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ABSTRACT

We construct bases for the stable branching algebras for the symmetric pairs (GLay,, Spa,, ),
(SP2(ntm) » SPan X Spop,) and (Ozy,, GLy). Each basis element is expressed as a sum of
products of pfaffians.

1. Introduction

Let G be a complex classical group and H a symmetric subgroup of GG, that is, H is the sub-
group of fixed points of an involution on G. Consider the problem of decomposing an irreducible
finite-dimensional representation of G under restriction to H. Using classical invariant theory, one
can construct an algebra 2 with the following properties: G and a torus Ay act on 2 by algebra
automorphisms and, under the action of G x A, we have

A=PVieL,

where each V; is an irreducible G module and each L; is a one-dimensional space on which Aj acts
by a character v;. In addition, both the V; and the 1; are distinct (see, for example, [HTWO04]).
The subspace V; ® L; is the i;-eigenspace for Ay in 2, and since L; is one-dimensional, this subspace
can also be regarded as a copy of the irreducible G-module V;. Thus, if we ignore the action of Ay,
then 2 is a multiplicity free sum of irreducible representations of G. We now let Uy be the maximal
unipotent subgroup of H. Then the subalgebra AUV# of Up-invariants in 2 is given by

A = PV @ L.
1

This subalgebra carries an action by the maximal torus Ag of H. If ¢; is a dominant weight for H,
then the ¢; x 1);-eigenspace of Ay x Ay, in AYH can be identified with the space of H highest weight
vectors of weight ¢; in the G-module V;. Thus, its dimension is equal to the multiplicity of the
irreducible representation of H with highest weight ¢; in V;. The representations V; which occur
in 2 are of a special type, and they are said to be in the stable range. Thus, the algebra AY# encodes
all branching information for restricting representations of G in the stable range to H. In view of
this property, we call AVH a stable branching algebra for (G, H). As explained in [HTWO04], AV also
describes the branching rule for another symmetric pair, so it is also called a reciprocity algebra.

This paper is the third in a series of three which construct explicit bases for stable branching
algebras. The most basic case (GL, x GL,,GL,) (that is, the case of the GL, tensor product
algebras) was treated in [HTWO05b]. The paper [HLO06a] deals with two variants of the GL,, tensor
product algebras and [HLOGb] treats the stable branching algebras for the pairs (GL,,O,),
(Ontm, Op x Op,) and (Spsy,, GL,). In this paper, we construct bases for the stable branching
algebras for the symmetric pairs (GLay, SPay,)s (SPa(n4m)» SPan X SPay,) and (Oz2p, GLy,). Our results
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will serve two purposes. Firstly, our description of the H highest weight vectors in an irreducible
G module V; provides information on how H modules sit inside V;. Secondly, these bases provide
information about the algebra structure of AV#. In particular, we will be able to show that the
stable branching algebras are flat deformations of the semigroup rings attached to certain lattice
cones. In particular, they are flat deformations of toric varieties [HJLTWO06].

We follow essentially the same approach as [HLO6b]. Each of the stable branching algebras
can be realized as an explicit algebra of polynomials on a space of matrices. The bases which
we construct are indexed by certain sets of Littlewood-Richardson (LR) tableaux (or ordered pairs
of LR tableaux). Each basis element is a specific polynomial, and with respect to a certain monomial
order, it has a highest term which allows one to reconstruct the tableau (or the ordered pair
of tableaux) from which it came. This shows, in particular, that these bases are SAGBI bases
(Subalgebra Analog to Grébner Bases for Ideals) [RS90, Stu96] for these stable branching algebras
(see [HJLTWO06]). The main difference from [HLO6b] is that each basis element which we construct
in this paper is a sum of products of pfaffians (instead of determinants). The main issue is to verify
that statements on pfaffians parallel to those on determinants in [HLO6b] hold in the new cases. We
provide full details on how this can be done in the case of (GLg,, Sps,,), but for the other two cases
we only state the results.

This paper is arranged as follows. In § 2, we introduce notation for the representations of GL,,, O,
and Sps,,. We review the definition of pfaffians in § 3. We construct the bases for the stable branching
algebras for (GLan, SPay,), (SPa(n4m)» SPan X SPay,) and (Ozp, GLy,) in §§4, 5 and 6, respectively.

2. Notation

2.1 Representations of GL,, O, and Sp,,

We use the following standard notation: GL,, = GL,(C) for the general linear group of invertible
n xn complex matrices; O, = O,,(C) for the orthogonal group, the subgroup of GL,, which preserves
a non-degenerate symmetric bilinear form; and Sp,y, = Sp,,(C), the symplectic group, for the
subgroup of GLo, which preserves a non-degenerate skew-symmetric bilinear form. We shall also
identify a Young diagram D with its sequence of row lengths D = (\1,..., Ax). The number of rows
in D is denoted by r(D). Young diagrams will be used to parametrize irreducible representations
of the groups GL,,, O,, and Sp,,, (see, for example, [How95]).

GL,: Let Agr, be the diagonal torus in GL,. For Young diagrams D = (\y,...,\,) and F =
(p1, - ., ps) such that r + s < n, we let zbq?’E : Agr,, — C* be the character given by
WP ldiag(an, . an)] = a7 a[ag e - an
and let pﬁ) ‘£ he the irreducible representation of GL,, with highest weight 1/15) £ When E =
(0), we shall write 1,[)5 © and pE’(O) simply as 2 and pZ, respectively.

O,: If D is a Young diagram such that the sum of the lengths of the first two columns of D does
not exceed n, we let o2 be the irreducible representation of O,, generated by the GL,, highest
weight vector in p2. If r(D) # n/2, the restriction of o2 to SO,, = SO,(C) is irreducible.
The maximal torus Ago, of SO,, is isomorphic to (C*)™, where m = [n/2]. If D is a Young
diagram with r(D) < n/2, let ¢? : Ago, — C* be the restriction of the character
to Ago,. Then as a SO,, module, o2 has highest weight ¢2.

Spy,: The diagonal torus Asp, —of Spy, is isomorphic to (C*)". The highest weights and the
irreducible finite-dimensional representations of Sp,, are parametrized by Young diagrams
with at most n rows. If D is such a Young diagram, we denote the corresponding highest
weight and representation by Xgl and 7'2[7)1, respectively.
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2.2 The matrix associated with a LR tableau

If F is a Young diagram, then by a banal tableau of shape E, we mean the tableau obtained by
filling each column of E from top to bottom with consecutive positive integers starting from 1.

In [HTWO5b], for a given LR tableau (see [Fu97]) T" of shape F'/D where D and F are Young
diagrams and D is contained in F', a banal tableau BT and a ‘content preserving’ map from T to
BT are defined, i.e. each cell of T is mapped to a cell in BT with the same value. The map can be
visualized as the process of successively removing the ‘vertical skew strips’ from 71" and reassembling
them into columns of BT'. This process is called ‘standard peeling’. Thus T is constructed by the
reverse process of standard peeling. The contents of BT are moved to the skew diagram one column
at a time, starting from the last column of BT. If BT has shape F, then we say ‘1" is a LR tableau
of shape F//D and content E’. Readers may refer to [HTWO05b] for a detailed description of this
process. Using standard peeling, we can associate 1" with the matrix M (T") = (my;) of nonnegative
integers where my;; is the number of entries from the jth column of E that get put into the ith
column of F//D.

3. Review on pfaffians

Let A = (aj) be a 2n x 2n skew symmetric complex matrix. The pfaffian of A is defined by [GW9S]

= o
.
o€Say

1 n
Pfaff(4) = > sgn(0) [ [ to@i-1),00:)-
i=1

Here S, denote the symmetric group on {1,2,...,2n}. To remove the factor of 1/(n!2"), we let
C'(2n) be the subset of Sy, which contains all permutations o such that:

(i) 0(2i —1) < o(2i) for all 1 <1i < n; and
(ii)) o(2j) <o(2j+2)forall 1<j<n—1

Then an elementary argument shows that

n

Paff(A) = Y sgn(0) [ ao@i-1).00i-

oeC(2n) i=1

In this paper, we only consider the pfaffian of those matrices A of the following form:

B C
A=(e o)
where B is an m x m skew-symmetric matrix, C'is as m x (2n —m) matrix and n < m < 2n. In this
case,
m—n 2n—m
Pfaff(A) = Z (sgno) H Ug(2i—1),0(27) H Ao(2m—2n+2j—1),m+j (3.1)
oceC(2n,m) i=1 j=1
where
C(2n,m)={oce€C(2n) :0(2i —1) <m V1 <i<n} (3.2)
Note that when m = n, then
Aln+l Alp+2 - A12n

azn a n . a 2n
PRafi(A) = (1) geq | 0 e T2

nn+l1 Annt+2 - An2n
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4. A basis for the stable branching algebra for (GL2,, Sps,)

4.1 The algebra P (May, ;) Usren XUcLe

Let n and k be positive integers such that & < n, and let P(Myy, ) be the algebra of polynomial
functions on the space Ma,, , = Ma, 1(C) of 2n x k complex matrices. Let GLg, and GLj act on
P(May, 1) by the formula:

[(g.h) f](X) = f(g"XRh), g€ GLay, h € GLy, f€PMapg), X € Moy
and let Sp,,, act by the restriction of the action of GLg,. By the (GLa,, GLj)-duality,

P(May, 1) Z p2n ® Pk

Let Ugr, and Usp, denote the standard maximal unipotent subgroups of GL; and Spy,,
respectively. Taking Ugr,, -invariants in P(May, 1) gives

P(Map )01 = > " ph, @ (pf) V.
r(F)<k

This algebra contains one copy of each irreducible representation pgn of GLg, with r(F) < k.
We consider the subalgebra of Usp, -invariants in ’P(Mzmk)UGLk:

P (Mo ) Sr2n V6t 223 7 (pg )Ps02n @ (pf) o0k
r(F)<k

This algebra is a module for Agp,, x Agr,, where Ag,, and Agr,, are the diagonal torus of Spy,
and GLy, respectively. So, we can also write

P(Map i) Vs02nVer = Wpp,
r(D),r(F)<k

where for each pair (D, F') of Young diagrams with at most k rows, Wp g is the X2Dn X w,f -eigenspace
of Asp, X AgL,. The elements in Wp r can be identified with the Spy, highest weight vectors in
pL with weight % . Thus, the algebra structure of P(Mgmk)USP%XUGLk carries information on
the branching rule from GLg, to Sp,, for the representations pk with r(F) < k. In view of this
property, we call P(Mgnk)USP?nXUGLk a stable branching algebra for (GLay, Spy,) (see [HTWO04]).
The goal of this section is to construct a basis for this algebra.

4.2 The Sp,,, X GLi module structure of P(Mzy, k)
We write a typical element of My, , as X = (z;). For 1 <1i,j <k, let

n

Wij (X) = Z(xai$n+a,j - $n+a,z‘$aj)' (4.1)
a=1

By the first fundamental theorem of invariant theory for Sp,,, the algebra P(M,;)%P2n of Sp,,
invariants in P(May, 1) is generated by the w;;. In fact, since k < n,

P(Man )2 = Clooy : 1<i < j <K= PAXCH) = 3 pF
Ee&;,
as a GLj module [How95|, where
Ex = {115 15 2y 25+ fls pom) = 1 Z < = i 2 0, 2m < K} (4.2)

is the set of all Young diagrams E such that E has at most k& rows and all of its column lengths are
even.
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Next, for 1 < 14,5 < k, we let

n 82 82
Ai' - - )
=2 <a$az’8$n+a,j O%p40,i0%q; >

a=1

and
Under the action of Sp,,, x GLj, (see [How95]),
H(M2n,k7 Sp2n) = Z 7_2Dn ® ka
r(D)<k
Since k < n, we have
P(Man i) 22 H(Map k, SPa,) @ P(Map, i) 5P2n (4.3)
as a Spy,, X GL; module. It follows from this and the LR rule that

P(May, i) = Z ( Z ch) P @ pk'.
<k

r(D),r(F)<k “E€&

Here cg p is the LR coeflicient which counts the number of LR tableaux of shape F'/E and content
D (see [Fu97]). In particular, this implies that

dmWpr= Y ¢k p. (4.4)
Ecé&y,

4.3 The algebra P(May  © AM,)Usr2n *Ucry

The algebra P(Mgn,k)USP%XUGLk contains Sp,,, X GLj highest weight vectors. In this subsection,
we shall prove that P(Mgmk)USP%XUGLk is isomorphic to an algebra of GLs, x GLj highest weight
vectors. This allows us to apply the results of [HLO6b, §5] in our construction of the basis.

Let AMy = AM(C) denote the space of all k x k skew-symmetric complex matrices. Let GLg, X
GLj act on My, 1, & AMy, by

(9,R)(X,€) = ((g ) Xn 1, (W H%¢h™Y), g€ GLay, h€ GLy, X € My, £ € AMy.

This extends to an action of GLy,, x GLj, on the polynomial algebra P (M, , ® AM},) on My, 1, &AMy,
in the usual way. Let P(May, , ® AMk)UGL%XUGLk be the subalgebra of Ugt,,, x Ugt,-invariants in
P (Mg, & AMy). We claim that the algebras P(M%,k)USP% *UcLy, and P(Map, i ® AMk)UGL% xUaty,
are isomorphic. In fact, the space H(May, k, Spay,)U5P2n of Usp,, -invariants in H(May, k, Spy,,)
coincides with the space P(Ma, ;)V6L2n of Ugt,,-invariants in P(Myy, ;). Using this and (4.3),
we have

I

P(MQn,k)USPQ” H(M2n,k’ Sp2n)USp2" X P(MQn,k’)Sp2n
P (May, 1,)V6l2n @ P(AMy,)
P

(M2n,k b AMk)UGLQn .

I

I

So taking Ugy,, -invariants gives P(Mgn,k)USmn xUcLy, o P(May, e @AM, )V6r2n ¥VUeLi | An isomorphism
a @ P(Mayp @ AMy,)Vetan XUcLy s P(My,, 1,)V8r2n XVeLe is defined as follows: if f € P(Myu s, @
AMy,)Vet2n XUsty and X € My, 1, then

[a(NIX) = F(X, w(X)).
Here w(X) = (wj;(X)) and w;;(X) is defined in (4.1). Observe that o sends the 5, x 1'-eigenspace
Wp,r of AcL,, X Agr, in P(May, 1, @ AM)V2n Uk to Wp p. Tt follows from this and (4.4) that
dimeD7F = ZEGEk C§7D.
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4.4 GLg highest weight vectors in P(May, , & AMy)

We denote a typical element in My, & AMy, by (X, ) where X = (z4) and § = (&). So & = —&ji
and &; =0 for all 1 < 14,5 < k. Let m and p be positive integers such that p < m < k and m + p is
even. Let [¢],, be the following m x m submatrix of &:

S &2 0 m
a1 &2 - Com
[E)m = : : :
gml §m2 T gmm
Let vq,...,v, € C* where, for each 1 < i < p,
Vi = (%‘1;%’2, s 7'Uz'k)'
We set
U1 V12 st Uim
V21 V22 ottt U2m
[Vla 7Vp]m = . :
Upl  Up2 Upm
and

Pp(vi,...,vp) = Pfaﬁ(

—vl,...,vp]m‘
Next, for 1 <1 < 2n, let

Xi = (i1, Tig, - -+, Tig).-
For 1 < j1,...,Jp < 2n, consider the polynomial
fzﬂ(;K317" 'v;X}p) (4.5)

on MQn’k ® AMk

LEMMA 4.4.1. The polynomial P,,(Xj,,...,X;,) is a GLy, highest weight vector of weight 1,™ in
P(MQn,k’ D AMk) where

1m=(1,...,1,0,...,0).
Proof. By (3.1),

bS]

(m—p)/2
Pm(le,...,ij) = Z sgna H 50(21 1),0(2i) H b,0(m—p+2b—1) (46)

oeC(p+m,m) =1

where C'(m+p, m) is the subset of the symmetric group Sy, defined in (3.2). From this expression,
it is easy to see that Pp,(Xj,,...,X},) is a GLy weight vector of weight 1, ™.

We consider the derived action of the Lie algebra gl = gl.(C) of GLj, on P(May, 1 & AMy).
Let E, be the element in gl such that its (a,b)th entry is 1 and 0 elsewhere. Then E,;, acts by
the differential operator

2n
0 0 0
By = Tjg=— + iam— + i m=—- 4.7
b ; 7 Oy, ;5 3 Zﬁjafbj .7
We need to show that Eq[P,(Xj,,...,X;,)] =0 for 1 <a < b<k. Note that
Eo[Po(Xjys -, X3,)? = 2Pn(Xy, o Xj ) H{Eap [Pr( Xy, -, X))
Thus, it suffices to show that E.p [P (Xj,,...,X;,)?] =0.
1599
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Let

4 < —[Xjn[g-]ﬁij]m } ([XJ'1="'()=ij]m)t >

Then
[Prn(Xjy, ..., Xj,)]? = det A.

First we note that if b > m, then from the expression for the operator Eg, given in (4.7), it is clear
that E(det A) = 0. So we assume that 1 < a < b < m. For each 1 <i,j < m+p, let A(i,7) be the
matrix obtained from A by deleting its ith row and jth column, and for each 1 <1 < m+p, let AJl]
be the matrix obtained from A by replacing its [th row by its image R; under E,. Specifically,

b

——
0,...,0,&4,0,...,0) 1<li<m, l#a,b
b
= —
Fa 0,...,0,0,0,...,0) l=ua

and

a
AN

Rb = (&117 o 7§a,a—17 07 éa,a—i—h o 7§a,b—17 07 éa,b+17 v 7£ama Ljy,ays--- 7$jp,a)'

b
By expanding the determinant of A[l] along its /th row, we obtain

(—1)b*g, det A(1, D) 1<li<m, l#ab
det A[l] =<0 l=a

—(=1)"*g;,  det A(L,D) m+1<1<m+p.

By adding the (—1) multiple of the ath row of A[b] to its bth row, the bth row becomes

b b
—— ———
(0,...,0,—&45,0,...,0) =(0,...,0,&4,0,...,0).
So
det A[b] = (—1)2ey, det A(b, b).
Consequently,
m-+p
Eq(det A) = det A[l]
=1
m m+p
= (—1)"gadet A(Lb) + > (=1 (=, o) det A(L,D).
I=1 l=m+1

Observe that the right-hand side of the above equation is the expansion of the determinant of the

matrix obtained from A by replacing its bth column by its ath column. Since this matrix has two
equal columns,

Eab(det A) =0. O
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4.5 The action by gl,,

We now investigate how the Lie algebra gly, of GLa, acts on the polynomial P, (X;,, Xj,,...,X},)
which is defined in (4.5).

LEmMMA 4.5.1. If T € gly, and 1 < j1,...,jp < 2n, then

p
T(Pou( Xy, Xy X)) = D Pl X, X

]l—l’T(le)’ le+1’ s vij)7
=1
where, for each 1 <1 < p,
T(Xj) = (T(ji0), T(xj,2), - - T(xj,n))-
Proof. Using the formula for P, (X}, Xj,,...,Xj;,) given in (4.6), we obtain
T[P (XJUX]Q’ e ij)]
(m—p)/2
= Z Sgn U H ga 2a—1),0(2a T(H Ljy o (m—p+2b— 1))
oceC(p+m,m) b=1
(m—p)/2
= Z Sgn U H ga 2a—1),0(2a) |:Z T(mjl,a(m—p+2l—l)) H mjb,a(m—p+2b—1):|
ceC(p+m,m) =1 1<b<p
b£l
p (m—p)/2
= Z{ Z Sgn J H ga 2a—1),0(2a) [ ( jl,a(m—p+2l—l))] H ij,a(m—p+2b—l)}
=1 ~oeC(p+m,m) 1<osp
b£l
ZPm i X 17T(le)7le+17‘”7ij)' [
=1

COROLLARY 4.5.2. Let 1 < p < m < k and let {1, ...,e2,} be the standard basis for C*". Then the
linear map

o : /\p(CQn — P(M2n,k D AMk)
specified by
@(Ejl A A Ejp) = Pm(le, . ,ij)
is a GLg, isomorphism from A\ C?" onto its image.
Proof. First we note that the linear map (C?")P — P(May, ;, ® AM},) specified by
(Ejl, e ,Ejp) — Pm(le, e ,ij)

is alternating. In fact, if s < ¢ and we switch the positions of X;, and X, in P, (Xj,,...,X},), then

we obtain
(m—p)/2
Pm(lea"'7th7"'7Xj57"'7ij): Z Sgna |: H 60'(22 1), 27,:|
oeC(pt+m,m)
X Ty o(m—p+2s—1)Ljs,0(m—p+2t—1) H Ljy,0(m—p+2b—1)-
1<0<p
b#s,t
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Now for each o € C(p + m,m), we let ¢ = o o 7 where 7 is the transposition (m — p + 2s — 1,
m —p+2t—1). Then
Po(Xjy, oo, Xy oo, Xy oo, X))

(m—p)/2
= Z (sgn &)(sgn 7')[ H 5&(22‘—1),&(21‘)]
i=1

geC(p+m,m)

X T, 5(m—p+2t—1)Tjs,6(m—p+2s—1) H Ljy,,6 (m—p+2b—1)
1<b<p
b#s,t

= —Pn(Xj, ... X, Xy, X))
Hence, the linear map ® exists. By Lemma 4.5.1, ® is a GLg, map. Since A\PC?" is an irreducible

GLsa, module, ® is a GLs,, isomorphism from A”C?" onto its image. O

COROLLARY 4.5.3. The function Py, (X1,...,X,) is a joint GLg, x GLj highest weight vector of
weight 17 X pim.

Proof. This is because €1 A - -+ A g, is the GLy, highest weight vector in A\PC?" of weight zp;f; and
Pm(Xl,...,Xp):q)(ElA"'AEP). 0

4.6 GL32, X GLj, highest weight vectors in P(May, r ® AMy)

Recall that for fixed D and F', the 1/12% X w,f—eigenspace WD,F in P(May, 1 ® AM,)V2n Uk has
dimension }_pce cg p- We now let

Q(D, F) (4.8)
be the set of all ordered pairs (FE,T) where E € & and T is a LR tableau of shape F’ /E and content
D. Then the number of elements in Q(D, F') coincides with dim Wp p. We shall use the set Q(D, F')
to index a basis for WN/D7 F.

We now fix (E,T) € Q(D, F') and will construct a Spy,, x GLj, highest weight vector (( ) in
P(May, x & AMy) with weight 18 x . Let
D' = (dy,...,d,)
E''=(e1,...,e) (4.9)
FU'={(f1,..., f),

the conjugate diagrams of D, E and F', respectively. For each 1 < i < t, let

pi = fi — €.

Recall that T" is constructed by the reverse process of standard peeling (see §2.2). Let M (T") = (mj;)
be the ¢ x r matrix where m;; is the number of elements from the jth column of D get put into the
ith column of F. For 1 <i<tand 1 <j <, let

Qig = Mg + M1 + -+ My,
and

Aty1,5 = 0.
Then the entries from the jth column of D get put into the ith column of F' are

Qi+1,5 + 1, Qi+1,5 + 2,... ) Q5 -
We now let o = (01,...,0,) € Sg, X -+ xSg,. Here Sy, denotes the symmetric group on {1,...,d;}.
1602
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For each 1 <i < t, let X;(o) be the p; X f; matrix
Xi1(o1)
(o) = Xi2€02)
Xirkar)

where for each j, &j;(07) is the m; x f; matrix defined by

Loj(aiv1;+1),1 Tojlaitr,;+1),2
Loj(ait1,;+2),1  Toj(aiy1,;+2),2

Loj(air1,j+1), fi
xa'(a- .+2) fi
_ J\Ait+1,5 3Ja
Xij(oj) = :
Loj(ai;),1 Lo (ai,;),2 Loj(ai;).fi

Set

C(B,1) = Z <ﬁ Sgn(m)) . Lljl Pfaff< _[)if;) } [Xi(()a)]t )] (4.10)

O'ESdl X"'XSdr =1

LEMMA 4.6.1. The polynomial (g ry defined in (4.10) is a GLa, X GLj highest weight vector in
P(Map i, @ AMy,) of weight P x zp,f.

Proof. 1t is easy to verify that the weight of (g 1) is 1[)2[,,)1 X 1/15 . That (g 1) is a GLj highest weight
vector of weight 1,[),5 follows from Lemma 4.4.1. To see that (g 1) is a GLa, highest weight vector,
let

P - /\Pl ((CQn) ® /\pz ((CQn) Q- ® /\pt ((CQn) . 'P(Mka D AMk)
be the GLs, map defined by

Plug ® - @up) = Py(ug) - Ppluy)

where for each 1 < i < t, u; € AP(C?) and ®; : AP/(C*) — P(Ma, x & AMy,) is the GLg,-map
defined in Corollary 4.5.2. We now observe that (g 1) is the image of the highest weight vector
'y given in [HLO6b, Lemma 6.2.1], where the matrix N is the transpose of M(T'). So it is a GLa,
highest weight vector of weight 1/12Dn. O

4.7 The leading monomial of (g, T)

Recall that typical elements of My, ,, and AM, are written as X = (x4) and £ = (&;;), respectively.
We define a monomial ordering 71 on P(My, , & AMy) as follows: it is the graded lexicographic
order [CLO97] such that

§12>813> - >8&p>83> - >8n>8u> > 1k
> X1 > X2 > > Tk > Tl > vt > Top k- (4.11)

We shall compute the leading monomial of (g 1) with respect to 71.

We first consider the function

é‘]m ‘([X,,X]m)t
P(X-,...,X'):Pfaff< [ A e ,
mA I —[ X Xl | 0
which is a building block of the highest weight vector (g ). We note that in the expansion of
Prn(Xjy,...,Xj,) given in (4.6), exactly (m — p)/2 entries in each term need to be chosen from

the submatrix [£],,,. It is clear from the definition of 7 that &12623 - - - &m—p—1,m—p has the highest
possible order among all possible choices.
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LEMMA 4.7.1. Let Pm(le, ..., Xj,) be the sum of all of the terms in Pp(Xj,,...,X;,) containing
the factor {12623 - - - &m—p—1,m—p- Then

Ljim—p+1  Tjim—p+2 *°° Tjm
~ _ m] 7m_p+1 m] 7m_p+2 e x] 1
Pm(Xj17 s ,ij) = (_1)p(p /2 (612623 e gm—p—l,m—p) : ’ : 2
xjpvm_p"’_l xjpvm_p+2 e ij%m
Proof. By (4.6),
(m—p)/2 P
Pm(lea cee 7ij) = Z Sgn J H 50(21 1),0(2i) H Ljy o (m—p+2b—1)
oceC(p+m,m) b=1
From this, it is clear that if o € C'(2n,m), then
(m—p)/2
§12623 - Em—p-1m—p = H o (2i-1),0(2i)
i=1

if and only if
o(j)=4, j=1,...,m—np.
For such a permutation o, there exists a unique permutation 7 € S, such that
om—p+2j—1)=m—-p+7(j), j=1,...,p
Conversely, any permutation 7 € S, uniquely determines an element o of C(m + p,m) with the
property o(j) = j for j =1,...,m — p. In addition,
sgn o = (—=1)PP=D/2ggn 7,
It follows that
P
P(Xjy, 0 Xj,) = (1P D2 (E9803 -+ Enp1mp) Z (sgn 7) Hxabym —p+r(b
TES) b=1

Ljrm—p+1 Tjm—p+2 *° Tjm
Tjom—p+1  Tjom—p+2 ~°° Ljom

= (—1)PP=V (19805 £ p1.m—p)

xjpym_p""l xjp7m_p+2 e xjpvm D

Recall that E is the Young diagram given in (4.9). Let

s

§E - H(612£23 e fej—l,ej-)a (412)
j=1
and consider the sum of all of the terms in (g 7y which contain {g as a factor. It is of the form
$e - (e EE]) (4.13)
where (g 1) [€E] is a polynomial in the variables (z;;). Note that the leading monomial of Ce,1) 18

the product of {g and the leading monomial of (g 1)[{E]-

LEMMA 4.7.2. The leading monomial of (g 1y[p1] is given by

TrT = H Te(b)a(b)

beT
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where for each box b in T, a(b) is the row of F' in which the box b lies and ¢(b) is the entry in b.
Consequently, the leading monomial of (g 1) is x178E.

Proof. We first set up some notation. For each 1 <17 < t, let 2(?2-((7) be the p; X p; matrix

Xi(o) = (4.14)

where, for each j, Xj;(o;) is the m; X p; matrix
Loj(aitrj+1)eitl  Loj(aiyrj+1),ei+2

- Loj(aiy1,;+2)ei+l  Loj(aiyr j+2),ei+2
Xij(oj) = : :

Loj(air1,j+1),f;
Loj(air1,;+2), fi

Loj(aij).eit1 Loj(ai;).eite T Loj(ai;).fi

Note that X;(o) is obtained from the matrix X;(o) by removing its first e; columns. It is now clear
from the expression of (g 1) given in (4.10) and Lemma 4.7.1 that

Cpmlel=+ ) <

O'ESdl X"'XSdr 1=

We now need some results of [HTWO05b] and [HLO6b]. In the paper [HTWO05b], a polynomial d7(Y")
in the variables Y = (y;;) is defined in (3.4). An ordering on the set of monomials in the variables
yq; is defined in §3.4.1, and the leading monomial of 7(Y") with respect to this monomial ordering
is given in Lemma 3.2. On the other hand, an expansion formula for é7(Y') is given in [HLOGb,
Lemma 5.7.2]. We observe that if we identify x;; with the variable y;;, then a comparison of (4.15)
and the formula given in [HLO6b, Lemma 5.7.2] reveals that (g 1)[r] coincides with a multiple of
d7(Y). In addition, under this identification, the monomial orderings defined in [HTWO05b] and 71
are identical. Consequently, the leading monomial of (g 1) [€E] is the image of the leading monomial
of 07(Y"). Thus, the lemma follows. O

sgn(ai)> [ det X;(c). (4.15)
1 j=1

4.8 A basis for P(May, i )Uspzn XVUcLy

We are now ready to state and prove the main theorem of this section.

THEOREM 4.8.1. The set

U «en:(ET) eD,F)}
r(D),r(F)<k
is a basis for P(May, ) @ AMk)UGLGXUGLk. Thus, its image in P(M%’k)USpanUGLk is a basis for
P (M )5Vt

Proof. By Lemma 4.7.2, the leading monomial of (g 1) is z70{g. Now g determines the diagram F,
xr determines the diagram D, and £ and a7 together determine the diagram F' and the tableau T'.
This shows that (D, F, E,T) — xr{g is one-to-one. Since the highest weight vectors (g ) have
distinct leading monomials, they form a linearly independent set. Moreover, for fixed D and F,
the number of the highest weight vectors we obtain in this way is equal to the dimension of the
b x 1/),f-eigenspace Wp, r of Agr,, x Agr, in P(Ma, , ® AMk)UGL%XUGLk. Hence, they form a
basis for this eigenspace. It follows that by varying the diagrams D and F' we obtain a basis for
,P(Mgn’k; %) AMk)UGL% *Uary, . O
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5. A basis for the stable branching algebras for (Sp2(n+m), SPs,, X SPam)

In this section, we construct a basis for the stable branching algebra for the symmetric pair
(SPa(n+m)» SPan X SPap,)- Since the construction is similar to the case of (Opym,On X Op) which
has been done in [HLO6b], we omit most of the details.

5.1 The subgroup Spy,, X Spa,, of SPy(nim)

Recall that Spy(,, 1) is the subgroup of GLgy 2, which leaves the symplectic form (-,-) on C2n+2m

invariant, where for a = (a1,..., a2, 2m),b = (b1, ..., bopiom) € CZH2m
n-+m
(a,b) = Z (@ibpymti — Gngmtibi)-
i=1
Let {e1,...,e0n42m} be the standard basis for C?t2m_ Let W, and Wy be the subspaces of
C2+2m spanned by {1, ... ,€n, Entmils---»E2mtm ) and by {€ni1s -+ Entms E2ntmits - - > E2nt2m b

respectively. Then the subgroup of all elements in Spy(,,1,,) which leave both Wy and W, stable is
isomorphic to Spy,, X Spy,,. We abuse notation and denote this subgroup also by Spy,, X Spa,,,-

5.2 The algebra R (V)Usrzn XUspam XUcr,

Let k < min(n,m) and let Myg, 1) = Magnym) i (C) be the space of all 2(n + m) x k complex
matrices. For 1 <4, < k and T' € My, 1) 1, We let

i (T) = (T3, Tj),
where T; and T} are the ith and the jth column of T, respectively. Let
V= {T € Mygymmyi : £5(T) = 0 V1 < i, j <k},
and let R(V) be the algebra of regular functions on V. Let Spy(, 1) X GLy act on R(V) by
[(97 h)f](T) = f(gt Th)v g e Sp2(n+m)7 NS GLk’7 f € R(V)v TeV.
Then as a Spy(,, 4,y X GLj module [How95],
r(H)<k

Let UgL,,, Usp,, and Usp, = be the maximal unipotent subgroups of GLj, Spy,, and Spy,,,, respectively.
Taking Ugy,, invariants in R(V) gives

RW)Tel 22 Y gl @ (o)
r(H)<k

This algebra contains one copy of each irreducible representation 74/ +om Of SPo(nqm) With r(H) < k.
We consider the subalgebra of Us,, x Usp, —invariants in R(V)VeLk | which is

R(V)USPQ”XUszmXUGLk = Z (Tgn-i-m))USpQ"XUsmm ® (pkH)UGLk-

r(H)<k
This algebra encodes all information on the branching rule from Spy(,4.,,) t0 Spy, X Spy, for all
) With r(H) < k. In view of this property, we call R(V)Uspan*Uspam ¥VcLy 5
stable branching algebra for (Spa(y,4m)s SPan X SPay,) (see [HTWO4]). The goal of this section is to
construct a basis for this algebra.

representations 7‘2[{”
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5.3 The algebra P(May, . D Mam, 1 D AMk)UGLG XUGLyy, XUaLy,
As in the case of (Oym, OnxO,y,), we can replace the stable branching algebra R(V)USP%XUSP%XUG%

by a subalgebra of a polynomial algebra which we now describe. Let GLs,, x GLsg,, x GLj act on
M2n,k S M2m,k S AMk by

(91,92, ) (X, Y, N) = (97 ) Xh ™, (92 )'YR™H ()N
where (g1, 92,h) € GLa, X GLap, x GLy, X € Moy, 1, Y € Mgy, ,, and N € AMy,. This induces an

action of GLg, x GLg,, x GLj on the polynomial algebra P(My, 1 & Moy, & AMy). We consider
the subalgebra

P(MQn’k D M2m,k & AMk)UGL2n XUGLg,, XUcLy

of UgL,, % UcL,,, X Uar,-invariants in P(Ma, i & Moy, @ AMy). This algebra is isomorphic to
R(V)Uspan Uspam *UGLy | We now describe an isomorphism

a t P(Map k& Mo, o & AMy,)V6L2n *UeLan XUsLy — R(1)Vspan *Uspan XVary,

Recall that, in § 5.1, we defined the symplectic form (-,-) and the subspaces W and Wy of C2"+2m,
Note that C2" 2™ = W, @ Ws, and for i = 1,2, we let m; : C2**2™ — W; be the corresponding linear
projection. Let (-,-)1 and (-, -)2 be the restrictions of (-, -) to W7 and Wy, respectively. For 1 < 4,j < k
and T' € My () 1, let

vij(T) = (m(T3), mi(Tj))1 — (m2(Ti), ma(Tj))2
where T; and T} are the ith and the jth column of T'. Now if
f € P(May @ Moy, ® AM)VeL20 XUaLop xUary
and T € V, then af is the function on V defined by

(@f)(T) = F(X,Y,N) (5.1)
where
X1
_ |1 _ (X _ (N
T = X | X = <X2> €My, Y= <Y2> € Moy, and N = (v4(T))
Y

5.4 An index set for the basis
We shall construct a basis for the algebra

P(M2n,k @ Mzm,k S AMk)UGLG xUGLy,, xUcLy,

Then its image under the isomorphism « given in (5.1) will be a basis for R(V)Yspan *Uspam ¥Ucry
First we note that under the action by Agr,, X AcL,,, X AcL,,

'P(Mgmk ® Moy, 1 @ AMk)UGL% xUGLy,, XUcLy, — @ WD,E,H,
r(D),r(E),r(H)<k

where WQ pu is the Y1) x ol xyH eigenspace of Agr,, X AGL,,, X AcL,- It is clear that the image
of WD, g, under « is precisely the Xgl X XQEm X zpf -eigenspace Wp g g of Asp, X Asp, X AcL,
in R(V)Yspan *Uspam ¥UcLy - Since the elements in Wp g g can be identified with the Spy, X Spy,,
highest weight vectors in 741, = with weight x4 x x% ., the dimension of Wp g g is equal to the
multiplicity of the 74, @ 74 in 741, . This is given by (see [HTWO05a))

dimWp p.p = dimWp g n = E , % ncl -
Fe&,r(G)<k
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We now let

Q(D,E,H) (5.2)
be the set of all ordered 4-tuples (F, G, T, T5) such that F' € &, G is a Young diagram with at most
k rows, and Ty (respectively T5) is a LR tableaux of shape G/F (respectively H/G) with content
D (respectively E). Note that the number of elements in Q(D, E, H) coincides with dim WN/D7 E.H,
so we will use it to index a basis for WD, E,H-

5.5 Highest weight vectors in WD,E,H
We now fix (F,G,T1,T») € Q(D, E, H) and construct a GLg,, X GLg,, x GLj highest weight vector
W(FG1yTy) Of weight 3 x o x il

First, suppose that the conjugate diagrams of D, E, F', G and H are given by

D' = (dy,...,d,)
E' = (e1,...,es)
Ft:(flw--aft)
G = (91, 9u)

H' = (hy, ..., ).

Consider the reverse process of standard peeling in the construction of 77 and T (see §2.2).
Let M(Ty) = (mgjl)) and M (T,) = (m(2)) where:

U]
(1)
ij
(2)
ij

— m;;’ is the number of elements from the jth column of D get put into the ith column of G;
— m;;’ is the number of elements from the jth column of E get put into the ith column of H.
Fori<i<wuand1<j<r,let

i i+1,j uj
and
®n
Uyyr; =0,
and, for 1 <i<vand1<j<s,let
(2) (2) (2) 2)
Qyj" = My + My 5+ Ty,
and
2 _
Ayt j 0,
Then:

— the entries from the jth column of D that get put into the ith column of G/F are

1 1 1
aEJr)Lj + 1,a§+)17j +2,... ,a;j);

— the entries from the jth column of E that get put into the ith column of H/G are

2 2 2
a§+)1’j + 1,a§+)1’j +2,... ,ag’j).

We are now ready to define the highest weight vector w(r 1, 1,)- Write a typical element My, &
Mam i @ AMy, as (X,Y,N) where X = (z4), Y = (y5) and N = (v45). Let 0 = (01,...,0,) €

Sy X -+ x Sq, and T = (7q,...,7s) € Se; X -+ X Se,. For each 1 <17 < u, let
pi=9i— fi
1608

https://doi.org/10.1112/50010437X06002399 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002399

BASES FOR SOME RECIPROCITY ALGEBRAS III

and X;(o) be the p; x h; matrix

Xi1(o1)
Xio(02)
Ai(o) = : ;
Xir(ar)
where, for each 1 < j < r,
Toia SRS IR Toia SRS IR Lo (@l 1)k
x (1) x (1) : x (1)
a4y (alt 492) 2 (alt 42) hy
Xij(o'j) _ U](al-‘—'l,j ) U](al-‘—'l,j ) U](az-‘—%,j ) ’
Yoj(a).1 Toja2 7 ToyaM)m
and, for 1 <i < v, let
qi = h; — gi
and Y;(7) be the ¢; x h; matrix
Vi1 (m)
YVia(12)
Yi(T) = .
yis(Ts)
where, for each 1 <1 < s,
Yr 1(a gr)ll"‘l) yTl(agi)l,H‘l)vz yT( @ 1,071 hi
y (a (2) Yy (2) Y (2)
i +2) Tl(ai +2)72 Tl ( i +2) hi
Yia(m) = A o A
Ir(@) Yn@2 7 Yn@®)m
We also let, for 1 < m < k,
vir V12 Vim
Vo1 V22 Vom
[V]m = .
Uml Vm2 Vm,m

Finally, we let

WG T,T2) = Z (H sgn(o; ) (}jl Sgn(rj)>

O'ESd1>< XSdT =1
TESey XX Sey

v W, | [Xi(o)]' | i(7)]*
[[Ptaft [ —Xi(o) 0 0 (5.3)
i Y (0’) 0 0
This is a GLg,, x GLa,, x GLj highest weight vector in P(May, ;. & Moy, & AMy,) of weight 1) x

1/}2Em X 1/}1?

5.6 The leading monomial of wrq,1,13)

Recall that typical elements of My, 1, Mg, and AMy, are written X = (z4), ¥ = (y4) and
N = (vj;), respectively. We define a monomial ordering 7 on P(May, 1, & Moy, & AMy,) as follows:
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it is the graded lexicographic order [CLO97] such that
Vig > g > " > Vi > Vo3 > Vo4 > > Vi1 k
> T > X122 > -0 > T > Tl > > Tank (5.4)
>y > Y12 > > Y1k > Y21 > > Yomke

LEMMA 5.6.1. The leading monomial of w(p g 1, 1,) With respect to 7 is given by

t fi/2
( H xcl(bl)al(b1)> ( H ycz(bz)az(bg)) <H H V2z'—1,2z'>
b,€Ty

bocTs 7=11=1
where:
(i) for each box by in T1, a1(by) is the row of G in which the box by lies and c¢1(by) is the entry
in by; and

(ii) for each box by in T5, as(bs) is the row of H in which the box by lies and cy(bs) is the entry
in b2.

The proof, which we omit, is similar to the proof of Lemma 8.8.1 in [HLO6b]. An immediate
consequence of this lemma is that the leading monomials of the w g7 7,) are all distinct.
In particular, it implies the following.

THEOREM 5.6.2. The set

U {wrar,m : (F,G,T1,T2) € Q(D,E,H)}
r(D),r(E),r(H)<k

is a basis for P(Ma,, j; ® Moy, 1, & AMk)UGLG xUcLyy, XUcLy, | Thus, its image under « forms a basis for

R(V)USPQ" XUSpgm XUGLk .

6. A basis for the stable branching algebras for (Oz2,, GL,)

In this section, we construct a basis for the stable branching algebra for the symmetric pair
(Ogy,, GL,,). Since the construction is very similar to the case of (Sps,,, GL;) which has been done
in [HLOG6Db], we omit most of the details.

6.1 The even orthogonal group

Let (-,-) be the symmetric bilinear form on C?" given by

2n
(u,v) = ZUiUQn_i+1, u=(uy,... up), v=_(v1,...,09,) € C™
i=1
Let
O, = 09,(C) = {g € CLay, : (gu, gv) = (u,v), Yu,v € C*"}.
Then

{<3 J(agw) e GL”}

is a subgroup of O, and it is isomorphic to GL,,. Here J is the n xn matrix with 1 on its antidiagonal
and 0 elsewhere. In this section, we abuse notation and denote this subgroup also by GL,,.

1610

https://doi.org/10.1112/50010437X06002399 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002399

BASES FOR SOME RECIPROCITY ALGEBRAS III

6.2 The algebra R(N)VetnxUcr,
Let 2k <n. For 1 <i,j5 <k and T € My, x, we let

(1) = (1;, Ty),

i
where T; and T} are the ith and the jth column of T', respectively. Let
N ={T € Moy : r(T) =0 Vi, j}.
and R(N) be the algebra of regular functions on N. Let O, x GLj act on R(N) by
[(g,R)f1(T) = f(¢'Th), g€ Ogy, h€GLy, fERWN), TEN.
Then as an O, x GLj; module [How95],

R(N) = Z obl @ pfl.
(H)<k

Taking Uqp,, invariants gives

RN = 3" og) @ (pff ),
r(H)<k

So this algebra contains one copy of each irreducible representation o2 of O, with r(H) < k.
We consider its subalgebra of Ugy,, invariants

RON)VetnxVan, 2 3™ (gl Vot @ (pff Vo,
r(H)<k

This algebra encodes information on the branching rule from O, to GL,, for all representations
ol with r(H) < k. In view of this property, we call R(N)Vetn*V6Ly a stable branching algebra for
(O2p, GL,,) (see [HTWO4]).

6.3 An index set for the basis
The algebra R(N)V6tn *UcLy is an Agr, x Acr, module, and

R(N)Tetn <ULy = P W(p,E)H-
r(D),r(E),r(H)<k

Here for Young diagrams D, E and H, all with at most k rows, W(p g) g is the 1/1,? By zpf -eigenspace

of Agr, X Acr, - Its dimension is equal to the multiplicity of the representation ,05) B of GL,, in the
representation o4/ of Og,, which is given by [HTWO05a]

G H
E CF.DCG.E-
Fe& ,T(G) <k

Let Q(D, E, H) be the set defined in (5.2). Since the number of elements in Q(D, E, H) coincides
with dim Wp ) g, we use it to index a basis for W(p g g

6.4 The highest weight vector np g 1, 1)

In this subsection, we fix (F,G,T1,T») € Q(D, E, H) and construct a GL,, x GLj highest weight
vector 7(pq,m 1) in the polynomial algebra P(Mgz, ). The restrictions of all such highest
weight vectors to N form a basis for Wp,E),u-

1611

https://doi.org/10.1112/50010437X06002399 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002399

R. HOweE AND S. T. LEE

Let the standard coordinates on My, , be given by

211 212 21k
Znl  Zn2 " Znk

w1 wi2 - Wik

Wnp1 Wn2 Wnk

For 1 < a,b <k, we also let
n
Hap = E (ZiaWn—it1,p — ZibWn—it1,a)-
i=1

We shall also use the notation related to D, E, F, G, H,T) and T defined in §5.5. Let o = (071, ...

or) € Sgy X -+ x Sg, and T = (71,...,7T5) € Se; X -+ X Se,. For each 1 <1 < u, let
- [is
and Z;(o) be the p; x h; matrix
Zi1(01)
Zi(o) = Zz‘2502) ’
Zz'r&ar)
where, for each 1 < 5 < r,
“oi(ad) +1),1 aj(azﬂjﬂ) 2 7 Foi@) 1)
Zi(0;) = aj(agf}3+2> “o; (a2+.1j+2) 2 T P (a§2{7j+2),hi ’
“oaihn Fopa) “oiall)hs
and, for 1 <i < v, let
¢ = hi — g
and let W;(7) be the ¢; x h; matrix
Wit (71)
Wi(r) = Wizz(Tz) 7
Wis(7,)
where, for each 1 <1 <'s, Wy () is the mg) x h; matrix
n@® 401 Un@® 402 7 Yne®, 40 m
Wa(n) = sz(aﬁ_)},l—F?),l sz(aguM),? Tl(ai+Tyl+2)7hi
Y@ Ynae 7 Yna®)m
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We also let, for 1 < m < k,

Hi1 H12 ot Him

H21  H22 - [2m
[N]m = . . .

Hm1l Hm2 - Hmm

Finally, we let

NFGT,T2) = Z <ﬁ Sgﬂ(Ui)> <f[1 Sgﬂ(Tj)>
j=

O'ESdl ><~~~><Sd,r i=1
TESey XX Seg

v W, | [Zi(a)]" | [Wi(T)]*
x | [[Ptaft | —Zi(o) 0 0 . (6.1)
= ~Wi(o)

This is a GL,, X GLj highest weight vector of weight 1/JY?’E X 1/),51

6.5 The leading monomial of n(rq,1,13)
Let

S:{zij,wij: 1<i,j<k}U{/Lij:1<i<j<k‘}
and V' = Span(S). Then S is an algebraically independent subset of P(May, 1), so the subalgebra of
P(May,, ) generated by S is a polynomial algebra. We denote this subalgebra by P(V'). We observe
that the highest weight vector 7 g 7 1) belongs to this subalgebra P(V). In this subsection,
we introduce a monomial ordering 73 in P(V) and compute the leading monomial of the highest
weight vector 7(r g 7, 1) With respect to this ordering.

The monomial ordering 73 is defined to be the graded lexicographic order [CLO97] such that

H12 > 13 > v > g > 23 > H24 > > k-1 k
> 211 > 219 > > 2k > 291 > v > Zkk (6.2)
> Wy > Wi > o > Wi > Wl > v > Wik

LEMMA 6.5.1. The leading monomial of nrq 1, 1,) With respect to 73 is given by

t /2
< H ch(b1)a1(b1)> < H wcg(bg)ag(bg)) <H H M2i—1,2i>

bi€Ty bo€Th j=1i=1

where:

(i) for each box by in Th, ai(by) is the row of G in which the box by lies and ¢ (by) is the entry
in by; and

(ii) for each box by in Ty, as(bg) is the row of H in which the box by lies and ca(bg) is the entry
in bg.

The proof is similar to the proof of Lemma 9.4.1 in [HLO6b]. We note that the leading monomials
of the nr g 1 1,) are all distinct, so they form a linearly independent set.

THEOREM 6.5.2. Let 7r.q 1, 1,) denote the restriction of npq 1, 1) tO N. Then the set

U fiwenm : (F.GT,T)eQD, B H)}
r(D),r(E),r(H)<k

is a basis for R(N)VetnxVoLy
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