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RATIONAL POINTS ON SHIMURA CURVES AND THE
MANIN OBSTRUCTION

KEISUKE ARAI

Abstract. In a previous article, we proved that Shimura curves have no points

rational over number fields under a certain assumption. In this article, we give

another criterion of the nonexistence of rational points on Shimura curves and

obtain new counterexamples to the Hasse principle for Shimura curves. We also

prove that such counterexamples obtained from the above results are accounted

for by the Manin obstruction.

§1. Introduction

Let B be an indefinite quaternion division algebra over Q, and d(B) its

discriminant. Choose and fix a maximal order O of B, which is unique up

to conjugation. A QM-abelian surface by O over a field K is a pair (A, i),

where A is a two-dimensional abelian variety over K and i :O ↪→ EndK(A)

is an injective ring homomorphism sending 1 to id (cf. [4, p. 591]). Here,

EndK(A) is the ring of endomorphisms of A defined over K. We assume that

O acts on A from the left. Let MB be the Shimura curve over Q associated

to B, which parameterizes the isomorphism classes of QM-abelian surfaces

by O (cf. [7, p. 93]). Then MB is a proper smooth curve over Q. Note that

its isomorphism class over Q depends only on d(B).

We study rational points on MB. By [9, Theorem 0], we have MB(R) = ∅.
Let k be a number field. If k has a real place, then MB(k) = ∅. We have a

natural question: If k has no real place and if d(B) is large enough, does

MB(k) become small? In some cases, MB(k) is expected to become empty

when d(B) grows; in other cases, it might consist of only CM points (in

the sense of [6, Definition 5.5]). In this context, Jordan obtained a criterion

of the emptiness of MB(k) when k is imaginary quadratic and B ⊗Q k ∼=
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M2(k) (see [7, Theorems 6.3 and 6.6]). In the situation of [7, Theorem 6.3],

Skorobogatov proved that counterexamples to the Hasse principle for MB

is accounted for by the Manin obstruction in the sense of [10, Section 5.2]

(see [11, Theorem 3.1]). Rotger and de Vera-Piquero expanded these results

to the case whereB ⊗Q k 6∼= M2(k) by using projective Galois representations

(see [8, Theorem 1.1]). Note that a point of MB(k) is represented by a QM-

abelian surface by O over k if and only if B ⊗Q k ∼= M2(k) (see [7, Theorem

1.1]). So one cannot use the geometry over k to study rational points on MB

over k when B ⊗Q k 6∼= M2(k). The author gave a criterion of the emptiness

of MB(k) with no restriction on the degree [k : Q] in a form of expanding the

above results, without relevance to the Manin obstruction (see [2, Theorem

1.1]). In this article, we give another criterion of the emptiness of MB(k) and

obtain new counterexamples to the Hasse principle for MB. We also prove

that such counterexamples obtained from these results are accounted for by

the Manin obstruction. As for [7, Theorem 6.6], the author expanded the

result to the case where B ⊗Q k 6∼= M2(k) by imposing a certain congruent

condition on a prime divisor of d(B) (see [1]).

There is an attempt to produce a family of counterexamples to the Hasse

principle for Shimura curves. Skorobogatov–Yafaev and Clark obtained

some results in this direction (see [12] and [5, Theorems 1, 2 and 3], respec-

tively). The results of this article enable us to produce an explicit infinite

family of such counterexamples which are accounted for by the Manin

obstruction.

§2. Main results

To state the main results, we give several notations.

• k: a number field;

• k: an algebraic closure of k;

• Ok: the integer ring of k;

• Ak: the adèle ring of k;

• Clk: the ideal class group of k;

• h′k: the largest order of the elements in Clk;

• Ωk: the set of places of k;

• kv: the completion of k at v ∈ Ωk;

• Br(kv): the Brauer group of kv;

• Br(MB) =H2
ét(M

B,Gm): the Brauer group of MB;

• K1(k, B): the set of quadratic extensions K of k (contained in k) such

that B ⊗Q K ∼= M2(K);
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• K2(k, B): the set of quadratic extensions K of k (contained in k) such

that for any prime divisor p of d(B), any prime p of k above p is ramified

in K/k.

Note that K2(k, B) is contained in K1(k, B) (cf. Proof of Lemma 2.2).

For positive integers N and e, let

• C(N, e) := {βe + β
e ∈ Z | β, β ∈ C are the roots of T 2 + sT +N =

0 for some s ∈ Z, s2 6 4N};
• D(N, e) := {a, a±N e/2, a± 2N e/2, a2 − 3N e ∈ R | a ∈ C(N, e)}.

If e is even, then D(N, e)⊆ Z. For a subset D ⊆ Z, let

• P(D): the set of prime divisors of some of the nonzero integers in D.

For a later use, we give:

Lemma 2.1. If e is even, then P(D(N, e)) contains 2, 3 and every prime

divisor of N .

Proof. Assume that e is even. Let β, β be the roots of T 2 +N = 0.

Then β2 = β
2

=−N and βe = β
e

= (−N)e/2. Hence C(N, e) and D(N, e)

contain βe + β
e

= 2(−N)e/2. Therefore P(D(N, e)) contains 2 and every

prime divisor of N .

In the following, we prove 3 ∈ P(D(N, e)).

[Case 3 |N ]. It has already been proved.

[Case 3 -N ]. Let a := 2(−N)e/2. Then a ∈ C(N, e) and a 6≡ 0 mod 3.

(i) Case a≡ 1 mod 3. First, assume N e/2 ≡ 1 mod 3. Then a−N e/2, a+

2N e/2 ≡ 0 mod 3. Since D(N, e) contains two distinct elements a−
N e/2, a+ 2N e/2, we have 3 ∈ P(D(N, e)). Next, assume N e/2 ≡ 2 mod 3.

Then a+N e/2, a− 2N e/2 ≡ 0 mod 3. Since a+N e/2, a− 2N e/2 ∈ D(N, e),

we have 3 ∈ P(D(N, e)).

(ii) Case a≡ 2 mod 3. If N e/2 ≡ 1 mod 3, then a+N e/2, a− 2N e/2 ≡
0 mod 3 and a+N e/2, a− 2N e/2 ∈ D(N, e). If N e/2 ≡ 2 mod 3, then a−
N e/2, a+ 2N e/2 ≡ 0 mod 3 and a−N e/2, a+ 2N e/2 ∈ D(N, e).

For a prime number q and a prime q of k above q, let

• kq: the completion of k at q;

• κ(q): the residue field of q;

• Nq: the cardinality of κ(q);
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• eq: the ramification index of q in k/Q;

• fq: the degree of the extension κ(q)/Fq;
• B(q): the set of the isomorphism classes of indefinite quaternion division

algebras B over Q such that
B ⊗Q Q(

√
−q) 6∼= M2(Q(

√
−q)) if q 6= 2,

B ⊗Q Q(
√
−1) 6∼= M2(Q(

√
−1)) and

B ⊗Q Q(
√
−2) 6∼= M2(Q(

√
−2)) if q = 2;

• S(k, q): the set of the isomorphism classes of indefinite quaternion division

algebras B over Q such that every prime divisor of d(B) belongs to{
P(D(Nq, eq)) if B ⊗Q k ∼= M2(k) and eq is even,

P(D(Nq, 2eq)) if B ⊗Q k 6∼= M2(k);

• K(k, q): the set of quadratic extensions K of k (contained in k) such that

q is ramified in K/k.

Note that S(k, q) is a finite set, while K2(k, B) ∩ K(k, q) is an infinite set

(cf. [3, Remark 4.4]). We have the following criterion of B ∈ B(q).

Lemma 2.2.

(1) Assume q 6= 2. Then B ∈ B(q) if and only if there is a prime divisor of

d(B) which splits in Q(
√
−q).

(2) We have B ∈ B(2) if and only if there are prime divisors p1, p2 of d(B)

satisfying p1 ≡ 1 mod 4 and p2 ≡ 1, 3 mod 8. Here, the case where p1 =

p2 is allowed.

Proof. By the Hasse principle, we have B ⊗Q k ∼= M2(k) if and only if

B ⊗Q kv ∼= M2(kv) for any v ∈ Ωk (see [13, Propriété I in p. 74]). Let l be

a prime number and Dl the quaternion division algebra over Ql. If L is a

quadratic extension of Ql, then Dl ⊗Ql
L∼= M2(L) (see [13, Théorème 1.3

in Chapitre II]). Therefore (1) follows.

We see that l splits in Q(
√
−1) (resp. Q(

√
−2)) if and only if l ≡ 1 mod 4

(resp. l ≡ 1, 3 mod 8). Then (2) follows.

Note that B(q) is an infinite set for any q. Since MB is proper over Q,

we have MB(Ak) =
∏
v∈Ωk

MB(kv). Define a pairing

( , ) : Br(MB)×MB(Ak)−→Q/Z
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by (c, {xv}v∈Ωk
) =

∑
v∈Ωk

invv(x
∗
vc). Here, invv : Br(kv)−→Q/Z is the local

invariant at v, and x∗v : Br(MB)−→ Br(kv) is the map associated to xv :

Spec(kv)−→MB. In this sum, we have invv(x
∗
vc) = 0 for all but finitely

many v ∈ Ωk. Let MB(Ak)Br be the right kernel of this pairing. Then

MB(k)⊆MB(Ak)Br ⊆MB(Ak) (see [10, Section 5.2]). The main results of

this article are:

Theorem 2.3. Assume that k/Q has even degree. Let q be a prime

number such that

• there is a unique prime q of k above q;

• fq is odd (and so eq is even);

• B ∈ B(q) \ S(k, q).

Then MB(k) =MB(Ak)Br = ∅.

Theorem 2.4. Let p, q be distinct prime numbers, and let q be a prime

of k above q. Assume that

• fp is odd for any prime p of k above p;

• fq is odd;

• B ∈ B(q);

• p | d(B);

• p 6∈ P(D(Nq, 2h
′
k)).

Then MB(k) =MB(Ak)Br = ∅.

Remark 2.5.

(1) If k/Q has odd degree, then k has a real place, and so MB(k) =

MB(Ak)Br =MB(Ak) = ∅.
(2) In [2], we proved only MB(k) = ∅ in the setting of Theorem 2.3.

(3) Theorem 2.3 for imaginary quadratic fields was proved in [7, Theorem

6.3], [8, Theorem 1.1], [11, Theorem 3.1].

From these theorems, we obtain the following counterexamples to the

Hasse principle for Shimura curves, which are accounted for by the Manin

obstruction. Especially, we obtain an infinite family of such counterexam-

ples.
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Proposition 2.6.

(1) Let n ∈ Z be an odd integer. Assume that n is square free and that

(d(B), k) = (39,Q(
√

2n,
√
−13)). Then B ⊗Q k ∼= M2(k), MB(k) =

MB(Ak)Br = ∅ and MB(Ak) 6= ∅.
(2) Assume (d(B), k) = (39,Q(

√
3,
√
−13)) or (39,Q(

√
17,
√
−13)). Then

B ⊗Q k ∼= M2(k), MB(k) =MB(Ak)Br = ∅ and MB(Ak) 6= ∅.
(3) Let L be the subfield of Q(ζ9) satisfying [L : Q] = 3, where ζ9 is

a primitive 9th root of unity. Assume (d(B), k) = (62, L(
√
−39)) or

(86, L(
√
−15)). Then B ⊗Q k 6∼= M2(k), MB(k) =MB(Ak)Br = ∅ and

MB(Ak) 6= ∅.
(4) Assume (d(B), k) = (122,Q(

√
−39,

√
−183)). Then B ⊗Q k 6∼= M2(k),

MB(k) =MB(Ak)Br = ∅ and MB(Ak) 6= ∅.

In Sections 3–4, we review the classification of characters associated to

QM-abelian surfaces, which plays a key role in the proof. In Section 5

(resp. Section 6), we prove Theorem 2.4 (resp. Theorem 2.3). In Section 7,

we deduce Proposition 2.6(1)(3) (resp. Proposition 2.6(2)(4)) from Theo-

rem 2.3 (resp. Theorem 2.4). Note that we cannot apply Theorem 2.3 to

k = Q(
√

3,
√
−13), Q(

√
17,
√
−13) or Q(

√
−39,

√
−183), because no prime

number q is totally ramified in these fields.

§3. Canonical isogeny characters

We review canonical isogeny characters associated to QM-abelian sur-

faces, which were introduced in [7, Section 4]. Let K be a field of

characteristic 0 possessing an algebraic closure K, (A, i) a QM-abelian

surface by O over K, and p a prime divisor of d(B). The p-torsion subgroup

A[p](K) of A has exactly one nonzero proper left O-submodule, which we

shall denote by Cp. Then Cp has order p2, and is called the canonical torsion

subgroup of (A, i) of reduced order p; it is stable under the action of the

Galois group GK = Gal(K/K). Let PO ⊆O be the unique left ideal of

reduced norm pZ. In fact, PO is a two-sided ideal of O. Then Cp is free

of rank 1 over O/PO. Fix an isomorphism O/PO ∼= Fp2 . The action of GK

on Cp yields a character

%p = %(A,i,p) : GK −→AutO(Cp)∼= F×
p2
,

where AutO(Cp) is the group of O-linear automorphisms of Cp. The

character %p depends on the choice of the isomorphism O/PO ∼= Fp2 , but
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the pair {%p, (%p)p} does not depend on this choice. Either of the characters

%p, (%p)
p is called a canonical isogeny character at p.

Let Ẑ be the profinite completion of Z, and let

Dp := {a ∈ O ⊗Z Ẑ | a≡ 1 mod PO}.

Let MB
p be the Shimura curve over Q associated to Dp. Then it parameter-

izes the isomorphism classes of triples (A, i, c), where (A, i) is a QM-abelian

surface by O and c is a generator of its canonical torsion subgroup Cp as an

O-module. Note that the curve MB
p over Q is not geometrically connected

if p 6= 2 (see [11, p. 780] for details). The map (A, i, c) 7−→ (A, i) defines a

covering MB
p −→MB (over Q) whose automorphism group Aut(MB

p /M
B)

is isomorphic to

F×
p2
/{±1} ∼=

Z/
p2 − 1

2
Z if p 6= 2,

Z/3Z if p= 2.

If p> 5, then F×
p2
/{±1} has a unique subgroup C(6) which is isomorphic to

Z/6Z. The quotient of MB
p by C(6) defines an unramified subcovering

fBp : Y B
p −→MB,

which is an MB-torsor under the constant group scheme (F×
p2

)12 ∼= Z/p
2−1
12 Z

(see [11, Corollary 1.2]). Let x ∈MB(K). Then the action of GK on the

fiber of fBp at x yields a character

φx : GK −→ (F×
p2

)12.

Lemma 3.1. [11, Lemma 2.1] Assume p> 5. If x is represented by a

QM-abelian surface (A, i) by O over K, then %12
(A,i,p) = φx.

§4. Classification of characters

We review the classification of characters associated to QM-abelian

surfaces over local fields of characteristic 0. Let m be a prime number, M

a finite extension of Qm, and M (resp. κ(M)) the maximal ideal (resp. the

residue field) of M . For a QM-abelian surface (A, i) by O over M , fix a

canonical isogeny character %p = %(A,i,p) : GM −→ F×
p2

, where p is a prime

divisor of d(B). Let Gab
M be the Galois group of the maximal abelian
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extension Mab/M . Then we have an induced character %ab
p : Gab

M −→ F×
p2

.

Let ωM :O×M −→Gab
M be the Artin map, and let

r(A,i,p) := %ab
p ◦ ωM :O×M −→ F×

p2
.

In this local setting, we have:

Proposition 4.1. [7, Proposition 4.7(2)] If m 6= p, then r12
(A,i,p) = 1.

Let eM (resp. fM ) be the ramification index of M/Qm (resp. the degree of

the residue field extension κ(M)/Fm). Let NM :=mfM , tM := gcd(2, fM ) ∈
{1, 2}.

Proposition 4.2. [7, Proposition 4.8] Assume m= p. Then there is a

unique element c ∈ Z/(ptM − 1)Z satisfying

r(A,i,p)(u) = Normκ(M)/F
ptM

(ũ)−c

for any u ∈ O×M , where ũ ∈ κ(M)× is the reduction of u modulo M.

Furthermore, we have

2c

tM
≡ eM mod (p− 1).

Let l be a prime number, TlA the l-adic Tate module of A, and AutO(TlA)

the group of Zl-linear automorphisms of TlA commuting with the action of

O. Let Ol :=O ⊗Z Zl, Bl :=B ⊗Q Ql, and fix an isomorphism AutO(TlA)∼=
O×l . Let

Rl : GM −→AutO(TlA)∼=O×l ⊆B
×
l

be the representation determined by the action of GM on TlA. Let TrdBl/Ql

(resp. NrdBl/Ql
) be the reduced trace (resp. the reduced norm) on Bl, and

Fr ∈GM a Frobenius element. For each positive integer e, let al(Fre) :=

TrdBl/Ql
(Rl(Fre)). If l 6=m, then al(Fre) ∈ Z and it does not depend on l.

We shall denote it by a(Fre). Then

NrdBl/Ql
(T −Rl(Fre)) = T 2 − a(Fre)T + (NM )e ∈ Z[T ]

if l 6=m.

Proposition 4.3. [7, Proposition 5.3]

(1) a(Fre) ∈ C(NM , e) for any e> 1.

(2) If m 6= p, then

a(Fre)≡ %p(Fre) + (NM )e%p(Fre)−1 mod p

for any e> 1.
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§5. Proof of Theorem 2.4

Suppose that the assumptions of Theorem 2.4 hold. Since p 6∈
P(D(Nq, 2h

′
k)), we have p> 5 and p 6= q (see Lemma 2.1). If MB(Ak) = ∅,

then MB(k) =MB(Ak)Br = ∅. So, in the following, assume MB(Ak) 6= ∅.
Then for any v ∈ Ωk, there is a point xv ∈MB(kv). Note that k has no real

place in this case. We have a family of characters

{φxv : Gkv −→ (F×
p2

)12}v∈Ωk

associated to the covering fBp : Y B
p −→MB.

Assume that there is a global character Φ : Gk −→ (F×
p2

)12 such that

Φ|Gkv
= φxv for any v ∈ Ωk. If B ⊗Q k 6∼= M2(k), fix K0 ∈ K2(k, B) ∩ K(k, q).

Let

K :=

{
k if B ⊗Q k ∼= M2(k),

K0 if B ⊗Q k 6∼= M2(k).

Then B ⊗Q K ∼= M2(K) because K0 ∈ K2(k, B)⊆K1(k, B). Let M be a

prime ofK, m the prime of k below M, and v(m) the place of k corresponding

to m. Since B ⊗Q KM
∼= M2(KM), the point xv(m) is represented by a QM-

abelian surface (AM, iM) by O over KM (see [7, Theorem 1.1]). Then

Φ|GKM
= φxv(m)

|GKM
= %12

(AM,iM,p)
by Lemma 3.1. Since K0 ∈ K(k, q), there

is a unique prime Q of K above q. We also have

fQ = fq, NQ = Nq and qOK =

{
q = Q if B ⊗Q k ∼= M2(k),

Q2 if B ⊗Q k 6∼= M2(k).

Let FrQ ∈GKQ
(⊆GK) be a Frobenius element. Fix an element α ∈ Ok

satisfying
qh

′
k = αOk.

We see that the character Φ|GK
is unramified away from p. In fact,

its restriction to GKM
is %12

(AM,iM,p)
, which is unramified if M - p (see

Proposition 4.1). Then Φ|GK
is identified with a character IK(p)−→ (F×

p2
)12,

where IK(p) is the group of fractional ideals of K prime to p.

For M = Q, we claim %12
(AQ,iQ,p)

(Fr
2h′k
Q )≡Normk/Q(α)12 mod p.

[Case B ⊗Q k 6∼= M2(k)]. In this case, [K : k] = 2 and qOK = Q2. Then

%12
(AQ,iQ,p)

(Fr
2h′k
Q ) = Φ|GKQ

(Fr
2h′k
Q ) = Φ|GK

(Fr
2h′k
Q ) = Φ|GK

(Q2h′k)

= Φ|GK
(qh

′
kOK) = Φ|GK

(αOK) = Φ|GK
((1)∞, (1)p, (α)∞,p)
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= Φ|GK
((α−1)∞, (α

−1)p, (1)∞,p) = Φ|GK
((α−1)p, (1)p)

=
∏
P|p

r12
(AP,iP,p)

(α−1).

Here, ∞ is the infinite place of Q, ((1)∞, (1)p, (α)∞,p) (resp. ((α−1)∞,

(α−1)p, (1)∞,p), resp. ((α−1)p, (1)p)) is the element of A×K where the

components above∞, p are 1 and the others α (resp. where the components

above ∞, p are α−1 and the others 1, resp. where the components above

p are α−1 and the others 1), and P runs through the primes of K above

p. Note that the components above ∞ have no contribution since K has

no real place. Since K0 ∈ K2(k, B), we have fP = fp where p is the prime

of k below P. By the assumption, fp is odd. Then tKP
= 1 for any P. By

Proposition 4.2, we have

r12
(AP,iP,p)

(α−1) = Normκ(P)/Fp
(α mod P)6eP ,

and so

%12
(AQ,iQ,p)

(Fr
2h′k
Q ) =

∏
P|p

Normκ(P)/Fp
(α mod P)6eP ≡NormK/Q(α)6

= Normk/Q(α)12 mod p.

[Case B ⊗Q k ∼= M2(k)]. In this case, K = k and Q = q. Then

%12
(AQ,iQ,p)

(Fr
2h′k
Q ) = Φ|GK

(Q2h′k) = Φ|GK
(α2OK) =

∏
P|p

r24
(AP,iP,p)

(α−1)

=
∏
P|p

Normκ(P)/Fp
(α mod P)12eP ≡NormK/Q(α)12

= Normk/Q(α)12 mod p,

as claimed. Here, P runs through the primes of K = k above p.

Since qh
′
k = αOk, we have N

h′k
q = |Normk/Q(α)| and N

12h′k
q = Normk/Q

(α)12. Then

%12
(AQ,iQ,p)

(Fr
2h′k
Q )≡N

12h′k
q = q12h′kfq mod p.

On the other hand, we have

a(Fr
2h′k
Q ) ≡ %(AQ,iQ,p)(Fr

2h′k
Q ) + N

2h′k
Q %(AQ,iQ,p)(Fr

2h′k
Q )−1

= %(AQ,iQ,p)(Fr
2h′k
Q ) + q2h′kfQ%(AQ,iQ,p)(Fr

2h′k
Q )−1 mod p
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by Proposition 4.3(2), where a(Fr
2h′k
Q ) is the integer associated to (AQ, iQ) as

in the last section. Let ε := q−h
′
kfQ%(AQ,iQ,p)(Fr

2h′k
Q ) ∈ F×

p2
. Recall that fQ =

fq. Then

ε12 = 1 and a(Fr
2h′k
Q )≡ (ε+ ε−1)qh

′
kfq mod p.

Therefore

a(Fr
2h′k
Q )≡ 0, ±qh′kfq , ±2qh

′
kfq mod p or a(Fr

2h′k
Q )2 ≡ 3q2h′kfq mod p.

By Proposition 4.3(1), we have a(Fr
2h′k
Q ) ∈ C(NQ, 2h

′
k) = C(qfq , 2h′k). Then

a(Fr
2h′k
Q ), a(Fr

2h′k
Q )± qh′kfq , a(Fr

2h′k
Q )± 2qh

′
kfq , a(Fr

2h′k
Q )2 − 3q2h′kfq

∈ D(qfq , 2h′k) =D(Nq, 2h
′
k).

Since p 6∈ P(D(Nq, 2h
′
k)), we have

(1) a(Fr
2h′k
Q ) = 0,±qh′kfq ,±2qh

′
kfq ; or

(2) a(Fr
2h′k
Q )2 = 3q2h′kfq .

[Case (1)]. In this case, q divides a(Fr
2h′k
Q ). Then by [2, Lemma 2.6], q

divides a(FrQ). We have fQ = fq, which is odd by the assumption. Then we

obtain B 6∈ B(q) (see [7, Theorem 2.1, Propositions 2.3 and 5.1(1)]). This is

a contradiction.

[Case (2)]. Since a(Fr
2h′k
Q ) ∈ Z, this case cannot happen.

Then we have proved that the family {φxv}v∈Ωk
does not come from a

global character Φ : Gk −→ (F×
p2

)12. This means that the subset MB(Ak)f
B
p

of MB(Ak) associated to fBp (see [10, Definition 5.3.1]) is empty. Then by

[10, Theorem 6.1.2], we conclude MB(Ak)Br = ∅.

§6. Proof of Theorem 2.3

Suppose that the assumptions of Theorem 2.3 hold. Assume MB(Ak) 6= ∅.
Then for any v ∈ Ωk, there is a point xv ∈MB(kv). Since B 6∈ S(k, q), there

is a prime divisor p of d(B) such that

p 6∈

{
P(D(Nq, eq)) if B ⊗Q k ∼= M2(k),

P(D(Nq, 2eq)) if B ⊗Q k 6∼= M2(k).
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Fix such p. Then p> 5, p 6= q and we have a family of characters

{φxv : Gkv −→ (F×
p2

)12}v∈Ωk

associated to fBp .

Assume that there is a global character Φ : Gk −→ (F×
p2

)12 such that

Φ|Gkv
= φxv for any v ∈ Ωk. If B ⊗Q k 6∼= M2(k), fix K0 ∈ K1(k, B) ∩ K(k, q).

Let K,M,m, v(m), (AM, iM) be the same as in the last section. Note that

[K : Q] is even since k/Q has even degree. Then Φ|GKM
= φxv(m)

|GKM
=

%12
(AM,iM,p)

. Let Q be the unique prime of K above q, and let FrQ ∈GKQ
(⊆

GK) be a Frobenius element. Note that Q is the unique prime of K above

q. Then qOK = QeQ and NeQ
Q = q[K:Q].

For M = Q, we prove %12
(AQ,iQ,p)

(FreQQ )≡ q6[K:Q] mod p. The character

Φ|GK
is unramified away from p, and it is identified with a character

IK(p)−→ (F×
p2

)12. Then

%12
(AQ,iQ,p)

(FreQQ ) = Φ|GKQ
(FreQQ ) = Φ|GK

(FreQQ ) = Φ|GK
(QeQ) = Φ|GK

(qOK)

= Φ|GK
((1)∞, (1)p, (q)

∞,p) = Φ|GK
((q−1)∞, (q

−1)p, (1)∞,p)

= Φ|GK
((q−1)p, (1)p) =

∏
P|p

r12
(AP,iP,p)

(q−1)≡
∏
P|p

q6ePfP = q6[K:Q] mod p.

Here, ((1)∞, (1)p, (q)
∞,p), ((q−1)∞, (q

−1)p, (1)∞,p), ((q−1)p, (1)p) ∈ A×K are

defined in the same way as in the last section, P runs through the primes of

K above p, and the congruence follows from Proposition 4.2 (or [2, Corollary

2.3]).

In the following, we repeat the argument in [2, Section 3] and deduce a

contradiction. We have

a(FreQQ ) ≡ %(AQ,iQ,p)(FreQQ ) + NeQ
Q %(AQ,iQ,p)(FreQQ )−1

= %(AQ,iQ,p)(FreQQ ) + q[K:Q]%(AQ,iQ,p)(FreQQ )−1 mod p

by Proposition 4.3(2). Let ε := q−[K:Q]/2%(AQ,iQ,p)(FreQQ ) ∈ F×
p2

. Then

ε12 = 1 and a(FreQQ )≡ (ε+ ε−1)q[K:Q]/2 mod p.

Therefore

a(FreQQ )≡ 0, ±q[K:Q]/2, ±2q[K:Q]/2 mod p or a(FreQQ )2 ≡ 3q[K:Q] mod p.
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By Proposition 4.3(1), we have a(FreQQ ) ∈ C(NQ, eQ). Moreover, we have

fQ = fq, NQ = Nq and eQ =

{
eq if B ⊗Q k ∼= M2(k),

2eq if B ⊗Q k 6∼= M2(k).

Then

a(FreQQ ), a(FreQQ )± q[K:Q]/2, a(FreQQ )± 2q[K:Q]/2, a(FreQQ )2 − 3q[K:Q]

∈ D(NQ, eQ) =D(Nq, eQ).

Since p 6∈ P(D(Nq, eQ)), we have

(1) a(FreQQ ) = 0,±q[K:Q]/2,±2q[K:Q]/2; or

(2) a(FreQQ )2 = 3q[K:Q].

[Case (1)]. In this case, q divides a(FreQQ ) and a(FrQ). Since fQ is odd, we

have B 6∈ B(q). This is a contradiction.

[Case (2)]. Since [K : Q] is even and a(FreQQ ) ∈ Z, this case cannot happen.

Then we have proved that the family {φxv}v∈Ωk
does not come from

Φ : Gk −→ (F×
p2

)12. Therefore MB(Ak)Br = ∅.

§7. Counterexamples to the Hasse principle

Jordan obtained the following counterexamples to the Hasse principle,

and Skorobogatov proved that it is accounted for by the Manin obstruction.

Proposition 7.1. ([7, Example 6.4] and [11, Section 4.1]) If (d(B), k)

= (39,Q(
√
−13)), then MB(k) =MB(Ak)Br = ∅ and MB(Ak) 6= ∅.

Especially, the existence of adelic points help us produce counterexamples

to the Hasse principle for d(B) = 39 and number fields containing Q(
√
−13).

In Lemma 7.2 below, we restrict our attention to the special case and study

the assumptions of Theorem 2.4.

For a prime number q 6= 2, let ( ·q ) ∈ {0, 1,−1} be the Legendre symbol.

For a nonzero integer N ∈ Z, let (N)′ be the square free part of N . Precisely,

if N = ab2 where a, b ∈ Z, a is square free and gcd(a, b) = 1, then (N)′ =

a. For a finite Galois extension k of Q and a prime number l, let el(k)

(resp. fl(k), resp. gl(k)) be the ramification index of l in k/Q (resp. the

degree of the residue field extension above l in k/Q, resp. the number of

primes of k above l).
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Lemma 7.2.

(1) Assume d(B) = 39. Then:

(i) B ⊗Q Q(
√
−13)∼= M2(Q(

√
−13)).

(ii) B ∈ B(q) if and only if q ≡ 2 mod 3 or q ≡ 1, 3, 4, 9, 10, 12 mod 13.

(2) Let l be a prime number, and assume (d(B), k) = (39,Q(
√
l,
√
−13)).

Let p, q be distinct prime numbers, and let q be a prime of k above q.

Then the conditions p | d(B) and p 6∈ P(D(Nq, 2h
′
k)) imply p= 13. In

this case, we have:

(i) fp is odd for any prime p of k above p if and only if l ≡
0, 1, 3, 4, 9, 10, 12 mod 13.

(ii) fq is odd if and only if
(a) q ≡ 1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, 49 mod 52,(

l

q

)
∈ {0, 1} and

(
(−13l)′

q

)
∈ {0, 1} when q 6= 2,

(b) l ≡ 1, 2, 3 mod 8 when q = 2.

Proof. (1) (i) The prime number 3 (resp. 13) is inert (resp. ramified) in

Q(
√
−13). Then B ⊗Q Q(

√
−13)∼= M2(Q(

√
−13)) (cf. Proof of Lemma 2.2).

(ii) By taking p1 = 13 and p2 = 3 in Lemma 2.2(2), we have B ∈ B(2). We

see that 3 (resp. 13) splits in Q(
√
−q) if and only if q ≡ 2 mod 3 (resp. q ≡

1, 3, 4, 9, 10, 12 mod 13). Then the assertion follows from Lemma 2.2(1).

(2) (i) Since p= 13 is ramified in Q(
√
−13), we have ep(k) = 2 or 4. Since

a prime number except 2 is not totally ramified in a biquadratic field, we

have ep(k) = 2. Then the following conditions are equivalent.

• fp is odd for any prime p of k above p.

• fp(k) = 1.

• (ep(k), fp(k), gp(k)) = (2, 1, 2).

• 13 splits in Q(
√
l) or l = 13.

• l ≡ 0, 1, 3, 4, 9, 10, 12 mod 13.

(ii) The following conditions are equivalent.

• fq is odd.

• fq(k) = 1.

• q is not inert in Q(
√
−13), Q(

√
l) or Q(

√
(−13l)′).
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•

{
(a)

(
−13
q

)
,
(
l
q

)
,
(

(−13l)′

q

)
∈ {0, 1} when q 6= 2,

(b) l 6≡ 5, 7 mod 8 when q = 2.

•


(a) q ≡ 1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, 49 mod 52,(

l
q

)
∈ {0, 1} and

(
(−13l)′

q

)
∈ {0, 1} when q 6= 2,

(b) l ≡ 1, 2, 3 mod 8 when q = 2.

Lemma 7.2 and a similar study combined with Proposition 7.1, [8, Table

1] help us prove Proposition 2.6 as follows.

(1) By Lemma 7.2(1)(i), we have B ⊗Q Q(
√
−13)∼= M2(Q(

√
−13)). Then

B ⊗Q k ∼= M2(k). Let q = 2. Then (eq(k), fq(k), gq(k)) = (4, 1, 1). Let q

be the unique prime of k above q. Then P(D(Nq, eq)) = P(D(2, 4)) =

{2, 3, 5, 7, 47} (see [2, Table 1]). By Lemma 7.2(1)(ii), we have B ∈ B(q). Let

p= 13. Then p | d(B) and p 6∈ P(D(Nq, eq)). Hence B 6∈ S(k, q). Applying

Theorem 2.3, we obtain MB(k) =MB(Ak)Br = ∅. By Proposition 7.1, we

have MB(AQ(
√
−13)) 6= ∅. Therefore MB(Ak) 6= ∅.

(2) Since B ⊗Q Q(
√
−13)∼= M2(Q(

√
−13)), we have B ⊗Q k ∼= M2(k).

Assume k = Q(
√

3,
√
−13) (resp. k = Q(

√
17,
√
−13)). Then Clk ∼= Z/4Z

(resp. Clk ∼= Z/4Z× Z/2Z× Z/2Z) and h′k = 4. These are due to the

mathematics software system Sage. In any case, let (p, q) = (13, 2). Then

by Lemma 7.2, we have B ∈ B(q) and fp(k), fq(k) are odd. In fact,

(ep(k), fp(k), gp(k)) = (eq(k), fq(k), gq(k)) = (2, 1, 2). Let q be a prime of

k above q. Then P(D(Nq, 2h
′
k)) = P(D(2, 8)) = {2, 3, 5, 7, 31, 47, 193} does

not contain p= 13. By Theorem 2.4, we have MB(k) =MB(Ak)Br = ∅. Since

MB(AQ(
√
−13)) 6= ∅, we have MB(Ak) 6= ∅.

(3) The assertion follows from Theorem 2.3 with q = 3. See [2, Proof of

Proposition 4.1(2)].

(4) We have B ⊗Q k 6∼= M2(k) since 2 splits completely in k. In this

case, Clk ∼= Z/8Z× Z/4Z× Z/2Z and h′k = 8. Let (p, q) = (61, 3). Then

(ep(k), fp(k), gp(k)) = (eq(k), fq(k), gq(k)) = (2, 1, 2). Since 61 splits in

Q(
√
−3), we have B ∈ B(q) (see Lemma 2.2(1)). Then P(D(Nq, 2h

′
k)) =

P(D(3, 16)) = {2, 3, 5, 7, 11, 17, 23, 31, 47, 97, 113, 191, 193, 353, 383, 2113,

3457, 30529, 36671} does not contain p= 61. Applying Theorem 2.4, we

have MB(k) =MB(Ak)Br = ∅. By [8, Table 1], we have MB(AQ(
√
−183)) 6= ∅.

Therefore MB(Ak) 6= ∅.
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