VARIETIES GENERATED BY FINITE BCK-ALGEBRAS

William H. Cornish

Abstract

Iséki's BCK-algebras form a quasivariety of groupoids and a finite BCK -algebra must satisfy the identity $\left(\mathrm{E}_{\mathrm{n}}\right): x y^{n}=x y^{n+1}$, for a suitable positive integer n. The class of BCK-algebras which satisfy $\left(\mathbb{E}_{n}\right)$ is a variety which has strongly equationally definable principal congruences, congruence-3-distributivity, and congruence-3-permutability. Thus, a finite BCK-algebra generates a 3-based variety of BCK-algebras. The variety of bounded commutative BCK-algebras which satisfy (E_{n}) is generated by n finite algebras, each of which is semiprimal.

Introduction

BCK-algebras were introduced as an algebraic formulation of certain implicational fragments of the propositional calculus by Iséki in [11]. They form a quasivariety of algebras amongst whose subclasses can be found the earlier implicational models of Henkin [10], algebras of sets closed under set-subtraction, and dual relatively pseudocomplemented upper semilattices. Many of the articles in the Mathematics Seminar Notes of Kobe University, Volume 3 (1975) onwards, are devoted to these algebras; the papers [14] and [15] of Iséki and Tanaka give excellent introductions to their ideal theory and first-order theory, respectively, while Iséki's survey [12] contains many references. Recently, Traczyk [26] and

Romanowska and Traczyk [23] have done much to elucidate the nature of the so-called commutative BCK-algebras. Independent of these developments, Komori [18], [19], at Shizuoka, has considered the subdirectly irreducible algebras in a variety whose members are the groupoid-opposites and orderduals of the algebras in an important subvariety of commutative BCKalgebras. This work was done in connection with his investigations of the Lukasiewicz many-valued logics. In [3] and [4], the present author considered an interaction between BCK-algebras, Universal Algebra and Lattice Theory.

Section 1 is devoted to showing that the BCK-algebras which satisfy the identity (E_{n}) form a variety. Section 2 uses Malcev conditions to determine congruence-phenomena in this variety. Section 3 contains examples and is concerned with commutative BCK-algebras. We exploit the connection with Komori's work, and use the information on congruences to give an alternative proof to the main result of Romanowska and Traczyk [23], which determines the nature of finite bounded commutative BCKalgebras.

1. The variety E_{n}

Let $(A ; 0)$ be a groupoid with a distinguished element 0 ; the multiplication of the groupoid is denoted by juxtaposition. On the underlying set, a derived binary relation is defined by

```
(1.1) }x\leqy\mathrm{ if and only if }xy=0
```

Then, (A; 0) is a BCK-algebra if it satisfies the following universally quantified sentences:

```
(1.2) (xy)(xz)\leqzy;
(1.3) }x(xy)\leqy
(1.4) }x\leqx
(1.5) 0 \leqx;
(1.6) if }x\leqy\mathrm{ and }y\leqx\mathrm{ , then }x=y\mathrm{ .
```

Thus, a BCK-algebra is an algebra of type $(2,0)$ which satisfies the identities (1.2)-(1.5) and the quasi-identity (1.6). It is customary to regard the nullary operation as a fundamental operation even though it is
given equationally by (1.4), that is, $x x=0$.
From (1.2) and (1.5), it follows that
(1.7) $y \leq z$ implies $x z \leq x y$.

Using this and (1.2), we obtain
(1.8) $x \leq y$ and $y \leq z$ imply $x \leq z$.

Thus, (1.4)-(1.6) and (1.8) say that ($A ; \leq 0$) is a partially ordered set with 0 as the smallest element. It is possible to interpret the above information in terms of Galois connections; Shmuely [25] is a good up-todate reference. Recall a Galois connection between two partially ordered sets P and Q is a pair (t, g) of mappings $t: P \rightarrow Q, g: Q \rightarrow P$ such that
(i) t and g are antitone, and
(ii) for each $p \in P$ and $q \in Q, g t(p) \geq p$ and $\operatorname{tg}(q) \geq q$. Thus, let x be an arbitrary element in a BCK-algebra $A, t_{x}: A \rightarrow A$ be given by $t_{x}(y)=x y$ for each $y \in A$, and \bar{A} denote the order-dual of the partially ordered set (A; \leq) . Then, because of (1.3), the pair $\left(t_{x}, t_{x}\right)$ is a Galois connection between \bar{A} and itself. Thus we must have $t_{x}^{3}=t_{x}$, that is, $x(x(x y))=x y$ for all x and y in the ВСК-algebra.

Other important consequences of the axioms are:

$$
\begin{aligned}
& \text { (1.9) } x 0=x ; \\
& \text { (1.10) } y \leq z . \text { implies } y x \leq z x ;
\end{aligned}
$$

and the crucial identity

$$
(1.11) \quad(x y) z=(x z) y
$$

We also have
(1.12) $x y \leq x$.

The details can be found in Iséki and Tanaka [15]. It is the anti-symmetry property of (1.6) which forces us to say that the class of BCK-algebras is merely a quasivariety, although it is unknown whether this class is equationally definable.

For any integer $n \geq 1$, we define the polynomials $x y^{n}$ inductively by: $x y^{1}=x y, x y^{k+1}=\left(x y^{k}\right) y$ for $k \geq 1$. Their behaviour is summarized below.

LEMMA 1.1. For any integers $m, n \geq 1$, the following are $B C K$ identities:

$$
\begin{aligned}
& \text { (i) } 0 x^{n}=0 ; \\
& \text { (ii) } x 0^{n}=x ; \\
& \text { (iii) } x x^{n}=0 ; \\
& \text { (iv) }\left(x y^{n}\right) y^{m}=x y^{n+m}=\left(x y^{m}\right) y^{n} ; \\
& \text { (v) }\left(x y^{n}\right) z^{m}=\left(x z^{m}\right) y^{n} ; \\
& \text { (vi) }\left(x y^{n}\right)(x z) \leq z y^{n} ; \\
& \text { (vii) }\left(x z^{n}\right)\left(y z^{n}\right) \leq x y ; \\
& \text { (viii) } x y^{m} \leq x y^{n}, \text { when } m \geq n \text {. }
\end{aligned}
$$

Proof. (i) follows from (1.5); (ii) follows from (1.9) and induction; (i iii) is a consequence of (1.4), (1.5) and induction; both (iv) and (v) follow from (1.11).
(vi) When $n=1$, (vi) is (1.2). Suppose (vi) holds for $n=k$. Then

$$
\left(x y^{k+1}\right)(x z)=\left(\left(x y^{k}\right) y\right)(x z)=\left(\left(x y^{k}\right)(x z)\right) y \leq\left(z y^{k}\right) y=z y^{k+1}
$$

by (1.11) and (1.2).
(vii) Because of (1.2) and (1.11), ($x z$) ($y z$) $\leq x y$, that is (vii) holds when $n=1$. Suppose (vii) is an identity when $n=k$. Then, by (iv) above, we obtain

$$
\left(x z^{k+1}\right)\left(y z^{k+1}\right)=\left((x z) z^{k}\right)\left((y z) z^{k}\right) \leq(x z)(y z) \leq x y .
$$

$$
\text { (viii) Suppose } m>n \text { and so } m=n+k \text { for a suitable } k \geq 1 \text {. }
$$

Then

$$
\left(x y^{m}\right)\left(x y^{n}\right)=\left(x y^{n+k}\right)\left(x y^{n}\right)=\left(\left(x y^{n}\right) y^{k}\right)\left(x y^{n}\right)=\left(\left(x y^{n}\right)\left(x y^{n}\right)\right) y^{k}=0 y^{k}=0
$$

by (iii), (1.11), (1.4) and (i). Due to (1.1), $x y^{m} \leq x y^{n}$. For any integer $n \geq 1$, we introduce the identity

$$
\begin{equation*}
x y^{n}=x y^{n+1} . \tag{n}
\end{equation*}
$$

We now give some identities which are equivalent to $\left(E_{n}\right)$.
PROPOSITION 1.2. A BCK-algebra satisfies the identity $\left(\mathrm{E}_{\mathrm{n}}\right)$ if and only if it satisfies any one of the following identities:
(i) $\left(x y^{n}\right) y^{n}=x y^{n}$;
(ii) $\left(x y^{n}\right) y^{m}=x y^{n}$, for any fixed $m \geq 1$;
(iii) $x\left(\left(x y^{n}\right) y^{n}\right)=x\left(x y^{n}\right)$;
(iv) $(x y) z^{n}=\left(x z^{n}\right)\left(y z^{n}\right)$.

Proof. (ii) is an immediate consequence of $\left(E_{n}\right)$ and (i) is an instance of (ii). Due to the (viii) of Lemma l.1, $\left(x y^{n}\right) y^{m} \leq x y^{n+1}$ and $x y^{n+1} \leq x y^{n}$. Hence, (ii) implies (E_{n}).

Of course, (i) implies (iii). Conversely, assume that (iii) holds. Then (iii) yields $\left(x\left(\left(x y^{n}\right) y^{n}\right)\right) y^{n}=\left(x\left(x y^{n}\right)\right) y^{n}$, and due to (v) of Lemma 1.1, we obtain $\left(x y^{n}\right)\left(\left(x y^{n}\right) y^{n}\right)=\left(x y^{n}\right)\left(x y^{n}\right)=0$. Due to (1.1), $x y^{n} \leq\left(a y^{n}\right) y^{n}$. By Lemma 1.1 ($v i i i$), the reverse inequality always holds. Hence we obtain (i).

Of course, (iv) yields an instance of (ii). The proof that (iv) follows from $\left(E_{n}\right)$ is along the lines of the proof of Theorem 8 in [15]. We will include the details. Firstly, the inequality $(x y) z^{n} \leq\left(x z^{n}\right)\left(y z^{n}\right)$ always holds. Indeed, due to (v) of Lemma 1.1, (1.2) and (1.12),

$$
\left((x y) z^{n}\right)\left(\left(x z^{n}\right)\left(y z^{n}\right)\right)=\left(\left(x z^{n}\right) y\right)\left(\left(x z^{n}\right)\left(y z^{n}\right)\right) \leq\left(y z^{n}\right) y=0
$$

Secondly, using (1.2) and (1.11), we get identity (31) of [15], namely $((x y) u)(x z) \leq(z y) u$. Now replace the role of x by $x z^{n}, y$ by $y z^{n}$, z by $\left(x z^{n}\right) z^{n}$, and u by $(x y) z^{n}$ to obtain:

$$
\begin{aligned}
& {\left[\left(\left(x z^{n}\right)\left(y z^{n}\right)\right)\left((x y) z^{n}\right)\right]\left[\left(x z^{n}\right)\left(\left(x z^{n}\right) z^{n}\right)\right] } \\
& \leq\left[\left(\left(x z^{n}\right) z^{n}\right)\left(y z^{n}\right)\right]\left[(x y) z^{n}\right] \\
& \leq\left[\left(x z^{n}\right) y\right]\left[(x y) z^{n}\right] \text { by (vii) of Lemma 1.]. } \\
&=\left[(x y) z^{n}\right]\left[(x y) z^{n}\right]=0 .
\end{aligned}
$$

Due to $\left(E_{n}\right)$, or rather (i), $x z^{n}=\left(x z^{n}\right) z^{n}$. Hence (1.4) and the above inequality gives

$$
\left[\left(\left(x z^{n}\right)\left(y z^{n}\right)\right)\left((x y) z^{n}\right)\right] 0=0 .
$$

Due to (1.9), we have $\left(\left(x z^{n}\right)\left(y z^{n}\right)\right)\left((x y) z^{n}\right)=0$, which is equivalent to the desired reverse inequality.

The next lemma can be regarded as a generalization of Proposition 5 in Iséki and Tanaka [15]; it is vital to both this section and the next.

LEMMA 1.3. If a BCK-algebra satisfies the identity $\left(E_{n}\right)$, then it also satisfies

$$
\left(x(x y)^{n}\right)(y x)^{n}=\left(y(y x)^{n}\right)(x y)^{n} .
$$

Proof. Due to $\left(E_{n}\right),(v)$ and (vi) of Lemma 1.1, and (1.10),

$$
\left(x(x y)^{n}\right)(y x)^{n}=\left(x(x y)^{n+1}\right)(y x)^{n}=\left(\left(x(x y)^{n}\right)(x y)\right)(y x)^{n}
$$

$$
\leq\left(y(x y)^{n}\right)(y x)^{n}=\left(y(y x)^{n}\right)(x y)^{n} .
$$

By symmetry, we get the reverse inequality and so (1.6) ensures that (C_{n}) holds.

Let \underline{E}_{n} and \underline{C}_{n} denote the classes of all BCK-algebras which satisfy $\left(E_{n}\right)$ and $\left(C_{n}\right)$, respectively.

THEOREM 1.4. The classes ${\underset{-}{n}}^{C}$ and ${\underset{n}{n}}$ are varieties. The following identities form a base for the variety \underline{C}_{n} :

$$
\begin{aligned}
& \text { (i) }((x y)(x z))(z y)=0 \text {, } \\
& \text { (ii) } 0 x=0, \\
& \text { (iii) } x 0=x,
\end{aligned}
$$

(iv) $\left(\mathrm{c}_{\mathrm{n}}\right)$.

These identities together with $\left(\mathrm{E}_{\mathrm{n}}\right)$ form a base for E_{n}.
Proof. We must show that (1.3), (1.4) and (1.6) follow from (i)-(iv), above. Putting $y=z=0$ in (i), yields (1.4) via (ii) and (iii). Replacing y by 0 in (i), yields (1.3). Finally, suppose $x \leq y$ and $y \leq x$, that is, $x y=0=y x$. Substituting in $\left(c_{n}\right)$, we obtain $\left(x 0^{n}\right) 0^{n}=\left(y 0^{n}\right) 0^{n}$. Induction and (iii) enables us to deduce that $x=y$.

The technique of the above proof is related to that of Yutani [27] in the proof of his Theorem 1.

We will defer giving examples until Section 3. The next section is devoted to congruence-properties of the varieties E_{n} and C_{n}.

2. Congruences

Let A be a finitary algebra, $\operatorname{Con}(A)$ its lattice of congruences and $n \geq 2$ be an integer. Then A is n-permutable if for any θ, $\Phi \in \operatorname{Con}(A)$, the n-fold alternating relational products $\Theta \Phi \ldots$ and $\Phi \ominus \ldots$ are equal. This concept is a generalization of permutability (equals 2-permutability). A variety is called n-permutable if each of its members is n-permutable. In [9], Hagemann and Mitschke characterized n-permutable varieties in terms of the existence of $n-1$ ternary polynomials satisfying certain identities. In particular, a variety is 3-permutable if and only if there are two ternary polynomials $r(x, y, z)$ and $s(x, y, z)$ such that each algebra in the variety satisfies the identities $r(x, z, z)=x, s(x, x, z)=z$ and $r(x, x, z)=s(x, z, z)$. While weaker than permutability, 3-permutability still implies modularity of the congruence lattice and a number of other properties. The author has already considered 3-permutability in relation to BCK-algebras and universal algebras in [4] and we refer to that paper for details and additional references.

A variety is congruence-distributive if the lattice of congruences of each of its algebras is distributive. In [16, Theorem 2.1], Jónsson showed that a variety is congruence-distributive if and only if it is congruence-n-distributive, or more briefly n-distributive, in the sense that there
exists an integer $n \geq 2$ and $n-1$ ternary polynomials satisfying certain identities. For example, a variety is 2-distributive if and only if there is a polynomial $m(x, y, z)$ such that

$$
m(x, x, y)=m(x, y, x)=m(y, x, x)=x
$$

on each member of the variety. More importantly for us, a variety is 3-distributive if and only if there exist polynomials $t_{1}(x, y, z)$, $t_{2}(x, y, z)$ such that each algebra in the variety satisfies the identities:

$$
\begin{aligned}
& t_{1}(x, y, x)=x=t_{2}(x, y, x) ; t_{1}(x, x, z)=x ; \quad t_{2}(x, x, z)=z ; \\
& t_{1}(x, z, z)=t_{2}(x, z, z) .
\end{aligned}
$$

In [4, Theorem 2.6], the author showed that an n-permutable variety is congruence-distributive if and only if it is n-distributive. Important for our aim is Theorem 1 of Padmanabhan and Quackenbush [21], which states that a finitely based n-distributive variety is n-based. Combining the above results and notation with Theorem 1.4, we can now give the following result whose proof amounts to checking that the given polynomials satisfy the identities that ensure 3 -permutability and 3-distributivity. It should be noted that it is the identity $\left(C_{n}\right)$ which ensures the nontrivial identities $r(x, x, z)=s(x, z, z)$ and $t_{1}(x, z, z)=t_{2}(x, z, z)$.

THEOREM 2.1. The variety ${\underset{n}{n}}^{\prime}$, and so each of its subvarieties and, in particular, the variety ${\underset{\sim}{e}}^{E}$, is 3-permutable, 3-distributive and 3-based.

The polynomials which ensure 3-permutability are

$$
r(x, y, z)=\left(x(y z)^{n}\right)(x y)^{n} \quad \text { and } \quad s(x, y, z)=r(z, y, x)=\left(z(y x)^{n}\right)(x y)^{n} .
$$

The polynomiais which ensure 3-distributivity are

$$
t_{1}(x, y, z)=\left(x((x y)(z y))^{n}\right)((y x)(y z))^{n}
$$

and

$$
t_{2}(x, y, z)=\left(z((y x)(y z))^{n}\right)((x y)(z y))^{n}
$$

We now turn to finite BCK-algebras. Because of (viii) of Lemma l.1, we must have, for any ordered pair (a, b) of elements in a finite BCKalgebra A, an integer $n(a, b) \geq 1$ such that $a b^{n(a, b)}=a b^{n(a, b)+1}$. Put $n=\max \{n(a, b):(a, b) \in A \times A\}$. Then A satisfies the identity $\left(E_{n}\right)$. This has also been observed by lséki [13]. It follows that a finite BCK-algebra generates a variety (and not just a quasivariety) of BCK-algebras, which is a subvariety of a suitable variety C_{n}, or E_{n}. Due to Theorem 2.1, this variety is congruence-distributive and even n-distributive. Then Baker's Theorem ensures that the variety is finitely based; for a proof of Baker's Theorem, and references to other proofs, we refer to Burris [1]. We thus arrive at

THEOREM 2.2. Any finite $B C K$-algebra generates a variety of $B C K$ algebras, which is 3-permutable, 3-distributive and 3-based.

In connection with Theorems 2.1 and 2.2 , we should mention that no non-trivial variety of BCK-algebras is either permutable or 2-distributive. The reason for this is as follows. Firstly, any nontrivial BCK-algebra must contain the 2-element BCK-algebra $\{0, a: 0 a=a a=00=0, a 0=a\}$. The variety generated by this 2-element algebra is the variety of so-called implicative BCK-algebras; it can be regarded as the subvariety of $\underset{{\underset{n}{n}}^{C}}{ }$ (or $\begin{aligned} & E_{n}\end{aligned}$) of all algebras which satisfy the additional identity $x(y x)=x$. Its members are simply subalgebras of Boolean algebras ($B ; \wedge, v, \prime, 0, l$) with respect to the derived operation $a b=a \wedge b^{\prime}$; for a proof and a history see [2]. And, in effect, Mitschke [20] showed that this variety is neither permutable nor 2-distributive; see also [8, Theorems 3.14, 3.15].

We now turn to another congruence-property of the variety E_{n}. The following results generalize some of those in [4]; their importance rests in their wide range of applicability.

An ideal of a BCK-algebra A is a subset K of A such that
(i) $0 \in K$ and
(ii) $a \in K$ whenever $a b, b \in K$.

The ideals of A form a complete lattice $J(A)$. Because of Iséki and

Tanaka [14, Theorem 2] the ideal $\left\langle a_{1}, \ldots, a_{t}\right\rangle$ of A generated by a_{1}, \ldots, a_{t} is the set of all $d \in A$ such that

$$
\left(\left(\ldots\left(\left(d b_{1}\right) b_{2}\right) \ldots\right) b_{k-1}\right) b_{k}=0
$$

for suitable $b_{1}, b_{2}, \ldots, b_{k} \in\left\{a_{1}, \ldots, a_{t}\right\}$. When A is within ${\underset{n}{n}}$, we can give a much better description of this ideal.

LEMMA 2.3. Let $A \in{\underset{\underline{Z}}{n}}, K \in J(A)$ and $a, a_{1}, \ldots, a_{t} \in A$. Then the supremum $K \vee\langle a\rangle$ in $J(A\rangle$ is $\left\{b \in A: b a^{n} \in K\right\}$. Consequently

$$
\left\langle a_{1}, \ldots, a_{t}\right\rangle=\left\{b \in A:\left(\ldots\left(\left(b a_{1}^{n}\right) a_{2}^{n}\right) \cdots\right) a_{t}^{n}=0\right\} .
$$

Proof. Because of ($i v$) in Proposition l.2, it is easy to check that $\left\{b \in A: b a^{n} \in K\right\}$ is an ideal. Of course, this ideal is within any ideal which contains both a and K, and so it is the supremum in the ideallattice. The second assertion follows from the first via induction.

Any ideal $K \in J(A)$ gives rise to a congruence $\theta(K)$ on A, defined by $a \equiv b(\Theta(K))$ if and only if $a b, b a \in K$. Moreover, the quotient algebra is a BCK-algebra; see [14, Theorem 2]. On the other hand, when $\Phi \in \operatorname{Con}(A), \operatorname{ker}(\Phi)=\{a \in A: a \equiv O(\Phi)\}$ is an ideal, but the quotient algebra may not be a BCK-algebra. When the quotient algebra is a BCKalgebra, the validity of (1.6) in the quotient ensures that $a \equiv b(\Phi)$ $(a, b \in A)$ if and only if $a b, b a \in \operatorname{ker}(\Phi)$. Of course, this hypothesis is ensured when A is within a variety of BCK-algebras. Hence, if a BCKalgebra A is within a variety of BCK-algebras, the maps $K \rightarrow \theta(K)$ and $\Phi \rightarrow \operatorname{ker}(\Phi)$ are mutually inverse lattice-isomorphisms between the ideallattice $J(A)$ and the congruence-lattice $\operatorname{Con}(A)$. It is Theorem 1.4 which makes this applicable to algebras satisfying (E_{n}).

THEOREM 2.4. Let $A \in \underset{=}{\mathrm{E}}, a, b, c, d \in A$, and $\Theta(a, b)$ denote the smallest congruence identifying a and b. Then $c \equiv d(\Theta(a, b))$ if: and only if

$$
\left((c d)(a b)^{n}\right)(b a)^{n}=0=\left((d c)(a b)^{n}\right)(b a)^{n}
$$

Proof. Because of our preceding remarks, $c \equiv d(\Theta(a, b))$ if and only if $c d, d c \in(a b, b a\rangle$. Hence Lemma 2.3 yields the result.

Following Köhler and Pigozzi [17], a variety $\underline{\underline{V}}$ has strongly equationally definable principal congmences if there exists a set $\left\{\left(p_{i}, q_{i}\right): i \in I\right\}$ of pairs of quaternary polynomials such that, for all $A \in \underline{\mathrm{~V}}$ and all $a, b, c, d \in A, c \equiv d(\theta(a, b))$ if and only if $p_{i}(a, b, c, d)=q_{i}(a, b, c, d)$ for each $i \in I$. Thus Theorem 2.4 says that the variety $E_{⿹_{n}}$ has strongly equalionally definable principal congruences. As these authors mention, strongly equaltionally definable principal congruences implies the congruence extension property due to a well known result of Day [5]. A class \underline{H} of algebras has congruence extension property if each congruence on a subalgebra of an algebra $A \in \underline{\underline{H}}$ is the restriction of a congruence on A; see Fried [8] for some recent results on congruence extension properties.

The main result of Köhler and Pigozzi [17] states that a variety has strongly equaltionally definable principal congruences if and only if the compact congruences on each algebra in the variety form a (dual) relatively pseudocomplemented upper semilattice, and from this the congruencedistributivity of the variety can be inferred. In connection with this, recall that an upper semilattice ($S ; \mathrm{v}$) is (dual) relatively pseudocomplemented if, for each $a, b \in S$, the subset $\{c \in S: a \leq b \vee c\}$ has a (necessarily unique) smallest element, which is denoted by $a b$. Here there is an important link with BCK-algebras. For if (S; v) is such a semilattice and $0=a a$ for any $a \in S$, then ($S ; 0$), with respect to the above product $a b$, is an E_{1}-BCK-algebra - a detailed analysis can be found in the author's paper [4].

Thus, there are entirely different reasons for the congruencedistributivity of \underline{E}_{n}. We will not state the obvious consequence for \underline{E}_{n} of Köhler and Pigozzi's Theorem. Instead, we give a related idealtheoretic result which extends part of Theorem 1.3 in [4]; it is, in fact, a direct consequence of Lerma 2.3, above.

THEOREM 2.5. Let $A \in \underset{{\underset{n}{n}}^{E}}{ }$ and $H=\left\langle a_{1}, \ldots, a_{t}\right\rangle$, $K=\left\langle b_{1}, \ldots, b_{r}\right\rangle$ be two finitely generated ideals of A. For $i=1, \ldots, t$, let $d_{i}=\left(\ldots\left(a_{i} b_{1}^{n}\right) \ldots\right) b_{r}^{n}$. Then the (dual) relative pseudocomplement, $H K$ of H and K in the upper semilattice of finitely
generated ideals is the ideal $\left\langle d_{1}, \ldots, d_{t}\right\rangle$.

3. Commutative BCK-algebras

A BCK-algebra $(A ; 0)$ is called bounded if the underlying partially ordered set $(A ; \leq)$ has a largest element, which is denoted by 1 . In other words, there is an element $l \in A$ such that

$$
\begin{equation*}
x 1=0, \tag{B}
\end{equation*}
$$

for all $x \in A$. When dealing with bounded BCK-algebras, we shall consider then as algebras $(A ; 0,1)$ of type $(2,0,0)$; that is, 1 becomes a nullary operation and (B) becomes an identity satisfied by the bounded algebra.

A commutative BCK-algebra, or Tanaka algebra, is a BCK-algebra which satisfies the identity

$$
\begin{equation*}
x(x y)=y(y x) \tag{T}
\end{equation*}
$$

When the derived operation $x \wedge y=x(x y)$ is introduced, a commutative BCK-algebra ($A ; 0$) has, as a reduct, the lower semilattice $(A ; \wedge$) and the partial order of (1.1) is consistent with the semilattice-order; that is, for any $a, b \in A, a \leq b$ when and only when $a=a \wedge b$. When $(A ; 0,1)$ is a bounded commutative BCK-algebra, the algebra $(A ; \wedge, \vee, \sim, 0,1)$ is a bounded lattice with an involution, wherein the supremum is $x \vee y=\sim(\sim x \wedge \sim y)$ and the involution is $\sim x=1 x$; this is a fundamental result of Iséki and Tanaka [15, Theorem 6]. Actually this lattice is distributive and $x \wedge \sim x \leq y \vee \sim y$ is an identity; see Traczyk [26] and [3, Theorems 3.9, 3.11].

The class $\underline{\underline{T}}$ of all commutative BCK-algebras is a variety; identities (i), ($i i$) and (i ii) of Theorem 1.4 , together with (T), provide an equational base. In [3] it was shown that this variety is 3-permutable and 3-distributive. On the other hand, the variety $\underline{\underline{T}}^{1}$ of bounded commutative BCK-algebras is permutable; $p(x, y, z)=x(y z) \vee z(y x)$ is a suitable (2/3)-minority polynomial; cf. [3, Lemma 1.6].

In the presence of commutativity, we can add to Proposition 1.2.
PROPOSITION 3.1. A commutative BCK-algebra satisfies $\left(E_{n}\right)$ if and onlu if it satisfies
(i) $x \wedge\left(y x^{n}\right)=0$.

A bounded conmutative BCK-algebra satisfies $\left(\mathrm{E}_{\mathrm{n}}\right)$ if and only if it satisfies any one of the following identities:

$$
\begin{aligned}
& \text { (ii) } \quad 1 x^{n}=1 x^{n+1}, \\
& \text { (iii) } x \wedge\left(1 x^{n}\right)=0, \\
& \text { (iv) } x\left(1 x^{n}\right)=x
\end{aligned}
$$

Proof. It is easy to see that in any commutative BCK-algebra, $x \wedge y=0$ if and only if $x=x y$, or alternatively $y=y x$. Hence, (i) is equivalent to $y x^{n}=\left(y x^{n}\right) x$; that is, $\left(E_{n}\right)$. For the same reason, (ii), (iii), and (iv) are equivalent.

Of course, ($i i$) is a specialization of (E_{n}), and so it remains to prove that (ii) implies $\left(E_{n}\right)$.

Because of (B) and (T), $x=1(1 x)$. Hence, ($i i$) and Lemma l.l (v) imply
$x y^{n}=(1(1 x)) y^{n}=\left(1 y^{n}\right)(1 x)=\left(1 y^{n+1}\right)(1 x)=(1(1 x)) y^{n+1}=x y^{n+1}$.
COROLLARY 3.2. A subdirectly commutative algebra in E_{n} is simple.
Proof. Suppose B is such an algebra and a is a non-zero element of B. Let b be any element of B. Then $a \wedge\left(b a^{n}\right)=0$. As ideals are herditary, $\{0\}=\langle a\rangle \cap\left\langle b a^{n}\right\rangle$. Due to the correspondence between ideal and congruences and the fact that B is subdirectly irreducible, $\left(b a^{n}\right)=\{0\}$. Hence $b \in(a\rangle$. Thus B has only two ideals and is, thus, simple.

All of the hypotheses of the above corollary are necessary. Indeed, let us firstly consider the variety \underline{E}_{1} of so-called positive implicative BCK-algebra; it is the class of implicational models of Henkin [10]. As Iséki and Tanaka observed in [14, Example 7, p. 356], any partially ordered set ($A ; \leq, 0$) with a smallest element 0 can be converted into a BCKalgebra by defining $a b=0$ when $a \leq b$ and $a b=a$ when $a \neq b$. The
resulting algebra is positive implicative. Moreover, it is easy to see that the ideals of this algebra are precisely hereditary subsets of the original poset. Hence we get a subdirectly irreducible algebra which is not simple when the poset has at least three elements and a unique atom. On the other hand, subdirectly irreducible commutative BCK-algebras, which are not simple, are hard to come by. We now describe an example.

Let A be a chain $a_{0}<a_{1}<\ldots<a_{n}<\ldots$ of order type ω, \bar{A} be its dual $\ldots \bar{a}_{n}<\ldots<\bar{a}_{1}<\bar{a}_{0}$, and A_{ω} be the ordinal sum $A \oplus \bar{A}$. The BCK-multiplication is defined on A_{ω} by:

$$
\begin{aligned}
& a_{n} a_{m}=a_{\max }(n-m, 0), \\
& a_{n} \bar{a}_{m}=0=a_{0}, \\
& \bar{a}_{n} \bar{a}_{m}=a_{\max }(m-n, 0), \\
& \bar{a}_{n} a_{m}=\bar{a}_{n+m} .
\end{aligned}
$$

The resulting algebra turns out to be in $\underline{\underline{T}}^{1}$ and as a $\underline{\underline{T}}^{1}$-algebra it is generated by $a_{1} ; a_{n}=1\left(1 a_{1}^{n}\right), \bar{a}_{n}=1 a_{n}$, where $1=\bar{a}_{0}$. The algebra is subdirectly irreducible and not simple; its non-trivial smallest ideal is $A=\left\{a_{1}\right\rangle=\left\{a_{n}: n \in \omega\right\}$.

In this connection, let A_{n} be the \mathbb{T}-subalgebra whose underlying poset is the chain $a_{0}<\ldots<a_{n}$ of length $n \geq 1$. We also let A_{n}^{l} denote the associated $\underline{\underline{T}}^{1}$-algebra. These algebras are important in the study of the varieties E_{n}. Indeed, using part (ii) of Proposition 3.1, it is easy to see that $A_{m} \in \underset{\underbrace{}_{n}}{E_{n}}$ if and only if $m \leq n$, for any
 and ${\underset{E}{n}}_{n}^{n} \underline{\underline{T}}^{1}$ each form an increasing infinite chain.

Before continuing, we will tidy up a connection between chains and subdirectly irreducible $\underline{\underline{T}}$-algebras. At the end of the paper [3], we showed a theory of prime ideals could be developed for commutative

BCK-algebras. The relevant part for us here is as follows:
An ideal P of a commutative BCK-algebra A is called prime if $P \neq A$ and either $a \in P$ or $b \in P$, whenever $a \wedge b \in P$. Then, when A is not trivial, $\cap\{P: P$ is a prime ideal $\}=\{0\}$. Hence, with the notation of Section 2, A becomes a subdirect product of the quotient algebras $A / \Theta(P)$. We now easily obtain:

THEOREM 3.3. Let A be a commutative BCK-algebra which satisfies the identity

$$
\begin{equation*}
(x y) \wedge(y x)=0 . \tag{L}
\end{equation*}
$$

Then an ideal $P \neq A$ is prime if and only if its associated quotient is a chain.

Hence, a commutative BCK-algebra satisfies (L) if and only if it is isomorphic to a subdirect product of totally ordered algebras.

As a matter of fact there are simple \underline{T}-algebras which are not chains. Let I be an index set with at least two elements and A be the tree $\left\{0, a, a_{i}: 0<a<a_{i}, a_{i} \| a_{j}\right.$ for any $\left.i \neq j, i, j \in I\right\}$. Then Setō [24] showed that A can be converted into a $\underset{\text { T-algebra by defining the products }}{ }$ $a_{i} a_{j}=\alpha$ when $i \neq j$ and the others in the obvious manner. The resulting algebra is simple and in ${\underset{\underline{E}}{2}}$. Consequently, the variety ${\underset{\underline{E}}{2}}^{\cap} \xrightarrow[=]{T}$ is not residually small; that is, it does not possess a set of subdirectly irreducible algebras. For any $n \geq 2$, the algebras of Example 5 in Iséki and Tanaka [14] provide another class, as opposed to set, of simple algebras, which are trees but not chains, in the variety $\underline{E}_{n+1} \cap \underline{=}$.

In [18] and [19], Komori considered a variety of groupoids which turn out to be the groupoid-duals (opposites) and order-duals of commutative BCK-algebras satisfying (L). His Theorem 2.10 in [18] thus states that the subdirectly irreducible BCK-algebras satisfying (T) and (L) are chains; the method in our Theorem 3.3 is quite different. The effect of the dual of equation (i) in Proposition 3.1 is considered in [19]. In fact, Theorem 3.13 of [19] can be interpreted as the following non-trivial important result.

LEMMA 3.4 (Komori [19]). A commutative totally ordered ${\underset{n}{n}}^{E_{n}}$-algebra
is isomorphic to the algebra A_{m} for some $m \leq n$.
Combining the results of our results, we obtain
THEOREM 3.5. The subvariety of ${\underset{V}{n}}$ determined by the identities (T) and (L) is the variety of BCK-algebras generated by A_{n}.

We now turn to bounded algebras. Traczyk [26] has already proved that the subdirectly algebras in $\underline{\underline{T}}^{1}$ are totally ordered. In fact in the proof of his Theorem 3.3, he shows that a ${\underset{N}{1}}^{1}$-algebra satisfies (L). The demonstration of this identity is by no means trivial; it is intimately related with his method of establishing the distributivity of the underlying lattice of a \underline{N}^{1}-algebra. For the purposes of emphasis, we state the result formally as

LEMMA 3.6 (Traczyk [26]). A bounded commutative BCK-algebra satisfies the identity (L).

We are now in a position to give an alternative proof of the central result of Romanowska and Traczyk [23]. Their proof is quite computational. Our proof is more in line with Universal Algebra.

THEOREM 3.7 (Romanowska and Traczyk [23]). A finite bounded commutative BCK-algebra is isomorphic to the direct product of simple totally ordered BCK-algebras. Consequently, its congruence-lattice is a Boolean lattice.

Proof. Because of the reasoning which preceded Theorem 2.2, we can consider the finite algebra to be in the variety $E_{n} \cap \underline{\underline{T}}^{l}$ for some suitable $n \geq 1$. Due to Corollary 3.2, Theorem 3.3 and Lemma 3.6, the algebra is isomorphic to a subdirect product of finitely many simple chains. But as we remarked prior to Proposition 3.1, the variety $\overbrace{T^{1}}^{1}$ is permutable. Hence, the algebra becomes isomorphic to the direct product of some of these simple algebras; this is a well known result of Universal Algebra; see for example Foster and Pixley [6, Theorem 2.4]. Finally, either of the varieties ${\underset{\underline{E}}{n}}$ and $\underline{\underline{T}}$ is congruence-distributive and so the congruence-lattice of a direct product of finitely many algebras in $E=\underbrace{}_{n} \underline{\underline{T}}^{\mathbf{l}}$ is naturally isomorphic to the direct product of the congruence-
distributive and so the congruence-lattice of a direct product of finitely many algebras in $\underset{ت}{E} \cap \underline{\underline{T}}^{1}$ is naturally isomorphic to the direct product of the congruence-lattices of the factors; cf. Fraser and Horn [7]. We now have the second assertion of the theorem.

In close relation to Komori's Lemma 3.4, above, Traczyk [26] showed that the algebras A_{n}^{l} are the only finite subdirectly irreducibles in $\underline{\underline{T}}^{1}$. We are going to conclude this paper with a closer look at these algebras. We assume that the reader is familiar with Primal Algebra Theory, in particular with the notions of quasiprimal and semiprimal algebras. A perspective can be obtained from Quackenbush's survey [22]. Let us recall that the ternary discriminator on a set A is a function $t: A^{3} \rightarrow A$ such that $t(a, b, c)=a$ if $a \neq b$ and $t(a, b, c)=c$ if $a=b$.

THEOREM 3.8. For each divisor r of n, A_{n}^{l} possesses a unique \underline{T}^{1}-subalgebra and this is isomorphic to $A_{n / r}^{l}$; these are the only $\underline{\underline{T}}^{1}$-subalgebras of A_{n}^{1}. Consequently, the variety $\underset{E_{n}}{\mathrm{E}^{1}} \underline{\underline{T}}^{1}$ is generated by A_{n}^{1} and the algebras A_{s}^{1}, where $1<s<n$ and s is a non-divisor of n.
A_{n}^{1} is a semiprimal algebra. Consider the following \underline{T}^{1}-polynomials:

$$
e_{n}(x)=x(\sim x)^{n-1}=x(1 x)^{n-1}, \quad d(x, y)=(x y) \vee(y x)
$$

and

$$
t_{n}(x, y, z)=\left(x \wedge \sim e_{n}(\sim d(x, y))\right) \vee\left(z \wedge e_{n}(\sim d(x, y))\right)
$$

On $A_{n}^{1}, e_{n}\left(a_{i}\right)=0$ if $i<n$ and $e_{n}\left(a_{i}\right)=1$ if $i=n$. Hence $t_{n}(x, y, z)$ represents the ternary discriminator on A_{n}^{1}.

Proof. When r divides $n, A_{n / r}^{1}$ is isomorphic to the subalgebra
$\left\{a_{k r}: 0 \leq k \leq n / r\right\}$. On the other hand, let B be any subalgebra and a_{r} be its atom. Suppose a_{s} is another non-zero element of B. Then r must divide s. Otherwise, $s=q r+t$ for some $0<t<r$, and so $0<a_{t}<a_{r}$ and $a_{t} \in B$, as $a_{t}=a_{s} a_{r}^{q}$. The nature of the variety $E_{n} \cap \underline{\underline{T}}^{1}$ then follows from Theorem 3.3, Lemma 3.4 and Lemma 3.6.

For any $i=0, \ldots, n$,

$$
\cdots a_{i}=a_{n-i}, \quad a_{i}\left(\sim a_{i}\right)=a_{\max }(2 i-n, 0), a_{i}\left(\sim a_{i}\right)^{2}=a_{\max }(3 i-2 n, 0)
$$

and, by induction, it follows that $e_{n}\left(a_{i}\right)=a_{\max }(n i-(n-1) n, 0)$. But $n i+n-n^{2} \leq 0$ if and only if $n(i+1) \leq n^{2}$. Hence e_{n} behaves as stated on A_{n}^{I}. On any bounded commutative BCK-algebra, $d(x, y)=0$ if and only if $x=y$. It now follows that t_{n} acts as the ternary discriminator. Hence A_{n}^{l} is quasiprimal and even semiprimal because the only automorphisms between its subalgebras are identity-maps. Of course, we could have deduced the quasiprimality of A_{n}^{l} from the simplicity of its subalgebras and the congruence-distributivity and permutability of $\underline{\underline{T}}^{1}$.

References

[1] Stanley Burris, "On Baker's finite basis theorem for congruence distributive varieties", Proc. Amer. Math. Soc. 73 (1979), 141-148.
[2] William H. Cornish, "A multiplier approach to implicative BCKalgebras", Math. Sem. Notes Kobe Univ. 8 (1980), 157-169.
[3] William H. Cornish, "3-permutability and quasicommutative BCKalgebras", Math. Jopon. (to appear).
[4] William H. Cornish, "On positive implicative BCK-algebras", Math. Sem. Notes Kobe Univ. (to appear).
[5] Alan Day, "A note on the congruence extension property", Algebra Universalis 1 (1971), 234-235.
[6] Alfred L. Foster and Alden F. Pixley, "Semi-categorical algebras. II", Math. 2. 85 (1964), 169-184.
[7] Grant A. Fraser and Alfred Horn, "Congruence relations in direct products", Proc. Amer. Math. Soc. 26 (1970), 390-394.
[8] E. Fried, "A note on congruence extension property", Acta Sci. Math. 40 (1978), 261-263.
[9] J. Hagemann and A. Mitschke, "On n-permutable congruences", Algebra Universalis 3 (1973), 8-12.
[10] Leon Henkin, "An algebraic characterization of quantifiers", Fund. Math. 37 (1950), 63-74.
[11] Kiyoshi Iséki, "An algebra related with a propositional calculus", Proc. Japan Acad. 42 (1966), 26-29.
[12] Kiyoshi Iséki, "Topics of BCK-algebras", Proceedings of the lst Symposium on Semigroups, 44-56 (Shimane University, Shimane-Ken, Japan, 1977).
[13] Kiyoshi Iséki, "On finite BCK-algebras", Proceedings of the 3rd Symposium on Semigroups, 11-12 (Inter-University Seminar House, Kansai, 1979).
[14] Kiyoshi Iséki and Shotaro Tanaka, "Ideal theory of BCK-algebras", Math. Japon. 21 (1976), 351-366.
[15] Kiyoshi Iséki and Shotaro Tanaka, "An introduction to the theory of BCK-algebras", Math. Japon. 23 (1978), l-26.
[16] Bjarni Jónnson, "Algebras whose congruence lattices are distributive", Math. Scand. 21 (1967), 110-121.
[11] Peter Köhler and Don Pigozzi , "Varieties with equationally definable principal congruences", preprint.
[18] Yuichi Komori, "The separation theorem of the \aleph_{0}-valued Lukasiewicz propositional logic", Rep. Fac. Sci. Shizuoka Univ. 12 (1978), l-5.
[19] Yuichi Komori, "Super-Zukasiewicz implicational logics", Nagoya Math. J. 72 (1978), 127-133.
[20] Aleit Mitschke, "Implication algebras are 3-permutable and 3-distributive", Algebra Universalis 1 (1971), 182-186.
[21] R. Padmanabhan and R.W. Quackenbush, "Equational theories of algebras with distributive congruences", Proc. Amer. Math. Soc. 41 (1973), 373-377.
[22] Robert W. Quackenbush, "Primality: the influence of Boolean algebras in Universal Algebra", Universal algebra, 2nd edition, Appendix 5, 401-416 (Springer-Verlag, New York, Heidelberg, Berlin, 1979).
[23] Anna Romanowska and Tadeusz Traczyk, "On commutative BCK-algebras", preprint.
[24] Yasuo Seto, "Some examples of BCK-algebras", Math. Sem. Notes Kobe Univ. 5 (1977), 397-400.
[25] Zahava Shmuely, "The structure of Galois connections", Pacific J. Math. 54 (1974), no. 2, 209-225.
[26] Tadeusz Traczyk, "On the variety of bounded commutative BCKalgebras", Math. Japon. 24 (1979), 283-292.
[27] Hiroshi Yutani, "Quasi-commutative BCK-algebras and congruence lattices", Math. Sem. Notes Kobe Univ. 5 (1977), 469-480.

School of Mathematical Sciences,
Flinders University,
Bedford Park,
South Australia 5042,
Australia.

