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                  Introduction 
 Resistive switching (“memristive”) in thin-fi lm devices *  under 

electrical stress (i.e., voltage or current bias) has been observed 

in a variety of material systems, and different physical mecha-

nisms have been identifi ed that contribute to this effect. In this 

article, we review the prospective applications of the resistive 

switching phenomenon. Recent reviews of this topic can be also 

found.  1–5   Note that material systems and physical mechanisms 

are not discussed in this article but will be reviewed in the 

articles in this issue. 

 In its simplest form, a memristive device consists of three 

layers: top and bottom (metallic) electrodes and a thin fi lm 

(  Figure 1  ). By applying a voltage bias across the electrodes of 

such a device, the electrical conductivity of the thin fi lm can 

be changed reversibly and retained for a suffi ciently long time 

     Resistive switching phenomena 
in thin fi lms: Materials, devices, 
and applications 
     D.B.     Strukov        and     H.     Kohlstedt   ,   Guest Editors    

        Resistive switching, the reversible modulation of electronic conductivity in thin fi lms under 

electrical stress, has been observed in a wide range of material systems and is attributed 

to diverse physical mechanisms. Research activity in this area has been traditionally fueled 

by the search for a perfect electronic memory candidate but recently received additional 

attention due to a number of other promising applications, such as reconfi gurable and 

neuromorphic computing. This issue of  MRS Bulletin  is devoted to current state-of-the-art 

understanding of the physics behind resistive switching in several major classes of material 

systems and their intrinsic scaling prospects in the context of electronic circuit applications. 

In particular, the goal of this introductory article is to review the most promising applications 

of thin-fi lm devices and outline some of the major requirements for their performance.   

  D.B. Strukov,    Department of Electrical and Computer Engineering ,  University of California at Santa Barbara ;  strukov@ece.ucsb.edu  
  H. Kohlstedt,    Institute of Electrical and Information Engineering ,  Christian-Albrechts-Universität zu Kiel ,  Germany ;  hko@tf.uni-kiel.de  
 DOI: 10.1557/mrs.2012.2 

    *     The most common names used in the context of devices exploiting hysteretic resistive 

switching effect and that are used interchangeably in the article are resistive random 

access memory (RRAM),  7   memistor,  11,12   and memristor or memristive device.  14   Note 

that the latter term has been originally introduced in a circuit theory and, in general, 

describes a device with pinched hysteresis  I–V  response.  22   Often, a more explicit 

acronym is used in which the word resistive in RRAM is replaced with a specifi c 

material system or mechanism (e.g., conductive bridge RAM [CBRAM], ferroelectric 

tunnel junction RAM [FTJ-RAM], and phase change RAM [PCRAM]) (see the articles 

by Lu et al., Tsymbal et al., and Raoux et al. in this issue).  

between a highly conductive (ON) state and a highly resistive 

(OFF) state. Very often, the switching could be continuous 

between these two extreme states so that intermediate states are 

also possible.  Figure 1b  schematically shows the  I–V  curves 

for a bipolar switching device. For a detailed classifi cation of 

the observed switching behaviors, see  Figure 1  of the Yang 

et al. article in this issue. In bipolar devices, an electrical stress 

of opposite polarity is required to switch the device between 

ON and OFF states. Note that the particular shape of the  I–V

curve in the ON/OFF states might vary and will depend on 

the additional layers integrated in the device stack. In general, 

nonlinearity of the ON state is required for most of the applica-

tions (e.g., to suppress leakage current in crossbar memories) 

and is achieved by either intrinsic properties of the device (e.g., 

internal tunnel barrier gap or Schottky barrier) or explicit inte-

gration in the device stack of a tunnel barrier (diode, or specifi c 

structures such as an ovonics threshold switch) (see the article 

by Raoux et al. in this issue). Also,  Figure 1  does not show the 

so-called “forming step,” which might be required for metal-

oxide, solid-state electrolyte, and organic devices before the 

devices can be switched reversibly (see the articles by Yang 

et al., Lu et al., and Lee et al. in this issue). Such a forming step 

is essentially a one-time application of relatively large voltage 

bias and can be eliminated in properly engineered devices.     

 It is expected that with the trend of aggressive downscaling 

of commercial electronic devices into the nanoscale regime, 
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quantum mechanical effects will become steadily more 

important. This trend will lead to a change of paradigm (i.e., 

future nanoelectronic devices exploiting electron tunnel-

ing and/or spin transport will rely on the fundamental laws 

of quantum mechanics rather than on classical electrodynamics). 

In particular, complex oxide tunnel junctions involving 

a ferroelectric barrier with a high spontaneous polarization 

and two ferromagnetic electrodes offer an ideal platform for 

investigating the interplay between electrical polarization and 

tunneling magnetoresistance in a controlled manner for future 

non-volatile memories and neural network applications (see 

the article by Tsymbal et al. in this issue).   

 Crossbar digital memories 
 The most straightforward application of the resistive switching 

phenomenon is in digital memories. In this context, passive 

crossbar memories, which are implemented with mutually per-

pendicular layers of parallel wires (electrodes) with integrated 

thin-fi lm devices at the crosspoints (  Figure 2  a), have the best 

scaling prospects. The basic operation of crossbar memories 

can be explained using simplifi ed equivalent circuits shown in 

 Figure 2c . In the ON state representing binary 1, the memristive 

device is essentially a diode, so that the application of voltage 

 V  t  <  V  READ  <  V  ON  to one (horizontal) nanowire leading to the 

memory cell gives a substantial current injection into the second 

wire ( Figure 2c ). This current pulls up voltage  V  out  that can now 

be read by a current sense amplifi er. (Alternatively, the current 

can be sensed directly by keeping the potential constant at 

the vertical wire with a virtual ground scheme.  6  ) To have low 

currents at voltages above  ∼  V  t , the diode property prevents 

parasitic currents, which might be induced in other ON-state 

cells by the output voltage (see the red line in  Figure 2c ). In the 

OFF state (binary zero), the crosspoint current is very small, 

giving a nominally negligible contribution to output signals 

at readout. In order to switch the cell into the ON state, the two 

nanowires leading to the device are fed by voltages + V  WRITE  

and − V  WRITE  with  V  WRITE  <  V  ON  < 2 V  WRITE . The left inequality ensures 

that this operation does not disturb the state of “semi-selected” 

devices contacting just one of the biased nanowires. The write 0 

operation is performed similarly using the reciprocal switching 

with threshold  V  OFF .     

 Note that the memory cell of conventional (active) memories 

includes a transistor that provides “select” functionality (i.e., the 

ability to select a given cell in the array). The density scaling 

of such memories is therefore, at best, limited by the scaling 

of the transistor. The transistor has two critical dimensions and 

therefore cannot be scaled aggressively. On the other hand, 

there might be only one critical dimension (i.e., fi lm thickness) 

for memristive devices. On the contrary, in passive crossbar 

  
 Figure 1.      (a) Device structure and (b) typical hysteretic  I–V  

behavior for bipolar switching, shown schematically. Panel 

(a) also shows circuit notation for the resistive switching device 

in the context of digital applications.    

  
 Figure 2.      Passive crossbar array: (a) A schematic of the structure and the idea of (b) writing and (c) reading a particular bit. The green arrow 

in (c) indicates the currents via the selected device, while red arrows show the leakage current (adapted from Reference  5 ).    
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memories, each crosspoint device combines memory and select 

functionality so that the footprint of a memory cell is defi ned by 

the overlap area of the electrode (crossbar) wires and is close 

to 4 F  wire  
2 , where  F  wire  is the crossbar wire pitch. The pitch could 

be made as small as a few nanometers, for example, by using 

emerging nanoimprint technology.  9   Moreover, if fabrication of 

memristive devices does not require high temperatures, multiple 

cells can be stacked monolithically, resulting in even further 

downscaling of the effective footprint. 

 Naturally, the memory density will also depend on periph-

eral circuitry, which is required to facilitate write and read 

operations (not shown on  Figure 2b–c ). These include decod-

ers to select proper rows or columns, drivers to apply specifi c 

voltages, and sensing circuitry to read out the device state. 

For an  N  ×  N  crossbar array, such peripheral area overhead 

is roughly proportional to  N *log N , while useful area scales 

such as  N   2  and, therefore, having larger crossbar arrays helps 

to improve the density of the memory. On the other hand, 

increasing  N  leads to larger readout delays, voltage drop across 

crossbar wires, and, most importantly, leakage currents via 

semi-selected devices ( Figure 2c ). This is why implementing 

strong nonlinearity in the  I–V  curve is one of the most important 

goals for the resistive switching devices in the context of passive 

crossbar memories. 

 Linn et al.  8   has recently proposed an interesting approach 

to alleviate the problem of leakage currents, which does not 

require nonlinearity in the ON state (  Figure 3  ). The main idea 

is to combine two bipolar resistive switch elements, which are 

connected in series, as shown in  Figure 3 , in a memory cell, 

referred to as a complimentary resistive switch (CRS). There are 

four possible states in a CRS, but only two high resistive states 

are used to represent binary 0 and 1, see  Figure 3 . This ensures 

that all semi-selected CRS devices in a crossbar array could 

effectively always be in the OFF state, and the leakage current 

is minimal. However, the tradeoff for this is a more complicated 

and destructive read operation. The read operations could be 

performed via applying a positive voltage sweep across the 

CRS device ( Figure 3 ). The CRS will switch to the intermediate 

all-ON state only if it was initially in the 1 state. Detecting 

whether such an all-ON state was present during a destructive 

voltage sweep is used to distinguish between 0 and 1 values 

stored in a CRS device for read operation.     

 According to the international technology roadmap of 

semiconductors (ITRS), crossbar memory is a potential candidate 

to become a universal memory, which would combine the best 

characteristics of other types of memories.  9   This is based on 

numerous recent experimental demonstrations showing, for 

instance, operational devices with few-nanometer dimensions, 

sub-nanosecond write speed, year-long retention, large ON/

OFF ratio, and high >10 13  endurance (i.e., cycling between ON 

and OFF states). Examples of such devices and prospects of 

combining all these properties in a single device are discussed 

in the articles in this issue. It is worth mentioning that a large 

integration density would require improvement of yield and 

reducing variations in the switching behavior. It seems that 

these cannot be eliminated completely or reduced to the typical 

levels of the conventional technology so that novel defect and 

fault tolerant approaches will be required (see Reference  5  for 

more discussion of this point).   

 Digital logic 
 The development of passive crossbar memories would be 

benefi cial to a certain class of digital logic systems—so-called 

reconfi gurable fi eld programmable arrays (FPGA).  5   FPGAs, 

which combine some of the best properties of microprocessors 

and application-specific integrated circuits (such as cost-

effectiveness of the former and the ability to be customized 

for a particular task of the latter), are becoming increasingly 

  
 Figure 3.      A complementary resistive switch: Specifi c hysteretic 

 I–V  behavior for the (a) top, (b) bottom, and (c) combined devices 

and (d) corresponding table showing mapping of resistive states 

to binary memory values (adapted from Reference  8 ).    
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attractive for a variety of applications. Conceptually, FPGA 

can be thought of as a large number of logic gates with a 

connectivity pattern among the gates being kept in on-chip 

memory. For example, a specifi c bit of memory might control 

whether two wires (e.g., input of a gate and output of another) 

are electrically connected. The operation of the FPGA, 

therefore, can be broken into two consecutive stages: fi rst, a 

particular computation task is mapped to the FPGA structure 

by writing a specific connectivity pattern in its memory. 

During the second (much longer) stage, the connectivity 

pattern is fi xed, and FPGA runs a specifi c task with a pro-

grammed circuit. 

 The use of memristive devices might eliminate the main 

ineffi ciency of FPGAs—large overhead associated with pro-

grammability. Indeed, FPGA memory is implemented as static 

RAM or fl ash memory and typically consumes a large area of 

the chip—on the order of 50%–90%.  5   In this context, a signifi -

cant improvement in density (more than 10× over conventional 

FPGAs) might be achieved by implementing programmable 

connections between complementary metal oxide semiconduc-

tor (CMOS) gates with memristive devices (  Figure 4  b). In such 

hybrid CMOS/memristor circuitry, programmable connections 

are lifted into upper metallization layers, therefore drastically 

reducing FPGA overhead. In a more aggressive approach, the 

programmable connections also implement some of the logic 

gate functionality ( Figure 4c ). For example, the nonlinearity of 

the memristive devices may be used to implement diode-type 

logic, while a CMOS subsystem is used for signal restoration 

and inversion ( Figure 4d ). Simulation results showed that the 

latter approach might improve the density of the FPGA by a 

factor of 100.  5       

 Borghetti et al.  10   recently demonstrated a very differ-

ent approach of using memristive devices in digital logic 

circuits—material implication logic. As shown in   Figure 5  , 

 p  and  q  denote binary states in which memristive devices P 

and Q could be confi gured, respectively, and it is assumed 

that the OFF (ON) state of the device represents binary 0 (1). 

The formula q’←p IMP q, which denotes implication logic 

operation and equivalent to q’ (NOT p) OR q, is implemented 

by simultaneously applying specifi c voltage pulses (“clock 

signal”) to the P and Q devices. With appropriately chosen 

voltage biases ( V  COND  and  V  SET ) and a value of load resistance 

( R  G ), the state of device P in the circuit in  Figure 5a  would 

change based on the original states of the devices P and Q, while 

the state of device Q will not be disturbed. More specifi cally, 

when the clock signal is applied, the resistive states of P 

and Q dictate the voltage on the common electrode and, as a 

result, the bias across device Q. In the case when device Q is 

in the OFF state, such a bias is always larger than that required 

to switch the device to the ON state. However, if device Q is 

originally in the ON state, the bias across Q 

is large enough to switch it to the OFF state 

only when device P is also in the ON state. The 

resulting logic operation is described in  Figure 5 , 

which is equivalent to implication operation.     

 The salient property of material implica-

tion logic is that the result of the logic opera-

tion is naturally stored as a resistance state in 

a nonvolatile memristive device. Such unique 

properties of material implication logic and the 

density advantages of memristive devices enable 

extremely high bandwidth computing. The 

nonvolatility of the memristive devices is also 

appealing in the context of energy scavenging 

devices, because memristive circuits can work 

with intermittent power supply. However, one 

of the challenges in material implication logic 

is the requirement of fast switching speed and 

high endurance of memristive devices, because 

the devices have to be switched every time the 

logic operation is performed. This is unlike the 

hybrid FPGA circuits, in which very low endur-

ance (<100) and slow switching speed would 

be acceptable. The requirement for variations 

and yield are slightly better in hybrid FPGA 

circuits as compared to the crossbar memories. 

The simulation results showed that up to 20% 

of defective (stuck-on-OFF state) memristive 

devices can be tolerated in hybrid FPGA 

circuits compared to  ∼ 1% in digital memories.  5     

  
 Figure 4.      Hybrid complementary metal oxide semiconductor (CMOS)/memristor fi eld 

programmable gate arrays (FPGAs): (a) A schematic of the hybrid circuitry and two FPGA 

implementations. A top view of (b) Hewlett Packard Laboratory 23  and (c) Stony Brook 

University  24   versions with (d) the equivalent circuit for a single NOR gate for the latter 

concept. Only a few crossbar nanowires and ON-state memristive devices participating 

in a specifi c example are shown on panels (b) and (c) for clarity.    
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 Artifi cial neural networks 
 The idea of using resistive switching devices in artifi cial neural 

networks (ANN) has a long history and can be traced back 

to at least 1960.  11   This early work, however, was largely over-

looked, mainly due to the emergence of the fi rst successful 

digital microprocessor just years later, which would become 

a dominating platform for computing. Other signifi cant devel-

opments in this context were in thin-fi lm tungsten oxide  12   

and a-Si:H device memristors,  13   but the results 

were not encouraging enough to render further 

investigations. More recently, the topic had 

been revived by titanium dioxide memristor 

publications  14   and further milestones, such as 

demonstration of spike time dependent plastic-

ity (STDP)  15   ,   16   and short- and long-term poten-

tiation in resistive switching devices.  17   Today, 

the motivation behind the development of 

ANN comes from the fact that the mammalian 

brain still remains much more effi cient (in 

power and processing speed) for a number of 

computational tasks, such as pattern recognition 

and classifi cation, as compared to conventional 

computers, despite the exponential progress in 

the performance of the latter during the past 

several decades. 

 In the simplest abstract model, ANN can be 

represented by a graph with nodes correspond-

ing to neurons and graph edges that correspond 

to synapses (  Figure 6  b). In parallel, each node 

processes input information from the preced-

ing nodes and then passes it to the next layer 

of nodes. For example, the node processing 

could involve summation of input signals, 

with each scaled by the corresponding edge 

weights, followed by a specifi c threshold func-

tion of the node. Given a particular structure 

of the ANN, the functionality is defi ned by 

synaptic weights, which are adjusted during 

the learning process. In order to match human 

brain complexity, there should be on the order 

of 10 11  nodes, with every node connected to 10 4  others on 

average, or equivalently, about 10 15  edges. It is because of 

such high complexity, connectivity, and intrinsically massive 

parallel information processing that mimicking biological 

neural nets is very challenging, while the performance of 

the software emulating ANN or even customized developed 

hardware fall short by many orders of magnitude to that of 

biological counterparts.     

  
 Figure 5.      Material implication logic: (a) Equivalent circuit, (b) corresponding truth table, 

and (c) experimental data. The blue and red curves on panel (c) show the voltages applied 

and the absolute value of the currents read at devices P and Q before and after the logical 

implication operation (IMP) voltage pulses. The measured low- and high-current values 

reproduce the IMP truth table (adapted from Reference  10 ).    

  
 Figure 6.      Neural networks: (a) A phase contrast image of a cultured hippocampal neural net (reprinted with permission from Paul De 

Koninck, Laval University), (b) the corresponding abstracted graph-based model, and (c) the main idea of hardware implementation with 

complementary metal oxide semiconductor (CMOS)/memristor circuitry. Panels (b–c) are adapted from Reference  4 .    
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 The development of the resistive switching device technology 

may change the situation dramatically. The structure of the 

ANN ( Figure 6b ) maps naturally on the hybrid CMOS/memristor 

concept ( Figure 4a ), with CMOS implementing neurons, the 

crossbar wires replacing axons and dendrides, and memristive 

devices acting as artifi cial synapses ( Figure 6c ). Note that in this 

case, it would be more appropriate to replace a one-way switch 

in the circuit symbol (inset of  Figure 1a ) by a variable resistor 

so that the conductance of the memristive devices represents 

the synaptic weight or its strength. Crude estimates have shown 

that the circuits with ultimately scaled CMOS technology and 

sub-10 nm scale memristive devices could challenge the 

complexity and connectivity of the human brain.  18   

 Given a very large number of synapses, any practical 

implementation of an artifi cial network should allow the 

weights to be updated in parallel, otherwise the learning 

process would be too slow. The primary mechanism for effi -

cient learning in biological networks was postulated in 1949 

by Hebb,  19   who noticed that the change in synaptic weight 

depends on the relative timing of pulses from its pre- and 

post-synaptic neurons. The weight strengthens if two neurons 

are activated simultaneously, and it weakens when they are 

active separately. The analog properties of memristive devices 

allow for the effi cient mimicking of Hebbian learning in ANN 

(  Figure 7  ).  15   The trick is to fi nd an appropriate shape and 

duration of the voltage pulses for the post- and pre-synaptic 

neurons to be used for Hebbian learning.  16   ,   20   For example, for 

a metal oxide device with  I–V  characteristics shown in  Figure 1 , 

the temporal overlap between properly chosen pre- and post-

synaptic pulses should result in a positively (negatively) 

applied voltage across artifi cial synapse for positive (negative) 

relative timing between these signals.     

 The work by Ohno and colleagues goes one step further.  17   In 

previous work,  15   ,   16   the synaptic weight is changed only if a suf-

fi ciently high bias is applied across it. On the other hand, studies 

of biological synapses show two distinct modes—short-term 

plasticity (STP), lasting less than a few seconds, and long-term 

potentiation (LTP), which could persist for many hours. The 

synaptic weight becomes permanent (i.e., long-term memory 

is formed) only after repetitive reinforcement with overlapping 

pre-synaptic and post-synaptic pulses, while synaptic weight 

after single reinforcement decays quickly over time. Using 

silver sulfi de thin-fi lm devices (e.g., see the article by Lu et al. 

in this issue), both STP and LTP were demonstrated to coexist 

in one device (  Figure 8  ).  17   The two modes of operation were 

attributed to the fact that small, possibly atomically thick, silver 

fi laments are unstable and dissolve rapidly even if no bias is 

applied. On the other hand, large fi laments formed as a result 

of repetitive potentiation are more stable and can persist for a 

longer time.     

 It should be noted that for ANN systems, the density 

of the memristive devices is the most important property. 

Moderate endurance should be suffi cient for implementing a 

learning process, and massive parallelism of the ANN might 

compensate for the slow switching speed. Also, ANNs are 

much more resilient to variations in synapses and neurons. 

For example, it could operate even in the presence of a large 

number (up to 90%) of bad (stuck-on-ON or stuck-on-OFF 

states) devices  18   and is quite tolerant to variations in the 

switching behavior.  21     

 Summary 
 The development of thin-film resistive switching device 

technology should greatly benefi t digital memory and logic 

circuits and may, for the fi rst time, enable large-scale bioinspired 

neuromorphic circuits. The most critical issues at the moment 

are yield, reproducibility, and viable integration with conventional 

  
 Figure 7.      Demonstration of spike time–dependent plasticity in 

(a) artifi cial and (b) biological synapses. Insets for panels (a) and 

(b) show scanning electron microscope images of a fabricated 

memristor crossbar array (scale bar: 300 nm) and a phase 

contrast image of a hippocampal neuron (scale bar: 50   μ  m), 

respectively. The red circles and blue squares indicate the positive 

and negative changes, respectively, to (b) synaptic weight and (a) 

memristor weight or conductance. (Adapted from Reference  15 .)    

https://doi.org/10.1557/mrs.2012.2 Published online by Cambridge University Press

https://doi.org/10.1557/mrs.2012.2


RESISTIVE SWITCHING PHENOMENA IN THIN FILMS: MATERIALS, DEVICES, AND APPLICATIONS

114 MRS BULLETIN • VOLUME 37 • FEBRUARY 2012 • www.mrs.org/bulletin

complementary metal oxide semiconductor technology. The 

authors are optimistic that these challenges could be addressed 

in the near future due to the large-scale investments of major 

semiconductor companies in fabrication technology, progress in 

understanding the physical phenomena behind resistive switching, 

and continuing advances in materials science and engineering.     
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 Figure 8.      Inorganic synapse showing short-term plasticity (STP) and long-term 

potentiation (LTP), depending on input-pulse repetition time. (a) Schematics of an 

Ag 2 S inorganic synapse and the signal transmission of a biological synapse. When the 

precipitated Ag atoms do not form a bridge, the inorganic synapse works as STP. After an 

atomic bridge is formed, it works as a LTP. In the case of a biological synapse, frequent 

stimulation causes long-term enhancement in the strength of the synaptic connection. 

(b–c) Change in the conductance of the inorganic synapse when the input pulses ( V =  80 

mV,  W  = 0.5 s) were applied with intervals of (b)  T  = 20 s and (c) 2 s. The conductance 

of the inorganic synapse with a single atomic contact is 2e 2 / h  (= 77.5   μ  S), where  e  is an 

elementary charge, and  h  is Planck’s constant. The fi gure is adapted from Reference  17 .    
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