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The homology functor from the category of free abelian chain complexes and
homotopy classes of maps to that of graded abelian groups is full and replete
(surjective on objects up to isomorphism) and reflects isomorphisms. Thus such a
complex is determined to within homotopy equivalence (although not a unique
homotopy equivalence) by its homology. The homotopy classes of maps between
two such complexes should therefore be expressible in terms of the homology
groups, and such an expression is in fact provided by the Kiinneth formula for
Horn, sometimes called 'the homotopy classification theorem'.

In [4] Kelly showed that the functor assigning to a short exact sequence of
free abelian chain complexes its long exact homology sequence is again full and
replete and reflects isomorphisms. Partial information about the kernel of this
functor was found in [5]: but not enough to provide a homotopy classification
theorem for this case.

Since a short exact sequence of free abelian chain complexes may be considered
as a free abelian chain complex with a filtration of length 2 the question arises
whether the above results admit appropriate generalizations for complexes with a
filtration of finite length N — 1.

The main purpose of this paper is to exhibit for such filtered complexes a
functor which is full and replete and reflects isomorphisms, and to provide a
a homotopy classification theorem for this case. We do not entirely restrict
ourselves to free abelian complexes, but then we must content ourselves with an
analogue of the Kiinneth spectral sequence instead of the short exact sequence.

The image category SE^ for this functor on (N — l)-filtered complexes was
considered by Wall in [8], and the (relative) projectives were determined in [7].
The functor which assigns to an (N — l)-filtered complex its spectral sequence plus
filtered limit factors through 3C%. Yet in many ways the objects of 3£e

N are easier
to deal with than spectral sequences.

* This research is a revised version of part of the author's doctoral thesis (Sydney, 1968)
which was financed by a CSIRO Studentship.

298

https://doi.org/10.1017/S1446788700013227 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013227


[2] Filtered complexes 299

As an example, the reader will easily verify that, in the case N — 3, our
results provide a homotopy classification theorem for short exact sequences of
complexes of free abelian groups. Our classification theorem gives in this case a
Kunneth-like exact sequence

0 -> Ext\HA,HB) -> H[A,B] -• Horn (HA,HB) -> 0.

Here H[A,B~\ is the group of homotopy classes of chain-map triples between the
short exact sequences A,B of chain complexes; HA and HB are the long exact
homology sequences; and Ext1 is relative to a suitable projective class. In fact, the
projectives are the long exact sequences all of whose terms are projective. Moreover,
the above short exact sequence splits, as we show for a general AT in §5; so that it
does determine H[A,B] in terms of HA and HB.

The results of §§4 and 5 admit an extension, corresponding in the above
example to dropping the requirement that the components of B be free; this would
give a 'universal coefficient theorem' alongside the above classification theorem;
but we have omitted it to avoid complicating further the exposition. It is just a
matter of extending the domain category, and accepting the fact that then only
some objects (including the free B in the above case) admit projective resolutions;
an extra 'five-lemma' argument is needed in §5.

My special thanks to Professor G. M. Kelly who first aroused my interest in
categorical and homological algebra, and who supervised this work.

1. Triangulated categories

A stable category is an additive category sf together with an additive auto-
morphism!: s/ -y sf called the suspension functor. A triangle in s/ is a diagram

An arrow of triangles is a commutative diagram ( / ' , / , / " ) :

/'I f\ /"| 2/'
B'

A class ST of triangles ofj^ will be called a triangulation of sf when the
following conditions are satisfied:

TO. any triangle isomorphic to a triangle in 3~ is in 2T\
Tl. for each A in J / , 0 -> A± A-+0 is in &~\
T2. a triangle A' £ A $ A" A XA' is in 3~ if and only if A a^A" ^ 'LA'-*1* 2M

is in 3~\
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T3. for each arrow a':A-+A" in s/, there exists a triangle A'^*A^*
A'-^LA' in 9~\

T4. for triangles A' £ A &• A" 4 LA', B' % B ̂  B" h LB' in 3~ and arrows
f:A-*B,f": A" -* B" in stf such that f"a' = b'f, there exists an arrow f: A' -*• B'
in s/ such that (/ ', /, /") is an arrow of triangles.

Let Abg denote the category of abelian groups.
If s/,3P are stable categories then a functor F:srf-*9£ is stable when it is

additive and FL = LF.
If j / has a triangulation 3T and 9C is an abelian category then a functor

F: stf'^>3C is homological when, for each triangle

in F, the sequence

Fa" Fa' Fa
FA > FA =• FA => FLA

is exact in SC.
The following properties of a triangulation &~ of .s/ are mostly due to Puppe

[6]-
T5. If A'£ A ^A" ±> LA' is in $~, then a'.a" = 0, a.a' = 0, La".a = 0.
T6. For each object B of stf, the functors

are homological.
T7. / / ( / ' , / , / " ) is an arrow of triangles in ^~ and any two off'JJ" are

isomorphisms in s/, then so is the third.
T8. Suppose A' £ A^ A" ±>LA',B' ^-*Bb-^> A" ±> LB' are in P. Then:
(a) A = 0 if and only if a is an isomorphism;
(b) a = 0 if and only if there exists a direct sum situation

a" a'

(c) if b.a' = 0, a.b' = 0 then A' ®B^
T9. ^" is closed under finite direct sums.
T10. If y is a triangulation of A with 9~' cz 9~, then 3~' = 9~.

2. A general classification theorem

Suppose s/ is a stable category with a triangulation 3~, suppose 3C is a stable
abelian category, and suppose F: s# -* 9£ is a stable homological functor. With
this data we shall develop a relative homological algebra in j / .
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[4] Filtered complexes 301

An object P of sf is F-projective when FP is projective in SC and the function

is a bijection for all A in stf.

COMPARISON THEOREM. If A' ^P^*A"^'LA'is in 3~ with P F-projective,
and if B'^B^*B" ±>XB' is in 3~ with Fb ~ 0, then, for each arrow/": A"->B"
in <$/, there is an arrow ( / ' , / , / " ) :

•V ~V ~ir v"

of triangles. If {g',g,f") is another such arrow of triangles, then there exist
arrows s',s: P->B' such that g' —/' = s'a", g — / = b"s.

For any object A of stf and non-negative integer r, the statement d\mFA :g r
is denned inductively as follows. Firstly, dimf A = 0 means A is F-projective. For
r > 0, dimFA^r means there exists a triangle A'^P^A^A' in 3~ where
Fx = 0, P is F-projective and dimfy4' ^ r — 1. Write dimf^4 = r when dimf A ^ r
but dimFv4 ^ r — 1. Write dimFA = oo if there exists no integer r such that
dimFA i£ r.

CLASSIFICATION THEOREM. For objects A, B in si, if dimf,4 ^ 1, then there
is a natural short exact sequence

0 ->• Ex4(F2M, FB) -> jtf(A, B) —^-> ^"(FX, FB) -+ 0

o/ abelian groups.

PROOF. Since dimfA g 1 there is a triangle Q^*P^+ AP-+ XQ in ^ where
F/> = 0 and P, Q are F-projective. So we have exact sequences

Fa
0 -> FQ > FP

0,

and commutative diagrams
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•v -v -v

F

X(FQ,FB)

in which the columns are bijections. So up to isomorphism, SC{FA,FB) is the kernel
of J2/(a,l), and Ext^(FI,A,FB) is the kernel of j^(Za,l). From the first exact
sequence and commutative square

s/(A,B) i ^ ^ J*(P,B)
Fl lF

the short exact sequence of the theorem follows. The proof of naturality uses the
comparison theorem and is left to the reader.

For the remainder of this section we assume that there are enough F-
projectives; that is, for each object A of s/, there exists an .F-projective P and an
arrow a': P -> A in J / such that Fa' is an epimorphism in 3C. This assumption is
equivalent to the assumption that, for each object A of j&, there exists a triangle
A'•?* P ̂ > A Z,T.A' vn. y with Fp = 0 and P f-projective.

LEMMA 1. / / the triangle A'"-^ A"-^ A" A2L4' in 9~ is such that Fa = 0 and
the function F: <P/{A",A')-+2C(FA",FA') is injective, then the triangle is isomor-
phic to the triangle

PROOF. From the commutative square

I iF
—-* ar(FA,FA')

we see that «a/(a', 1) is injective since the left column is injective and Fa' is an
epimorphism implies SC(Fa', 1) is injective. So j / (a ' , \)a — aa' = 0 implies a = 0.
The result now follows from T8(b).

LEMMA 2. The direct sum P®Q in jrf is F-projective if and only if P,Q
are both F-projective.
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[6] Filtered complexes 303

Combining these two lemmas we have the following result (under, of course,
the blanket assumption we have made for the rest of this section, that there are
enough F-projectives).

THEOREM 3. An object P of s/ is F-projective if and only if the function
F:rf(P,A)-+3r(FP,FA) is injective for all A in s4.

A proof analogous to that given by Kelly in [5] yields:

THEOREM ON MAPS INDUCING ZERO MAPS. In the diagram

Ao ^A^ > ••• >^4r+1

n st, let f(: Aj-> Ai+1 be such that Fft = 0 for 0 ̂  i ^ r. If dimf^40 ^ r then
/ , / , - ! -/0=0.

SCHANUEL'S LEMMA. / / the triangles

C'—^ Q—£-» A-2-+I.C'

are in 3~, if Fp = 0 and Fq = 0, and if P,Q are F-projective, then P © C
^Q®A'.

PROOF. Since P is F-projective, F(qa')=Fq.Fa' = O.F.a' = 0 implies qa' = 0.
Similarly pc' = 0. So by T8(c) we have the result.

LEMMA 4. Suppose P,A are objects of s4 and P is F-projective. Then
dimFA = dimf(P © A).

PROOF. Let dimFA = r. For r=0 this is just Lemma 2. Suppose r > 0. There
exists a triangle

in 5T with Fq = 0, Q F-projective and dimFA' ^ r — 1. But then

is in ST; so dimf (P © A) ^ r. Suppose dimF(P © A) < r. Then there exists a
triangle

C—°-^ R-^—^ P © A -?—> C

in IT with Fr = 0, .R F-projective and dimfC ^ r — 2. By Schanuel's lemma it
follows that
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P ®Q®C^R®A'.

By the first part of the argument, dimf C ^ r — 2 implies

dimf(P © Q © C) S r - 2.

So dimf (R ®A')^r-2. Then from the triangle

R © A' i®4 R © Q{^X A -^U I(£ © A')
in ^ we deduce that AimFA ^ r — 1, a contradiction. So dir%(P © 4) = r.

DIMENSION THEOREM. Suppose the triangle A' -> P-+ A?->I,A' is in F with
Fp = 0 and P F-projective. If A is F-projective then so is A'; otherwise,

imf^4' = dimFA — 1.

PROOF. If A is F-projective then P ^ A' © A by Lemma 1; but P is F-projective
so A' is F-projective by Lemma 2. Suppose dimf̂ 4 = r > 0. Then there exists a
triangle

in 3~ with Fq = 0, Q F-projective and dimf C = r — 1. By Schanuel's Lemma,

P@C ^Q@A'.
Then

r - 1 = dim^C = dimf(P © C") = dimf(g © A') = dimFA'

by repeated use of Lemma 4.

REMARK. The restriction dimf4 ^ 1 in the classification theorem may be
weakened, but then we must settle for a spectral sequence instead of a short exact
sequence. Given an object Ao of J / we can choose triangles

An+1 — —^ Pn ——-> ^4n —^~^ ^"4n+i

for each integer n ^ 0, where Fpn = 0 and Pn is F-projective. Let J/(A, B), d(P, B)
denote the graded abelian groups with n-th components

respectively for B in s/. Then we have a Massey exact couple

A
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[8] Filtered complexes 305

of graded abelian groups. The second term of the spectral sequence of this exact
couple is of the form Ext£~p(FS A0,FB). The spectral sequence converges to
jtf(I,nA0,B) when dimFA0 ^ r for some integer r.

3. The homology functor

In this section we identify our concepts in a familiar case; and thereby provide
a starting-point for our inductive arguments in later sections.

Let 38 denote an additive category with direct sums. A complex A over 38 is a
diagram

in which d*-d*+l=Q for all integers n. For complexes A, C over 88, a complex
[/1,C] over Abg is defined as follows:

If y is an abelian category then each complex A over ^ gives rise to objects
BnA, ZnA, HnA for n e Z as shown in the following short exact sequences

0

where d = ijrj. In particular this applies when ^ = Abg.

For complexes A,C over 38, elements of Z0[A,C~\ are called chain arrows
from A to C. Two chain arrows f,g: A-*C are homotopic when there exists an
element s of B^A.C] such t h a t / - g = d(s); we write s:f ~ g.

The category whose objects are complexes over 38 and whose arrows are
chain arrows will be denoted by CSS; the category whose objects are complexes
over 38 and whose arrows are homotopy classes of chain arrows will be denoted
by K38. Define 2 : CSS-^ CSS as follows:

dXA = - d\

This makes CSS stable, and induces stability on
Given a chain ar row/ : A-> B over 08, the cone o f / i s the complex C/over 38

defined as follows:
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(C/)n = Bn®An-x,

£ fn-l

Then (£): B -> Cf and (0,1): C/-> S4 are chain arrows. It is well known (see [3]
for example) that there is a triangulation 3T of K38 which contains all the
triangles of the form

we call this the canonical triangulation of K^?. Moreover, for each sequence
A*-+ B^*C of chain arrows such that we have a direct sum situation

P'n i'n

for each n, there exists a chain arrow <5: C-+2L4 such that the triangle

A^-+ B——

is in 3~; \S\ is called the deviation class of the sequence A^B^C.
Let ^ denote an abelian category with enough projectives. Let C& denote

the category of graded objects over ^ ; that is, the full subcategory of C2? consisting
of those complexes A with dA = 0. For each complex A over ^, BnA, ZnA, HnA
determine objects BA, ZA, HA of G^. Functors B,Z,H: C&-+G& are induced.
The functor H equalizes homotopic chain arrows and so we induce a functor
H: K& -* &&. Let P ^ denote the ful1 subcategory of 0 consisting of the projective
objects of ^ ; it is additive with finite direct sums. Let

A2 = KP'S,3C1 = GS? and F2 = (KP& <= K'S-^. G&).

Then F2 '• ^z -»^2 is a stable homological functor where J / 2 has the canonical
triangulation.

An object A of C$ will be called CE-projective when Ẑ 4 and H.4 are projective
in G&. A sequence A' -> A-+ A" in C& will be called CE-exact when the sequences

0-> ZA'-+ ZA^ ZA"^0
and

HA-* HA" -* 0

are exact in G<3. It is proven in [2] that C£-projectives and CE-exactness give a
projective class in CS; moreover, it is shown there that A is CE-projective if and
only if it is isomorphic to a complex C © P (the direct sum as complexes) where C
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[10] Filtered complexes 307

is a contractible complex of projective objects over ^ and P is a complex of
projective objects over 'S with zero differential.

THEOREM 5. An object A of srf2 (that is a complex of projective objects over
&) is F2-projective if and only if it is CE-projective.

PROOF. Suppose A is F2-projective. Let P = HA. Then ZA^ BA® P. We
can suppose ZA = BA © P, that the sequence

i n (i',i") V
0 >ZA >A >BA >0 is 0 >BA@P >A >BA => 0 ,

and that A has differential (i',i") (l)n = i'n. But F2 : s42(A,P)-*9C2(HA,HP) is
an isomorphism and is induced by composition with i"; so there exists a chain
arrow p: A-> P with pi" = 1. So i" is a retract, and we may put A = C®P,
»" = (?)»P = (0. !)• B u t P is a chain arrow, so pVn = 0; so pi' = 0; so V has the form

:BA-+C@P.

Moreover, n(i', i") = 0 implies n of the form 0/0,0): C®P'-vBA. So A = C®P
then has differential

So A is the direct sum of the complex C with differential i'ono, and P with zero
differential. Then

o—>B
exact implies

0 >BA-^C-^->BA >0

exact. So HC = 0. But C is F2-projective; so

F 2 : J ^ 2 ( C , C) -* 9£2(HC,HC)

is an isomorphism. So ja/2(C, C) = 0; that is, C is contractible. So A is CE-
projective.

For the converse, it suffices to prove that contractible complexes C and
complexes P of projective objects with zero differential are F2-projective. Since
HC = 0 and J / 2 ( C , A) = 0 for all complexes A, C is F2-projective. Also P = HP
is projective, so it suffices to prove that F2: ̂ 2(P, A) -* &2(P, HA) is an isomor-
phism for all A. Take f:P->HA; since P is projective and £ is epimorphic,
/ = f • / ' for some/'. Let # = i-f; then </# = ijng = I/?;J/' = 0, and Hg = / . This
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proves surjectivity. Suppose Hg = 0 for some chain arrow g:P^A. Then
C• Zg = 0, so Zg = j • k for some k: P-> BA. But P is projective and t] is epimor-
phic, so k = t]-h for some h: P -* A. Then g = i-Zg = ijk = ijnh = dh, so
g ~ 0. This proves injectivity.

For any complex A over ^, the CE-dimension of A is the maximum of the
projective dimensions of ZA and HA in G^. Given any A in J / 2 , since CE-
projectives form a projective class, there exists a CE-exact sequence

0 >A'-?—>P—?-±A >0

where P is CE-projective. Since each An is projective, in each dimension this
sequence is isomorphic to a direct sum situation. Thus there exists a triangle

in the canonical triangulation of s/2. From this we have the following result.

THEOREM 6. There are enough F2-projectives.

THEOREM 7. For an object A of s/2, dimF2A is equal to the CE-dimension
of A.

PROOF. We use induction on r to show that dim^.4 ^ r if and only if CE-dim
A ̂  r. For r = 0 this is Theorem 5. Suppose r > 0 and the result true for r - 1. Let

0^A'-+P^A-+0

be CE-exact with P C£-projective. This gives a canonical triangle

If dimf2^ ^ r then, by the Dimension Theorem, dimF2A' ^ r — 1. By induction,
C£-dim A' ^ r - 1; so C£-dim^ ^ r. Conversely, if C£-dim ^ ̂  r then C£-dim
A' ^ r — 1. By induction, dimF2/4' g r - 1 ; then by the Dimension Theorem,

4̂ ^ r.

All of § 2 now applies to the homology functor F2: stf2 -* 9C2; the definitions,
assumptions and conditions of theorems stated there have interpretations for this
functor in terms of properties which can be calculated by more familiar techniques.
These results all appear in [1] for which reason we adopt the prefix CE.

4. The functors FN: jtfN-*%'N

Let ^ denote an abelian category with enough projectives, and let N denote
an integer greater than or equal to 2.

The categories 3SN, stfN are denned as follows. The objects
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of £9N are (JV - l)-tuples of objects A' of & such that each A1 is a subobject of
;4i + 1 and each of the objects A1, Ai+11 A1 is projective in @. For such an object we
put A0 = 0 and Apq = Ap-IA"for0£q<p<N; note that each of these objects
is projective in (S. It will be convenient to have notations for the inclusion
coq

r
p: Aqr -• Apr and the canonical epimorphism coP

q: A
pr -• Apq. The arrows

: A -> B of SBN are (N — l)-tup)es of arrows/ ' : A' -> B' of ^ which commute with
the inclusions. Such an arrow induces arrows f9: Apq-> Bpq of ^ which commute
with the co's. The category &N is additive with finite direct sums. Let s/N denote
the category K3IN; it is stable with canonical triangulation &~N.

Next we define a category 9Cn. The objects of 2£n are diagrams D in ^ given
as follows. The objects in the diagram D are objects Duv of ^ , one for each ordered
pair of integers u,v such that u — N <v <u. The arrows in the diagram D are
arrows

of $, one such arrow for each ordered quadruplet of integers s,t,u,v such that
s — N <t < s, u — N <v <u, and the arrow d* is zero unless u — N <t g i )
< s g M. The arrows in the diagram D satisfy the commuting condition

(1) d™x • d%v — d%x.

The arrows of 9CN are just arrows of diagrams. The category 3CN is abelian and
stable; the suspension functor I,:^N^3fN is

_ / + l.s
~ "JV + CU-

An object D of 2'N is called exact when each of the sequences

(2)

t — N <v <u <t is exact in <S. Note that 3C2 may be identified with the 3C2 of the
last section.

For 0^q<p<N, define Epq: XN-* X2 on an object D of 9C N by the
equations

and similarly on arrows. Note that, for any u,v such that u - N <v <u, there
exist unique p, q, n such that 0 g q < p < N and either « = p — nN, v = q - nN,
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or u = q - (n - l)N, v = p - nN. So every object Duv of D is of the form (EpqD)n

for unique p,q,n. The left adjoint

of Epq is given as follows. If there exists n such that u-N<q-nN^v<p
- nN ̂  «, then

if there exists n such that u-N<p-nN^v<q-(n — l)N g, u, then

otherwise {JpqX)U0 = 0. The arrows of the diagram JpqX are the identity arrows
of the Xn wherever it is possible to put them in, and the other arrows are zero.

Now we come to the definition of the functor FN: s/s -> 3TN. For each object
A = (A1, A2, •••,AN~~1) of s/N (note that each A' is a complex of projective objects
over ^ ) , the object D — FNA of &N is defined as follows. For any integer n and
for integers p, q such that Ogq < p < N,

(EpqD)n = HnA
Pq-

This determines Duv uniquely for all u - N <v < u. The sequences (2) arise by
taking the long exact homology sequence of short exact sequences of the form

0 M'-^-M1" ^ZL+A* > 0

The arrows djj, which do not occur in such sequences are determined by the
commuting condition (1). Then FNA is an exact object of 3TN. Next FN becomes a
functor from C38N to &s on defining FNf:FNA-*FNB, for a chain arrow
f:A-*B over £8N, by the component arrows

Hnf
pq:HnA

pq-^HnB
pq

in &. lifm 0 then FNf= 0. So FN is indeed a functor from j/jy to ̂ *w. From the
corresponding properties of the homology functor, it is clear that FN: jtfs -»SEN is
a stable homological functor. For N = 2 this definition agrees with the definitions
of the last section.

We shall study the functors FN using induction on N. As a tool for this in-
duction, we define, for each complex A over 0SN complexes QA, FA over &N-i by

(QA){ = A', (TA)1 = Ai+1A for 0 < i < N - 1.

For y4, C in C&N, define chain arrows
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0<i<N

over Abg as follows. For g e \TA,Q,C~\, <j>(g)i+1 is the composite

LEMMA 8. For complexes A,C over !3&N, the sequence

n
0<i<N

of complexes over Abg is exact. The connecting arrow

A: n HHlAt't-Wl-l-\^Hm0<i<N

of the long exact homology sequence is given by

A[h] = [gf] where g' = <5ftI + 1a)l
1}1 — (— l)ncoolhld

and [<5], [3] are the deviation classes of the sequences

i,i+i co'+ 1 a ) 1 > i + 1 a> '+ 1

For a complex A over 88z, let y(A) denote the cone of l:'Z~lA-*'L~1A.
For 0^q<p<Nws define J pqA in C3SN by the equations

(Jp0AJ = 0 for 1 ̂  i < p,

= Afor p^i<N;

{JpqAJ = 0 for 1 g i < <z,

= 2- A tor ^SKJ) ,

= y(/4) for p^i < N, where q > 0.

Note that (Jpg/l)
J'« = yl and ( J^ /4)"" 1 "" 1 = S " U (the convention C " 1 ' " 1

= S"1C)V~1 p " 1 covers the case q =0) . In the obvious way, Jpq:
becomes a functor which preserves homotopies. Let Epq: C3IN -> C^2

 De given

by£M/l = ^ , £ p / = / ^

LEMMA 9. For A in C382 and C in C3SN, the chain arrows

Epq: lJmA,C^lA,C">-], £ r l , r l : [ C , V ] 4 C r l r r 1 ^ ^ ]

for 0^q<p<N have right chain inverses which are left homotopy inverses.
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For DeXN, define CID, TD in 9CK_X as follows. For 0£q<p<N-l,

EpqQD = EpqD, EpqTD = Ep+Uq+1D.

The arrows of £ID, YD are the arrows of D which are between objects of D which
are in positions belonging to objects of Q.D, FD respectively. For X, D in &N,
define a sequence

0<i<N(3) ~u
0<i<N

in Abg as follows. For a e^"JV_1(r^,Q£>), Epq<f>{<x) is the composite

E X d >E +l TiX
Ep**>E D

For pe&x(X,D), \}/(PJ = EUi-^. For

ye 7] ari&u-xX, £,.,_ ^"Z)),
0<i<JV

Epq0n(y) is the difference between the composite

and (— 1)" of the composite

LEMMA 10. / / X is a projective object of 2£N and D is an exact object of &N

then the sequence (3) is exact.

PROOF. It suffices to prove this lemma for X=JpqYwhere 0 g q < p < N and
Y is projective in 3C2, since every projective object of 3EN is a retract of a co-
product of such X.

(a) Suppose q > 0. Then (3) becomes:

The diagram
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commutes with exact rows, so the Mayer-Vietoris sequence

is exact in SC2. Since Y is projective in 2£2, the result follows by taking (Y, —) of
the last sequence.

(b) Suppose q — 0. Then (3) becomes the sequence obtained by applying
(Y, —) to the Mayer-Vietoris sequence

where the D's have been omitted.

THEOREM 11. An object A of &/N is F ̂ -projective if and only if each of the
complexes Ap jAq over & is CE-projective for 0 5S q < p < N.

PROOF. Suppose A is Fjy-projective. Then FNA is projective in 9CH, and so, by
Theorem 1 of [7], each {FNA)m is projective. So HApq is projective in 9C2. For any
C in s/2, put

C W " 1 > 4 = J , + 1 , O C , D N ~ U q =Jq+U0HC f o r O ^ q ^ N - 1 ,

Jp + i , , + iZC, D»q = Jp+Uq + 1XHC for 0^

Then we have a commutative diagram

, C) ——-»iT2(HylM, HC).

The vertical isomorphisms come from Lemma 9 and the adjunction

So the lower row is an isomorphism. Thus Apq is F2-projective.
Theorem 5 covers the case N = 2. Assume the theorem is true for N — 1 where

N > 2. Take A in jtfN such that each Apq is C£-projective. Then each (TA)pq,
{Q.A)pq is C£-projective. So by induction TA, Q.A are FN_1-projective. So
FN-iTA,FN_1Q.A are projective in ^"JV_1. By Theorem 1 of [7], all the arrows in
FN-tA, FN-tA have kernels which are projective objects of ^ . Every arrow in
FNA is such an arrow. So every arrow of the exact object FNA has projective
kernel. By Theorem 1 of [7], FNA is a projective object of SCN. Take C in s/N.
Consider the five terms of the homology sequence of the short exact sequence of
Lemma 8 around H0\_A, C] = stfN{A,C). This is exact. Consider also the sequence
(3) with X = FNA, D = FNC. This is exact by Lemma 10. Moreover, the five arrows
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[I F2,FN_UFN, n F2,FN^
0<i<N 0<i<N

on hom-sets give an arrow from the first sequence into the second. By Theorem 5
each of the F2 's is an isomorphism and by induction the FN _ t 's are isomorphisms.
So by the "five lemma", FN: <s/N(A,C) -*2Fj^X, D) is an isomorphism; whence
A is Fjy-projective.

THEOREM 12. There are enough FN-projectives.

PROOF. Suppose A is an object of s/N. For 0 ^ q < p < N choose a CE-
projective Ypq and a C£-exact sequence

Choose fjpq: JmYpq-* A in s/N corresponding to r\pq under the isomorphism

of Lemma 9. Put

and let e: P -+ A be the unique arrow of s/N determined by the fjpq. Then each of
the sequences

HPpq - ^ - > HApq * 0

is exact, and each Ppq is Cis-projective. So FNe is an epimorphism and, since
FNJpq = JpqH (or, if you like, by Theorem 11), P is fVprojective.

THEOREM 13. For an object A of s/N, AimFNA is equal to the maximum of
the CE-dimensions of the complexes Ap/Aq, 0 ^ q < p < N, over CS.

PROOF. By Theorem 12, there exists an arrow s: P-* A in s/N where P is
.F^-projective and FNs is an epimorphism. By the cone construction, this gives rise
to a triangle

in ^"jy such that each of the triangles

Fpq
C pq > Ppq——> Apq > SC pq

is in J~2, ppq is ^-projective (Theorem 11) and F2&
pq is an epimorphism. Using

Theorem 11 to start the induction, we can employ the Dimension Theorems for
FN and F2 to prove that dimFNA ^ r if and only if dimF:iA

pq rg r for all 0 g q < p
< N. Then the result follows from Theorem 7.
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So §2 applies to the functors FN: s/N -» 2ES. Moreover, the conditions of the
theorems of §2 have, in this section, been put into a more familiar form.

The Classification Theorem involves the functor Ext for the category 3CN. The
following theorems help in the calculation of this functor when ^ had finite
projective dimension.

THEOREM 14. Suppose & has finite projective dimension. An object X of 2EN

is projective if and only if it is exact and each of the objects Xuv, u — N <v <u,
is projective in <S.

PROOF. By Theorem 1 of [7], X is projective if and only if it is exact and the
kernel of each of its arrows is projective. Then each Xuv is projective. Suppose X
is exact and each Xm is projective. Consider an arrow x of X which appears in
one of the exact sequences (2) for X. Let k be the dimension of'S. The sequence (2)
for X then give an exact sequence

0 -»ker x -»• P o -> Pt -> * Pk -> Pk+1

where each Pt is an object in the diagram X and hence projective. So ker x is
projective. Every arrow of X is a composite xx' of such arrows x, x' of X. From
the short exact sequence

0 -• kerx' -»ker(xx') -> kerx -> 0

we deduce that ker(xx') is projective. So X is a projective object of 9EH.

THEOREM 15. Suppose & has finite projective dimension k. An object of' St'N
has projective dimension at most k if and only if it is exact.

PROOF. Consider a short exact sequence

0-»£>'->X->£>->()

in 3CH where X is exact. Consider as complexes the sequences (2) for D,X, £>'; then
we have short exact sequences of complexes where the middle complex has zero
homology; so the homologies of the outside complexes are isomorphic. It follows
that D is exact if and only if D' is exact.

Let D be an object of &N and choose an exact sequence

0 -> Y-+ X*"1 ->••• -+ X1 -> X° -> D -»0

in SCn in which each X1 is projective. If D is exact then, from the last paragraph, Y
is exact. Since 9 has dimension k, each Yuv is projective in 'S. By Theorem 14, Y is
projective. So D has dimension at most k.

Conversely, suppose D has dimension at most k. Then there exists an exact
sequence as above with Y also projective. So Y is exact. Then D is exact.
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5. The split classification sequence

For this section we suppose that ^ is the category of abelian groups (or any
abelian category with projective dimension 1). Every object of stf2

 n a s CE-
dimension at most 1. By Theorem 13 then, every object A of s/N has dimFNA g 1.
So for any objects A,B of sfN, the Classification Theorem yields a natural short
exact sequence.

(4) 0 -* E*tiK(*V4, FNB) - » s / ^ A , B) IlL+ %N{FNA, FNB) -> 0

of abelian groups. In the present section we shall outline why this short exact
sequence splits.

Any projective object X of 3C2 may be regarded as an object R2X of J&2
 w i t n

zero differential and F2R2X = X. The right chain inverse, left homotopy inverse of
Lemma 9 for the chain arrow

Epq: [JpqR2X, JrsR2 7 ] -> [R2X, EpqJrsR2 Y]

may be chosen naturally in X, Ye2E2. So we have a natural arrow

A: C@2{R2X,EmJrsR2Y) - O%N(JpqR2X,JrsR2Y)

which induces an isomorphism when C88N is replaced by s/N and which has
"evaluation at p,q" as a left inverse. For projective X in 3C2, note that

^EpqJrsX = EpqJrsR2X

unless 0^q<s<r^p<N in which case the left side is 0 and the right side is

y(R2x).
The category 3SV is defined as follows. The objects X of 2£^ are families of

projective objects Xpq, 0 g q < p < N, of 9C2. An arrow a: X -» 7 in J ^ is an
arrow a: U M X P «-» I.JpqY

pq of J"w where the sums are over 0 g q < p < N. So
2£'N may be identified with a full subcategory of 9CV.

The functor K^: 3t'N -* C38n is defined on objects by the equation

RNX = EJM

On arrows RN is given by the composite

&N(X,Y) = Z3?N(JpqX>">,JrsY's)

EpqJ
rsR2 Yrs)
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= O%N(RNX,RNY).

Then FNRN: £?N -* 9Cn is the inclusion.
Let 3fN denote the full subcategory of 3£N consisting of the exact objects of

2£N. By Theorem 15, the objects of 3Cn have projective dimension at most 1 with
respect to 9£$. For each object D of &e

N, choose a short exact sequence

0 -> Y——>. X -> D -»0

in &N, where X, Yare in # w . Then RNK: RNY -»K^X is in C^V Let FWD denote
the cone CRNK of the chain arrow RNK. D O the same for D' in ^ V Suppose
a: D -* D' is an arrow of #"N. This gives a commutative diagram

in SCjf. L e t / : VND-> VND' denote the chain arrow over 38 s which, as a graded
arrow over 3SN, is

0\

If different ^,y are chosen as above, this leads to a chain arrow over 3SN which is
homotopic to / . So let

* > = [ / ] : VND-> VND>

in stf'N. So, after choosing suitable resolutions of objects of 2EN, we have defined a
functor Vs: &e

N-+s/N which extends RN: 2£N^>stfN. Since FN is homological
we have an exact sequence

in SCjf. But FNRNK = K is a monomorphism. So the sequence

0 -» 7 ^ X -> Fjy FND - » 0

is exact in 3fN. So FN VND s D, and this isomorphism is natural in D e SC^.

THEOREM 16. (^ = Abg). The functor FN: ^^-^S^e
N has a right inverse VN

up to natural isomorphism.

COROLLARY 17. {fS = Abg). There is a natural short exact sequence (4)
for A,Bes/f/; moreover,

s/N(A,B) s arN(FNA,
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