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Abstract

We prove the existence and give constructions of a (p(k) − 1)-fold perfect resolvable (v, k, 1)-Mendelsohn
design for any integers v > k ≥ 2 with v ≡ 1mod k such that there exists a finite Frobenius group whose
kernel K has order v and whose complement contains an element φ of order k, where p(k) is the least
prime factor of k. Such a design admits K o 〈φ〉 as a group of automorphisms and is perfect when k is a
prime. As an application we prove that for any integer v = pe1

1 · · · p
et
t ≥ 3 in prime factorisation and any

prime k dividing pei
i − 1 for 1 ≤ i ≤ t, there exists a resolvable perfect (v, k, 1)-Mendelsohn design that

admits a Frobenius group as a group of automorphisms. We also prove that, if k is even and divides pi − 1
for 1 ≤ i ≤ t, then there are at least ϕ(k)t resolvable (v, k, 1)-Mendelsohn designs that admit a Frobenius
group as a group of automorphisms, where ϕ is Euler’s totient function.
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1. Introduction

The purpose of this paper is to explore connections between resolvable Mendelsohn
designs and Frobenius groups. We will show that Frobenius groups provide a natural
means for constructing resolvable Mendelsohn designs with λ = 1.

All sets and groups considered in the paper are finite. Let v ≥ k ≥ 2 and λ ≥ 1 be
integers. A (v, k, λ)-Mendelsohn design [24], or a (v, k, λ)-MD for short, consists of
a set X (of points) of cardinality v and a collection B of cyclically ordered subsets
of X (called blocks) each with cardinality k, such that every ordered pair of elements
of X are consecutive in exactly λ blocks. In a block (a1, a2, . . . , ak) with cyclic order
a1 < a2 < · · · < ak < a1, the points ai and ai+t are said to be t-apart for i = 1, . . . , k
with subscripts modulo k. A (v, k, λ)-MD (X,B) is called `-fold perfect [21] if, for
t = 1, . . . , `, every ordered pair of elements of X appears t-apart in exactly λ blocks.
A (v, k, λ)-MD is said to be perfect [24], denoted by (v, k, λ)-PMD, if it is (k − 1)-
fold perfect. It is not difficult to see that any (v, k, λ)-MD has λv(v − 1)/k blocks and
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thus satisfies λv(v − 1) ≡ 0 mod k. A (v, k, λ)-MD is called resolvable [7], denoted
(v, k, λ)-RMD, if either v ≡ 0 mod k and the set of blocks can be partitioned into
λ(v − 1) parts each containing v/k pairwise disjoint blocks, or v ≡ 1 mod k and the set
of blocks can be partitioned into λv parts each containing (v − 1)/k pairwise disjoint
blocks. We denote a resolvable perfect (v, k, λ)-MD by (v, k, λ)-RPMD. A (v, k, λ)-
MD can be equivalently defined as a decomposition of λ

−→
Kv into edge-disjoint directed

cycles of length k, where λ
−→
Kv is the directed complete multigraph of v vertices with λ

directed edges between each ordered pair of vertices. From this viewpoint a (v, k, λ)-
MD is also called a balanced directed cycle design with parameters (v, k, λ) or a
(v, k, λ)

−→
C k-design (see, for example, [26, 27]).

Mendelsohn designs are very well studied and many results about them have been
produced since the 1970s. Here we mention only a few results on PMDs and RMDs.
As mentioned above, a necessary condition for the existence of a (v, k, λ)-MD is that
λv(v − 1) ≡ 0 mod k. This condition has been proved to be sufficient for the existence
of a (v, k, λ)-PMD when: (i) k = 3, except for the nonexisting (6, 3, 1)-PMD [5, 23];
(ii) k = 4, except for v = 4 and λ odd, v = 8 and λ = 1 [4, Theorem 1.2]; (iii) k = 5,
except for λ = 1, v ∈ {6, 10}, and possibly for λ = 1 and v ∈ {15, 20} [4, Theorem 1.3].
See [1, 4, 6, 25] for more results on PMDs.

In [7] it was proved that a (v, k, 1)-RMD exists if there is an algebra of order v in
a certain quasivariety, that a (q, k, 1)-RPMD exists whenever q is a prime power with
q ≡ 1 mod k, and that a (v, k, 1)-RPMD exists for sufficiently large v with v ≡ 1 mod k.
A (v, 3, 1)-RMD exists if and only if v ≡ 0 or 1 mod 3 and v , 6 [8, 10]. A (v, 4, 1)-
RMD exists if and only if v ≡ 0, 1 mod 4 and v , 4 except possibly when v = 12
[9]. A (v, 4, 1)-RPMD exists for all v ≡ 0 mod 4 other than v = 4, 8 with at most
27 possible exceptions [34, 35]. A (v, k, 1)-RPMD exists for all sufficiently large v
with v ≡ 0 mod k [34]. A (v, 5, 1)-RPMD with v ≡ 1 mod 5 exists for all v > 6 except
possibly v = 26 [2], and a (v, 5, 1)-RPMD with v ≡ 0 mod 5 exists for all v ≥ 215 with
two known exceptions plus at most 17 possible exceptions below this value [3]. In [33]
it was proved that for λ > 1 the necessary condition v ≡ 0, 1 mod 4 is also sufficient
for the existence of a (v, 4, λ)-RPMD with the exception when v = 4 and λ is odd.

An automorphism of an MD is a permutation of its point set that permutes its blocks
among themselves. The (full) automorphism group of an MD is the group of all its
automorphisms with operation the usual composition of permutations. In general, for
a group G, an MD (X,B) is said to admit G as a group of automorphisms if G acts (not
necessarily faithfully) on the point set X and preserves the block set B. An MD is said
to be based on G [11, 13, 26, 27] if its point set can be identified with G in such a way
that the MD admits the left regular representation of G as a group of automorphisms.
A useful construction, called the ‘difference method’, for constructing MDs based
on groups was discussed in [11] and further developed in [13, 26, 27]. A similar
construction was also developed in [21] using the language of generalised complete
mappings (and generalised Mendelsohn designs). In [13] all MDs admitting a one-
dimensional affine group AGL(1, q) as a group of automorphisms were classified, and
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in [26] all MDs admitting the holomorph of a cyclic group were classified. In [27,
Section 5] MDs based on a group G that admit as automorphisms elements of a certain
subgroup of the automorphism group Aut(G) of G were studied.

In this paper we give constructions of RMDs and RPMDs with λ = 1 using
Frobenius groups. Our research was motivated by the first author’s work [20, 21]
(with Keedwell) on generalised complete mappings and the second author’s work [28–
30, 36] (partly with Thomson) on Frobenius circulant graphs. We refined the methods
in [20, 21] (see the first version of this paper at https://arxiv.org/abs/1307.7455v1),
but later we found that our constructions are also in line with the difference method
[13, 26, 27] as all RMDs and RPMDs obtained in our paper are based on the kernels
of Frobenius groups. It turns out that Frobenius groups are proper choices because the
Mendelsohn designs obtained from them are always resolvable. As mentioned above,
much is known about the existence of MDs with λ = 1 in the literature. The benefit
of our results is that they give natural constructions of some RMDs and RPMDs with
λ = 1 having the additional property that an automorphism group is regular on the
point set.

The main results in the paper are as follows. We first prove (see Theorem 3.1)
that, if there exists a Frobenius group K o H with Frobenius kernel K and complement
H such that v = |K| and H contains an element φ of order k ≥ 2, then a (p(k) − 1)-
fold perfect (v, k, 1)-RMD based on K exists, where p(k) is the smallest prime
factor of k. In particular, this (v, k, 1)-RMD is a (v, k, 1)-RPMD when k is a prime.
Moreover, such a (v, k, 1)-RMD can be easily constructed from φ and the action
of H on K. This result enables us to construct various point-transitive RMDs and
RPMDs systematically using Frobenius groups. To illustrate this method, we will use
Theorem 3.1 and a known result [12] on Ferrero pairs to prove the existence and give
an explicit construction of a (v, k, 1)-RPMD, for any integer with prime factorisation
v = pe1

1 · · · p
et
t and any prime k dividing every pei

i − 1 (see Theorem 3.8). We will also
use Theorem 3.1 and a recent result from network design [30] to construct (v, k, 1)-
RMDs for any v = pe1

1 · · · p
et
t and any even k dividing every pi − 1 (see Theorem 4.1).

All results obtained in this paper can be stated in terms of regular orthomorphisms
or complete mappings of groups, owing to the close connections between MDs and
orthomorphisms and complete mappings of groups as shown in [21, Theorem 5.1] (see
also Lemma 3.3 and Remark 3.4). Beginning with [22] and motivated by the study of
Latin squares, there is a long history of studying complete mappings. Hall and Paige
[19] proved that a finite group with a nontrivial, cyclic Sylow 2-subgroup does not
admit complete mappings. The converse, which was a long-standing conjecture [19],
was proved in 2009 by Wilcox [31], Evans [15] and Bray (see [15]).

2. Notation and terminology

To make the paper self-contained we collect here some basic definitions on
orthomorphisms, complete mappings and Frobenius groups. Undefined group-
theoretic definitions can be found in [14, 18].
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Let G be a group. A bijection θ : G→G is called a complete mapping [19, 22] of G
if the mapping θ̂ defined by θ̂(x) = xθ(x) is also a bijection, and an orthomorphism [16]
if the mapping θ̄ defined by θ̄(x) = x−1θ(x) is also a bijection. Thus, θ is a complete
mapping if and only if θ̂ is an orthomorphism, and θ is an orthomorphism if and only if
θ̄ is a complete mapping. Obviously, if θ is a complete mapping or orthomorphism of
G, then so is the bijection x 7→ θ(x)a for every fixed a ∈G. Hence, we may require θ to
fix 1G, and in this case θ is said to be in canonical form. As a permutation of G, θ can
be decomposed into a product of cycles. A complete mapping or orthomorphism θ in
canonical form is k-regular [20], where k ≥ 2, if all cycles in this decomposition other
than the trivial cycle (1G) have length k. If in addition θ, θ2, . . . , θ` are all k-regular,
then θ is said to be `- fold perfect [21, Definition 5.7], where ` is a positive integer less
than k and θi is the composition of θ with itself i times. In particular, θ is called perfect
[21] if it is (k − 1)-fold perfect.

An action of a group G on a set Ω is a mapping G × Ω → Ω, (x, α) 7→ x(α)
such that 1G(α) = α and x(y(α)) = (xy)(α) for α ∈ Ω and x, y ∈ G, where 1G is the
identity element of G. Call G(α) := {x(α) : x ∈ G} the G-orbit containing α, and
Gα := {x ∈ G : x(α) = α} the stabiliser of α in G. We say that G is semiregular on
Ω if Gα = {1G} for all α ∈ Ω, transitive on Ω if G(α) = Ω for some (and hence all)
α ∈ Ω, and regular on Ω if it is both transitive and semiregular on Ω.

If a group H acts on a group K such that x(uw) = x(u)x(w) for x ∈ H and u,w ∈ K,
then H acts on K as a group. This is equivalent to saying that the mapping defined
by x 7→ ψx is a homomorphism from H to Aut(K), where ψx ∈ Aut(K) is defined by
ψx(u) = x(u). In this case the semidirect product [14] of K by H with respect to the
action, denoted by K o H, is the group whose elements are ordered pairs (u, x), u ∈ K,
x ∈ H, with operation defined by (u1, x1)(u2, x2) = (u1x1(u2), x1x2). If in addition H is
semiregular on K \ {1K}, then K o H is called a Frobenius group [14, 18]. It is well-
known [14, 18] that, for a finite Frobenius group G = K o H, the group K is a nilpotent
normal subgroup of G called the Frobenius kernel of G, and |H| is a divisor of |K| − 1.
Here, H is called a Frobenius complement [14, 18] of K in G.

We can also define a Frobenius group as a transitive group G on a set Ω that is not
regular but has the property that 1G is the only element of G that fixes two points of
Ω. The Frobenius kernel K of G then consists of 1G and the elements of G fixing no
point of Ω, and the stabiliser H in G of a point of Ω is a complement of G (see, for
example, [14, page 86]). Since K is regular on Ω, we may identify Ω with K in such
a way that K acts on itself by right multiplication, and we may choose H to be the
stabiliser of the identity element of K so that H acts on K by conjugation.

If K is a nontrivial group and H a nontrivial fixed-point-free subgroup of Aut(K),
then K o H (with respect to the natural action of H on K) is a Frobenius group with
kernel K and complement H. (An element φ ∈ Aut(G) is fixed-point-free if φ(x) , x for
every x ∈G \ {1G}, and a subgroup H of Aut(G) is fixed-point-free if every nonidentity
element of H is fixed-point-free.) When the operation of K is written additively (but
K is not necessarily abelian), such a pair (K,H) is called a Ferrero pair [12] in the
literature.

https://doi.org/10.1017/S0004972718000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000333


[5] Resolvable Mendelsohn designs 5

The left regular representation [18] of a group G is the permutation group L(G) =

{λ(g) : g ∈ G}, where λ(g) is the permutation of G defined by λ(g) : x 7→ gx, x ∈ G.
This group acts regularly on G in the obvious way and is isomorphic to G when λ(g)
is identified with g.

3. Resolvable Mendelsohn designs and regular orthomorphisms

We use p(k) to denote the smallest prime factor of an integer k ≥ 2. As usual, for
an element φ of a group, 〈φ〉 denotes the cyclic subgroup generated by φ.

Theorem 3.1. Let v ≥ 3 and k ≥ 2 be integers with v ≡ 1 mod k such that there exists
a Frobenius group K o H with |K| = v and H containing an element φ of order k.
Then a (p(k) − 1)-fold perfect (v, k, 1)-RMD exists and can be constructed based on
K. Moreover, this (v, k, 1)-RMD admits K o 〈φ〉 as a group of automorphisms. In
particular, if k is a prime, then it is a (v, k, 1)-RPMD. Furthermore, the (v, k, 1)-RMDs
constructed by using conjugate elements of H with order k are isomorphic to each
other.

In general, unfortunately, we do not know when two nonconjugate elements of H
with the same order produce isomorphic (v, k, 1)-RMDs.

To prove Theorem 3.1 we need the following two lemmas.

Lemma 3.2. Let K o H be a Frobenius group. Let φ be a nonidentity element of H with
order k. Then φ gives rise to a (p(k) − 1)-fold perfect k-regular orthomorphism of K
in canonical form. Moreover, φ gives rise to a perfect k-regular orthomorphism of K
if and only if k is a prime.

Proof. Since K o H is a Frobenius group, H is semiregular on K \ {1}, where 1 is
the identity element of K. That is, φ(x) = x implies x = 1, for any x ∈ K. Thus,
for x, y ∈ K, we have x−1φ(x) = y−1φ(y)⇔ φ(x)φ(y)−1 = xy−1 ⇔ φ(x)φ(y−1) = xy−1 ⇔

φ(xy−1) = xy−1 ⇔ xy−1 = 1⇔ x = y. In other words, the mapping from K to K defined
by φ̄(x) = x−1φ(x) is injective and so must be bijective as K is finite. Note that φ fixes
1. Therefore, φ is an orthomorphism of K in canonical form.

Since φ has order k, we have φ j , 1H for 1 ≤ j ≤ k − 1. Since H is semiregular on
K \ {1}, it follows that φ j(x) , x for every x ∈ K \ {1}. Thus, (x, φ(x), φ2(x), . . . , φk−1(x))
is a cycle in the decomposition of the permutation φ of K into disjoint cycles. This
implies that every nontrivial cycle in the cycle decomposition of φ has length k.
Therefore, φ is a k-regular orthomorphism of K.

We prove further that φ is (p(k) − 1)-fold perfect. Fix i with 1 ≤ i ≤ p(k) − 1. Then i
and k are coprime, since p(k) is the smallest prime factor of k. Hence, the order of φi is
equal to k. It follows from what we proved above that φi is a k-regular orthomorphism
of K. Since this holds for i = 1, . . . , p(k) − 1, we conclude that φ is a (p(k) − 1)-fold
perfect k-regular orthomorphism of K.

In the special case when k is a prime, we have p(k) = k and therefore φ is a
perfect k-regular orthomorphism of K. Conversely, suppose φ is a perfect k-regular
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orthomorphism of K. Then φ, φ2, . . . , φk−1 are all k-regular orthomorphisms of G.
Thus, for any 1 ≤ i, j ≤ k − 1 and any x ∈ K \ {1}, we have φi j(x) , x and so i j cannot
be a multiple of k. Therefore, k must be a prime. �

The following result is similar to its counterpart for complete mappings (see [21,
Theorems 5.1, 5.3 and 5.4]), and the proof is similar to that of [21, Theorem 5.1]. We
give its proof for completeness.

Lemma 3.3. Let G be a group of order v that admits an `-fold perfect k-regular
orthomorphism θ (in canonical form) and suppose that the cycle decomposition of
θ is given by (g11, g12, . . . , g1k) . . . (gr1, gr2, . . . , grk), where k ≥ 2 and rk = v − 1. Let

B =
⋃
g∈G

Bg,

where
Bg = {(gg11, gg12, . . . , gg1k), . . . , (ggr1, ggr2, . . . , ggrk)}

with each block (ggi1, ggi2, . . . , ggik) equipped with the cyclic order ggi1 < ggi2 < · · · <
ggik < ggi1. Then (G,B) is an `-fold perfect (v, k, 1)-RMD with point set G. Moreover,
(G,B) admits the left regular representation of G as a group of automorphisms.

Proof. By our assumption, θ is defined by θ(1G) = 1G and θ(gi j) = gi, j+1, for 1 ≤ i ≤ r,
1 ≤ j ≤ k, with the second subscripts modulo k. In general, for 1 ≤ t ≤ `, θt(1) = 1 and
θt(gi j) = gi, j+t.

Fix t with 1 ≤ t ≤ `. Let (x, y) be an arbitrary pair of distinct elements of G, so
that x−1y , 1. Then (x, y) = (ggi j, ggi, j+t) if and only if x−1y = g−1

i j gi, j+t and g = xg−1
i j .

However, since by our assumption θt is an orthomorphism of G, there is exactly one
pair (i, j) satisfying the first equation. Therefore, the ordered pair of elements (x, y) are
t-apart in exactly one block ofB. Since this holds for any (x, y) and any t with 1 ≤ t ≤ `,
it follows that (G,B) is an `-fold perfect (v, k, 1)-MD with point set G. Moreover,
(G,B) is resolvable because of the obvious partition {Bg : g ∈G} of B into v parts each
containing (v − 1)/k pairwise disjoint blocks. Clearly, (G,B) admits the left regular
representation of G as a group of automorphisms. �

Remark 3.4.

(a) Similar to [21, Theorem 5.1], the converse of Lemma 3.3 is also true. That
is, from an `-fold perfect (v, k, 1)-RMD on G that admits L(G) as a group of
automorphisms, we can recover an `-fold perfect k-regular orthomorphism.

(b) In Lemma 3.3, B1 = {(g11, g12, . . . , g1k), . . . , (gr1, gr2, . . . , grk)} is a basis, and
its blocks are base blocks, of the (v, k, 1)-RMD in the sense that all other blocks
are obtained from them by applying L(G). This fact is usually expressed as
B = dev(B1) [6].

Proof of Theorem 3.1. Let v, k, K o H and φ be as in Theorem 3.1. By Lemma 3.2,
φ gives rise to a (p(k) − 1)-fold perfect k-regular orthomorphism of K in canonical

https://doi.org/10.1017/S0004972718000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000333


[7] Resolvable Mendelsohn designs 7

form, whose cycles in the cycle decomposition are B(x) = (x, φ(x), φ2(x), . . . , φk−1(x)),
for x ∈ K \ {1}, where 1 is the identity element of K. Note that B(x) = B(y) as
sets if and only if y = φi(x) for some i. Regard B(x) as a block with cyclic order
x < φ(x) < φ2(x) < · · · < φk−1(x) < x, and define B1(φ) = {B(x) : x ∈ K \ {1}} with
duplicated blocks counted only once. More explicitly, letting the 〈φ〉-orbits on K \ {1}
be 〈φ〉(x1), . . . , 〈φ〉(xr), where x1, . . . , xr ∈ K \ {1} and r = (v − 1)/k,

B1(φ) = {B(x1), . . . , B(xr)}.

Define
B(φ) = dev(B1(φ)) =

⋃
g∈K

Bg(φ),

where
Bg(φ) = gB1(φ) = {gB(x1), . . . , gB(xr)}

and
gB(xi) = (gxi, gφ(xi), gφ2(xi), . . . , gφk−1(xi)), i = 1, . . . , r.

By Lemma 3.3, (K,B(φ)) is a (p(k) − 1)-fold perfect (v, k, 1)-RMD. Since 〈φ〉 leaves
each block of B1(φ) invariant and permutes its elements cyclically, one can verify that
(K,B(φ)) admits 〈φ〉 as a group of automorphisms. Since by Lemma 3.3, (K,B(φ))
also admits L(K) as a group of automorphisms, it admits K o 〈φ〉 as a group of
automorphisms (with K identified with L(K)).

If k is a prime, then by Lemma 3.2, φ gives rise to a perfect k-regular orthomorphism
of K, and hence (K,B(φ)) is a (v, k, 1)-RPMD by Lemma 3.3.

Finally, assume that φ′ = ψ−1φψ is a conjugate of φ, where ψ ∈ H. Then a typical
base block in B1(φ′) is (x, ψ−1φψ(x), . . . , ψ−1φk−1ψ(x)), which can be expressed as

(ψ−1(y), ψ−1φ(y), . . . , ψ−1φk−1(y)) = ψ−1(y, φ(y), . . . , φk−1(y)),

where we set y = ψ(x). From this one can verify that ψ (viewed as a bijection of K) is
an isomorphism from (K,B(φ)) to (K,B(φ′)). �

In Theorem 3.1 and Lemma 3.2 we essentially dealt with the Frobenius group
K o 〈φ〉. Thus, we have the following corollary of Theorem 3.1.

Corollary 3.5. Let v ≥ 3 and k ≥ 2 be integers such that there exists a group K with
order v that admits a fixed-point-free automorphism φ of order k. Then there exists
a (p(k) − 1)-fold perfect (v, k, 1)-RMD based on K that admits K o 〈φ〉 as a group of
automorphisms. If in addition k is a prime, then this (v, k, 1)-RMD is a (v, k, 1)-RPMD.

The assumption in this corollary (as well as the next one) implies v ≡ 1 mod k.
The well-known Cauchy theorem in group theory asserts that for any group H and
any prime divisor k of |H|, H contains an element of order k. Combining this with
Theorem 3.1 we obtain the following result.
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Corollary 3.6. Let v ≥ 3 be an integer and k ≥ 2 a prime such that there exists a
Frobenius group K o H with |K| = v and with k dividing |H|. Then there exists a
(v, k, 1)-RPMD based on K that admits K o 〈φ〉 as a group of automorphisms, where φ
is an element of H with order k.

Applying Theorem 3.1, Corollary 3.5 or Corollary 3.6 to various Frobenius groups,
we can obtain point-transitive Mendelsohn designs with specific parameters. In
the special case when the group is AGL(1, q), we obtain the following well-known
construction (see, for example, [6, 25, 32]) which is included for illustration only.
(A related result that generalises [13, Theorem 2.3] is the classification [27, Theorem
5.4] of all (q, k, 1)-MDs based on (Fq,+) admitting a subgroup of (F∗q, ·) as a group of
automorphisms.)

Example 3.7. AGL(1, q) consists of all affine transformations tα,β : ξ 7→ αξ + β of Fq,
α ∈ F∗q, β ∈ Fq, where q is a prime power. It is well-known that AGL(1, q) = K o H
is sharply 2-transitive on Fq [14] and hence AGL(1, q) is a Frobenius group, where
K = {t1,β : β ∈ Fq} � (Fq,+) and H = {tα,0 : α ∈ F∗q} � (F∗q, ·). Since H is a cyclic group
of order q − 1, for every divisor k ≥ 2 of q − 1, H has a unique element φ = tα,0 of
order k, where α = ωr with ω a primitive element of Fq and r = (q − 1)/k. Moreover,
〈φ〉 is isomorphic to the subgroup 〈α〉 of F∗q, and so we may identify these two cyclic
groups. By Theorem 3.1, a (q, k, 1)-RMD (K,B(φ)) exists and can be constructed
explicitly. A typical base block in B1(φ) is of the form (x, xα, . . . , xαk−1). Hence,
B1(φ) = {(1, ωr, . . . , ωr(k−1)), . . . , (ωr−1, ω2r−1, . . . , ωr(k−1)+(r−1))} and so the blocks of
B(φ) are (ωi, ωi+r, . . . , ωi+r(k−1)), . . . , (ωi+r−1, ωi+2r−1, . . . , ωi+r(k−1)+(r−1)), i = 0, 1, . . . , r.
In the case when k is a prime factor of q − 1, by Theorem 3.1, (K,B(φ)) is a (q, k, 1)-
RPMD.

In [12, Theorem 1], Boykett proved the following: let v = pe1
1 · · · p

et
t (prime

factorisation) and k be positive integers. Then there exists a Ferrero pair (K,H) such
that |K| = v and |H| = k if and only if k divides pei

i − 1 for 1 ≤ i ≤ t. Using this, we
obtain the following special case of Theorem 3.1. In the statement, gcd stands for the
greatest common divisor.

Theorem 3.8. Let v = pe1
1 · · · p

et
t ≥ 3 be an integer in prime factorisation, and let k be a

prime factor of gcd(pe1
1 − 1, . . . , pet

t − 1). Then there exists a (v, k,1)-RPMD that admits
a Frobenius group K o H with |K| = v and |H| = k as a group of automorphisms.

Proof. Since k divides gcd(pe1
1 − 1, . . . , pet

t − 1), by the result of Boykett mentioned
above there exists a Ferrero pair (K,H) with |K| = v and |H| = k. Since k is a prime,
H is a cyclic group and every nonidentity element of it has order k. The result follows
from Theorem 3.1. �

Theorem 3.8 is in the same spirit as the following known results:

(a) a (v, k, 1)-RPMD exists for any prime power v and any divisor k ≥ 2 of v − 1 [7];
(b) a (v, k, 1)-PMD exists for any integer v = pe1

1 · · · p
et
t ≥ 3 and any divisor k ≥ 2 of

gcd(pe1
1 − 1, . . . , pet

t − 1) [24, Corollary 2.5].

Nevertheless, neither of these results implies Theorem 3.8.
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Construction 3.9. Following the line of proof of Theorem 3.1, we can construct
the (v, k, 1)-RPMD in Theorem 3.8 explicitly. Denote qi = pei

i and let K =
⊕t

i=1 Fqi

be the direct sum of the additive groups of the finite fields Fqi . Since k divides
qi − 1, for each i, ri = (qi − 1)/k is an integer. Let ωi be a primitive element of
Fqi and Hi = 〈ωri

i 〉 be the subgroup of F∗qi
with order k. We denote a copy of

H1 � · · · � Ht by H = 〈ω〉. Then H acts on K by ω j(x1, . . . , xt) = (ω jr1
1 x1, . . . , ω

jrt
t xt),

for (x1, . . . , xt) ∈ K and ω j ∈ H. It can be verified that H acts fixed-point-freely
on K as a group and H is isomorphic to a subgroup of Aut(K). Thus, (K, H)
is a Ferrero pair with |K| = v and |H| = k. Since k is a prime, every nonidentity
element of H has order k. For i = 1, . . . , k − 1, the (v, k, 1)-RPMD (K, B(ωi))
obtained from ωi is as follows: the basis B0(ω) consists of blocks of the form
B(x1, . . . , xt) = ((x1, . . . , xt), (ω

ir1
1 x1, . . . , ω

irt
t xt), . . . , (ω

(k−1)ir1
1 x1, . . . , ω

(k−1)irt
t xt)), for

(x1, . . . , xt) ∈ K \ {(0, . . . , 0)}. We have B(ω) =
⋃

(y1,...,yt)∈K(B0(ω) + (y1, . . . , yt)), where
B0(ω) + (y1, . . . , yt) consists of all blocks

B(x1, . . . , xt) + (y1, . . . , yt) = ((x1 + y1, . . . , xt + yt), (ω
ir1
1 x1 + y1, . . . ,

ωirt
t xt + yt), . . . , (ω

(k−1)ir1
1 x1 + y1, . . . , ω

(k−1)irt
t xt + yt)).

There has been extensive research on the existence of (v, k, λ)-PMDs for a fixed
(especially small) integer k (see [6] for a survey). Theorem 3.8 asserts that, for a fixed
prime k, a (pe1

1 · · · p
et
t , k, 1)-RPMD exists for any prime powers pei

i as long as k divides
all pei

i − 1, 1 ≤ i ≤ t. In particular, for any primes p1, . . . , pt ≡ 1 mod k and any integers
e1, . . . , et ≥ 1, there exists a (pe1

1 · · · p
et
t , k, 1)-RPMD.

4. Constructing resolvable Mendelsohn designs from cyclic groups
In this section we construct RMDs from cyclic groups by using Theorem 3.1 and

recent results [28–30, 36] on first-kind Frobenius circulant graphs. As usual we denote
the additive group of integers modulo n by Zn and the multiplicative group of units of
the ring Zn by Z∗n = {[u] : 1 ≤ u ≤ n − 1, gcd(n, u) = 1}. Then Aut(Zn) � Z∗n and Z∗n acts
on Zn by the usual multiplication: [x][u] = [xu], [x] ∈ Zn, [u] ∈ Z∗n. The semidirect
product Zn o Z

∗
n acts on Zn by [x]([y],[u]) = [(x + y)u] for [x], [y] ∈ Zn and [u] ∈ Z∗n.

Let ϕ denote Euler’s totient function. The main result in this section is as follows.

Theorem 4.1. Let v = pe1
1 · · · p

et
t ≥ 3 be an odd integer in prime factorisation. Then for

every even divisor k of gcd(p1 − 1, . . . , pt − 1), there exist at least ϕ(k)t (v, k, 1)-RMDs
based on Zv, and each of them can be constructed from some [a] ∈ Z∗v of the form
a =
∑t

i=1(v/pei
i )aibi and admits Zv o 〈[a]〉 as a group of automorphisms, where bi is

the inverse of v/pei
i in Fpei

i
and ai satisfies ai ≡ η

miϕ(pei
i )/k

i mod pei
i for a fixed primitive

element ηi of Fpei
i

and an integer mi coprime to k.

Remark 4.2.

(a) It would be interesting to understand whether and when some of these ϕ(k)t

(v, k, 1)-RMDs are isomorphic to each other. A construction of such RMDs will
be given in the proof of Theorem 4.1.
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(b) In [26, Corollary 2] it was shown that a (v, k, 1)-MD admitting the holomorph
Hol(Zv) � Zv o Z

∗
v of Zv as a group of automorphisms exists if and only if one

of the following holds: (i) k = 2; (ii) p ≡ 1 mod k for every prime factor p of v;
(iii) k is the least prime factor of v, k2 does not divide v, and p ≡ 1 mod k for
every prime factor p of v other than k. Theorem 4.1 implies that under condition
(ii) many (v, k,1)-RMDs based on Zv exist and can be easily constructed. Neither
of Theorem 4.1 and [26, Corollary 2] is implied by the other.

(c) Similar to Lemma 3.2, the result in Theorem 4.1 can be stated in terms of
orthomorphisms: under the same assumption, Zv admits at least ϕ(k)t k-regular
orthomorphisms. Hsu conjectured that, for every odd integer n ≥ 3 and every
divisor k of n − 1, a k-regular complete mapping of Zn exists, or equivalently
a k-regular orthomorphism exists. This was confirmed when k = 2 or (n − 1)/2
(see [17, Theorem 3]). The following corollary of Theorem 4.1 provides further
support to Hsu’s conjecture.

Corollary 4.3. Let n ≥ 3 be an odd integer and k a divisor of n − 1. If k divides p − 1
for every prime factor p of n, then a k-regular complete mapping of Zn exists.

Proof of Theorem 4.1. Let v and k be as in Theorem 4.1. Let [a] be an element of
Z∗v with order k such that H = 〈[a]〉 is semiregular on Zv \ {[0]}. (See below for the
existence of such elements [a].) Then Zv o H is a Frobenius group. It can be verified
(see [28, Lemma 4]) that the semiregularity of H on Zv \ {[0]} is equivalent to saying
that [ai − 1] ∈ Z∗v for 1 ≤ i ≤ k − 1.

Let H[x1] = H,H[x2], . . . ,H[xr] be the H-orbits on Zv \ {[0]}, where we assume
[x1] = [1] without loss of generality. Then each H[xi] has length k and kr = v − 1.
Define the function φa : Zv → Zv by φa([0]) = [0] and φa([asxi]) = [as+1xi], for 1 ≤ i ≤
r, 0 ≤ s ≤ k − 1. In line with the proof of Lemma 3.2, since [a − 1] ∈ Z∗v as noted
above, one can verify that the mapping from Zv to itself defined by φ̄a([0]) = [0]
and φ̄a([asxi]) = φa([asxi]) − [asxi] = [as(a − 1)xi] is bijective. Hence, φa is a k-
regular orthomorphism of Zv. Thus, by Theorem 3.1 and its proof, φa produces
a (v, k, 1)-RMD, B(a), whose base blocks are Ba,i = ([xi], [axi], [a2xi], . . . , [ak−1xi]),
1 ≤ i ≤ r. More explicitly, B(a) = {[x] + Ba,i : [x] ∈ Zn, 1 ≤ i ≤ r}, where we set
[x] + Ba,i = ([x + xi], [x + axi], [x + a2xi], . . . , [x + ak−1xi]).

It was proved in [30, Theorem 2.7] that every element [a] of Z∗v with order k such
that 〈[a]〉 is semiregular on Zv \ {[0]} can be constructed as stated in the theorem, and
vice versa. Since k divides each pi − 1, it divides pei

i − 1 and so Z∗
pei

i
has exactly one

subgroup of order k. Thus, as noted in the proof of [30, Theorem 2.7], without loss
of generality, we may fix the primitive element ηi of Fpei

i
. There are exactly ϕ(k)

values ai satisfying ai ≡ η
miϕ(pei

i )/k
i (mod pei

i ), each corresponding to a different value
of mi. Since this is true for i = 1, . . . , t and since each bi (mod pei

i ) is unique, it follows
that there are exactly ϕ(k)t different elements [a] of Z∗v with order k such that 〈[a]〉 is
semiregular on Zv \ {[0]}. (Note that if [a] is such an element, then so is [a j] provided
gcd( j, k) = 1. In this case, 〈[a]〉 = 〈[a j]〉 but the (v, k, 1)-RMD B(a j) is not necessarily
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identical to B(a).) Therefore, there exist at least ϕ(k)t (v, k, 1)-RMDs each with the
stated properties. �

The following is a corollary of Theorem 4.1 and [28, Theorem 2].

Corollary 4.4. Let v = pe1
1 · · · p

et
t ≥ 5 be an integer in prime factorisation such that

each pi ≡ 1 mod 4. Then there are at least 2t (v, 4, 1)-RMDs based on Zv, and each
of them is produced by a solution a to the congruence equation x2 + 1 ≡ 0 mod v and
admits Zv o 〈[a]〉 as a group of automorphisms.

Proof. Since each pi ≡ 1 mod 4, 4 is a divisor of gcd(p1 − 1, . . . , pt − 1). Since
ϕ(4) = 2, by Theorem 4.1 there are at least 2t (v, 4, 1)-RMDs. Moreover, each of
them is constructed from an element [a] ∈ Z∗v of order 4 such that 〈[a]〉 is semiregular
on Zv \ {[0]} and admits the corresponding Zv o 〈[a]〉 as a group of automorphisms.
It can be verified (see [28, Theorem 2]) that such elements a are in one-to-one
correspondence with the solutions of x2 + 1 ≡ 0 mod v. �

In [29, Theorem 2] it was proved that, if every prime factor of an integer v ≥ 7
is congruent to 1 modulo 6, then there are exactly 2t (= ϕ(6)t) elements [a] of Z∗v of
order 6 such that 〈[a]〉 is semiregular on Zv \ {[0]}, and moreover they are in one-
to-one correspondence with the solutions of x2 − x + 1 ≡ 0 mod v. Thus, similar to
Corollary 4.4, we obtain the following special case of Theorem 4.1.

Corollary 4.5. Let v = pe1
1 · · · p

et
t ≥ 7 be an integer in prime factorisation such that

each pi ≡ 1 mod 6. Then there are at least 2t (v, 6, 1)-RMDs based on Zv, and each
of them is produced by a solution a to the congruence equation x2 − x + 1 ≡ 0 mod v
and admits Zv o 〈[a]〉 as a group of automorphisms.

We conclude this paper by an example which illustrates how the RMDs in
Corollary 4.4 can be constructed following the proof of Theorem 4.1.

Example 4.6. Consider v = 53. Then x = 23 is a solution to x2 + 1 ≡ 0 mod 53. Let
H = 〈[23]〉 ≤ Z∗53. Then the H-orbits on Z53 \ {[0]} are as follows:

H = {[1], [23], [52], [30]},H[2] = {[2], [46], [51], [7]},H[3] = {[3], [16], [50], [37]},
H[4] = {[4], [39], [49], [14]},H[24] = {[24], [22], [29], [31]},
H[25] = {[25], [45], [28], [8]},H[26] = {[26], [15], [27], [38]},
H[47] = {[47], [21], [6], [32]},H[48] = {[48], [44], [5], [9]},
H[17] = {[17], [20], [36], [33]},H[18] = {[18], [43], [35], [10]},
H[40] = {[40], [19], [13], [34]},H[41] = {[41], [42], [12], [11]}.

Thus, in view of the proof of Lemma 3.2, the permutation

(1 23 52 30)(2 46 51 7) · · · (41 42 12 11)
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is a 4-regular orthomorphism of Z53. In view of the proof of Theorem 4.1, this
orthomorphism gives rise to the (53, 4, 1)-RMD B(53) whose basis B0(53) consists
of (1, 23, 52, 30), (2, 46, 51, 7), . . . , (41, 42, 12, 11). Note that

B(53) = dev(B0(53)) =

52⋃
i=0

(B0(53) + i),

where B0(53) + i is obtained from B0(53) by adding i to each block of B0(53)
coordinate-wise with addition modulo 53. For example, B0(53) + 1 consists of
(2, 24, 0, 31), (3, 47, 52, 8), . . . , (42, 43, 13, 12).
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