of his Theorem 3.3, he shows that a T. -algebra satisfies (L). The

demonstration of this identity is by no means trivial; it is intimately

related with his method of establishing the distributivity of the under-

lying lattice of a T? -algebra. For the purposes of emphasis, we state the

result formally as

LEMMA 3.6 (Traczyk [26]). A bounded commutative BCK-algebra

satisfies the identity (L).

We are now in a position to give an alternative proof of the central

result of Romanowska and Traczyk [23]. Their proof is quite computational.

Our proof is more in line with Universal Algebra.

THEOREM 3.7 (Romanowska and Traczyk [23]). A finite bounded

commutative BCK-algebra is isomorphic to the direct product of simple

totally ordered BCK-algebras. Consequently3 its congruence-lattice is a

Boolean lattice.

Proof. Because of the reasoning which preceded Theorem 2.2, we can

consider the finite algebra to be in the variety E n T for some

suitable n — 1 . Due to Corollary 3.2, Theorem 3.3 and Lemma 3.6, the

algebra is isomorphic to a subdirect product of finitely many simple

chains. But as we remarked prior to Proposition 3.1, the variety T is

permutable. Hence, the algebra becomes isomorphic to the direct product

of some of these simple algebras; this is a well known result of Universal

Algebra; see for example Foster and Pixley [6, Theorem 2.U]. Finally,

either of the varieties E^ and J is congruence-distributive and so the"'

congruence-lattice of a direct product of finitely many algebras in

L
n 2 is naturally isomorphic to the direct product of the congruence-
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distributive and so the congruence-lattice of a direct product of finitely-

many algebras in E n T_ is naturally isomorphic to the direct product of

the congruence-lattices of the factors; cf. Fraser and Horn [7]. We now

have the second assertion of the theorem.

In close relation to Komori's Lemma 3.h, above, Traczyk [26] showed

that the algebras A are the only finite subdirectly irreducibles in

T_ . We are going to conclude this paper with a closer look at these

algebras. We assume that the reader is familiar with Primal Algebra

Theory, in particular with the notions of quasiprimal and semiprimal

algebras. A perspective can be obtained from Quackenbush's survey [22].

Let us recall that the ternary discriminator on a set A is a function

t : AI ->• A such that t(a, b, a) = a if a ? b and t(a, b, a) = a if

a = b .

THEOREM 3.8. For each divisor r of n , A possesses a unique

% -subalgebra and this is isomorphic to A , ; these are the only

% -subalgebras of A . Consequently, the variety E n £ is generated

by A and the algebras A , where 1 < s < n and s is a non-divisorn s

of n .

A is a semiprimal algebra. Consider the following T̂  -polynomials:

ejx) = xi^f-1 = x(lx)n~l , d{x, y) = (xy) v (yx) ,

and

tn(x, y, s) = [x A ~en[~d(x, y))) v [z A en[~d{x, y))} .

On A , e (a.) = 0 if i < n and e (a.) = 1 if i = n . Hence
ft fI Is Yl u

t (x, y, z) represents the ternary discriminator on A

Proof. When r divides n , 4 is isomorphic to the subalgebra

https://doi.org/10.1017/S0004972700006730 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006730


428 W i l l i a m H. Corn i sh

{a, : 0 2 k 5 n/r] . On the other hand, le t B be any subalgebra and a

be i t s atom. Suppose a is another non-zero element of B . Then r>
s

must divide s . Otherwise, s = qr + t for some 0 < t < r , and so

0 < a, < a and a, € B , as a, = a cr . The nature of the variety

E n T̂  then follows from Theorem 3.3, Lemma 3-h and Lemma 3.6.

For any i = 0, ... , n ,

"Bi = V i ' a i ^ = a [2i-n,0) > a i K J 2 = a (3i-2n,Q) '
max ' max

and, by induction, i t follows that e [a.) = a r ;_(„_-, ) n 0 ] •
max*- ' > J

o o

ni + n - n 2 0 if and only if n(i+l) 5 n . Hence e behaves as

stated on ^ . On any bounded commutative BCK-algebra, d(x, y) = 0 if

and only if x = y . It now follows that t acts as the ternary

discriminator. Hence A is quasiprimal and even semiprimal because the

only automorphisms between its subalgebras are identity-maps. Of course,

we could have deduced the quasiprimality of A from the simplicity of its

subalgebras and the congruence-distributivity and permutability of T̂
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