Canad. Math. Bull. Vol. 17 (4), 1974.

A REMARK ON A THEOREM OF M. HALL

BY
HENRYK MINC

Let $A=\left(a_{i j}\right)$ be an $m \times n(0,1)$-matrix, $m \leq n$. The permanent of A is defined by

$$
\operatorname{Per}(A)=\sum_{\sigma} \prod_{i=1} a_{i \sigma(i)}
$$

where the summation is over all one-one functions $\sigma:\{1,2, \ldots, m\} \rightarrow\{1,2, \ldots, n\}$. If A is regarded as the incidence matrix of a configuration of m subsets of an n-set, then $\operatorname{Per}(A)$ is the number of systems of distinct representatives in the configuration. A well-known lower bound for the number of systems of distinct representatives, due to M. Hall [1], can be expressed in terms of permanents as follows.

Theorem 1. (Hall). Let A be an $m \times n(0,1)$-matrix, $m \leq n$. If $\operatorname{Per}(A)>0$ and all row sums of A are greater than or equal to t, then

$$
\begin{array}{ll}
\operatorname{Per}(A) \geq t! & \text { if } \quad m \geq t \\
\operatorname{Per}(A) \geq \frac{t!}{(t-m)!} & \text { if } \quad m \leq t \tag{2}
\end{array}
$$

Inequality (2), which is an immediate consequence of (1), seems to have been stated explicitly for the first time by Mann and Ryser [2].

The purpose of this note is to show that, unlike (1), the inequality (2) does not require the additional hypothesis that $\operatorname{Per}(A)>0$. In fact, we prove the following result.

Theorem 2. If A is an $m \times n(0,1)$-matrix, $m \leq n$, and if each row sum of A is greater than or equal to m, then

$$
\operatorname{Per}(A)>0
$$

We shall require a preliminary result which is a corollary to the following classical theorem.

Theorem 3. (Frobenius-König [3]). Let $A=\left(a_{i j}\right)$ be an n-square (0,1)-matrix. Then every diagonal ($\left.a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}\right)$ of A contains a zero if and only if there exists an $s \times t$ zero submatrix of A with $s+t=n+1$.

Corollary If A is an $m \times n(0,1)$-matrix, $m \leq n$, then $\operatorname{Per}(A)=0$, if and only if A contains an $s \times t$ zero submatrix with $s+t=n+1$.

Received by the editors October 13, 1972.

Proof of the Corollary. Let B be the n-square (0,1)-matrix whose first m rows are those of A and each of the remaining rows (if any) is ($1,1, \ldots, 1$). Then, by Theorem 3, every diagonal of B contains a zero, if and only if B contains an $s \times t$ zero submatrix with $s+t=n+1$. But all the entries in the last $n-m$ rows of B are positive, and thus the zeros in each diagonal and the zero submatrix all belong to A. In other words, the sequence $\left(a_{1 \sigma(1)}, \ldots, a_{m \sigma(m)}\right)$ contains a zero for all one-one functions $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$, that is, $\operatorname{Per}(A)=0$, if and only if A contains an $s \times t$ submatrix with $s+t=n+1$.

Proof of Theorem 2. If every row sum of A is greater than or equal to m, i.e. every row has at least m positive entries, then the number of zeros in any row cannot exceed $n-m$. Thus if A contains an $s \times t$ zero submatrix then $t \leq n-m$. But the total number of available rows is m. Therefore $s \leq m$ and

$$
\begin{aligned}
s+t & \leq m+(n-m) \\
& =n .
\end{aligned}
$$

Hence by the corollary, $\operatorname{Per}(A) \neq 0$.
It follows from Theorem 2 that the condition $\operatorname{Per}(A)>0$ can be dropped from inequality (2). Similarly in other theorems on permanents of $(0,1)$-matrices depending on the hypothesis $\operatorname{Per}(A)>0$ (see, e.g. [5] and [4], where, however, the results are stated in the language of sets), this condition can be dropped whenever all the row sums of A are greater than or equal to the number of rows in A.

This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-72-2164.

References

1. M. Hall, Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926.
2. H. B. Mann and H. J. Ryser, Systems of distinct representatives, Amer. Math. Monthly 60 (1953), 397-401.
3. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Boston, 1964 p. 97.
4. P. A. Ostrand, Systems of distinct representatives, II, J. Math. Anal. Appl. 32 (1970), 1-4.
5. R. Rado, On the number of systems of distinct representatives, J. London Math. Soc. 42 (1967), 107-109.

University of California, Santa Barbara

