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Abstract

Garsia's discovery that functions in the periodic Besov space A(p~' , p, 1), with 1 < p < oo ,
have uniformly convergent Fourier series prompted him, and others, to seek a proof based
on one of the standard convergence tests. We show that Lebesgue's test is adequate, whereas
Garsia's criterion is independent of other classical critiera (for example, that of Dini-Lipschitz).
The method of proof also produces a sharp estimate for the rate of uniform convergence for
functions in A(p~', p, 1). Further, it leads to a very simple proof of the embedding theorem
for these spaces, which extends (though less simply) to A(a, p, q).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 42 A 20.

1. Introduction

In an article [8] striking for novel derivations of facts about Fourier series
Garsia proved an inequality that implies the uniform convergence of the
Fourier series of functions that belong to the Besov space h{p~x, p, 1);
that is, of each / whose Lp modulus of continuity satisfies

co(h; p; f)h~l~l/p dh < oo, (1 < p < oo).

He also offered proof along more customary lines but later, in [9], reflected
whether a proof of uniform convergence could be based directly upon one of
the well known convergence criteria for Fourier series.

Recently, this invitation was accepted by Fournier and Self [7]; however,
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306 Charles Oehring [2]

the criterion for uniform convergence that these authors bring to bear is
questionably "well-known" (hence all the more valuable). In Section 2 we use
simple, rudimentary (with one exception) facts to deduce Garsia's theorem
from the convergence test of Lebesgue.

Fournier and Self extend their techniques to discuss allied questions and
a number of connections with other work. For example, they point out that
an obscure 1907 criterion of Hobson (J^ co(h; f)h~i dh < oo) is a limiting
version of Garsia's criterion. Fournier and Self remark upon the presump-
tive independence of these criteria but forgo its verification. Like Garsia's
theorem the Dini-Lipscriitz theorem (see Section 4) can be deduced \\\, p.
45] from Lebesgue's test; and Hobson's theorem is a ready consequence ol
the Dini-Lipschitz theorem. In Section 4 we verify that Garsia's theorem
does not contain Hobson's theorem, nor is it implied by the Dini-Lipschitj
theorem.

In the spirit of Garsia's query it is appropriate that our initial proof, ir
Section 2, be as elementary as feasible. In Section 5 we augment the prool
with Riesz's theorem to obtain a natural, sharp estimate for the rate of uni
form convergence in terms of the /^-modulus of continuity. A seemingh
novel corollary of this estimate implies, in particular, that if f belongs t<
Lip(a, p), with 1< p < oo, then / (*) -Sn{x) = O(l/ni+a~i/p), uniformly
on [0, In}.

If / satisfies Garsia's criterion for some value of p < oo, it satisfies thi
criterion for all larger values of p. This fact, essential for a satisfactor
understanding of Garsia's theorem, is proved in [7] (see also [21, p. 161]). Ii
Section 6 we prove a more general result, based upon the method develope<
in Section 5.

2. Garsia's Theorem

Suppose t ha t l<p<oo,h>0, fis 2^ -pe r iod i c (tacitly assume<
hencefo r th ) , a n d / € Lp[0, In]. W e wr i te

Q(h;p;f) = \\f(- + h)- f(-)\]L, ifp^oc,

and w(h;p;f) = sup{O(*';p; f): 0 < ti < h}. For / e Lp ( / e C ii
p = oo) we let E(n ;p\ f) = i n f{ | | / - Tn\\p :Tn is a trigonometric polynomial
of degree < n) . Weierstrass's theorem asserts that E(n; oo; f) { 0 for everj
continuous / ; whence E(n; p; f) | 0 for f e Lp(l < p < oo). Jackson's
"first" theorem [5, p. 97] guarantees that E(n ;p;f) = O((o(n~l ;p;f)) ii
1 < p < oo . Thus, by comparison with a series and condensation [13, p. 120]
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[3] Uniform convergence of Fourier series 307

(see also the proof of Theorem 5.1),

co(h;p;f)h~x~x/pdh<oo

implies that £^° 2U^PE{2" ;p\ f) < oo . We observe also that finiteness of
the integral requires, for h small, that

e> co(k;p; f)X~{X+x/p) dX > hco(h; p; f){2h)-(x+m ;
Jh

that is, that co(h;p;f) = o(hx^p). In particular, if p = 1, / must be
constant [22, p. 45].

REMARK 2.1. We shall eventually require the inequality

\\T\\r<Aprn
1/p-1/r\\T\\p,

where T is a trigonometric polynomial of degree < n and 1 < p < r < oo.
The proof [22, p. 154] is rather sophisticated. To prove Garsia's Theorem
we use the case r = oo, which Garsia observed in [8] is a consequence
of Bernstein's inequality. In fact, the idea behind the proof of Bernstein's
inequality in [22, p. 118], leads directly to WTW^ < 3«1 / p | | r | | p . See the
Appendix.

Turning to the proof of Garsia's theorem we suppose that f e Lp (1 <
p < oo) and consider a sequence of polynomials Tn = T(n) for which (degree
o f Tn) < n a n d \\f - Tn\\p < 2 E { n ; p ; f ) . S i n c e \\f - T ( 2 m + l ) \ \ p - O w e

have the representation f=Tl + Y^=Q{T{2V+X) - T{2V)), convergent in L" .
However, by Remark 2.1 and the triangle inequality

| | r ( 2 " + l ) - r ( 2 1 / ) | | o o < 6 • 2 v l P \ \ T { 2 v + X ) - T{2v)\\p < 2 4 • 2"/pE(2" ; p ; f ) ;

so that, if we assume /0' co(h; p; f)h~x~xlp dh < oo, then the series repre-
senting / converges in L°° . In particular, after contingent modification on
a set of measure zero, / is 27r-periodic and continuous on R.

Lebesgue's test [22, p. 65] is expressed in terms of <px{t) = f(x + t) -
2f{x) + f(x - t). It asserts that if / e Lx[0, 2n] and, as h -> 0+ ,

(i) h~x /* 1^(01 dt -• 0 for each x 6 [0, 2n], and
(ii) fx \<Px{t+h)-q>x(t)\C

x dt->0 uniformly with respect to x e [0, 2n],
then the Fourier series of / is uniformly convergent on [0, 2n]. Evidently
continuity of / ensures that (i) holds. As to the validity of (ii) for a func-
tion / satisfying Garsia's criterion (compare [22, Sections 10, 11 of Chapter
II]), observe that co(h; p; (px) < 2co(h; p; f). (Indeed, by Minkowski's
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inequality

n(h;p;<px)<{(l/2n) [2

Jo

+ {(1/2*) f
Jo

Therefore, for 1 < p < oo, by Holder's inequality,

< { f \<Px(t + h ) - <px(t)\" dt}llP{ f
J0 Jh

<Ap(o{h;p-<px)h-xlp

< Apo)(h; p; f)h~l/p -> 0 as h -» 0+.

This provides a proof, of the kind sought by Garsia, that a In -periodic /
has a uniformly convergent Fourier series if /J co(h; p; f)h~i~l^p dh < oo.

REMARK 2.2. In [8] and in [7] Garsia's criterion was formulated in terms
of the modulus il, whereas we have employed the more tractable modulus
co. We have not, however, relinquished any functions by adopting co. To
see this we write p = -l-l/p and <p(h) = /0 fi(A; p; f)dk. Garsia proved
[8, p. 91] that (o(h ;p;f)< lOh~l<p{h). We are assuming that /„' hp d<p{h)
is finite. By partial integration, /J hpco{h;p\f)dh< 10/Q1 hp~X(p{h)dh =
\Qp~\hp([>{h)]l-\Qp~l /„' hpd<p{h). Because p <0, hp<p(h) < tf A"d<p{X);
thus the integral /0' hpco(h; p; f)dh must also be finite.

3. Preliminaries

For positive functions (or functionals) T and A, T « A means T = <9(A)
and A = O(T), while F ~ A means F/A —• 1. Generic constants are denoted
by A.

A continuous function L{t) > 0 is slowly varying if L(ct) ~ L(t) as
t —> oo, for each c > 0 . This relation then holds uniformly for c in any com-
pact subset of (0, oo). A slowly varying function L satisfies L{t) = o{f)
if a > 0. Zygmund defines, more restrictedly, a slowly varying function
L [22, p. 186] as one for which t~aL(t) | 0 and fL(t) T oo for each
a > 0. Every slowly varying function is asymptotic to one of Zygmund's
type. If L is slowly varying and d > 0, Y."Li.k)ks~x ~ 6~xL(n)n* and
£^° L(k)k~s~l ~ (5~1L(«)«~<J (similarly for integrals). Prime examples of
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[5] Uniform convergence of Fourier series 309

slowly varying functions are sums of products of iterated logarithms. See
[22] and [16] for references.

The periodic Besov space A(a ,p,q) consists of those 2re-periodic / e
L"[0, 2n] (or / e C[0, 2n] when p = oo) for which

~x-aq(a9{fh-l-aqcoq{h;p;f)dh<oo.
Jo

Herein 0 < a < 1,1 < p < o o , O < 0 < o o . For q = oo, the inequality
is replaced by co{h \p;f) = O(ha). Thus A(a, p, oo) = Lip(a, p), in the
notation of Hardy-Littlewood. The spaces with q < 1 are not normable, but
here they need no special consideration. Were n replaced by another upper
limit in the denning integral, A(a, p, q) would be unaltered. Occasionally,
1 or oo is more convenient.

Evidently A(a, p, q) shrinks if a is increased or p is increased. As in
Section 2 we see that every / e A(a, p, q) with q < oo satisfies co(h ;p;f)
= o(h"). It follows that A{a,p,q) expands when q is increased and
that A(a2 ,p,q2) C A(ax, p, qx) for all qx, q2 provided a, < a2 . Thus
the third index serves to specify significant spaces between Lip(a2, p) and
Lip(a,, p). For example, while A.(p~l, p, q) contains discontinuous func-
tions if q > 1 (see Section 4), all functions in A{p~x, p, 1) possess uni-
formly convergent Fourier series. We are concerned mainly with these spaces.
They enlarge with increasing p , a dependence upon p more subtle than the
inclusions cited above. It is a special case of a general theorem. See [7, p.
363] or Theorem 6.1 infra.

The remainder of this section sets out some needed facts for convenient
reference.

3.1. We let A*(a,p,q) denote the space of functions / for which
(o*{h;p;f) appears in the defining inequality, (co* is the modulus of
continuity defined in terms of a second difference). Here it is appropri-
ate to allow 0 < a < 2 (see [5, p. 67]). Evidently, co* < 2co; but so
long as a < 1, A*(a,p, q) = A ( a , p , q) (see [4, p. 229]). However, for
q < oo, A(l , p, q) consists of constant functions only [22, p. 45], whereas
A*{l,p,q) D C(2) (see 3.2). It is also shown in [4, p. 228] that the same
space A(a, p, q) results when Gl is employed in the defining integral instead
of co (compare Remark 2.2 concerning A{p~ , p, 1)).

3.2. The first Jackson approximation theorem [5, p. 97] asserts that if
1 < p < oo, then E{n;p;f) < lSw^n"1 ;p;f). By virtue of this in-
equality, for 0 < a < 2 , 1 < / ? < o o , 0 < # < o o , t h e functions belonging to
A*(a, p, q) satisfy (compare the proof of Theorem 5.1) {na~l/"E(n ;p;f)}
G I . Conversely, these inclusions imply that / e A*{a,p,q). (See [3,
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Section 1] or [2, Theorem 7.2.4 and exercise 7, p. 188]; we provide a simpler
proof consonant with the methods of this paper in Lemma 3.12). This fact
verifies, as we have mentioned, that C*2) c A*(a, p, q) for a <2, because
E(n; oo; / ) = 0^(0*^ ; oo; / r ) ) ) if / e C(r) [5, p. 97].

3.3. For f e C, co(h; oo; f) < AhZ\/hE(v; °°; f) and co*(h; oo; f) <
Ah2 J2\ vE{v; oo; / ) . Compare with 3.2. The proof can be found in [14,
p. 59].

3.4. For certain lacunary series E(n; oo) is precisely expressible in terms
of the coefficients. Suppose {ak} is a non-negative sequence in l{. Let

g(t) = J2™akcos3kt. Then [15, p. 73] E(m;oo;g) = £ ~ , afc,
 w h e n

3" < m < 3 " + 1 .

3.5. Suppose 1 < p < oo, g e l) , and g is even or odd with g(k) j 0 as
k -» oo. Then g e If and e^AT1 ;p\f) = O(kl~1/pg(k)), provided that
E ^ 1 ' 1 ^ ) = O(n2-l/pg(n)) and E^+i kp-2(g(k))p = 0{np-\g{n))p).
See [1]. The properties of a slowly varying function L(t) stated above verify
that these conditions are satisfied if g{k) = k~aL(k) and 1 < a + \/p < 2.

3.6. A simple weakened converse of the estimate in 3.5 is valid for all
f G L 1 a n d l < p < o o [ 2 2 , p p . 4 5 a n d 4 7 ] : | / ( « ) | < ( l / 2 ) c o ( n / \ n \ \ p ; f )
and |/(«)| /

3.7. If c > O,(o(ch;p;f) < (c + \)to{h;p; / ) and co"(ch;p; f) <
(c + l)2co*(h ;p;f).lfceZ+, c+\ can be replaced by c [5, p. 67].

3.8. Suppose /(O) = 0. The theorem of M. Riesz guarantees that for each
p e (1 , oo) there exists cp such that for real / e L" , \\f\\p < cp\\f\\p : here
/ denotes the conjugate function. It follows [12, pp. 48, 49] that for complex
/ e L", \\s(n; f)\\p < (1 + cp)||/| |p , where s(n; f) denotes the nth Fourier
sum. Thus, if T is a trigonometric polynomial of degree < n ,

\\s(n;f)-f\\p<(2 + cp)\\T-f\\p.

Hence,
\\s(n;f)-f\\p<(2 + cp)E(n;p;f).

In particular, s(n; f) -> / in Lp. For each p e (1 , oo) there exists a
smallest value of cp . Henceforth we let cp denote that smallest value. It
is known [18] that when p < 2, c — tan(n/2p); while if p > 2, c =
cot(n/2p).

3.9. Although s(n; f) need not converge in L1 for / e l) , nor in L°°
for / € C, the de la Vallee-Poussin sums x{n; / ) do. T is defined, in terms
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of the Cesaro ( C , 1) means a , by T ( « ; / ) = 2a(2n - 1; / ) - a(n - 1; / ) ,

where a(n;f) = {n + I ) " 1 J%s(k; f). Then ([5, p. 108] and [22, p. 115])

\\T(n;f)-f\\p<4E(n;p;f)

for / € Lp{\ <p<oo) and for / e C (p = oo). The degree of T(M ; / ) is
2n - 1. If the degree of a polynomial T does not exceed n , then T(M ; T) =
T.

3.10. An integral version of the Olivier-Hardy theorem takes the following

form. Suppose that (p{X) and y/(X) are positive and i// is increasing on

(0, 1). Suppose also that <D(A) = / / q> exists for 0 < A < 1, that O(A) -> oo

as A -^ 0 + , and that f^ <py/ < oc. Then ^(A)O(A) - • 0 as A -> 0 + . (For

plainly y/(X) ^> 0 as A -+ 0 + . Further, there exists S > 0 such that 0 <

A < S implies that ^(A)[O(A) - O((J)] < $* <py/ < e. Hence
e + ^(A)O(«J) < 2e for all small A > 0.) The series analog of this shows that

if {an} is quasi-monotonic and belongs to / , , then an — o(n~l). (Quasi-

monotonic means that n~aan | 0 for some a > 0.)

LEMMA 3.11. Suppose an > 0 and q > 1. Then [10, p. 255] if
c>\,

n

while if c<\ and {an} e lx,

Furthermore, both inequalities hold when 0 < q < 1 provided {an} is quasi-
monotonic [16, p. 583].

LEMMA 3.12. Suppose O < a < 2 , l < p < o c , O < 0 < o o ana? f e Lp.
Then

\n-' ;p; f)f <Aa p^na<l-lE\n-p; f),

supnaco*{n ;p;f) < Aa p sup naE(n; p; / ) .

Consequently, there exist Aa and A.' such that

h ' aq{(o*(h; p; f))9dh >

J

If q = oo, replace the middle term by sup{/z~aw*{h; p; f): 0 < h < 1}.
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PROOF. We utilize 3.3 (valid, in fact, with oo replaced by any p e [1, oo];
compare [19]) and Lemma 3.11 to obtain, for 0 < q < oo,

provided c = ~aq + 1 + 2q > 1; that is, provided a < 2. This accounts
for the first inequality. The second is simpler. Let Mr = sup naE(n \p\f)
(which we may assume to be finite); so that E{v \p;f)< M^v~a . Accord-
ingly, by 3.3,

n
a—2

as asserted.
When q < oo inequalities similar to those at the end of the proof of

Theorem 5.1 substantiate the left norm inequality. Further, the only relevant
inequality in that proof which is not obviously reversible is proved to be so
by the first part of the lemma. When q = oo the analogous sup inequalities
are evident in virtue of the sup inequality in the first part of the lemma.

4. Comparison of criteria for uniform convergence

As well as serving to prove Garsia's Theorem Lebesgue's test provides an
economical demonstration [11, Theorem 59] of the Dini-Lipschitz theorem,
which asserts that a 2^-periodic function possesses a uniformly convergent
Fourier series when co(h; oo; f) = odlog/il"1). Garsia's Theorem asserts
that if / e A(p~l ,p, 1), where 1 < p < oo, then its Fourier series is
uniformly convergent. Hobson's criterion (see Section 1) can be interpreted
formally as asserting that / e A(0, oo, 1). 3.10 shows that such an /
must satisfy the Dini-Lipschitz condition. The converse is not true since
the function (p(i) = |(logf)(log|logf|)|~' is increasing and concave on some
interval (0,3]; hence [14, p. 44] g(t) = <p(\St/n\) on [-n,n] has the
m o d u l u s o f c o n t i n u i t y co(h ; o o ; g ) = g{h) ( 0 < h < n ) .

We indicated in Section 3 that Garsia's spaces A(p~l,p, 1) enlarge
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with increasing p e [ l , o o ) . It is instructive to observe the inclusion
of the Weierstrass-Hardy functions Wa{t) = £ ~ 3~akcos3kt (0 < a < 1)
in A ^ " 1 , p, 1). By 3.6, for 1 < p < oo, co*(3~k \p\Wa)> A3~ak , hence
by 3.7, co*(h; p, Wa) > Aha . The reverse inequality is valid for 0 < a < 1
[22, p. 47]. Accordingly, when 0 < a < 1, FFa e A ^ T 1 , /?, 1) if and only if
p > I/a, while Wx e A * ^ " 1 , p, 1) if and only if p > 1. We are therefore
in possession of functions which, for oo > r > p > 1, belong to A(r~1, r, 1)
but do not belong to A{p~x, p, 1); and we see further that the inclusion
(compare Remark 6.2) A*(l, 1, 1) c A(j?~', p, 1), for 1 < p < oo, also
is proper. Functions in A(r~l, r, 1) which do not belong to A{p~l, p, 1)
also are constructed in [7, p. 365] when 2 < p < r.

Since A ^ " 1 , p, 1) expands with increasing p it would not be surpris-
ing if Garsia's Theorem were subsumed by Hobson's Theorem. To estab-
lish that this is not so we exhibit a function that belongs to A(p~l, p, 1)
for all p e (1 , oo) but fails even to satisfy the Dini-Lipschitz condition.
If 1 < p < oo, the even function g with coefficients g(n) = \n\~lL{\n\)
satisfies co(n~l; p; g) = ^ ( n 1 " 1 ^ ^ ) ) as in 3.5; so (o(h; p; g)h-x~x'p

= 0{h~lL{h~1)). Accordingly,

/

OO /* 1

x~lL(x)dx= h~lL{h~X)dh<oo;
Jo

and we assume L to be so specified as well as slowly varying. By [22, p. 188,
Theorem (2.15)], (o{h;oo;g) > Af^hx~iL(x)dx. So plainly, L can be
chosen so that co(h; oo; g) approaches zero less rapidly than, for instance,
the reciprocal of any specified iterate of log; hence g will be far from meet-
ing the Dini-Lipschitz criterion. (A propos, if the small o is modified to
O in the Dini-Lipschitz condition there exists a function that satisfies the
relaxed hypothesis but possesses a Fourier series that diverges on a set dense
in [0, 27i]; see [22, p. 303].)

In the other direction, there are functions that satisfy Hobson's criterion,
yet do not belong to A(p~l, p, 1) for any p < oo. For example, 3.6, applied
to the function W0(t) = J^ L(3k) cos 3kt, with L a slowly varying function,
shows that

co(3~k; p; Wo) > AW0(±3k) > AL(3k) for 1 < p < oo.

Hence, since L is slowly varying, by 3.7, co{h; p; Wo) > AL{h~x). It fol-
lows that /„' h~1~l^p(o(h; p; WQ) dh diverges for every slowly varying func-
tion L; that is, WQ belongs to no space A(p~l; p, 1) for p < oo. On
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the other hand, by Lemma 4.1 infra, Wo satisfies Hobson's criterion if
/J h~xR{h)dh < oo. By Fubini's theorem this inequality is equivalent to
L satisfying I,00 u~xL{u) f{/uh~l dh = /,°° u~xL{u)\o%udu < oo; and there
is no dearth of such slowly varying functions to provide the desired example.

LEMMA 4.1. Let W0(t) = Y£ U3k)cos3kt. Then co(h;oo; Wo) » R(h)
l

PROOF. Let T(n) = T^k~lL{k) ~ R(n~l) (See [22, p. 188]). Ob-
serve that (a) condensation is valid for sums of slowly varying terms, (b)
E " L(k) = 0{nL(n)), and (c) L(n) = o(T{n)) (see [22, p. 188] or [16]). We
now employ 3.3, 3.4, interchange of the order of summation, and (a), (b),
and (c) to conclude that

k=\

= 2A • 3~" £ 3"E(3" ; oo; Wo) < A3~n £ 3" f ) L(3k)
v=0 u=0 k=v

^A.3-nY:L(3k)J2^ + A.3-n f ) L{3k)J23v

k=0 v=0 k=n+\ u=0

< A3~n J2 3^(3") + A £ L(3k) <A3~nJ2 Uy) +
k=0 k=n v=\ i/=3"

< A(L(3") + T(3"))

- A[o(T(3n)) + T(3n)] < AT(3") < AR(3~n).

Thus by 3.7 and the monotonicity of co and R, co(h; oo; Wo) < AR(h).
The reverse inequality requires only 3.2 and 3.4:

n+\ i/=3"+1

from which the required inequality readily follows.

Since the portion of our proof of Garsia's Theorem that involves condition
(ii) of Lebesgue's test applies equally to functions in A(p~l ,p,q) with q <
oo, it is of interest that, when q > 1, A ^ " 1 , p, q) contains discontinuous
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functions. For example [22, p. 253], define g by g{n) — (\n\\og\n\)~x for
\n\ > 1. By 3.5, g e Lp and (o(n~l;p; g) = O{nl~llpn~\\ogn)~l); so
co(h;p;g) = O{hVp\\o%h\~x). Accordingly,

(oq{h;p;g)h~x~qlPdh<Af h~l\\ogh\~9dh < oo if q > 1;
Jo

that is, g e A(p~l, p, q). However, if g were (equivalent to a function that
is) continuous at 0, J2g(n) would be (C, 1) summable [22, p. 89], hence
convergent, since g(n) > 0.

REMARK 4.2. The substance of the last sentence verifies that the Fourier
series of an even function g that has positive coefficients is uniformly con-
vergent if and only if it is absolutely convergent; and, if g satisfies the con-
clusion of 3.5, this occurs if and only if g e A(/>~', p, 1) for some/every
p e (l ,oo) (the latter because ^ £ £ ( « ) > J2nl/P~la>(n~l ;p; g) «
f0

lh-l/p-lto(h;p;g)dh).

5. A quantitative version of Garsia's Theorem

By appeal to the M. Riesz theorem (3.8) we can modify the proof in Section
2 to estimate the rate of convergence of the Fourier partial sums s(n; f) —
s(n).

T H E O R E M 5 .1 . Suppose 1 < p < oo and f e A(p~l ,p, 1 ) . Then, for
n>\,

(5.2) \\s(n; f) - f\\ < (c + 2)3456 f" h-l-1/pco*(h ;p;f)dh.

PROOF. We may assume that /(0) = 0 since neither s(n; f) - f nor
co* is altered by addition of a constant to / . For a specified n > 0, let
k satisfy 2k~l < n < 2k, and write, as in Section 2, / - s(n) = s{2k) -

1s(n) + 12v=k^s^ ) ~ s (2 )]> convergent in Lp. For the nonce, let K =
6 • 21/p(2 + cp). Again, we use the estimate | |7' | |oo < 3nl/p\\T\\p , 3.8 and the
triangle inequality, 3.2, the fact that by 3.7,

2 " + 2 - l

E .l/p—1 *, . — 1 N - «i/+l«(i'+2)(l/p—1) •,-—(/—2 \
; co (j ;p)>2 T 'co {2 ;p)

(j.j) „+,
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and the fact that 2k > n to conclude that

11/ - sMIloo < 3 • 2k/p • 2(2 + cp)E{2k-x • p)

v=k
oo

v=k-\ v=k-\

v=k-\
oo

2 7 -

j=2k

n

h

REMARK 5.4. (i) The seemingly facetious 3456 that appears in (5.2) has
been retained only to emphasize the determinability of a specific bound, (ii)
I do not know whether (5.2) is valid for all functions in A*(l, 1, 1). (The
proof fails when p = 1 with the failure of Riesz's theorem.) Notwithstand-
ing, every / e A*(l, 1, 1) has a uniformly convergent Fourier series as a
consequence of Remark 6.2 infra. This also follows from the Dirichlet-Jordan
theorem [22, p. 59].

REMARK 5.5. Theorem 5.1 cannot be improved to assert that

11/ - s { n ; / ) ! ! „ = o U 1/B h - l - l l p a > { h ; p ; f ) d h \ .

For, by 3.5, when 1 < p < oo and 1 < y + l/p < 2 the function gy(t) =

Y,? n~ycosnt satisfies co(n~l ;p;gy) = O(nx~llpgy{n)); hence

co(h;p;gv) =
y'

-l + l/p.
) •

The validity of the o estimate would therefore entail

•l/n

Uy ~ *(« J Sy)lloo = <>([ " ha~2dh) = o(nl-y),
JO
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from which E(n; oo; g ) = o{nl~y). In turn this implies, via 3.3, that
I/A

co(h; oo; gy) = J

since y < 2. A contradiction is now at hand; for by [22, p. 229, Example
11], if 1 < y < 2 then, as t - 0 + , g?(f) - gy(0) ~ . 4 / " ' , where ^ ^ 0; so
in fact, co(h; oo; g ) ̂  o(/z>'~1). Thus we need only stipulate that y satisfy

COROLLARY 5.6. If f e A(p~1, p, 1) for some p e (1 , oo),

11/ - f(O)\L < 3456(2 + cp) j
X h-x-llp<o\h ;p;f)dh

f
Ji

* h~l~i/pco*(h;p;f)dh

PROOF. The value n = 1 in (5.2) yields, by the triangle inequality,

11/- /(OJIL < |/(1)| + | / ( - l ) | + 3456(2 + cp) f h'l-llpco*{h ;p;f)dh.

From 3.6,
1/(1)1 +1/(1)1 <(l/2)o>> ; /> ; / ) ;

while by 3.7,

j \-l-xlPco\h;p;f)dh>cot{n;p;f)l\6n1.

REMARK 5.7. Corollary 5.6 contains a key result in [8], from which Garsia
deduces several interesting theorems, including the inequality referred to in
the first sentence of Section 1.

COROLLARY 5.8. Suppose f is absolutely continuous and f'elf, where
\<p<™.Then \\f-s(n;f)\\oo<Apf

x/nh-l/pco(h;p;f)dh.

PROOF. If / is absolutely continuous and f'eLp (1 < p < oo) then
(o*(h;p;f) < hco(h;p;f'). (For p = oo see [14, p. 47]; the proof for
other values of p is similar.) Apply this to (5.2).

REMARK 5.9. (i) In particular, if / ' e Lip(a, p)(l < p < oo) then \\f -
s(n; fiWn = O(l/ni+a~i/p). Observe that the factor logn, required when
p — oo [22, p. 120], does not appear here.

(ii) Corollary 5.8 extends in the expected way to higher derivatives and
higher order moduli.
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5.10. Lebesgue's proof [22, p. 120] of the Dini-Lipschitz Theorem pro-
vides also an estimate for the rate of convergence:

= 0{w{n-X; oo;/) log/i) .

For gy of Remark 5.5 that estimate is inferior by the factor logn to the

estimate 0{nx~y) provided by (5.2). On the other hand, the latter estimate
is identical with the naive /, inequality

\\gy-s{n\gy)\\oo < 2JTg7(k) = 0 ( f ; O
n+\ n+l

(which can be seen to be optimal). In contrast, if a < 1/2 the sequence
of coefficients of the Hardy-Littlewood function <pa{t) = J2T cnn~a~l/2eir"
(where {en}f is the Rudin-Shapiro sequence in which every en = ±1) does
not belong to l{; so no similar estimate is feasible. If a > 1/2 it yields only
O(nl/2~a). The salient property of {«„} is that sv(t) = £ * ene

ir" = 0{vvl)
uniformly with respect to t € [0, 2n]; [20, p. 129]. From this bound it is
deduced in [22, p. 199] that co(h; oo, <pa) = O(ha) for 0 < a < 1. On the
other hand, it is proved in [17] that the decreasing rearrangement f* of the
sequence | / | satisfies f*(ri) = O(nl^p~lco*{n~'; p; / ) ) for all f £ Lp when
1 < P < 2 . Accordingly, co(h; p; <pa) « ha if 0 < a < 1 and 2 < p <
oo. Thus, for 0 < a < 1 and 2 < p < oo, /0

1/nh~l~l/pco(h;p; (pa)dh «
n-(a-\ip) ff ^an(j onjy if) p > i/f l . Thus we can conclude from (5.2) only

b

/

that ||pa - ^ ( n ; â)Moo = ^{n~b) for all b < a. The Lebesgue estimate,
O(«~alogn), is better. (In fact, the "correct" estimate is O(n~a); for by
partial summation (let d = a + 1/2)

k
S S S—S ivte =LJV - ( " + !) K + (k+l) sk-n

with each O uniform with respect to t. We obtain the asserted 0{n a)
estimate for the tail by allowing k -> oo. On the other hand, it is false
that E(n ;oo;(pa) = o(n~"); for by 3.3 such an estimate would imply that
co(n~l; oo; <pa) = o(n~a), which is false, as we have seen.)

5.11. The question arises whether an analog of (5.2) might be valid with
p = oo whenever the integral on the right is convergent (which is the case,
for instance, for the function <pa , as we verified at the end of 5.10). Unfor-
tunately, the answer is no. For 0 < a < 1 the function / of [22, p. 315,
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Example 10] belongs to Lip a = A(a, oo, oo) C A(0, oo, 1). Hence, with
p = oo in the integral of (5.2), there results

However, / in fact satisfies \\f-s{n; f)^ > An~a logn for infinitely many
values of n.

6. Related results

Our proof of Theorem 5.1 suggests a simple proof of the inclusion that we
referred to in Section 3. Compare [7, Theorem 5].

THEOREM 6.1. Suppose 1 <p<r<oo,a- l/p > fi - l/r, and 0 < q <
oo. Then A(a , p, q) c A(/?, r, q). In fact, there exists A depending solely
upon a, 0, p, r, q such that, if f £ A ( a , p, q), then f e Lr and

/o

while

s\ip{h~"(o(h;r;f):0<h < 1} < Asup{h~a(o{h; p; f): 0<h< 1},

{corresponding to q = oo).
Moreover, co{h; p\ f) = o(Aa) implies co{g ;r;f) = o{hp).

PROOF. The case p = r is trivial so we may exclude it. Also we assume
p > 1; see Remark 6.2. Suppose initially that q < oo and / e A ( a , p, q);
thus, by Lemma 3.12, / e Lp and £ * , 2aqJE"{2j;/?;/) < oo. Let ^ =

5(2"+ 1; / ) - 5(2V ; / ) . As in the proof of Theorem 5.1 / - s{2k) = £ ~ f c CT^
converges in If . By Olivier's Theorem (3.10) E{n ;p;f) = O{n~a); so by
3.8 and the triangle inequality, \\av\\p < AE{2V ; p) = o{2~av). By Remark

2.1, our hypothesis yields \\av\\r < A2v{1/p~l/r)\\aJp = o{2~v/fi). Therefore
£ ov converges in If, and in particular, / e If . Additionally,

E{2k; r) < ||/ - s{2k)\\r < JT \av\\r < A f ) 2v(l'p-llr)E{21'; p).
u=k
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Thus, for 2k < n < 2k+l, by 3.2, condensation and 3.7 (we write y =
1/p-l/r-l),

00 OO

E(n; r) < E(2k; r) < A Y, myco(m~l; p) < A £ (2m)yw((2m)"'; p)
m=2k m=2*

<A
j=2k+] J=n

By this inequality and Lemma 3.11 (and therein the fact that /? + 1 //? - 1 /r <
a) we conclude that

9

; p) dh < oo.

With Lemma 3.12 this provides the asserted inequality between the integrals.
For the case q = oo observe that when / e A(a, p, oo), by 3.2, £'(2" ; p)

= 0{2~av); and, as above, this warrants / - s(2k) = £ ~ av in Z/; so, as
above, E(n \r)<Aj^ f(jo{j'X \ P) • Suppose

Mf = sup{h~aco(h ;p;f):0<h<l}<oo.

We obtain, therefore, that

E(n; r) < A^fcoU'1 \ P) < Af^jyMfj~
a < AMfn

/p~l/r~a < AMfn'fi.
n n

Thus, by Lemma 3.12,

sup{h~fioi(h; r): 0 < h < 1} < Asap{npE{n; r): n e Z + } < AMf,
as we asserted. The proof of the final implication is even simpler. Since
y-a<-0-\ we have E(v; r) < A ^ o(j~l~fi) = o{v~p). Hence by (3.3)
(compare the proof of Lemma 3.12) co(n~i; r) < An~x Y^[°{v~ ) = °(u )
since fl < 1.

REMARK 6.2. When /? = 1 the proof of Theorem 6.1 fails (along with
Riesz's inequality), but can be salvaged. When q = 1 the proof is more tidy,
not requiring Lemma 3.11. To illustrate these assertions we outline a proof
of the fact that A*(l, 1, 1) c A(r~', r, 1) for 1 < r < oo.

Replace the Fourier sums s(2 ; / ) occurring in the proof of Theorem 6.1
by the de la Vallee-Poussin sums x(2k) of 3.9. Since the degree of T(2*) is
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2k+l - 1, terms derived from the application of Remark 2.1 in the proof will
be altered, but the factors introduced thereby can be absorbed into discre-
tionary constants. The t-analog, / - t (2 f c ) = ^ ( T ( 2 " + 1 ) - T ( 2 ' / ) ) , continues
to hold in l) , according to 3.9. Instead of using Lemma 3.11 to justify the
final concatenate inequalities of the proof we reverse the order of summation
to obtain

f ; 2k/rE(2k ; r) < A f ) 2k/r £ 2lJ{l-l/r)E(2" ; 1)
k=0 k=0 v=k

= A ^ 2u{l-1/r)E(2u ; 1) J2 2fcA < A E 2" W > *) •
«/=0 k=0 u=0

Condensation and Lemma 3.12 lead to the asserted conclusion.

6.3. Functions in A* (1, 1, 1) neet not satisfy the Dini-Lipschitz condi-
tion. For suppose r\ > 0 and g(t) — g (t) = (log(J/|f|)~'' on [-n, n], where

8 i nei+n and g is extended to K by 27t-periodicity. Since g is increasing
and concave on [0, n], by [14, p. 44] co(h; oo; g) — g{h); so g does not
satisfy the Dini-Lipschitz condition if r\ < 1. On the other hand, we shall
verify that co*(h; l;g)< A^logS/hy1'1, so that g e A*(l , 1 , 1 ) . To
this end we write

/•H rih rn—2h pn

1= \g{t + h)-2g(t) + g(t-h)\dt= + + +J + K + L.
J0 J0 Jzh Jn-2h

Evidently g € Lip( 1, oo) on a neighborhood of n (in fact, on [e, 2n - e]);
thus L — f*_2h 0{h) dt = O(h2). Further, from the mean value theorem for
second differences and the fact that on (0, n), \g (t)\ < i
(which is increasing), we conclude that, for a suitable 6 — 6t e ( - 1 , 1),

4h2\g"(t + 26h)\dt

n-2h

(t + 26h) (\og(d/(t + 26h))) n dt

n-2h

(t-2h)-2(log(d/(t-2h))y-1dt

Jy

<4t,h2 f
Jo

)~"~ldx~4rih(log6/hrr'-1

/o
by paragraph 2 of Section 3.

To estimate / we use

•h)-g(t)\dt +
Jo
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It is evident from a sketch that

J+ < f\g(h) - g(t)] dt + 3h[g(4h) - g(h)] = j ; + J2
+ .

Jo

Since g decreases on (0,n), J+ < 9h2g'(h) = 9r\h{\og8lh)~n~l, while

fh
"- (Iog8/t)~r'dt

Jo

Du[u~l(logSu)'n]du- f°° u~2(logduy du
l/h Jl/h

— r\ \ u
Jl/h

~2n~~ s..\~1~l Jj. r ~Lnnr. s /i.i"''"1

'l/h

by paragraph 2 of Section 3. Thus / + = O{h{\og8lh)~n~l). Turning to

f/2 Ih/2 H
gp

J~ = /(f/2 + Ih/2 + IhH = J\ + J2 + Ji > w e see> ^y symmetry and set
inclusion, that /2~ = 7," < / , + . Since /3~ = $h[g(t + h) - g(t)]dt <
J+, I < A h{\o% 81h)~n~x, w h i c h is i n c r e a s i n g ; h e n c e co*(h;l;g) <

Appendix

We wish to show that ||7'||0O < 3n1/p | |r | |p , where 0 < (degree of T) < n
and 1 < p < oo. We suppose initially that p < 2 and note that, for the
Dirichlet kernel, \\Dn\\\ = 2n + 1. Hence, from the convolution inequality
([22, pp. 37, 38], [6, p. 54]), we obtain

L = n̂ n * T\t < (2»+1)(2«)~1 j l n \T\2-P\T\P < ( 2 « f ;
J 0

Hence | | r | | ^ < (In + l)\\T\\"p , which verifies the asserted inequality if 1 <
p < 2. A standard device extends the inequality to values of p e (2, oo).
For such p the interval [p, 2p], of length > 2, contains an even integer
2m . (Note that 2 < m < p.) Apply what we have already proved, with the
index p/m < 2 , to the polynomial Tm . Thus

l i rC = I I ^ X < l{mn)mlP\\Tm\\plm < 3mnm/p\\T\\;.

H e n c e \\T\\ <3nl/p\\T\\D (s ince (3x)l/x decreases o n [ l , o o ) ) .
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