
Bull. Aust. Math. Soc. 92 (2015), 268–281
doi:10.1017/S0004972715000337

DIRECTIONAL TIME–FREQUENCY ANALYSIS VIA
CONTINUOUS FRAMES

OLE CHRISTENSEN, BRIGITTE FORSTER and PETER MASSOPUST�

(Received 19 January 2015; accepted 7 February 2015; first published online 30 April 2015)

Abstract

Grafakos and Sansing [‘Gabor frames and directional time–frequency analysis’, Appl. Comput. Harmon.
Anal. 25 (2008), 47–67] have shown how to obtain directionally sensitive time–frequency decompositions
in L2(Rn) based on Gabor systems in L2(R). The key tool is the ‘ridge idea’, which lifts a function of one
variable to a function of several variables. We generalise their result in two steps: first by showing that
similar results hold starting with general frames for L2(R), in the settings of both discrete frames and
continuous frames, and second by extending the representations to Sobolev spaces. The first step allows
us to apply the theory to several other classes of frames, for example wavelet frames and shift-invariant
systems, and the second one significantly extends the class of examples and applications. We consider
applications to the Meyer wavelet and complex B-splines. In the special case of wavelet systems we show
how to discretise the representations using ε-nets.
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1. Introduction

Expansions of functions or signals as superpositions of basic building blocks with
desired properties is one of the main tools in signal analysis. The expansions can be in
terms of an integral, a discrete sum or a combination of both.

Many real-world signals depend on more than one variable. Depending on the type
of expansion one is interested in, there are various ways to obtain such expansions. If
an orthonormal basis for L2(R) is given, one can obtain an orthonormal basis for L2(Rn)
for all n ∈ N via a simple tensor product, but often a more flexible design is required.
Some of the standard methods to obtain expansions in L2(R), for example wavelet
frames or Gabor frames, have similar versions in L2(Rn), but they might not be optimal
for detecting features or special properties of the signal at hand. Other expansions
are born in L2(Rn), typically for n = 2, 3, for example caplets, ridgelets, curvelets
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and shearlets (see [4–6, 16, 20, 23] and the references therein); all of these can be
considered as higher-dimensional wavelet-type systems with additional structure.

A different approach (parallel to the ridgelet construction) for Gabor systems
was proposed by Grafakos and Sansing [17]. Starting with Gabor systems in L2(R),
they developed a directionally sensitive Gabor-type expansion in L2(Rn) using ridge
functions. Two approaches were discussed in [17]: a discrete version, based on Gabor
frames for L2(R), and a semidiscrete version based on continuous Gabor systems
generated by two nonperpendicular functions.

In this paper, we extend the main results in [17] in various ways. First, we observe
that the above-mentioned nonorthogonality places [17] in the setting of continuous
frames, originally developed by Ali et al. [1] and Kaiser [21]. Using techniques from
frame theory, we then prove that the results in [17] have parallel versions starting with
general frames for L2(R) in both the discrete and the continuous settings. These results
are directly applicable to the Meyer wavelet and complex B-splines. As a second step
of generalisation we extend the decompositions to Sobolev spaces, an extension that
significantly enlarges the class of available frame decompositions. In the special case
of wavelet systems we also show how to discretise the representations using ε-nets.

In the rest of the introduction, we provide some notation and state the necessary
facts about ridge functions and (continuous) frames. Then, in Section 2, we present
the generalisations of the results in [17]. Semidiscrete representations of functions
in L1(R) ∩ L2(R) are investigated in Section 3, where we also apply the results to
the Meyer wavelet and to complex B-splines. In the final Section 4, we obtain fully
discrete representations for wavelet-type systems on bounded domains, by replacing
the integral over the unit sphere by an appropriately chosen ε-net.

Some remarks concerning the notation: throughout the article, we assume that
n ∈ N. Since we deal with functions in L1(R) and lift them to functions in L2(Rn),
we need to consider inner products and the Fourier transform on different spaces. In
general, for functions f ∈ L1(Rn), n ∈ N, we define the Fourier transform by

f̂ (γ) :=
∫
Rn

f (x)e−2πix·γ dγ, γ ∈ Rn,

where x · γ denotes the canonical inner product on Rn.
We extend the Fourier transform to a unitary operator on L2(Rn) in the usual way.

The inverse Fourier transform of a function f will be denoted by f ∨.Also, for functions
f , g : Rn → C, n ∈ N, we use the notation

〈 f , g〉 :=
∫
Rn

f (x)g(x) dx

whenever the right-hand side converges. The unit sphere in Rn will be denoted by Sn−1.
We also consider the Sobolev–Slobodeckij spaces, for α ≥ 0, defined by

Hα(Rn) := { f ∈ L2(Rn) | (1 + | · |2)α/2 f̂ ∈ L2(Rn)}

(see, for example, [19, 30]). It is clear that H0(Rn) = L2(Rn).
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Let us now introduce the ‘ridge procedure’ that lifts functions of one variable
to functions of several variables. Ridge functions were originally introduced by
Pinkus [28]. Our starting point is to extend the ordinary differential operator on
R to certain nondifferentiable functions. In fact, given β > 0, define the differential
operatorDβ acting on functions in the Schwartz space of rapidly decreasing functions,
h ∈ S(R), or h ∈ Hα(R), α > β, by

Dβ(h) := (̂h(·)| · |β)∨.

Throughout, we use the following terminology, which relates functions (written
with lower case letters), the corresponding ridge functions (written with a subscript),
the action of the differential operator on the given function (written with capital letters)
and the associated ridge function (written with capital letters and a subscript).

Definition 1.1. Consider any function g : R→ R.

(i) For u ∈ Sn−1, define the ridge function gu : Rn → R for g by

gu(x) := g(u · x), x ∈ Rn.

(ii) Whenever g ∈ Hα(R), α > 0 or g ∈ S(R), let

G(s) :=D(n−1)/2 g(s), s ∈ R. (1.1)

(iii) For u ∈ Sn−1, define the weighted ridge function Gu for G by

Gu(x) := G(u · x), x ∈ Rn.

Given u ∈ Sn−1, the Radon transform of a function f ∈ S(Rn) (in the direction u) is
defined by

Ru f (s) :=
∫

u·x=s
f (x) dx, s ∈ R.

The Radon transform can be extended to a bounded operator from L1(Rn) to L1(R)
[27, page 16 ff].

We note that the Fourier slice theorem relates the (one-dimensional) Fourier
transform of the Radon transform of a function f ∈ L1(Rn) to the (n-dimensional)
Fourier transform of f by the formula

R̂u( f )(η) = f̂ (ηu), η ∈ R, u ∈ Sn−1.

In the following, we consider the Sobolev spaces Hα(Rn) for α ≥ 0. In the one-
dimensional case we will make use of the fact that S(R) is dense in Hα(R) for all
α ≥ 0 (see [32, Theorem, Section 2.3.3] and [30, Ch. 8.8]). In addition, we require a
result about the Radon transform Ru on Sobolev spaces.

Lemma 1.2. Let α ≥ 0. For u ∈ Sn−1, the Radon transform Ru is a linear isomorphism
from Hα(Rn) to Hα+(n−1)/2(R).
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Proof. By [27, Theorem 5.1 and Section VII.4], there exist constants c1, c2 > 0
(depending only on α and n) such that

c1‖ f ‖Hα(Rn) ≤ ‖Ru f ‖Hα+(n−1)/2(R) ≤ c2‖ f ‖Hα(Rn), f ∈ C∞0 (Rn).

The result now follows immediately since C∞0 (Rn) is dense inS(Rn) andS(Rn) is dense
in every Hβ(Rn), β ≥ 0. �

The next lemma shows a close relation between ridge functions and the Radon
transform.

Lemma 1.3. Let u ∈ Sn−1. Let either:

(i) f ∈ L1(Rn) and g ∈ S(R); or
(ii) f ∈ Hα(Rn) and g ∈ Hβ(Rn), α, β ≥ 0.

Then

〈 f , gu〉 = 〈Ru f , g〉.

Proof. First suppose that g ∈ S(R). Then

〈 f , gu〉 =

∫
Rn

f (x)g(u · x) dx =

∫ ∞

−∞

(∫
u·x=s

f (x)g(u · x) dx
)

ds

=

∫ ∞

−∞

(∫
u·x=s

f (x) dx
)

g(s) ds = 〈Ru f , g〉,

as desired.
In case (i), the right-hand side is finite, because Ru f ∈ L1(Rn). In case (ii), the right-

hand side is bounded, because of Lemma 1.2: Ru f ∈ Hα+(n−1)/2(Rn). Since S(R) is
dense in Hβ(Rn), the equality holds for all g ∈ Hβ(Rn) because the right-hand side
holds in the L2-sense: Hα+(n−1)/2(Rn),Hβ(Rn) ⊂ L2(Rn). �

We will now state the necessary results about continuous frames. Recall that given
a complex Hilbert space H and a measure space M with a positive measure µ, a
continuous frame is a family of vectors { fk}k∈M such that the mapping k 7→ 〈 f , fk〉 is a
measurable function on M for all f ∈ H and there exist constants A, B > 0 such that

A ‖ f ‖2 ≤
∫

M
|〈 f , fk〉|2 dµ(k) ≤ B ‖ f ‖2 ∀ f ∈ H .

A continuous frame { fk}k∈M is tight if we can choose A = B.
For every continuous frame, there exists at least one dual continuous frame, that is,

a continuous frame {gk}k∈M such that each f ∈ H has the representation

f =

∫
M
〈 f , fk〉gk dµ(k); (1.2)

the integral in (1.2) should be interpreted in the weak sense.
If { fk}k∈M is a continuous tight frame with bound A, then {A−1 fk}k∈M is a dual

continuous frame.
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Continuous frames generalise the more widely known (discrete) frames, which
correspond to the case where M is a countable set equipped with the counting measure.
Continuous frames were introduced independently by Ali et al. [1] and Kaiser [21].

There are well-known examples of continuous frames for L2(R) available in the
literature. In order to introduce these, consider the translation, modulation and scaling
operators on L2(R) defined by

Ta f (x) := f (x − a), Eb f (x) := e2πibx f (x), Dc f (x) := c1/2 f (cx),

where a, b ∈ R, c > 0.
A system of functions of the form {EbTag}a,b∈R is called a (continuous) Gabor

system. We need the following result, which is an easy consequence of standard results
(see, for example, [7, Proposition 9.9.1] and [18, Theorem 3.2.1]).

Proposition 1.4.

(i) For any g ∈ L2(R)\{0}, the Gabor system {EbTag}a,b∈R is a continuous tight frame
for L2(R) with respect to M = R2 equipped with the Lebesgue measure, with
frame bound A = ‖g‖2.

(ii) For any functions g1, g2 ∈ L2(R) for which 〈g1, g2〉 , 0, the Gabor systems
{EbTag1}a,b∈R and {(1/〈g1, g2〉) EbTag2}a,b∈R are dual continuous frames.

A wavelet system has the form {DaTbψ}a,0,b∈R for a suitable function ψ ∈ L2(R). We
say that ψ satisfies the admissibility condition if

Cψ :=
∫ ∞

−∞

|ψ̂(γ)|2

|γ|
dγ <∞. (1.3)

The admissibility condition together with [12, Proposition 2.4.1] immediately leads to
a construction of a tight frame.

Corollary 1.5. If ψ ∈ L2(R) is admissible, then {DaTbψ}a,0,b∈R is a continuous frame
for L2(R) with respect to (R\{0}) × R equipped with the Haar measure (1/a2) da db,
with frame bound A = Cψ.

Note that the admissibility condition is easy to satisfy, even with generators ψ ∈
S(R). In fact, all functions ψ ∈ S(R) with vanishing mean,∫

R

ψ(x) dx = ψ̂(0) = 0,

satisfy the admissibility condition (see, for example, [25, Ch. 1]).

2. Decompositions via continuous frames
We first show that any pair of continuous dual frames for L2(R) consisting of

functions in S(R) leads to an integral representation of functions f ∈ L1(Rn) for which
f̂ ∈ L1(Rn). This generalises [17, Theorem 3], which interestingly does not use the term
continuous frame, but just the technical condition 〈g1, g2〉 , 0; in the particular context
of Gabor analysis this means exactly that the functions g1, g2 generate continuous dual
Gabor frames, as we saw in Corollary 1.4.
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Theorem 2.1. Let { fk}k∈M and {gk}k∈M be dual continuous frames for L2(R). If either:

(i) { fk}k∈M , {gk}k∈M ⊂ S(R); or
(ii) { fk}k∈M , {gk}k∈M ⊂ Hα+(n−1)/2(R), α ≥ 0,

then, for f ∈ L1(Rn) ∩ L2(R) such that f̂ ∈ L1(Rn),

f =
1
2

∫
Sn−1

∫
M
〈 f ,Gk,u〉Fk,u dk du.

Proof. First note that for g ∈ S(R), we have G ∈ S(R) and, for g ∈ Hα+(n−1)/2(R), we
have G ∈ Hα(R) for all α ≥ 0.

Consider case (i) first. Calculating the left-hand side using Lemma 1.3 yields

1
2

∫
Sn−1

∫
M
〈 f ,Gk,u〉Fk,u(x) dk du

=
1
2

∫
Sn−1

∫
M
〈Ru f ,Gk〉Fk(u · x) dk du

=
1
2

∫
Sn−1

∫
M
〈R̂u f , Ĝk〉Fk(u · x) dk du

=
1
2

∫
Sn−1

∫
M

∫ ∞

−∞

R̂u f (σ)ĝk(σ) |σ|(n−1)/2 dσFk(u · x) dk du.

Now,

Fk(u · x) = ( f̂k(·)| · |(n−1)/2)∨(u · x) =

∫ ∞

−∞

e2πiηu·x f̂k(η)|η|(n−1)/2 dη,

so we arrive at

1
2

∫
Sn−1

∫
M
〈 f ,Gk,u〉Fk,u(x) dk du

=
1
2

∫
Sn−1

∫
M

∫ ∞

−∞

R̂u f (σ)ĝk(σ)|σ|(n−1)/2 dσ
∫ ∞

−∞

e2πiηu·x f̂k(η)|η|(n−1)/2 dη dk du

=
1
2

∫
Sn−1

∫ ∞

−∞

(∫
M

∫ ∞

−∞

|σ|(n−1)/2R̂u f (σ)ĝk(σ) dσ f̂k(η) dk
)
e2πiηu·x|η|(n−1)/2 dη du.

Note that because { fk}k∈M and {gk}k∈M are dual continuous frames for L2(R), also
{ f̂k}k∈M and {ĝk}k∈M are dual continuous frames. The term in the parentheses above,
that is, ∫

M

∫ ∞

−∞

|σ|(n−1)/2R̂u f (σ)ĝk(σ) dσ f̂k(η) dk,

is exactly the frame decomposition with respect to these frames of the function
| · |(n−1)/2R̂u f (·) evaluated at the point η; thus,(∫

M

∫ ∞

−∞

|σ|(n−1)/2R̂u f (σ)ĝk(σ) dσ f̂k(η) dk
)

= |η|(n−1)/2R̂u f (η).
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Inserting this yields
1
2

∫
Sn−1

∫
M
〈 f ,Gk,u〉Fk,u(x) dk du

=
1
2

∫
Sn−1

∫ ∞

−∞

|η|(n−1)/2R̂u f (η)e2πiηu·x|η|(n−1)/2 dη du

=
1
2

∫
Sn−1

∫ ∞

−∞

|η|n−1R̂u f (η)e2πiηu·x dη du. (2.1)

From here on, standard arguments complete the proof. In fact, by the Fourier slice
theorem, R̂u f (η) = f̂ (ηu); inserting this in (2.1), and splitting the integral over R
into integrals over ]−∞,0] and [0,∞[, a few changes of variables show that (2.1) equals∫
Rn f̂ (y)e2πix·y dy = f (x), as desired.

Case (ii) follows from the density of S(R) in Hα(R) for α ≥ 0, Lemma 1.2
and the fact that the Fourier transform is a continuous linear operator on Hα(Rn)
[2, Section 9.3]. �

We have already seen in Section 1 that it is easy to construct continuous tight
wavelet frames for L2(R) that are generated by functions ψ ∈ S(R); thus, it is easy
to give applications of Theorem 2.1. However, for the purpose of applications our
ultimate goal is to provide discrete realisations of the theory, so we will not consider
concrete cases here.

3. Semidiscrete representations
The integral representation in Theorem 2.1 involves integrals over the sphere Sn−1 as

well as the set M. Letting M be a discrete set equipped with the counting measure, we
can of course apply the result to discrete frames as well; in this case we obtain what we
will call a semidiscrete representation of functions f ∈ L1(Rn) ∩ L2(Rn), involving only
an integral over Sn−1 and a sum over the discrete index set. Nevertheless, we will follow
the approach by Grafakos and Sensing, see [17, Theorem 5], where a semidiscrete
representation is derived in the Gabor case, independently of the continuous case.
The reason for doing this is that the technical conditions are slightly weaker in this
approach, leading to a representation that is valid for a larger class of functions.

Theorem 3.1. Let f ∈ L1(Rn) ∩ L2(Rn) and let I be a countable index set.

(i) Let {gk}k∈I denote a frame for L2(R) with frame bounds A, B and assume that
either { fk}k∈M ⊂ S(R) or { fk}k∈M , {gk}k∈M ⊂ Hα(R), α > 0. Define the associated
functions Gk and Gk,u as in Definition 1.1. Then

2A‖ f ‖2 ≤
∫
Sn−1

∑
k∈I

|〈 f ,Gk,u〉|
2 du ≤ 2B‖ f ‖2.

(ii) Assume that {gk}k∈I and { fk}k∈I are dual frames for L2(R) and that either { fk}k∈M ,
{gk}k∈M ⊂ S(R) or { fk}k∈M , {gk}k∈M ⊂ Hα(R), α > 0. Then

f =
1
2

∫
Sn−1

∑
k∈I

〈 f ,Gk,u〉Fk,u du.
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[8] Directional time–frequency analysis 275

Proof. We prove the result in the case of frames consisting of functions in S(R) and
leave the obvious modifications in the Sobolev case to the reader. First, by Lemma 1.3,
applied to the function Gk,

〈 f ,Gk,u〉 = 〈Ru f ,Gk〉 = 〈Ru f ,D(n−1)/2gk〉 = 〈D(n−1)/2Ru f , gk〉, (3.1)

where the last equality follows by partial integration and the assumption gk ∈ S(R).
Now, by the frame assumption on {gk}

∞
k=1,

A‖D(n−1)/2Ru f ‖2 ≤
∑
k∈I

|〈D(n−1)/2Ru f , gk〉|
2 ≤ B‖D(n−1)/2Ru f ‖2. (3.2)

As shown in [17], ∫
Sn−1
‖D(n−1)/2Ru f ‖2 du = 2‖ f ‖2.

Thus, integrating (3.2) over Sn−1 and applying (3.1) yields the result in (i).
As for the proof of (ii), the frame decomposition associated with the frames { fk}k∈I

and {gk}k∈I and applied to the function D(n−1)/2Ru f (which belongs to L2(R) by
[17, Lemma 2]) yields

Dn−1Ru f = D(n−1)/2D(n−1)/2Ru f =D(n−1)/2
∑
k∈I

〈D(n−1)/2Ru f , gk〉 fk

=
∑
k∈I

〈D(n−1)/2Ru f , gk〉D
(n−1)/2 fk =

∑
k∈I

〈Ru f ,Gk〉Fk =
∑
k∈I

〈 f ,Gk,u〉Fk.

Since f (x) = 1
2

∫
Sn−1 D

n−1Ru( f )(u · x) du, it follows that

f (x) =
1
2

∫
Sn−1

∑
k∈I

〈 f ,Gk,u〉Fk(u · x) du =
1
2

∫
Sn−1

∑
k∈I

〈 f ,Gk,u〉Fk(u · x) du

=
1
2

∫
Sn−1

∑
k∈I

〈 f ,Gk,u〉Fk,u(x) du,

as desired. �

It is easy to satisfy the assumptions in Theorem 3.1 (see, for example, [33, Theorem
3.4]). Let us illustrate the result by considering the Meyer wavelet.

Example 3.2. Let ν : R→ [ 0, 1 ] be a smooth function of sigmoidal shape required to
satisfy ν(y) = 0 for y ≤ 0, ν(y) = 1 for y ≥ 1 and ν(y) + ν(1 − y) = 1. An example of
such a function is the polynomial ν(y) = y4(35 − 84y + 70y2 − 20y3) for y ∈ [ 0, 1 ].

Now let

w(y) :=


sin

(
π

2
ν
( 3y
2π
− 1

))
for

2π
3
≤ y ≤

4π
3
,

cos
(
π

2
ν
( 3y
2π
− 1

))
for

4π
3
≤ y ≤

8π
3
,

0 elsewhere.
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The classical Meyer wavelet ψ is defined in the Fourier domain by

ψ̂(γ) := e−iπγ(w(2πγ) + w(−2πγ)).

It is well known that ψ is a Schwartz function and that

{ψk,m}k,m∈Z := {2−m/2ψ(2−m · −k) | k,m ∈ Z}

is an orthonormal basis for L2(R) (see [12, 25, 33]). In particular, {ψk,m}k,m∈Z is a frame,
which is its own dual. Thus, we can apply Theorem 3.1; the functions Gk,u = Fk,u have
the form

Ψk,m,u(x) := Ψk,m(u · x) =D(n−1)/2ψk,m(u · x)
= (| · |(n−1)/2ψ̂k,m)∨(u · x), k,m ∈ Z, u ∈ Sn−1.

Example 3.3. As a second example, we consider complex B-splines βz : R→ C, which
are a natural extension of the classical Curry–Schoenberg B-splines [15]. For a given
z ∈ C with Re z > 1, complex B-splines βz are defined in the Fourier domain by

β̂z(γ) :=
(1 − e−2πiγ

2πiγ

)z
=: Ω(z)z.

As graph Ω ∩ {(0, y) ∈ R × R | y < 0} = ∅, complex B-splines reside on the main branch
of the complex logarithm and are thus well defined.

Compared with the classical cardinal B-splines, complex B-splines βz possess an
additional modulation and phase factor in the frequency domain:

β̂z(γ) = β̂Re z(γ)eiIm z ln |Ω(γ)|e−Im z arg Ω(γ).

For more details of how these functions may be employed in image and signal analysis,
we refer the interested reader to [14].

It follows from the time-domain representation of complex B-splines,

βz(x) =
1

Γ(z)

∞∑
k=0

(−1)k
( z
k

)
(x − k)z−1

+ ,

that they cannot be elements of S(R). However, they belong to L1(R) ∩ L2(R) and, for
0 < α < Re z − 1

2 , to the Sobolev spaces Hα(R).
It was shown in [15] that complex B-splines generate a multiresolution analysis

{Vk | k ∈ Z} of L2(R). In particular, {βz(· − `) | ` ∈ Z} is a Riesz basis for V0. Using
the standard construction procedures for orthogonal scaling functions and orthogonal
wavelets, we obtain by Theorem 3.1 the associated ridge wavelets. See Figures 1 and 2
for an illustrative example.

As already mentioned, the fact that Theorems 2.1 and 3.1 hold for frames in Sobolev
spaces significantly extends the applicability. The list of explicitly known frames (or
pairs of dual frames) includes the following ones.
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Figure 1. For z = 3.5 + i, the figure shows the time-domain representation of (a) the orthonormalised
complex B-spline wavelet ψ; (b) its ridge variant Ψ; (c) the spectrum of ψ; (d) the spectrum of Ψ. Thick

lines indicate the modulus, thin lines the real part and dashed lines the imaginary part.

• In the Gabor case, it is known how to construct frames generated by B-splines [8]
or exponential splines [9], with a dual Gabor frame generated by a function that
is a finite linear combination of shifted versions of the same B-spline; such frame
generators belong to Hα for α < N − 1

2 , where N denotes the order of the B-spline.
It is also known how to construct dual pairs of frames based on continuous splines
with compact support (see, for example, the paper by Laugesen [24] or the paper
by Kim [22]).

• The unitary extension principle by Ron and Shen [29] and its more recent
variants [10, 13] yield dual pairs of wavelet frames (or tight frames) generated
by B-splines.

4. Discrete representations

In this section, we consider the cube,

Q := [−1, 1]n ⊂ Rn,

and functions f ∈ L2(Q). We will present a discretisation of the sphere Sn−1, which
ultimately leads to a complete discrete representation of functions f ∈ L2(Q). This
discretisation was also considered in [4] and is based on the concept of an ε-net. It
is one of several existing discretisation methodologies. (Other choices include the
methods in [3, 11, 26].) Let us recall the definition of a finite ε-net.

https://doi.org/10.1017/S0004972715000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000337


278 O. Christensen, B. Forster and P. Massopust [11]

0.0

–1.0
–0.5
0.0
0.5

–0.5

0.0

0.5

–50

–50

50

–50

–50

0

50

0

50
–50

50

0

0

–50

50

0

50

0

0.5

1.0

(a)

(b) (c)

Figure 2. The modulus of the orthonormal spline ridge wavelet Ψ in the direction of u = (1 0)T

for z = 3.5 + i.

Definition 4.1. Let (X, d) be a metric space and take a discrete set N ⊂ X. Given any
ε > 0, the set N is called an ε-net for M if:

(a) inf{d(y, y′) | y , y′, y, y′ ∈ N} ≥ ε;
(b) inf{r | X =

⋃
y∈N Br(y)} ≤ ε, where Br(y) denotes the closed ball of radius r > 0

centered at y.

An ε-net is called finite if N is a finite set.

Note that since the sphere is compact and hence totally bounded, an ε-net exists for
Sn−1 for all ε > 0 (see [31]).

We employ the following discretisation procedure for Sn−1; see also [4].

(i) Choose an a0 > 1 and discretise the scale parameter a by the sequence {ak := ak
0 |

k ∈ I}, where I := {k ∈ Z | k ≥ k0} and k0 ∈ Z is selected appropriately.
(ii) For k ∈ I, set εk := 1

2 ak0−k.
(iii) Let S n−1

k be an εk-net of Sn−1 and require that following condition holds: there
exist positive constants c = c(n) and C = C(n) so that for all u ∈ Sn−1 and all
εk ≤ r ≤ 2,

c
( r
εk

)n−1
≤ card ({Br(u) ∩ S n−1

k }) ≤ C
( r
εk

)n−1
.
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Note that for 0 < r ≤ εk, Br(u) ⊆ Bεk (u) and thus card {Br(u) ∩ S n−1
k } ≤ C. It can be

proved that the number of points Nk in the εk-net satisfies the following bounds:

c
( r
εk

)n−1
≤ Nk ≤ C

( r
εk

)n−1
.

Next, we list the standing assumptions for this section.

4.1. General setup. Let g ∈ S(R) and assume that:

(i)
∫ ∞
−∞

((| ĝ(γ)|2)/(|γ|n)) dγ <∞;
(ii) inf1≤|γ|≤a0

∑∞
k=0 | ĝ(a−k

0 γ)|2|a−k
0 γ|−2(n−1) > 0;

(iii) | ĝ(γ)| ≤ K|γ|α(1 + |γ|)−β for some K > 0, α > (n − 1)/2 and β > α + (n + 3)/2.

These conditions are satisfied for a large class of functions, for instance the
Gaussian.

In particular, we remark that:

• if condition (i) is satisfied, then G := D(n−1)/2 g satisfies the admissibility
condition (1.3);

• condition (ii) is satisfied if

inf
1≤|γ|≤a0

∞∑
k=0

| ĝ(a−k
0 γ)|2|a−k

0 γ|−(n−1) > 0.

For the proof of our result we need [4, Theorem 4], which we state here in our
notation.

Theorem 4.2 [4, Theorem 4]. Assume that the function g ∈C1(R) satisfies the following
two conditions:

• inf1≤|γ|≤a0

∑∞
k=0 | ĝ(a−k

0 γ)|2|a−k
0 γ|−(n−1) > 0;

• | ĝ(γ)| ≤ K|γ|α(1 + |γ|)−β for some K > 0, α > (n − 1)/2 and β > 2 + α.

Then there exists b0 > 0 so that for any b < b0, we can find two constants A, B > 0
(depending on g, a0, b0 and n) so that, for any f ∈ L2(Q),

A‖ f ‖2L2(Q) ≤
∑
k∈I

∑
u∈S n−1

k

∑
`∈Z

|〈 f ,Dak T`bGu〉|
2 ≤ B‖ f ‖2L2(Q). (4.1)

We will now show that under the general setup and with the discretisation of the
unit sphere Sn−1 in term of the ε-net introduced above, there exists a discrete frame for
L2(Q).

Theorem 4.3. Let g ∈ S(R) be as in the general setup and let G := D(n−1)/2g. Then
there exists a b0 > 0 so that (4.1) holds for any given b ∈]0, b0], that is, the orthogonal
projection of {Dak T`bGu | k ∈ I; ` ∈ Z; u ∈ S n−1

k } onto L2(Q) forms a frame for L2(Q).
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Proof. Let G be defined as in (1.1). Then

| Ĝ(a−k
0 γ)|2|a−k

0 γ|−2(n−1) = | ĝ(a−k
0 γ)|2|a−k

0 γ|n−1|a−k
0 γ|−2(n−1)

= | ĝ(a−k
0 γ)|2|a−k

0 γ|−(n−1)

and, therefore,

inf
1≤|γ|≤a0

∞∑
k=0

| Ĝ(a−k
0 γ)|2|a−k

0 γ|−(n−1) > 0.

Furthermore,
| Ĝ(γ)| = | ĝ(γ)| |γ|(n−1)/2 ≤ K|γ|α+(n−1)/2(1 + |γ|)−β.

Hence, the function G satisfies the two conditions in Theorem 4.2 and the result
follows. �
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