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VARIETIES GENERATED BY
FINITE BCK-ALGEBRAS

WiLLiam H, CoRrnISH

Iséki's BCK-algebras form a quasivariety of groupoids and a

. . +1
finite BCK-algebra must satisfy the identity @nj : xyn = xyn s

for a suitable positive integer % . The class of BCK-algebras

which satisfy &n) is a variety which has strongly equationally

definable principal congruences, congruence-3-distributivity, and
congruence-3-permutability. Thus, a finite BCK-algebra generates
a 3-based variety of BCK-algebras. The variety of bounded

commutative BCK-algebras which satisfy [En) is generated by n

finite algebras, each of which is semiprimal.

Introduction

BCK-algebras were introduced as an algebraic formulation of certain
implicational fragments of the propositional calculus by Iséki in [11].
They form a quasivariety of algebras amongst whose subclasses can be found
the earlier implicational models of Henkin [710], algebras of sets closed
under set-subtraction, and dual relatively pseudocomplemented upper semi-
lattices. Many of the articles in the Mathematics Seminar Notes of Kobe
University, Volume 3 (1975) onwards, are devoted to these algebras; the
papers [14] and [15] of Iséki and Tanaka give excellent introductions to
their ideal theory and first-order theory, respectively, while Iséki's

survey [1Z] contains many references. Recently, Traczyk [26] and
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Romanowska and Traczyk [23] have done much to elucidate the nature of the
so-called commutative BCK-algebras. Independent of these developments,
Komori (78], [19], at Shizuoka, has considered the subdirectly irreducible
algebras in a variety whose members are the groupoid-opposites and order-
duals of the algebras in an important subvariety of commutative BCK-
algebras. This work was done in connection with his investigations of the
Lukasiewicz many-valued logics. In [3] and [4], the present author
considered an interaction between BCK-algebras, Universal Algebra and

Lattice Theory.

Section 1 is devoted to showing that the BCK-algebras which satisfy

the identity (En] form a variety. Section 2 uses Malcev conditions to

determine congruence-phenomena in this variety. Section 3 contains
examples and is concerned with commutative BCK-algebras. We exploit the
connection with Komori's work, and use the information on congruences to
give an alternative proof to the main result of Romanowska and Traczyk
[23], which determines the nature of finite bounded commutative BCK-

algebras.

1. The variety E,

Let (4; 0) be a groupoid with a distinguished element O ; the
multiplication of the groupoid is denoted by juxtaposition. On the under-

lying set, a derived binary relation is defined by
(1.1) x =y if and only if ay =0 .

Then, (4; 0) is a BCK-algebra if it satisfies the following universally

quantified sentences:
(1.2) (ay)(xz) = zy ;
(1.3) =x(xy) =y ;
(1.4) ==z
(1.5) o=z,
(1.6) if x =y and y <z , then = =y

Thus, a BCK-algebra is an algebra of type (2, 0) which satisfies the
identities (1.2)-(1.5) and the quasi-identity (1.6). It is customary to

regard the nullary operation as a fundamental operation even though it is
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given equationally by (1.4), that is, xx =0 .
From (1.2) and (1.5), it follows that
(1.7) y =z implies xz =< xy

Using this and (1.2), we obtain
(1.8) 2=y and y =z imply x =<z

Thus, (1.4)-(1.6) and (1.8) say that (4; <, 0) is a partially ordered set
with O as the smallest element. It is possible to interpret the above
information in terms of Galois connections; Shmuely [25] is a good up-to-
date reference. Recall a Galois connection between two partially ordered
sets P and § is a pair (¢, g) of mappings t : P+Q , g : Q> P
such that

(i) ¢ and g are antitone, and

(ii) for each p € P and q € Q , gt(p) 2 p and tglq) 2 q .
Thus, let x be an arbitrary element in a BCK-algebra A4 , tx : A+ A be
given by tx(y) = xy for each y € A , and A4 denote the order-dual of
the partially ordered set (4; <) . Then, because of (1.3), the pair
(t ) tx] is a Galois connection between A and itself. Thus we must have

X

3 = tx , that is, x(x(xy)) =xy for all x* and y in the BCK-algebra.

t
Other important consequences of the axioms are:
(1.9) z0 = x ;
(1.10) y = z implies yx < zx ;
and the crucial identity
(1.11) (xy)z = (xz3)y
We also have

(1.12) zy =x .

The details can be found in 1séki and Tanaka [15]. It is the anti-symmetry
property of (1.6) which forces us to say that the class of BCK-algebras is
merely a quasivariety, although it is unknown whether this class is

equationally definable.
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For any integer n = 1 , we define the polynomials zyn inductively

by: myl =xy , xyk+l = (xyk)y for k=1 . Their behaviour is

summarized below.

LEMMA 1.1, For any integers m, n = 1 , the following are BCK-
identities:

(Z7) O0x =0 ;
(1) 20" = x ;

(iii) xxt =0 ;

1]
&
]
&
3
RN
3
3

(iv) (xyn)y

(v) (xyn)zm = (xzm)yn H
(vi) (o) (z2) = 2" ;
(vii) (xz") (y2") = =y ;

(viii) xym = xyn , Whenm m=n .

Proof. (%) follows from (1.5); (4i) follows from (1.9) and
induction; (47%) is a consequence of (1.4), (1.5) and induction; both

(Zv) and (v) follow from (1.11).

1, (vi) is (1.2). Suppose (vi) holds for »n = k .

(vi) When =n
Then

[xyk+l)(xz) ((xyk)y)(az) = ((xyk)(xz))y < (zyk]y = zyk+l s

by (1.11) and (1.2).

(vit) Because of (1.2) and (1.11), (xz)(yz) < xy , that is (vii)
holds when »n = 1 . Suppose (vit) is an identity when 7»n = k . Then, by

(iv) above, we obtain

(@) () = (205" (42)3) = (@2) (o) = ay -

(viii) Suppose m >»n and so m=n + kK for a suitable k = 1 .
Then

(=™ (=) = @) @) = (@5 @) = (@) @) = ok =0,
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by (i), (1.11), (1.1) and (4). Due to (1.1), xy" < ay"

For any integer »n = 1 , we introduce the identity
n n+l
(£.) xy = xy .
We now give some identities which are equivalent to (En)
PROPOSITION 1.2. A BCK-algebra satisfies the identity (B ) if and

only if it satisfies any one of the following identities:

(i) (=) == ;

(i1) (xyn)ym xyn s, for any fizxed m =1 ;
(tii) =((e)y") = z(=") ;

" = (@2") (y2").

Proof. (Zi) is an immediate consequence of (En) and (i) is an

(iv) (xy)

(™" = o™t

instance of (2Z). Due to the (viii) of Lemma 1.1, = zy and

xyn+l = xyn . Hence, (Zi) implies (En]

Of course, (i) implies (77Z%). Conversely, assume that (77Z) holds.
Then (777) yields (x((xyn)yn)]yn = (x(xyn))yn, and due to (v) of Lemma 1.1,
we obtain (xynj((xyn]yn) = (xyn)(xyn) =0 . Due to (1.1),

xyn = (xyn)y” . By Lemma 1.1 (viii), the reverse inequality always holds.

Hence we obtain (Z).

Of course, (iv) yields an instance of (iZ). The proof that (iv)

follows from (En) is along the lines of the proof of Theorem 8 in [15].

We will include the details. Firstly, the inequality (xy)zn < (xzn](yzn)
always holds. Indeed, due to (v) of Lemma 1.1, (1.2) and (1.12),

((z)2") ((@2") (52")) = ((&2")y) ((x2") (2")) = (y=")y = 0 .
Secondly, using (1.2) and (1.11), we get identity (31) of [715], namely
((xy)u)(xz) < (2y)u . Uow replace the role of z by zz" , Yy by yzn ,

z by (xzn)zn , and u by (xy)zn to obtain:
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[((==") (45=")) ((=)2™)] [(==") (") 2")]
[((=2")2") (y=")] [(ay)2"]
[(zz™)y] [(xy)2"] by (vii) of Lemma 1.1,

[(x)2™] [(2y)2*] = o .

1A

1A

Due to (En) , or rather (i), a2’ = (xz')2" . Hence (1.4) and the

above inequality gives

[((x2") (42")) ((z)2™)]0 = 0 .

Due to (1.9), we have [(xzn)(yzn])((xy)zn) = 0 , which is equivalent to

the desired reverse inequality.

The next lemma can be regarded as a generalization of Proposition 5 in

Iséki and Tanaka [15]; it is vital to both this section and the next.
LEMMA 1.3. If a BCK-algebra satisfies the identity (Er) » then it

also satisfies

(c.) (w(a) ) (y=)" = (y(y=)") ()™ .

Proof. Due to (En] , (v) and (vi) of Lemma 1.1, and (1.10),

(=) ™) (g2) = (alay)™) ()" = ((alay)™) () (ya)"
s e (ya)” = (y(y)") ()"
By symmetry, we get the reverse inequality and so (1.6) ensures that [Cn)
holds.
Let En and gn denote the classes of all BCK-algebras which satisfy

(En) and (Cn) , respectively.

THEOREM 1.4. The classes c, and E are varieties. The following

identities form a base for the variety [

() ((zy)(=z2))(zy) = 0,

(i) Oz

0,

(iit) 20 = x ,
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(i) (c)

These identities together with (En) form a base for En .

Proof. We must show that (1.3), (1.4) and (1.6) follow from (Z)-(iv),
above. Putting y = 3 = 0 in (Z), yields (1.4) wia (iZ) and (iiZ).
Replacing y by O in (Z), yields (1.3). Finally, suppose z <y and
y <x , that is, xy = 0 = yx . Substituting in (Cn) , We obtain

(xOnJOn = (yo”)o” . Induction and (<Z%Z) enables us to deduce that x =y .

The technique of the above proof is related to that of Yutani [27] in
the proof of his Theorem 1.

We will defer giving examples until Section 3. The next section is

devoted to congruence-properties of the varieties gn and gn .

2. Congruences

Let A be a finitary algebra, Con(4) its lattice of congruences and
n Z 2 be an integer. Then A is n-permutable if for any
O, ¢ € Con(4) , the n-fold alternating relational products ©% ... and
%) ... are equal. This concept is a generalization of permutability
(equals 2-permutability). A variety is called n-permutable if each of
its members is #-permutable. In [9], Hagemann and Mitschke characterized
n-permutable varieties in terms of the existence of 7n - 1 ternary
polynomials satisfying certain identities. In particular, a variety is
3-permutable if and only if there are two ternary polynomials »(x, y, z)
and §(x, ¥, 2) such that each algebra in the variety satisfies the
identities r(x, 3, 2) =x , s(x, 2, 3) =2 and r(x, z, z) = s(z, 3z, z).
While weaker than permutability, 3-permutability still implies modularity
of the congruence lattice and a number of other properties. The author has
already considered 3-permutability in relation to BCK-algebras and
universal algebras in [4] and we refer to that paper for details and

additional references.

A variety is congruence-distributive if the lattice of congruences &f
each of its algebras is distributive. In [16, Theorem 2.1], Jénsson showed
that a variety is congruence-distributive if and only if it is congruence-

n-distributive , or more briefly n-distributive, in the sense that there
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exists an integer 7 =2 2 and n - 1 ternary polynomials satisfying
certain identities. For example, a variety is 2-distributive if and only

if there is a polynomial m(x, y, 2) such that
m(x, z, y) = mlz, y, x) =mly, z, ) =«

on each member of the variety. More importantly for us, a variety is

3-distributive if and only if there exist polynomials tl(x, Y, 2) ,

t2(x, Y, 2) such that each algebra in the variety satisfies the

identities:
tl(x, Y, ) =& = t2(x, Y, ) tl(x, x, 3) =2 ; tz(x, x, 3) =z ;
tl(x, z, g) = tg(x, z, 2) .

In [4, Theorem 2.6], the author showed that an #n-permutable variety is
congruence-distributive if and only if it is #n-distributive. Important
for our aim is Theorem 1 of Padmanabhan and Quackenbush {27], which states
that a finitely based n-distributive variety is #n-based. Combining the
above results and notation with Theorem 1.4, we can now give the following
result whose proof amounts to checking that the given polynomials satisfy
the identities that ensure 3-permutability and 3-distributivity. It
should be noted that it is the identity (Cn) which ensures the non-

trivial identities r(x, x, z) = s(x, 2, 2) and

tl(x, z, 3) =t (x, 3, 3)

2

THEOREM 2.1. The variety <, and so each of its subvarieties and,
in particular, the variety E is 3-permutable, 3-distributive and
3-based.

The polynomials which ensure 3-permutability are

r(z, y, 2) = (z(y2)")(xy)” and slz, y, 2) = r(z, y, ) = (2(y2)") ()" .
The poZynomiaZs which ensure 3-distributivity are

ty(es ys ) = (o) (2))") (g2) (y2))"

tylx, g 2) = (2 ((y2) (y2))") () (2))" .
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We now turn to finite BCK-algebras. Because of (viiZ) of Lemma 1.1,
we must have, for any ordered pair (a, b) of elements in a finite BCK-

n(a,b) _ abn(a,b)+1 )

Put #n = max{n(a, b) : (a, b) € 4 x A} . Then A satisfies the identity
(En) . This has also been observed by |séki [13]. It follows that a

algebra 4 , an integer n(a, b) = 1 such that ab

finite BCK-algebra generates a variety (and not just a quasivariety) of

BCK-algebras, which is a subvariety of a suitable variety gn , Or En

Due to Theorem 2.1, this variety is congruence-distributive and even
n-distributive. Then Baker's Theorem ensures that the variety is finitely
based; for a proof of Baker's Theorem, and references to other proofs, we

refer to Burris [1]. We thus arrive at

THEOREM 2.2. Any finite BCK-algebra generates a variety of BCK-

algebras, which is 3-permutable, 3-distributive and 3-based.

In connection with Theorems 2.1 and 2.2, we should mention that no
non-trivial vartety of BCK-algebras is either permutable or
2-distributive. The reason for this is as follows. Firstly, any non-
trivial BCK-algebra must contain the 2-element BCK-algebra
{o, a : 0a=aa =00=0, ad = a} . The variety generated by this
2-element algebra is the variety of so-called implicative BCK-algebras; it

can be regarded as the subvariety of gn (or gn ) of all algebras which

satisfy the additional identity x(yx) = x . Its members are simply
subalgebras of Boolean algebras (B; A, v, ', 0, 1) with respect to the
derived operation ab = a A b’ ; for a proof and a history see [2]. And,
in effect, Mitschke [Z0] showed that this variety is neither permutable

nor 2-distributive; see also [§, Theorems 3.14, 3.15].
We now turn to another congruence-property of the variety En . The

following results generalize some of those in [4]; their importance rests

in their wide range of applicability.
An ideal of a BCK-algebra A4 1is a subset K of A such that
(i) 0 € X and
(ii) a € K whenever ab, b € X .

The ideals of A form a complete lattice J(A) . Because of Iséki and
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Tanaka [14, Theorem 2] the ideal (al, cees at) of A generated by

a, is the set of all d € A such that

Qys s Gy

((--- ((a))py) --)by )by =0
for suitable b, by, ..., by € {al, vy at} . When A is within E
we can give a much better description of this ideal.

a, €4 . Then

LEMMA 2.3. ILet A € E, K € J(A) and a, Ars aees Oy

the supremum K v<{a) in J(4) is {b €4 : bd"

(al, cees at) = {b €A : [... [[bai]aé] ...]az = 0} .

Proof. Because of (Zv) in Proposition 1.2, it is easy to check that

€ K} . Consequently

{b €A : bd ¢ K} is an ideal. Of course, this ideal is within any ideal
which contains both a and X , and so it is the supremum in the ideal-

lattice. The second assertion follows from the first via induction.

Any ideal K € J(A) gives rise to a congruence O(K) on A , defined
by a = b(O(K)) if and only if ab, ba € K . Moreover, the quotient
algebra is a BCK-algebra; see [!4, Theorem 2]. On the other hand, when
® € Con(4) , ker(®) ={a €4 :a =0(®)} is an ideal, but the guotient
algebra may not be a BCK-algebra. When the quotient algebra is a BCK-
algebra, the validity of (1.6) in the quotient ensures that a = b(®)

{(a, b € 4) if and only if ab, ba € ker(®) . Of course, this hypothesis
is ensured when A 1is within a variety of BCK-algebras. Hence, if a BCK-
algebra A is within a variety of BCK-algebras, the maps X > O(X) and
® + ker(®$) are mutually inverse lattice-isomorphisms between the ideal-
lattice J(A) and the congruence-lattice Con(4) . It is Theorem 1.4
which makes this applicable to algebras satisfying (En)

THEOREM 2.4. Let A € En , a,b,e,d€A, and O(a, b) denote

the smallest congruence identifying a and b . Then c = d(0(a, b)) if
and only if

((ed)(ab)™) (ba)™

0 = ((de)(ab)™) (ba)™ .

Proof. Because of our preceding remarks, e = d(O(a, b)) if and only

if ed, de € {ab, ba’ . Hence Lemma 2.3 yields the result.
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Following K&hler and Pigozzi [17], a variety V¥ has strongly
equationally definable principal congruences if there exists a set

{[pi, qi) : 1 € I} of pairs of quaternary polynomials such that, for all

A€V and all a, b,c,d €4, c = d(@(a, b)) if and only if
pi(a, b, e, d) = qi(a, b, e, d) for each % € I . Thus Theorem 2.4 says

that the variety En has strongly equalionally definable principal

congruences. As these authors mention, strongly equaltionally definable
principal congruences implies the congruence extension property due to a
well known result of Day [5]. A class H of algebras has congruence
extension property if each congruence on a subalgebra of an algebra A € H
is the restriction of a congruence on A ; see Fried [8] for some recent

results on congruence extension properties.

The main result of KShler and Pigozzi [17] states that a variety has
strongly equaltionally definable principal congruences if and only if the
compact congruences on each algebra in the variety form a (dual) relatively
pseudocomplemented upper semilattice, and from this the congruence-
distributivity of the variety can be inferred. 1In connection with this,
recall that an upper semilattice (S; v) 1is (dual) relatively pseudo-
complemented if, for each a, b € S , the subset {c €S : a <b v e}l has
a (necessarily unique) smallest element, which is denoted by ab . Here
there is an important link with BCK-algebras. For if (S; v) is such a
semilattice and 0 = aa for any a € S , then (S; 0) , with respect to

the above product ab , is an E_-BCK-algebra - a detailed analysis can be

1
found in the author's paper [4].

Thus, there are entirely different reasons for the congruence-

distributivity of En . We will not state the obvious consequence for En

of KShler and Pigozzi's Theorem. Instead, we give a related ideal-
theoretic result which extends part of Theorem 1.3 in [4]; it is, in fact,

a direct consequence of Lemma 2.3, above.

THEOREM 2.5. Let A € En and H ={a .y a)

1’ t °

K (bl, cens br) be two finitely generated ideals of A4 . For

=1, ..., t, let d. = [ [aib’lz) ...]b’; . Then the (dual) relative

pseudocomplement, HK of H and K in the upper semilattice of finitely
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generated ideals is the ideal (dl, e dt) .

3. Commutative BCK-algebras

A BCK-algebra (4; 0) is called bounded if the underlying partially
ordered set (4; <) has a largest element, which is denoted by 1 . 1In

other words, there is an element 1 € 4 such that
(B) xl =0,

for all x € A . When dealing with bounded BCK-algebras, we shall consider
then as algebras (4; 0, 1) of type (2, 0, 0) ; that is, 1 becomes a
nullary operation and (B) becomes an identity satisfied by the bounded

algebra.

A commutative BCK-algebra, or Tanaka algebra, is a BCK-algebra which

satisfies the identity
(T) z(zy) = y(yz) .

When the derived operation x Ay = x{xy) 1is introduced, a commutative
BCK-algebra {4; 0) has, as a reduct, the lower semilattice (4; A) and
the partial order of (1.1) is consistent with the semilattice-order; that
is, for any a, b € A, a =<b when and only vhen a =a A b . When

(4; 0, 1) is a bounded commutative BCK-algebra, the algebra

(4; A, v, ~, 0, 1) is a bounded lattice with an involution, wherein the
supremum is & V y = ~{~x A ~y) and the involution is ~« = lx ; this is
a fundamental result of |séki and Tanaka [15, Theorem 6]. Actually this
lattice is distributive and x A~x =y V~y is an identity; see Traczyk
[26] and [3, Theorems 3.9, 3.111.

The class T of all commutative BCK-algebras is a variety;
identities (%), (iZ) and (i7%) of Theorem 1.4k, together with (T), provide

an equational base. In [3] it was shown that this variety is 3-permutable

and 3-distributive. On the other hand, the variety 2} of bounded
commutative BCK-algebras is permutable; p(x, y, 2) = xz{yz) v 2(yx) is a

suitable (2/3)-minority polynomial; ef. [3, Lemma 1.6].
In the presence of commutativity, we can add to Proposition 1.2.
PROPOSITION 3.1. A commutative BCK-algebra satisfies (En) if and

only if it satisfies
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(1) z= A (y") =0.
A bounded commutative BCK-algebra satisfies (En) if and only if it
satisfies any one of the following identities:

.. n+
(i1) 1270 = 1z 1 B

(iii) = A (%) =0,

(iv) z(1&") == .

Proof. It is easy to see that in any commutative BCK-algebra,

x Ay =0 if and only if x = xy , or alternatively y = yx . Hence, (7)
is equivalent to yxn = (yxn]x ; that is, (En) . For the same reason,
(i1), (i11), and (iv) are equivalent.

Of course, (iZ) 1is a specialization of (Enj , and so it remains to
prove that (4%1) implies (En)

Because of (B) and (T), =z = 1(lx) . Hence, (iZ) and Lemma 1.1 (v)
imply

o’ = (1)Y= (1) () = (lyn+l)(1x) = (1(lx))yn+l =/t

COROLLARY 3.2. A subdirectly commutative algebra in E, is simple.

Proof. Suppose B 1is such an algebra and a is a non-zerc element
of B. Let b be any element of B . Then a A (ban) =0 . As ideals

are herditary, {0} =<(a) n (bd™) . Due to the correspondence between

ideal and congruences and the fact that B 1is subdirectly irreducible,

(Y = {0} . Hence b €(a) . Thus B has only two ideals and is, thus,

simple.

All of the hypotheses of the above corollary are necessary. Indeed,

let us firstly consider the variety E, of so-called positive implicative

BCK-algebra; it is the class of implicational models of Henkin [(10]. As
Iséki and Tanaka observed in (14, Example 7, p. 356}, any partially ordered
set (A; =, 0) with a smallest element O can be converted into a BCK-

algebra by defining ab =0 when a=<b and ab =a when a $£b . The
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resulting algebra is positive implicative. Moreover, it is easy to see
that the ideals of this algebra are precisely hereditary subsets of the
original poset. Hence we get a subdirectly irreducible algebra which is
not simple when the poset has at least three elements and a unique atom.
On the other hand, subdirectly irreducible commutative BCK-algebras, which

are not simple, are hard to come by. We now describe an example.

Let A be a chain ao < al < ... < an < ... of order type w , 4
be its dual ... Eg < ... < Ei < Eb , and Am be the ordinal sum 4 @4 .
The BCK-multiplication is defined on Aw by:
@y = 4@ (n-m,0) ?
max
anam =0 = ao ,
aa =a ,
nom max(m-n,o)
%% = Fnam

The resulting algebra turns out to be in g} and as a z}-algebra it is
n - —
generated by al 3 a, = l[lalJ » a, = lan , where 1 = ao . The algebra
is subdirectly irreducible and not simple; its non-trivial smallest ideal
i ={q ) = : .
is 4 a, {an n € w}
In this connection, let An be the I-subalgebra whose underlying

poset is the chain a, < ... < an of length n 21 . We also let Ai

denote the associated z}—algebra. These algebras are important in the

study of the varieties gn . Indeed, using part (7ZZ) of Proposition 3.1,
it is easy to see that Am € gn if and only if m <n , for any
m,nz11 . As gm E—E—n whenever m = n , the varieties ='E:n , E nT

1 . . c e s .
and gﬂ N T each form an increasing infinite chain.

Before continuing, we will tidy up a connection between chains and
subdirectly irreducible T-algebras. At the end of the paper [3], we

showed a theory of prime ideals could be developed for commutative
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BCK-algebras. The relevant part for us here is as follows:

An ideal P of a commutative BCK-algebra A 1is called prime if
P#A and either a € P or b € P, whenever a A b € P . Then, when A4
is not trivial, N{P : P is a prime ideal}l = {0} . Hence, with the
notation of Section 2, A becomes a subdirect product of the quotient

algebras A/0(P) . We now easily obtain:

THEOREM 3.3. ILet A be a commutative BCK-algebra which satisfies
the identity

(L) (xy) A (yz) =0 .

Then an ideal P # 4 1is prime if and only if its associated quotient is a

chain.

Hence, a commutative BCK-algebra satisfies (L) if and only i1f it is

isomorphic to a subdirect product of totally ordered algebras.

As a matter of fact there are simple T-algebras which are not chains.
Let I be an index set with at least two elements and A4 be the tree

{0, a, a; : 0 <a<a, aiHaj for any 7 # j, ©, § € I} . Then Seto [24]

showed that A can be converted into a T-algebra by defining the products

aiaj =a when % #J and the others in the obvious manner. The resulting

algebra is simple and in EQ . Consequently, the variety EQ nT is not

residually small; that is, it does not possess a set of subdirectly
irreducible algebras. For any #n = 2 , the algebras of Example 5 in [séki
and Tanaka [14] provide another class, as opposed to set, of simple

algebras, which are trees but not chains, in the variety §n+l nNT .

In [18] and [19], Komori considered a variety of groupoids which turn
out to be the groupoid-duals (opposites) and order-duals of commutative
BCK-algebras satisfying (L). His Theorem 2.10 in [78] thus states that the
subdirectly irreducible BCK-algebras satisfying (T) and (L) are chains;
the method in our Theorem 3.3 is quite different. The effect of the dual
of equation (7} in Proposition 3.1 is considered in [79]. 1In fact, Theorem
3.13 of [79] can be interpreted as the following non-trivial important

result.

LEMMA 3.4 (Komori [19)). A commutative totally ordered gn—algebra
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18 isomorphic to the algebra Am for some m=n .

Combining the results of our results, we obtain
THEOREM 3.5. The subvariety of E, determined by the identities (T)

and (L) is the variety of BCK-algebras generated by A, -

We now turn to bounded algebras. Traczyk [Z26] has already proved that
the subdirectly algebras in g} are totally ordered. In fact in the proof

of his Theorem 3.3, he shows that a 2}-a1gebra satisfies (L). The
demonstration of this identity is by no means trivial; it is intimately

related with his method of establishing the distributivity of the under-

lying lattice of a gl—algebra. For the purposes of emphasis, we state the

result formally as

LEMMA 3.6 (Traczyk [26]). A bounded commutative BCK-algebra
satisfies the identity (L).

We are now in a position to give an alternative proof of the central
result of Romanowska and Traczyk [23]. Their proof is quite computational.

Our proof is more in line with Universal Algebra.

THEOREM 3.7 (Romanowska and Traczyk [23]). A finite bounded
commutative BCK-algebra is isomorphic to the direct product of simple
totally ordered BCK-algebras. Consequently, its comgruence-lattice 18 a

Boolean lattice.
Proof. Because of the reasoning which preceded Theorem 2.2, we can
consider the finite algebra to be in the variety En n g} for some

suitable n =2 1 . Due to Corollary 3.2, Theorem 3.3 and Lemma 3.6, the
algebra is isomorphic to a subdirect product of finitely many simple

chains. But as we remarked prior to Proposition 3.1, the variety I} is

permutable. Hence, the algebra becomes isomorphic to the direct product
of some of these simple algebras; this is a well known result of Universal
Algebra; see for example Foster and Pixley [6, Theorem 2.4]. Finally,

either of the varieties En and T is congruence-distributive and so the’
congruence-lattice of a direct product of finitely many algebras in

1 . . . .
En N T is naturally isomorphic to the direct product of the congruence-
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distributive and so the congruence-lattice of a direct product of finitely
many algebras in En n 2} is naturally isomorphic to the direct product of

the congruence-lattices of the factors; cf. Fraser and Horn [7]. We now

have the second assertion of the theorem.
In close relation to Komori's Lemma 3.4, above, Traczyk [26] showed
that the algebras Ai are the only finite subdirectly irreducibles in

1

I3

We are going to conclude this paper with a closer look at these
algebras. We assume that the reader is familiar with Primal Algebra
Theory, in particular with the notions of quasiprimal and semiprimal
algebras. A perspective can be obtained from Quackenbush's survey [27].
Let us recall that the ternary discriminator on a set A 1is a function

3

t : 4 A such that t(a, b, e) =a if a# b and t(a, b, e¢) = ¢ if
a

=b
THEOREM 3.8. For each divisor r of n , Ai possesses a unique

2}-subalgebra and this is isomorphic to Ai/r ;5 these are the only

1

g}—subalgebras of Ai . Consequently, the variety E nT 18 generated

by Ai and the algebras Ai , where 1 <s <n and s is a non-divisor
of n .
Ai is a semiprimal algebra. Consider the following 2}-polynomials:

)n-l )n-l

= x(lx

en(x) = x(~x s dlx, y) = (xy) v (yz) ,

tn(x, ¥, 2) = (z A mn(ﬂd(x, y))) v (z A en(ﬂd(x, ¥)))

1 . . . .
on An R en(a.) =0 Zf 7 <n and en(ai) =1 2f 7 =n . Hence

7
tn(x, Yy, 2) represents the ternary discriminator on Ai .
Proof. When r divides #»n , Al is isomorphic to the subalgebra

n/r
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{akr : 0 <k =n/r} . On the other hand, let B be any subalgebra and a

be its atom. Suppose aS is another non-zero element of B . Then r

r

must divide s . Otherwise, 8§ =qr + t for some O < £t <r , and so

= q .
0 < at < ar and at € B, as at asar . The nature of the variety

n g} then follows from Theorem 3.3, Lemma 3.4 and Lemma 3.6.

&bﬂ

For any 7% =0, ..., n ,

2
. > a'( J =a 5 >
max(2z—n,0) (AN max(3$ 2n,0)

and, by induction, it follows that en(ai) =a But

oy 15— (2=1)7,0)

ni +nm-n° <0 if and only if n(Z+1) = n° . Hence e, behaves as

stated on Ai . On any bounded commutative BCK-algebra, d(x, y) =0 if

and only if x =Y . It now follows that tn acts as the ternary

discriminator. Hence Ai is quasiprimal and even semiprimal because the
only automorphisms between its subalgebras are identity-maps. Of course,
we could have deduced the quasiprimality of Ai from the simplicity of its

subalgebras and the congruence-distributivity and permutability of g}
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