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Abstract

The Exp-function method is applied to construct a new type of solution of the coupled
(2+ 1)-dimensional nonlinear system of Schrödinger equations. It is shown that the
method provides a powerful mathematical tool for solving nonlinear evolution equations
in mathematical physics.
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1. Introduction

The investigation of exact solutions of nonlinear equations plays an important role
in the study of nonlinear physical phenomena. The importance of obtaining the
exact solutions, if available, of those nonlinear equations facilitates the verification
of numerical solutions and aids in the stability analysis of solutions. Recently,
many approaches have been suggested to solve the nonlinear equations, such as the
variational iteration method [8, 11, 15], the homotopy perturbation method [7, 17, 23],
the tanh method [28], the extended tanh method [3], the sinh method [25], the spectral
collocation method [4, 5, 9, 10, 12], the homogeneous balance method [31, 34], the F-
expansion method [32], the extended Fan sub-equation method [30] and the parameter-
expansion method [6, 16, 27]. Recently, He and Wu [18] proposed a straightforward
method, the Exp-function method, to obtain the exact solutions of nonlinear evolution
equations (NLEEs). The Exp-function method has proved to be very effective and
convenient for handling many kinds of NLEEs [1, 14, 18–22, 26, 29, 33]. It provides
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the generalized solitary solutions and periodic solutions, as well. Taking advantage
of the generalized solitary solutions, we can recover some known solutions obtained
by existing methods such as the decomposition method, the tanh-function method,
the algebraic method, the extended Jacobi elliptic function expansion method, the
F-expansion method, the auxiliary equation method and others [1, 14, 18–22, 29, 33].

In this paper we extend the Exp-function method to a class of nonlinear evolution
equations with imaginary number and modulus. We consider the coupled (2+ 1)-
dimensional nonlinear system of Schrödinger equations as

iψt − ψxx + ψyy + |ψ |
2ψ − 2ψφ = 0, (1.1)

φxx − φyy − (|ψ |
2)xx = 0, (1.2)

where ψ(x, y, t) and φ(x, y, t) are complex-valued functions. Nonlinear partial
differential equation systems of the type given by (1.1) and (1.2) play an important
role in atomic physics, and the functions ψ and φ have different physical meanings in
different branches of physics [2, 13, 24]. Well-known applications are, for instance,
in fluid dynamics [2] and plasma physics [24]. In the context of water waves, ψ
is the amplitude of a surface wave packet while φ is the velocity potential of the
mean flow interacting with the surface waves [13]. However, in the hydrodynamic
context, ψ is the envelope of the wave packet and φ is the induced mean flow [2].
In addition, equations (1.1) and (1.2) are relevant in a number of different physical
contexts, describing slow modulation effects of the complex amplitude φ, due to a
small nonlinearity, on a monochromatic wave in a dispersive medium.

2. Method of solution

To obtain the exact solutions of (1.1) and (1.2), we use the transformations

ψ(x, y, t)= u(ξ) exp(iη), φ(x, y, t)= v(ξ),

ξ = k(x + ly + 2(α − βl)t), η = αx + βy + γ t,
(2.1)

where k, l, α, β and γ are constants to be determined. Note that ξ and η are travelling
wave variables, not necessarily in the same direction. That is, ξ and η are independent
linear functions of x , y and t . Then u and v are assumed to be rational functions of
exp(ξ). When u is positive real, u is the modulus of the complex function ψ , and η is
the argument. The modulus and argument are travelling waves but the two waves may
be in different directions.

From (1.1) and (1.2), we may obtain the system of ordinary differential equations

k2(l2
− 1)u′′ + (α2

− β2
− γ )u + u3

− 2uv = 0, (2.2)

(1+ l2)v′′ − (u2)′′ = 0. (2.3)

Integrating (2.3) with respect to ξ and setting the constants of integration equal to zero
yields

v =
u2

1+ l2 . (2.4)
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Substituting (2.4) into (2.2), we obtain

k2(l2
− 1)u′′ + (α2

− β2
− γ )u +

l2
− 1

l2 + 1
u3
= 0. (2.5)

Using the Exp-function method [18], the solution of (2.5) may be expressed in the
form

u(ξ)=

∑d
n=−c an exp(nξ)∑g

m=− f bm exp(mξ)
, (2.6)

where c, d , f and g are unknown positive integers to be determined and an and bm are
constants. In expanded form, (2.6) becomes

u(ξ)=
a−c exp(−cξ)+ · · · + ad exp(dξ)
b− f exp(− f ξ)+ · · · + bg exp(gξ)

. (2.7)

For simplicity of notation, by renaming the variables, equation (2.7) may be rewritten
as [18]

u(ξ)=
ac exp(cξ)+ · · · + a−d exp(−dξ)

b f exp( f ξ)+ · · · + b−g exp(−gξ)
. (2.8)

In order to determine the values of c and f , we balance the linear term of the highest
order in (2.5), u′′, with the highest-order nonlinear term, u3. Simple calculations give

u′′ =
c1 exp[(c + 3 f )ξ ] + · · ·

c2 exp[4 f ξ ] + · · ·
(2.9)

and

u3
=

c3 exp[(3c + f )ξ ] + · · ·

c4 exp[4 f ξ ] + · · ·
, (2.10)

where the ci are constants. By balancing the highest order of the exp functions in (2.9)
and (2.10), we can write 3c + f = c + 3 f , which leads to c = f .

Similarly, to determine d and g we can write

u′′ =
· · · + d1 exp[−(d + 3g)ξ ]

· · · + d2 exp[−5gξ ]
(2.11)

and

u3
=
· · · + d3 exp[−(3d + g)ξ ]

· · · + d4 exp[−4gξ ]
, (2.12)

where the di are constants. By balancing the lowest order of the exp functions in (2.11)
and (2.12), we obtain −(d + 3g)=−(3d + g), which leads to g = d .
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3. Solitary solutions

In this section we discuss the nature of solutions categorically for various values
of f and g. We will confirm claims [18, 19] that the final solution does not strongly
depend upon the choice of values of c and d .

3.1. Case (i): f = g = 1, c= d = 1 In this case setting b1 = 1, the trial
function (2.8) becomes

u(ξ)=
a1 exp(ξ)+ a0 + a−1 exp(−ξ)

exp(ξ)+ b0 + b−1 exp(−ξ)
. (3.1)

Substituting (3.1) into (2.5) gives

1
Q

3∑
j=−3

K j exp( jξ)= 0, (3.2)

where Q = (l2
+ 1)(exp(ξ)+ b0 + b−1 exp(−ξ))3 and K j , j =−3, . . . , 3, are

constants. Equating the coefficients of the exponential terms in (3.2) to zero, we obtain

K j = 0, j =−3,−2, . . . , 2, 3. (3.3)

Solving the system of algebraic equations (3.3) using MAPLE, we obtain

a0 =−
k
√

2

√
(l2 + 1)(4b−1 − b2

0), a−1 =
ik
√

2

√
l2 + 1b−1,

a1 =−
ik
√

2

√
l2 + 1, α =−

√
1
2

k2(l2 − 1)+ β2 + γ ,

(3.4)

where β, γ , l, k, b0 and b−1 are free parameters.
Substituting (3.4) into (3.1) leads to

u(ξ)=−
ik
√

l2 + 1
√

2

[exp(ξ)+
√

b2
0 − 4b−1 − b−1 exp(−ξ)

exp(ξ)+ b0 + b−1 exp(−ξ)

]
, (3.5)

where b0 and b−1 are free parameters and

ξ = k(x + ly − 2(−α + βl)t). (3.6)

Therefore we obtain the combined generalized solutions of (1.1) and (1.2),

ψ = u exp[i(αx + βy + γ t)], (3.7)

φ =
u2

1+ l2 , (3.8)

where u is determined by (3.5).
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FIGURE 1. Evolution of dromion solutions ψ(ξ) and φ(ξ) at t = 10 for k = 2, β = 0.05, γ = 0.2 and
(a) l = 0.3 and α = 0.1 and (b) l = 0.03 and α = 0.005.

Setting b−1 =−1 and b0 = 1 in (3.5) gives

u =−
ik
√

1+ l2
√

2

(√
5+ 2 cosh(ξ)

1+ 2 sinh(ξ)

)
. (3.9)

Substituting (3.9) into (3.7), we obtain the exact solutions of (1.1) and (1.2) as

ψ(ξ)=−
ik
√

1+ l2
√

2

(√
5+ 2 cosh(ξ)

1+ 2 sinh(ξ)

)
exp[i(αx + βy + γ t)], (3.10)

φ(ξ)=−
1
2

k2
(√

5+ 2 cosh(ξ)
1+ 2 sinh(ξ)

)2

. (3.11)

Figure 1 presents the values of ψ and φ from equations (3.10) and (3.11) at t = 10
for k = 2, β = 0.05, γ = 0.2 and different values of α and l. The evolution of the
combined generalized solutions is portrayed in the form of dromions.

Setting b−1 = 1 and b0 = 2 in (3.5), (3.7) and (3.8) become

ψ(ξ)=−
ik
√

1+ l2
√

2
tanh

(
ξ

2

)
exp[i(αx + βy + γ t)], (3.12)

φ(ξ)=−
1
2

k2 tanh2
(
ξ

2

)
. (3.13)

Figure 2 is a plot of the evolution of the dromion solutions (3.12) and (3.13) for two
sets of parameter values. Figure 2(a) represents the dromion solutions ψ(ξ) having
a groove at the centre and Figure 2(b) represents φ(ξ). In the contour plots the
brighter region represents the maximum amplitude and the darker region represents
the minimum or zero amplitude.
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FIGURE 2. Evolution of the dromion solutionsψ(ξ) and φ(ξ) from (3.12) and (3.13) at t = 0 for (a) k = 2,
l = 0.08, α = 0.5, β = 1 and γ = 0.1 and (b) k = 0.3, l = 0.0003, α = 0.005, β = 0.8 and γ = 0.2.

Setting b−1 =−1 and b0 = 2 in (3.5), (3.7) and (3.8) become

ψ(ξ)=−
ik
√

1+ l2
√

2
coth

(
ξ

2

)
exp[i(αx + βy + γ t)], (3.14)

φ(ξ)=−
1
2

k2 coth2
(
ξ

2

)
. (3.15)

The dromion solutions representing (3.14) and (3.15) are depicted in Figure 3 at t = 0
for two choices of parameters. The figure portrays the homogeneous evolution of
dromions which is also evident from the corresponding contour plots.

When k is an imaginary number, all the solutions obtained above may be converted
into trigonometric solutions. If we use k = i�, then solutions (3.10) and (3.11)
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FIGURE 3. Evolution of dromion solutionsψ(ξ) and φ(ξ) given by (3.14) and (3.15) at t = 0 for (a) k = 2,
l = 3, α = 0.5, β = 1 and γ = 0.08 and (b) k = 0.05, l = 0.73, α = 0.61, β = 0.8 and γ = 0.2.

become

ψ(ζ ) = −
i�
√

1+ l2
√

2

(√
5+ 2 cos(ε)
−i + 2 sin(ε)

)

× exp
[

i

(
−

√
�2

2
(1− l2)+ β2 + γ x + βy + γ t

)]
,

φ(ζ ) = −
1
2
�2
(√

5+ 2 cos(ε)
−i + 2 sin(ε)

)2

,

where

ζ =�(x + l(y − 2tβ)− t
√

4(β2 + γ )− 2(−1+ l2)�2).

3.2. Case (ii): f = c= 2, d = g = 2 In this case the trial function (2.8) becomes

u(ξ)=
a2 exp(2ξ)+ a1 exp(ξ)+ a0 + a−1 exp(−ξ)+ a−2 exp(−2ξ)
b2 exp(2ξ)+ b1 exp(ξ)+ b0 + b−1 exp(−ξ)+ b−2 exp(−2ξ)

. (3.16)
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There are free parameters in (3.16). For simplicity we set b−1 = b1 = 0 and b2 = 1,
giving

u(ξ)=
a2 exp(2ξ)+ a1 exp(ξ)+ a0 + a−1 exp(−ξ)+ a−2 exp(−2ξ)

exp(2ξ)+ b0 + b−2 exp(−2ξ)
. (3.17)

Substituting (3.17) into (2.5), we obtain a rational function in powers of exp(ξ).
Equating the coefficients of exp(nξ) to zero and solving the system of algebraic
equations yields

a−2 =−
4ka0a2

1 + (i
√

2a4
1/
√

1+ l2)

8k3(1+ l2)
, a−1 =

i2k
√

2(1+ l2)a0a1 + a3
1

2k2(1+ l2)
,

a2 =−
i
√

k2(1+ l2)
√

2
, b−2 =

i2k
√

2(1+ l2)a0a2
1 + a4

1

4k4(1+ l2)2
,

b0 =
ik
√

2(1+ l2)a0 + a2
1

k2(1+ l2)
, β =−

√
k2(1− l2)+ 2α2 − 2γ

√
2

,

(3.18)

where a0, a1, γ , α, l and k are free parameters.
Substitution of (3.18) and a1 = i

√
k2(1+ l2)/2 into (3.17) yields a solution of (2.5),

u(ξ)=−
ik
√

1+ l2(−8+ 9
√

2 cosh(ξ)+ 7
√

2 sinh(ξ))
2(7 cosh(ξ)+ 9 sinh(ξ))

, (3.19)

where

ξ = k

(
x + ly + 2

(
α +

√
k2(1− l2)+ 2α2 − 2γ

√
2

l

)
t

)
.

Substitution of (3.18) and a1 = i
√

2k2(1+ l2) into (3.17) yields another solution
of (2.5),

u(ξ)=−
ik
√

2

√
1+ l2 tanh

(
ξ

2

)
. (3.20)

Setting a1 = b1 = b2 = 0 for simplicity, (3.16) reads

u(ξ)=
a2 exp(2ξ)+ a1 exp(ξ)+ a0 + a−2 exp(−2ξ)

b0 + b−1 exp(−ξ)+ b−2 exp(−2ξ)
. (3.21)

By the same manipulation as illustrated before, we obtain√
k2(1+ l2)(a0 + a−2 exp(−2ξ))

√
2(ia0 − 2

√
a−2a0 exp(−ξ)− ia−2 exp(−2ξ))

, (3.22)

where a0 and a−2 are free parameters and

ξ = k

(
x + ly − 2

(√
k2(l2 − 1)+ 2β2 + 2γ

√
2

+ βl

)
t

)
.

https://doi.org/10.1017/S1446181111000563 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181111000563


118 F. Khani et al. [9]

It should be noted that if we set a0 =−k2(1+ l2) and a−2 = k2(1+ l2) in (3.22),
we can recover the solution (3.20).

3.3. Case (iii): f = c= 2, d = g = 1 In this case (2.8) may be expressed as

u(ξ)=
a2 exp(2ξ)+ a1 exp(ξ)+ a0 + a−1 exp(−ξ)
b2 exp(2ξ)+ b1 exp(ξ)+ b0 + b−1 exp(−ξ)

. (3.23)

There are free parameters in (3.23). For simplicity we set b2 = 1 and b1 = 0. After
lengthy algebra, we obtain

a−1 = 0, a0 =
ia2

1

2k
√

2(1+ l2)
, a2 =−

i
√

k2(1+ l2)
√

2
,

b−1 = 0, b0 =
a2

1

2k2(1+ l2)
, β =−

√
k2(1− l2)+ 2α2 − 2γ

√
2

,

(3.24)

where a1, α, γ , k and l are free parameters. Substituting (3.24) into (3.23) yields

u(ξ)=
−(i

√
k2(1+ l2)/

√
2) exp(2ξ)+ a1 exp(ξ)+ ia2

1/(2k
√

2(1+ l2))

exp(2ξ)+ a2
1/(2k2(1+ l2))

, (3.25)

where a1 is a free parameter and

ξ = k

(
x + ly + 2

(
α +

√
k2(1− l2)+ 2α2 − 2γ

√
2

l

)
t

)
.

If we set a1 =
√

2k2(1+ l2), then (3.25) becomes

u(ξ)=
−ik
√

2

√
1+ l2 sech(ξ)(i + sinh(ξ)). (3.26)

Also if we set a1 = i
√

2k2(1+ l2) in (3.25), then (3.25) recovers the solution (3.20).

4. Extrema and points of inflection of the solutions

In this section, we give some general descriptions of the solutions u(ξ) obtained.
An inflection in the path of a point can also be described as a location where the path
has zero curvature or where the curve is osculating to first order with a straight line.

4.1. Case (a): f = g = 1, b0 = 0, b−1 =−1 We try to elucidate the extremal points
by differentiating equation (3.9), which yields

u′(ξ)=
ik
√

2+ 2l2

1+ 2 sinh(ξ)

[
sinh(ξ)−

(
√

5+ 2 cosh(ξ)) cosh(ξ)
1+ 2 sinh(ξ)

]
. (4.1)
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FIGURE 4. (a) Extremum point and (b) inflection points for k = 0.1 and l2
=−2.

By choosing k = 0.1 and l =−2, setting u′(ξ)= 0 and using symbolic computation,
the extremal points are found to be

(ξ, u(ξ)) =

(
log
(
−500
309

±

√
19

309

)
,−0.0707

(
2.2360+ 2 cosh(ξ)

1+ 2 sinh(ξ)

))
≈ (0.4725+ π i,−0.031 12) and (0.4899+ π i,−0.031 12).

Points of inflection are obtained by setting the second derivative of u to zero
in the usual manner to give (−0.4815, 1.201× 10−5), (0.4468,−0.030 64) and
(0.5504,−0.033 57). Similarly, for the case of k =−0.1 and l2

=−2, the extremum
point is (0.4725, 0.032 11) and the points of inflection are (−0.4815,−1.201× 10−5),
(0.4468, 0.030 64) and (0.5504, 0.033 57).

4.2. Case (b): a1 =
√

2k2(1+ l2) Upon differentiating equation (3.26),

u′(ξ)=
k sech(ξ)

√
1+ l2

2i
[−tanh(ξ)(i +

√
2 sinh(ξ))+

√
2 cosh(ξ)], (4.2)

and once again differentiating to obtain u′′, extremal and inflection points are found
in the usual manner. When k = 0.1 and l2

=−2, the extremum point is (ξ, u(ξ))=
(−0.8814, 0.1) which is also represented in Figure 4(a). The points of inflection
are (−1.615, 0.092 39) and (±0.4032,±0.038 27) for ξ =−0.4032, −0.4032+ π i ,
−1.6149, 1.6149+ π i . The points of inflection are shown in Figure 4(b).

Similarly, when k =−0.1 and l2
=−2, the extremum point is (−0.8814,−0.1) and

the inflection points are found to be (−1.615, 0.092 39) and (±0.4032,±0.038 27) as
portrayed in Figure 5.

5. Conclusions

In this paper, the Exp-function method is employed along with a computerized
symbolic computation to obtain the single and combined generalized solutions of a
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FIGURE 5. (a) Extremum point and (b) inflection points for k =−0.1 and l2
=−2.

coupled (2+ 1)-dimensional nonlinear system of Schrödinger equations. We have
also constructed the extremum point and points of inflection in order to address
the general description of the solutions obtained. The results show that the Exp-
function method is a powerful and promising new method to solve nonlinear evolution
equations.
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