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Variational bounds and nonlinear stability
of an active nematic suspension
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We use the entropy method to analyse the nonlinear dynamics and stability of a continuum
kinetic model of an active nematic suspension. From the time evolution of the relative
entropy, an energy-like quantity in the kinetic model, we derive a variational bound
on relative entropy fluctuations that can be expressed in terms of orientational order
parameters. From this bound we show isotropic suspensions are nonlinearly stable for
sufficiently low activity, and derive upper bounds on spatiotemporal averages in the
unstable regime that are consistent with fully nonlinear simulations. This work highlights
the self-organising role of activity in particle suspensions, and places limits on how
organised such systems can be.
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1. Introduction

Suspensions of active particles, such as swimming microorganisms or microtubules
mixed with molecular motors, are a canonical class of active matter. When the number
of suspended particles is large, these active suspensions can transition into large-scale
collective motion characterised by persistent unsteady flows (Sanchez et al. 2012; Wensink
et al. 2012; Dunkel et al. 2013), concentration fluctuations (Narayan, Ramaswamy &
Menon 2007; Liu et al. 2021) and long-range correlations (Dombrowski et al. 2004; Peng,
Liu & Cheng 2021). Owing to their visual similarities with inertial turbulence, these
dynamics are often called active or bacterial turbulence (Alert, Casademunt & Joanny
2022), and many methods from classical turbulence theory have been used to understand
their structure.

Continuum models based on partial differential equations are powerful tools for
studying active suspensions. One popular model is the Doi–Saintillan–Shelley (DSS)
kinetic theory (Saintillan & Shelley 2008), which describes the configuration of particle
positions and orientations through a continuous distribution function. The DSS kinetic
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S. Weady

theory is similar to well-studied models of passive polymer suspensions such as the Doi
theory (Doi & Edwards 1986), however it is distinguished by particle motility and a
consequent ‘active’ stress. Motility and the corresponding stress couple the translational
and orientational degrees of freedom in a novel way that can cause instabilities and drive
large concentration fluctuations.

Various works on the DSS theory and related models have explored the impact of
activity on mixing (Albritton & Ohm 2023; Coti Zelati, Dietert & Gérard-Varet 2023),
correlations (Stenhammar et al. 2017; Škultéty et al. 2020) and stability (Simha &
Ramaswamy 2002; Hohenegger & Shelley 2010; Ohm & Shelley 2022), primarily at the
linear or weakly nonlinear levels or below the transition to instability. Linear and weakly
nonlinear analyses in particular provide deep insight into the physical characteristics of
instabilities in real systems, especially regarding their form and dependence on system
parameters. A primary instability predicted by the DSS theory is that of the isotropic
or disordered state, which typically occurs at long wavelengths as the particle number
density increases (Saintillan & Shelley 2008). This instability has indeed been observed
in bacterial suspensions (Peng et al. 2021) in which, after the bacterial volume fraction
reaches a critical value, orientational order parameters and the mean flow speed rapidly
increase.

At the fully nonlinear level, different tools are necessary. For classical problems in
fluid mechanics, such as boundary-driven or natural convective flows, the energy method
is a powerful approach that can be used to prove existence, uniqueness and/or stability
of a broad class of solutions (Straughan 1992; Majda & Bertozzi 2001). In the context
of stability, one typically looks at the time evolution of the perturbation kinetic energy
K(t) = ∫

Ω
|δu|2/2 dx, where δu is the velocity deviation from a steady state, of arbitrary

magnitude, and Ω is the domain of interest (Doering & Gibbon 1995). Other non-negative
integral quantities may also be used where the method is sometimes called the Lyapunov
method or the entropy method depending on the chosen functional. Entropy methods
in particular are common in the analysis of Fokker–Planck-type equations, such as the
DSS theory, owing to their probabilistic description (Arnold et al. 2004; Chen & Liu
2013). Tools related to the energy method, such as the background method, can also
provide bounds on time-averaged quantities for turbulent flows (Doering & Constantin
1992; Fantuzzi, Arslan & Wynn 2022). Such bounds provide insight into turbulence and
hydrodynamic stability at the fully nonlinear level.

Drawing on analogies between active and inertial turbulence, it is natural to ask under
what conditions active suspensions are stable and to quantify how unsteady they may be.
In this paper, we address these questions in the context of the DSS kinetic theory for a
suspension of immotile, yet active, particles: an example of an active nematic suspension
(Gao et al. 2017; Doostmohammadi et al. 2018). For ease of discussion we focus on
two-dimensional suspensions, however the results extend to three dimensions with few
modifications. The key quantity of interest here is the relative configuration entropy, which
plays the role of an energy in this model. The paper is outlined as follows. We first
describe the DSS kinetic theory for a dilute suspension of active particles. We then derive
a variational bound on relative entropy fluctuations which is local in space and can be
analysed using elementary methods. Using this bound, we derive explicit uniform-in-time
bounds on the relative entropy. We then prove a sharp condition for nonlinear stability
and derive bounds on time averages of orientational order parameters which hold in the
turbulent regime. These results are validated against fully nonlinear simulations of the
kinetic theory.
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Bounds on active suspensions

2. The DSS kinetic theory

In this section we summarise the DSS kinetic theory for an immotile active suspension,
further details can be found in various references (Saintillan & Shelley 2008, 2013).
Consider a suspension of N particles in a domain Ω ⊆ R2, either bounded or periodic. Let
Ψ (x, p, t) describe the probability of finding a particle at position x ∈ Ω with orientation
p ∈ S = {p ∈ R2 : |p| = 1} such that

∫
Ω

∫
S Ψ dp dx = N. Assuming the total number of

particles is conserved, this distribution function satisfies a Smoluchowski equation,

∂Ψ

∂t
+ ∇x · (ẋΨ ) + ∇p · (ṗΨ ) = 0, x ∈ Ω, (2.1)

ẋ · n̂ = 0, x ∈ ∂Ω, (2.2)

where ∇x = ∂x is the spatial gradient operator, ∇p = (I − pp) · ∂p is the gradient operator
on the unit sphere and n̂ is the unit normal vector to the boundary. The configuration fluxes
ẋ(x, p, t) and ṗ(x, p, t) describe the dynamics of a single particle and, in the dilute limit,
are given by

ẋ = u − DT∇x log Ψ, (2.3)

ṗ = (I − pp) · (γ E + W ) · p − DR∇p log Ψ, (2.4)

where E = (∇u + ∇uT)/2 is the symmetric rate of strain and W = (∇u − ∇uT)/2 is the
vorticity tensor under the convention (∇u)ij = ∂ui/∂xj. (When acting on a function of
space alone, we use the shorthand notation ∇ := ∇x.) The first equation says particles are
advected by the local fluid velocity u(x, t) and diffuse in space with diffusion coefficient
DT , assumed to be isotropic. The second equation describes particle rotation by velocity
gradients according to Jeffery’s equation, where γ ∈ [−1, 1] is a dimensionless geometric
factor that satisfies γ = −1 for plates, γ = 0 for spheres and γ = 1 for rods. The
orientation dynamics also includes diffusion with coefficient DR, again assumed to be
isotropic.

For a passive suspension, the velocity field is often prescribed and the Smoluchowski
equation can be solved accordingly. However, particles, either active or passive, will induce
a stress Σa on the fluid that will modify the flow field. At leading order, this stress
takes the form of a dipole, Σa = σaD, where D = 〈 pp − I/2〉 is the trace-free second
moment of the distribution function with the notation 〈 f (p)〉 = ∫

S f (p)Ψ dp. The sign of
σa depends on the microstructure, and is positive for contractile particles and negative for
extensile particles. Owing to the small scales under consideration, this stress balances the
incompressible Stokes equations

−ν	u + ∇Π = ∇ · Σa, x ∈ Ω, (2.5)

∇ · u = 0, x ∈ Ω, (2.6)

u = 0, x ∈ ∂Ω, (2.7)

where Π(x, t) is the pressure which enforces the incompressibility condition (2.6) and ν

is the viscosity. Note that the no-slip boundary condition u = 0 implies the distribution
function satisfies a homogeneous Neumann condition ∂Ψ/∂n = 0 for x ∈ ∂Ω . We refer to
(2.1)–(2.7) as the DSS kinetic theory.

Moments of the distribution function correspond to orientational order parameters
which provide a useful characterisation of the macroscopic dynamics. Two key parameters
here are the concentration c = 〈1〉 and the scalar nematic order parameter μ, which is the
largest eigenvalue of the normalised second-moment tensor D/c. Note that, because the
suspension is nematic, the polarity vector 〈p〉/c does not appear in the dynamics.
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2.1. Non-dimensionalisation
Similar to the procedure of Ohm & Shelley (2022), the distribution function is
normalised by the number density n = N/|Ω| so that

∫
Ω

∫
S Ψ dp dx = |Ω|, and we

non-dimensionalise by a characteristic length scale �c = 1/λ1/2, where λ is the principal
eigenvalue of the Laplacian on Ω with either Neumann or periodic boundary conditions
depending on the domain of interest. For example, λ = (2π/L)2 for a periodic box of
length L. We also non-dimensionalise by the active time scale tc = ν/n|σa|. This yields,
in addition to the geometric factor γ , two dimensionless parameters, D′

T = (νλ/n|σa|)DT
and D′

R = (ν/n|σa|)DR, which are the dimensionless translational and rotational diffusion
coefficients, respectively. Ignoring primes on dimensionless variables, the Smoluchowski
equation (2.1) and configuration fluxes (2.3) and (2.4) keep the same form, with the
dimensionless Stokes equations

−	u + ∇Π = sgn(σa)∇ · D, (2.8)

∇ · u = 0. (2.9)

2.2. The relative configuration entropy
A natural quantity that arises from the kinetic theory’s probabilistic description is the
relative configuration entropy,

H[Ψ ](t) =
∫

Ω

∫
S
Ψ log

(
Ψ

Ψ0

)
dp dx, (2.10)

where Ψ0 = 1/|S| = 1/2π is the isotropic distribution function. This is a non-negative
quantity that is zero only in the globally isotropic state, Ψ (x, p) = Ψ0, and increases with
particle alignment. Differentiating in time and using the Smoluchowski equation, one can
show H satisfies, in two dimensions,

dH
dt

= −4γ sgn(σa)

∫
Ω

|E|2 dx − 4
∫

Ω

∫
S

DT |∇xΨ
1/2|2 + DR|∇pΨ

1/2|2 dp dx, (2.11)

where |A| = √
A : A is the Frobenius norm for matrix quantities and |a| = √

a · a is the
Euclidean norm for vector quantities. (Note that (∇xΨ

1/2)i = ∂xi(Ψ
1/2), and similarly

for orientational gradients.) Equation (2.11) balances the rate of work with spatial and
rotational dissipation. For suspensions with γ sgn(σa) > 0, such as contractile rods or
extensile plates, the right-hand side is strictly negative so that the relative entropy always
decreases. On the other hand, when γ sgn(σa) < 0, as is the case for extensile rods or
contractile plates, the right-hand side may be positive or negative. The case γ sgn(σa) > 0
is nearly identical to models of passive suspensions, such as the classical Doi theory, and
is well studied (Constantin 2005; Constantin & Masmoudi 2008). In the remainder of this
work we therefore only consider extensile suspensions in the rod limit, γ sgn(σa) = −1, for
which the model exhibits complex spatiotemporal dynamics, though all of the arguments
can be followed identically for any value of γ .

It is natural to ask if the relative entropy is essential here rather than another
non-negative functional. To motivate this, consider for example the typical L2 quantity

E(t) = 1
2

∫
Ω

∫
S
|Ψ − Ψ0|2 dp dx. (2.12)
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Bounds on active suspensions

Like the relative entropy, E is non-negative and zero only in the globally isotropic state.
Differentiating in time and using the Smoluchowski equation, we arrive at

dE
dt

= γ

∫
Ω

∫
S

E : (pp − I/2)Ψ 2 dp dx −
∫

Ω

∫
S

DT |∇xΨ |2 + DR|∇pΨ |2 dp dx. (2.13)

Fluctuations in E similarly balance flow alignment with spatial and rotational dissipation,
but the first term, having a quadratic dependence on Ψ , is significantly more challenging to
estimate than the term

∫
Ω

|E|2 dx that arises in the evolution of H, even for the stable case
γ sgn(σa) > 0. Moreover, such a functional can be non-monotonic while tending towards
equilibrium in cases where the relative entropy decays monotonically (Thiffeault 2021).

3. Bounds on fluctuations

The relative entropy equation (2.11) holds for all solutions of the kinetic theory. However,
through the Stokes equations, the right-hand side involves terms that are non-locally
coupled in both the spatial and orientational degrees of freedom. In this section, we derive
an upper bound on the fluctuation rate dH/dt that depends only on local orientational
order parameters. A key ingredient in this analysis is a variational bound on rotational
dissipation that can be expressed in terms of moments of the distribution function alone.
We treat each of the terms in (2.11) individually.

3.1. Rate of work
In conservative form, the Stokes equations are

∇ · (−2E + Π I) = −∇ · D, (3.1)

∇ · u = 0. (3.2)

Dotting (3.1) with u and integrating by parts gives

2
∫

Ω

E : E dx =
∫

Ω

E : D dx, (3.3)

where we have used the fact that A : B = [(A + AT) : B]/2 for any symmetric matrix B.
The Cauchy–Schwarz inequality then implies

2
(∫

Ω

|E|2 dx
)

≤
(∫

Ω

|E|2 dx
)1/2 (∫

Ω

|D|2 dx
)1/2

, (3.4)

or ∫
Ω

|E|2 dx ≤ 1
4

∫
Ω

|D|2 dx. (3.5)

This inequality is formally sharp for constant D = diag{μ, −μ} and E = diag{μ/2, −μ/2},
corresponding to the velocity field u = (μ/2)(x, −y)T, though this solution is not valid on
bounded domains. The advantage of the elementary inequality (3.5) is that it does not
require the nonlocal coupling between the stress D and the fluid velocity u.
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3.2. Spatial dissipation
Using the definition c = ∫

S Ψ dp, we have

|∇c| =
∣∣∣∣
∫

S
∇xΨ dp

∣∣∣∣ ≤
∫

S
|∇xΨ | dp

=
∫

S

Ψ 1/2

Ψ 1/2 |∇xΨ | dp

≤
(∫

S
Ψ dp

)1/2 (∫
S

|∇xΨ |2
Ψ

dp
)1/2

= c1/2
(

4
∫

S
|∇xΨ

1/2|2 dp
)1/2

, (3.6)

where we used the Cauchy–Schwarz inequality in the second to last line. Squaring both
sides, dividing by c and integrating over Ω , we find∫

Ω

|∇c1/2|2 dx ≤
∫

Ω

∫
S
|∇xΨ

1/2|2 dp dx. (3.7)

This inequality is sharp, which is shown by considering orientationally isotropic
distributions of the form Ψ = cΨ0.

3.3. Rotational dissipation
Combining inequalities (3.5) and (3.7), we have

dH
dt

≤
∫

Ω

|D|2 dx − 4DT

∫
Ω

|∇c1/2|2 dx − 4DR

∫
Ω

∫
S
|∇pΨ

1/2|2 dp dx. (3.8)

The last term, corresponding to rotational dissipation, frequently arises in entropy methods
applied to other kinetic equations (Arnold et al. 2004). In these contexts there are a useful
class of inequalities known as logarithmic Sobolev inequalities (Gross 1975), which are of
the form ∫

S
f log

(
|S| f∫

S f dp

)
dp ≤ C

∫
S
|∇pf 1/2|2 dp, (3.9)

where C is the log-Sobolev constant and f ∈ H1(S) with f > 0. For arbitrary distributions
in two dimensions, the optimal constant is C = 2, though this constant can be improved
under assumptions on the distribution function (see, for example, Dolbeault & Toscani
2016; Brigati, Dolbeault & Simonov 2022). Considering the case f = Ψ and assuming
Ψ ∈ H1(S), inequality (3.9) implies

H −
∫

Ω

c log c dx =
∫

Ω

∫
S
Ψ log

(
Ψ

cΨ0

)
dp dx ≤ C

∫
Ω

∫
S
|∇pΨ

1/2|2 dp dx. (3.10)

Although this inequality holds for C = 2 in general, we can sharpen the constant using
constraints on moments of Ψ .

Now let p = (cos θ, sin θ)T where θ ∈ [0, 2π) is the polar angle. Because c and D
appear in the upper bound (3.8), the distribution function in the rotational dissipation term

988 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.401


Bounds on active suspensions

must satisfy the moment constraints c = 〈1〉 and D = 〈pp − I/2〉. Letting μ be the largest
eigenvalue of D/c, we have |D|2 = 2c2μ2 so that

dH
dt

≤
∫

Ω

2c2μ2 dx − 4DT

∫
Ω

|∇c1/2|2 dx − 4DR

∫
Ω

c

(∫ 2π

0
|∂θΨ

1/2
μ |2 dθ

)
dx,

(3.11)
where at each point in space

Ψμ = argminΨ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ 2π

0
|∂θΨ

1/2|2 dθ :

∫ 2π

0
Ψ dθ = 1,

∫ 2π

0

1
2 cos 2θΨ dθ = μ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

Note that we factored the concentration c out of the orientation integral in the last term.
Reformulated in terms of φ = Ψ 1/2, the minimisation problem can be written as

φμ = argminφ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ 2π

0
|φ′|2 dθ :

∫ 2π

0
φ2 dθ = 1,

∫ 2π

0

1
2 cos 2θφ2 dθ = μ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

where primes denotes derivatives with respect to θ . The minimiser φμ satisfies the
corresponding Euler–Lagrange equation, which for this case is the Mathieu equation,

φ′′
μ + (a − 2q cos 2θ)φμ = 0, (3.14)

where a and q are Lagrange multipliers that enforce the moment constraints on φ2
μ. (A

proof of this closely follows that with one constraint in Evans (2010, Chapter 8).)
The Mathieu equation admits a family of solutions, both periodic and non-periodic,

that depend on the values of a and q (Arfken, Weber & Harris 2011). For each q, there
is a set of characteristic numbers a = an(q) and a = bn+1(q), n = 0, 1, 2, . . . , such that
there are two orthogonal π-periodic solutions and two orthogonal 2π-periodic solutions,
respectively. Numerical computation shows the minimising function corresponds to
the smallest characteristic number a = a0(q), whose corresponding Mathieu function
ce0(θ; q) is π-periodic, where q is itself a function of μ. The minimising distribution
is then given by Ψμ = [ce0(θ; q(μ))]2, and is shown in figure 1 for several values of μ.
Note that as μ → 1/2, which is the sharply aligned state, the distribution Ψμ approaches
a sum of delta functions each located at θ = 0 and θ = π.

Because φμ is π-periodic so is Ψμ = φ2
μ, hence the optimal log-Sobolev constant for

functions of this form is 1/2 (Appendix A). We therefore have the bound∫
S
Ψμ log

(
Ψμ

Ψ0

)
dp ≤ 1

2

∫
S
|∇pΨ

1/2
μ |2 dp. (3.15)

Because the model is apolar, if the initial distribution is π-periodic it will remain
π-periodic and this bound will hold generically. However, we need not assume this and,
in fact, the same distribution will be a minimiser for motile suspensions whose relative
entropy also evolves according to (2.11) on periodic domains.
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Figure 1. Minimising distribution Ψμ of rotational dissipation subject to constraints on the largest eigenvalue
μ of D/c. The distribution is bimodal with peaks whose amplitudes increase monotonically with μ.

The relative entropy of the Mathieu function on the left-hand side of (3.15) is
challenging to work with as it lacks a clear analytical form. However, a standard variational
calculation shows

1
c

∫
S
ΨB log

(
ΨB

cΨ0

)
dp ≤

∫
S
Ψμ log

(
Ψμ

Ψ0

)
dp, (3.16)

where ΨB = Z−1 exp(B : pp) is the maximum entropy, or Bingham, distribution, which
minimises the relative configuration entropy subject to the pointwise constraints

∫
S Ψ dp =

c and
∫

S(pp − I/2)Ψ dp = D (Cover & Thomas 2012). The parameters Z(x, t) and
B(x, t) in the Bingham distribution are Lagrange multipliers that arise from the moment
constraints. This distribution function has frequently been applied in closure models of
both active and passive suspensions, where it demonstrates good agreement with the
kinetic theory in both its linearised behaviour as well as long-time nonlinear dynamics
(Chaubal & Leal 1998; Gao et al. 2017; Weady, Shelley & Stein 2022a; Weady, Stein &
Shelley 2022b; Freund 2023). Moreover, its analytical properties are well characterised
(Li, Wang & Zhang 2015).

Because the relative entropy is invariant to translations in θ , we may write ΨB =
c exp(ζ + ξ cos 2θ), where ζ(μ) and ξ(μ) are chosen to satisfy the moment constraints.
It is straightforward to show that μ = I1(ξ)/2I0(ξ) and ζ = log(2πI0(ξ)), where Ik is
the modified Bessel function of the first kind (Weady et al. 2022a). In terms of these
parameters, we thus have the inequality

dH
dt

≤
∫

Ω

2c2μ2 − 4DT |∇c1/2|2 − 8DRcη dx, (3.17)

where we have introduced the pointwise relative entropy of the Bingham distribution η =
(ζ − ζ0) + 2μξ with ζ0 = log(Ψ0). This inequality depends only on the concentration c
and the largest eigenvalue μ of the nematic tensor D/c, and can be treated using elementary
methods.
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Bounds on active suspensions

4. Uniform bounds, nonlinear stability and time-averaged order parameters

In this section we use inequality (3.17) to derive various bounds on the relative entropy and
orientational order parameters. We first show the relative entropy is uniformly bounded
in time. For sufficiently large rotational diffusion, we show isotropic suspensions are
nonlinearly stable and lose stability through a supercritical bifurcation. Finally, a similar
analysis admits bounds on infinite time averages which hold in the unstable regime.

4.1. Uniform-in-time bounds on the relative entropy
Consider the inequality from the previous section

dH
dt

≤
∫

Ω

2c2μ2 − 4DT |∇c1/2|2 dx − 4DR

∫
Ω

∫
S
|∇pΨ

1/2|2 dp dx, (4.1)

where we have retained the rotational dissipation term in its original form. Applying the
logarithmic Sobolev inequality (3.9) with the general constant C = 2, we have

dH
dt

≤
∫

Ω

2c2μ2 + 2DRc log c − 4DT |∇c1/2|2 dx − 2DRH. (4.2)

Thus, if we can show

F [c, μ] :=
∫

Ω

2c2μ2 + 2DRc log c − 4DT |∇c1/2|2 dx (4.3)

is uniformly bounded, then Grönwall’s inequality implies H is uniformly bounded as well.
Using the trivial inequality μ ≤ 1/2, we have

F [c, μ] ≤
∫

Ω

c2

2
+ 2DRc log c − 4DT |∇c1/2|2 dx

≤
(

1
2

+ 2DR

)∫
Ω

c2 dx − 2DR|Ω|, (4.4)

where we used the inequality c log c ≤ c(c − 1) and eliminated the strictly negative spatial
dissipation term. It is straightforward to show

∫
Ω

c2 dx is strictly decreasing, in which case
we have the uniform bound

H(t) ≤ max
{[(

1 + 1
4DR

)(∫
Ω

c2
0 dx

)
− |Ω|

]
,H0

}
, (4.5)

where H0 = H(0) and c0 = c(x, 0). For the rest of this section we assume c0 = 1 in which
case c = 1 for all time.

4.2. Nonlinear stability of the isotropic state
From (3.17) we have the inequality

dH
dt

≤
∫

Ω

2μ2 − 8DRη dx. (4.6)

We claim 4μ2 ≤ η. To this end, let h(μ) = η − 4μ2. Differentiating h with respect to
μ, applying the identity dη/dμ = 2ξ (Appendix B), and using the fact that ξ ≥ 4μ
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(inequality (2.21) in Ifantis & Siafarikas 1990), we have

dh
dμ

= 2ξ − 8μ ≥ 0. (4.7)

Since h(0) = 0, this shows h is strictly non-negative and so the claim holds. Applying this
inequality to the integral (4.6), we find

dH
dt

≤
(

1 − 16DR

2

)∫
Ω

η dx. (4.8)

Since η ≥ 0, this shows that whenever DR > 1/16 we have dH/dt ≤ 0, with equality
only in the globally isotropic state μ(x) = η(μ(x)) = 0. This implies H is a Lyapunov
functional and so the isotropic state is globally attracting or nonlinearly stable.
Remarkably, this condition is independent of the boundary geometry. Linear analysis
shows, for vanishing translational diffusion, the isotropic state is unstable to infinitesimal
perturbations for DR < 1/16 so that this threshold is sharp. Because the nonlinear
and linear stability thresholds coincide in this case, this implies the isotropic state
loses stability through a supercritical bifurcation. Moreover, because the dimensionless
rotational diffusion coefficient is inversely proportional to the active stress coefficient |σa|,
physically this stability threshold can be crossed by increasing activity.

This inequality also provides a bound on the growth rate of H when DR is below the
stability threshold. In particular, because

∫
Ω

η dx ≤ H, which follows from the fact that
the Bingham distribution minimises the relative entropy, for DR < 1/16 we have dH/dt ≤
(1 − 16DR)H/2. Grönwall’s inequality then implies H(t) ≤ H0 exp[(1 − 16DR)t/2],
however this does not provide an accurate bound on long-time solutions.

4.3. Bounds on time averages
In the case DR < 1/16 for which solutions exhibit instabilities, the previous analysis is
inconclusive. However, we can exploit the fact that H is uniformly bounded in time to
derive sharper estimates on long-time behaviour. Defining Φ̄ = limT→∞[T−1 ∫ T

0 Φ(t) dt]
to be the infinite time average and using the fact that H is bounded, taking the infinite time
average of both sides of (4.6) gives

0 ≤
∫

Ω

2μ2 − 8DRη dx. (4.9)

Letting ε ∈ (0, 1) and adding 8DRε(
∫
Ω

η dx) to both sides gives

∫
Ω

η dx ≤ 1
8DRε

[∫
Ω

2μ2 − 8DR(1 − ε)η dx

]
. (4.10)

Critical points of the right-hand side occur when μ = 4DR(1 − ε)ξ(μ), which is shown
by differentiating the integrand with respect to μ. When DR < 1/16, in addition to the
trivial solution μ = 0, there is one non-trivial solution to this equation and this solution
is the maximum. Therefore, maximising the right-hand side over μ and minimising over ε
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Uniform bound
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DR

η

0.06 0.08

Figure 2. Bounds on the relative entropy of the Bingham distribution. The solid line shows the time-averaged
bound η∗(DR) and the dot-dashed line shows the spatially averaged uniform-in-time bound. Beyond the
nonlinear stability threshold DR > 1/16 (dashed line), the bound is zero, consistent with nonlinear stability.
As DR → 0, the bound diverges.

implies

1
|Ω|

∫
Ω

η dx ≤ η∗(DR), (4.11)

where

η∗(DR) = inf
ε∈(0,1)

max
μ∈[0,1/2]

{
1

8DRε
[2μ2 − 8DR(1 − ε)η]

}
. (4.12)

We solve this minimisation problem numerically over DR, with the solution shown in
figure 2, including the uniform bound (4.5) for comparison. For DR ≥ 1/16, we find
η∗ = 0 as required by nonlinear stability. On the other hand, as DR → 0 we find η∗ →
∞, similar to the uniform bound. This is unavoidable, as any spatially homogeneous
distribution is a steady solution of the kinetic theory in this limit and can be taken to
have arbitrarily large relative entropy.

The upper bound (4.12) is for the relative entropy of the Bingham distribution and does
not provide a bound on the relative entropy of the kinetic theory. However, we can use
this to derive bounds on the nematic order parameter associated with the true distribution
function. Because η is a convex function of μ (Appendix B), Jensen’s inequality implies

η

(
1

|Ω|
∫

Ω

μ dx

)
≤ 1

|Ω|
∫

Ω

η dx ≤ η∗(DR). (4.13)

Monotonicity of η (Appendix B), in turn, implies

1
|Ω|

∫
Ω

μ dx ≤ μ∗(DR), (4.14)

where μ∗ solves η(μ∗(DR)) = η∗(DR), which can again be determined numerically.
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Figure 3. (a) Scalar nematic order parameter μ for a simulation with DR = 0.01 and DT = 10−3.
(b) Time-averaged value 〈μ〉Ω = (

∫
Ω

μ dx)/|Ω| compared with the theoretical bound μ∗ (solid line) for
several values of DR and DT . The bound holds across all parameter values tested, and is sharp past the nonlinear
stability threshold (dashed line).

A similar procedure can be applied directly to the entropy evolution equation (2.11) to
derive an equality between time-averaged quantities. Taking the infinite time average of
this equation, we find

Ā :=
∫

Ω

|E|2 dx =
∫

Ω

∫
S

DT |∇xΨ 1/2|2 + DR|∇pΨ 1/2|2 dp dx =: D̄. (4.15)

Here Ā corresponds to relative entropy production through activity, which depends only on
the macroscopic velocity field, and D̄ corresponds to the total dissipation at the microscale.
The utility of this identity lies in the fact that Ā can readily be measured experimentally
whereas D̄ depends on microscopic measurements. This provides a practical method
for estimating the dependence of orientational dissipation on microscopic parameters,
which is a central theme of active turbulence (Alert et al. 2022), through macroscopic
observations.

4.4. Numerical verification
To assess the theoretical bounds, we perform numerical simulations of the kinetic theory in
a two-dimensional periodic domain. The numerical method is based on a pseudo-spectral
discretisation of both the spatial and orientational degrees of freedom of the distribution
function, and employs a second-order, implicit–explicit time-stepping scheme. In all
simulations we use 2562 spatial Fourier modes and 128 orientational modes, along with
the 2/3 anti-aliasing rule. The initial condition is a plane wave perturbation from isotropy
Ψ = 1/2π.

Figure 3(a) shows a snapshot of the scalar nematic order parameter μ for a simulation
with DR = 0.01 and DT = 10−3. The nematic order parameter consists of broad regions
of high order μ ≈ 0.5, with narrow defect regions of low order μ ≈ 0. Figure 3(b) shows
the spatiotemporal average of the nematic order parameter 〈μ〉Ω = (1/|Ω|)∫

Ω
μ dx for

simulations with various values of DR and DT compared with the theoretical bound μ∗
as defined by (4.13)–(4.14). The average increases with decreasing DR in agreement with
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the upper bound. Smaller values of the spatial diffusion coefficient tend to achieve values
closer to the bound, though the bound still does not appear to be sharp in the unsteady
regime as DT → 0.

5. Discussion

This work provides analytical insight into the nonlinear dynamics of active nematic
suspensions. Drawing on analogies with turbulent flows, the entropy method allowed us
to derive rigorous bounds on the relative entropy and its fluctuations, establish a criterion
for nonlinear stability, and bound time averages of orientational order parameters with
relative ease. Moreover, this analysis holds independent of the boundary geometry under
the provided boundary conditions. A key component of our analysis was the use of the
Bingham distribution, whose properties made it possible to derive analytically tractable
bounds on the rate of dissipation. All of these results extend naturally to three dimensions
with slightly modified constants, though the optimal constant in the variational bound on
rotational dissipation in § 3.3 requires more detailed calculation.

The behaviour of both simulations and the theoretical bound is remarkably similar to
observations of bacterial turbulence in which orientation correlations and related order
parameters increase with the volume fraction (Peng et al. 2021). This increase happens
rapidly at a critical volume fraction φ ≈ 0.01, indicating a transition to instability, which
is within the range of applicability of the dilute theory considered here (Doi & Edwards
1986). Under our non-dimensionalisation, the volume fraction is inversely proportional
to DR so that the increasing bound as DR → 0 is both consistent with and suggestive of
these observations. Detailed measurements of the diffusion coefficients would be useful
to further corroborate these analytical predictions.

The entropy method is flexible and can be applied to other continuum models of
active suspensions such as those that involve steric interactions (Ezhilan, Shelley &
Saintillan 2013; Gao & Li 2017), run and tumble dynamics (Subramanian & Koch 2009)
or chemotaxis (Lushi, Goldstein & Shelley 2012). In these models other steady states may
exist, in which case the relative entropy must be measured as a departure from another
steady, possibly inhomogeneous, state Ψ̃ = Ψ̃ (x, p),

H̃(t) =
∫

Ω

∫
S
Ψ log

(
Ψ

Ψ̃

)
dp dx. (5.1)

This form of the relative entropy is also non-negative and vanishes only when Ψ =
Ψ̃ , however its rate of change involves additional terms that may include boundary
contributions. The evolution of H̃ may also depend on higher-order orientational moments
of the distribution function, which could modify the constant in the logarithmic Sobolev
inequality for minimisers of dissipation.

Motile suspensions in confinement are particularly interesting, since the isotropic state
is not a valid solution as it violates the no-flux boundary condition ∂Ψ/∂n = (β/DT)(p ·
n̂)Ψ , where β is the swimming speed (Ezhilan & Saintillan 2015). Moreover, details of
the particle geometry may need to be considered to account for admissible configurations
near the boundary (Nitsche & Brenner 1990; Schiek & Shaqfeh 1995; Chen & Thiffeault
2021). Here the steady-state solution will depend on both the boundary geometry and the
ratio of motility to spatial diffusion β/DT , though the solution lacks a precise analytical
form even in simple geometries. Such solutions, as well as their unsteady counterparts, are
characterised by concentration boundary layers (Rothschild 1963; Berke et al. 2008; Elgeti
& Gompper 2013).
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We emphasise the results here are limited to immotile suspensions, though numerical
and experimental work has found motility has a weak effect on turbulent statistics
(Stenhammar et al. 2017; Peng et al. 2021). The central challenge posed by particle motility
is the lack of a maximum principle on concentration fluctuations from which the estimate
(3.17) can be shown to have no upper bound. Nonetheless, numerical evidence suggests
motile suspensions are stable at a threshold near that derived here, and further work should
see whether the methods can be extended to determine more general bounds.
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Appendix A. Improved constants for 2π/n-periodic functions

Suppose f (θ) is 2π/n-periodic, that is f (θ + 2π/n) = f (θ), and define g = f (θ/n).
Assume also that

∫ 2π

0 f dθ = 1. Making the change of variables θ ′ = θ/n, we find

∫ 2π

0
g(θ) dθ =

∫ 2π

0
f (θ/n) dθ = n

∫ 2π/n

0
f (θ ′) dθ ′ = 1, (A1)

where we used the fact f (θ + 2π/n) = f (θ). Define H[ f ] = ∫ 2π

0 f log(2πf ) dθ and
I[ f ] = ∫ 2π

0 |∂θ f 1/2|2 dθ . Similar to before, we have

H[g] =
∫ 2π

0
g(θ) log(2πg(θ)) dθ = n

∫ 2π/n

0
f (θ ′) log(2πf (θ ′)) dθ ′ = H[ f ]. (A2)

Applying the logarithmic Sobolev inequality to g with the constant C = 2 gives

H[g] ≤ 2I[g]. (A3)

Evaluating I[g], we find

I[g] =
∫ 2π

0
|∂θg1/2(θ)|2 dθ

= 1
n

∫ 2π/n

0
|∂θ ′ f 1/2(θ ′)|2 dθ ′

= 1
n2I[ f ]. (A4)

We therefore have the inequality

H[ f ] ≤ 2
n2I[ f ]. (A5)

This inequality is optimal by considering the function fn = (1 + ε cos nθ)/2π as ε → 0.
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Appendix B. Convexity and monotonicity of η

Let ΨB = exp(ζ + ξ cos 2θ) be the Bingham distribution and consider its relative entropy
density η = (ζ − ζ0) + 2μξ , where ζ = − log(2πI0(ξ)). Differentiating with respect to
μ gives

dη

dμ
= dζ

dμ
+ 2ξ + 2μ

dξ

dμ
= 2ξ (B1)

and
d2η

dμ2 = 2
dξ

dμ
, (B2)

where we used ζ ′ = −2μξ ′. Since ξ ≥ 0, we have dη/dμ ≥ 0 and so η is a monotonic
function of μ. Using the identity μ = I1(ξ)/2I0(ξ), we find

2 =
[

1
2

+ 1
2

I2(ξ)

I0(ξ)
−
(

I1(ξ)

I0(ξ)

)2
]

dξ

dμ
, (B3)

where we have also used I′
1(ξ) = (I2(ξ) + I0(ξ))/2. It is sufficient to show the bracketed

term in (B3) is positive from which we can conclude dξ/dμ > 0 and, hence, d2η/dμ2 > 0,
implying η is convex. Now define S = Z−1 ∫ 2π

0 cos4 θ exp(ξ cos 2θ) dθ to be the fourth
moment of the Bingham distribution. In terms of ξ , this can be written as

S = 1
8

(
3 + 4

I1(ξ)

I0(ξ)
+ I2(ξ)

I0(ξ)

)
. (B4)

Using this to solve for I2(ξ)/I0(ξ), we find

1
2

+ 1
2

I2(ξ)

I0(ξ)
−
(

I1(ξ)

I0(ξ)

)2

= −1 − 4μ + 4S − 4μ2

= 4S − 4(μ + 1/2)2

= 4(S − m2), (B5)

where m = Z−1 ∫ 2π

0 cos2 θ exp(ξ cos 2θ) is the second moment of the Bingham
distribution. The variance inequality 〈 f 〉2 ≤ 〈 f 2〉 with f = cos2 θ implies m2 ≤ S, so the
claim holds.
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