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NECESSARY CONDITIONS OF OPTIMAL IMPULSE CONTROLS FOR
DISTRIBUTED PARAMETER SYSTEMS

JlONGMIN YONG AND PlNGJIAN ZHANG

Optimal control problem of semilinear evolutionary distributed parameter systems
with impulse controls is considered. Necessary conditions of optimal controls are
derived. The result generalises the usual Pontryagin's maximum principle.

1. INTRODUCTION

Control problems for systems with impulse controls are important and interesting
because of their wide applications. We refer the interested readers to [4] and the
references cited therein for substantial discussions. We note that most of the existing
literature treats the problem via the dynamic programming approach [2, 3, 18, 19].
Recently, in [17], some sort of Pontryagin type maximum principle was derived for the
finite dimensional case with the cost functional being linear in the impulse control. The
result was extended to general Volterra-Stieltjes systems in infinite dimensions in [22]
(see [21] also). In [13], for finite dimensional stochastic and deterministic systems with
the cost functional being not necessarily linear in the impulse control, a similar result
was proved. Some other approaches were used to treat the similar problem in [6, 7].
The purpose of this paper is to derive the Pontryagin type necessary conditions for
optimal controls of semilinear evolutionary distributed parameter systems with impulse
controls and with the cost functional being not necessarily linear in the impulse control.

The approach we will use is the variational method combining the Ekeland's vari-
ational principle. It should be pointed out that if we applied the usual variational
technique as in [15] to our problem, we would immediately see that the variational
system along the optimal solution of the problem with respect to any given admissible
control is not clearly defined since it will involve the ^-function. As a consequence, the
adjoint equation is hard to determine and the final result is not clear (even formally).
To overcome this difficulty, we do not derive the exact variational system. Instead,
we work with the approximating variational system along the approximating optimal
solution, which is well-defined, and derive the approximating maximum principle. It
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306 J. Yong and P. Zhang [2]

is very important that the approximating adjoint system and the approximating maxi-
mum condition do have limits. Thus, our final results are obtained by taking the limits.
In proving the nontriviality of the costate, we use the finite codimensionality of certain
sets in the state space. The essence of our approach is to avoid deriving the exact
vaxiational system along the optimal solution with respect to any admissible controls,
which is not necessary in stating the final result. This method was introduced by one
of the authors in [20] for nonsmooth problems and later was used in [13] for impulse
control problems. Some of the ideas can even be traced back to [1, 11 , 12] for some
other problems. We refer the reader to [5, 14, 16] for related problems.

2. CONTROL PROBLEM

Let us start with the following hypotheses.

(HI) X is a Banach space with the dual X* being strictly convex, if is a
closed and convex cone in X, fi is a convex and closed subset of X x X,
U is a metric space and T > 0 is a constant.

(H2) {eAt, t ^ 0} is a Co-semigroup on X with generator A: "D(A) C X —> X.
(H3) Maps / : [0, T] x X x U -> X and f°: [0, T] X X x U -» R satisfy the

following:

(i) For any (t, u) e [0, T] x U, f(t, •, u) and f°(t, •, u) are Frechet

differentiable with bounded Frechet derivatives and f(t, -,u),

fx(t, •, w), f°(t, •, u) and /° ( t , -, u) are continuous;

(ii) For any {x, u) e X x U, /(•, x, u), /«(-, x, u), f°(-, x, u) and

/"(-, x, u) are measurable and the limits

(2.1) > l imo/ .(a,x>t») = / . (*±O,x, t i ) , t € [0, T],

exist (of course for t = 0, T, the above is understood as suitable one-side
limits).

(iii) For any (t, x) e[0,T]xX, /(*, x, •), / , ( t , x, •), /°(*. x, •) and
fxi^i x, •) are (strongly) continuous.

(H4) The map I: [0, T] x K -> R+ = [0, oo) is C1 and satisfies the following
conditions:

(2.2) inf l{t, t)=lo> 0,

(2-3) _Jiffi mimt(t,t) = «>,

(2.4)
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We define our control sets as follows:

U = {«(•) : [0, T] -> U | «(•) measurable },

K = I ̂ ") = E^[r , .T]() : [0, T) - if | T,- G [0, T], T,- T ,
I

An element u(-) 6 W or £(•) G /C is called a continuous control or impulse control,

respectively. Now, for any pair of controls «(•) 6 U and £(•) = 53 £jX[r-,T](-) G /C, we

consider the following controlled system: (formally)

(2.5) x(t) - Ax(t) + f(t, x(t), u(t)) + i(t), i e [0, T].

A right continuous function x(-) : [0, T] —* X is called a trajectory of the system (2.5)
corresponding to control (u(-), £(•)) £ W x K, if it is a solution of the following integral
equation:

(2.6) x(t) = e^z(O-) /
Jo

E " ( ' ) <e[o,r].

Sometimes, we call x() satisfying (2.6) a mild solution of (2.5). Hereafter, we will
not distinguish (2.5) and (2.6). It is clear that under our assumptions, for any given
(z(0- ) , u(),(())eXxUx)C, there exists a unique x() satisfying (2.6). We let A be
the set of all triplets («(•), «(•), £(•)) with («(•), ^ ( ) ) G W x K a n d «(•) is a trajectory
of (2.6) corresponding to (u(-)> £(")) satisfying the following conditions

(2.7) (x(o-),x(T))en,

and

(2.8) / • ( • , *(•), »(•)) e ^ ( 0 , T).

Here, we should note that from (2.6), for the given («(•), «(•), ^ ( ) ) satisfying (2.6), we
have

(2.9) «(0-) = *(0)
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Next, for any (x(-)> **(')> £(')) £ *4> w e define the associated cost functional to be

(2.10) /(*(•), «(•), «•))

Then, our optimal control problem can be stated as follows:

PROBLEM CI: Find a triplet (x(-), «(•), £(•)) € A, such that

(2.11) /(»(•), «(•), ?(•)) = mf ^ ( ) , «(•), «•))•

The goal of this paper is to give Pontraygin's type of necessary conditions for
optimal solutions of Problem CI. Thus, let us hereafter assume that (x(-), «(•), ?(•)) €
.4 is an optimal triplet of Problem CI.

From the definition of K. and (2.2)-(2.3), we see that there exists an m ^ 0, such
that

(2-12) ? ( )

On the other hand from (2.4), we see that

(2.13) TjKTj+i, j^m-1.

Next, we let G(-, •) be the evolution operator generated by A + fx(t, x(t), «(<)), that
is,

(2.14) G(t, s)x = e*<*->« + / ^ - ^ / . ( T , *(T), 5(T))G(T,

Vz 6 -X", 0 s$ a < t < T.

Then, we define

(2.15) Tl = \[G{T, ,)[/(,, x(«), «(«)) - /(*, x(s),

(2.16) Q = {*i- G(T, 0)*o | (*o, *i)

We introduce the Hamiltonian:

(2.17)

H(t, x, u, ^ ° , tf) = V°/°(<, *, *) + (1>, / (

V(«, x, «, ^ ^ ) e [ 0 ,

Our main result of this paper is the following:
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THEOREM 2 . 1 . (Maximum Principle) Let (H1)-(H4) hold. Let (*(•), «(•), £(•))
m

A be an optimal solution of Problem CI with £(•) = £) £;X[r-,T]()- ^e* *fle s e t

be finite codimensional in X. Then, there exists a pair (V>°, V'(')) ¥" 0> such that

(2.18) ^° ^ 0,

(2.19) ^Tty /

/ x(a), «(*))'A, * e [0, T],
i*

(2.20) JJ(t, «(<), «(t), V

almost everywhere t £ [0, T].

(2.21) (tf(T,-) + ^0/e(T,-, ?,-). 0 < 0, Ve G if, J > 1.

(2.22) ()

Moreover, if ;̂- £ 25(̂ 4.) then, for the case U(TJ + 0) exists,

(2.23) / 2T.(T,- + 0, 5(r,-) - a-?,-, S ^ + 0), V°, ^(T,-
JO

and for the case U{TJ — 0) exists,

(2.24) / IT.fo - 0, x{ji) - (r?,., iifa - 0),
Jo

REMARK 2.2. In the case K — {0} and 1 = 0, our problem is reduced to the optimal
control problem for usual evolutionary distributed parameter systems and our result
coincides with that of [15]. In the above, (2.21) and (2.23)-(2.24) are new. Also, it is
natural that due to the appearance of the impulse control, the usual finite codimensional
condition is easier to satisfy because one of Tl, ]T̂  G(T, Tj)K and Q being finite

codimensional in X, implies 7£ + $3 G(T, TJ)K — Q is [15].
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R E M A R K 2 .3 . Let us set

(2.25) y(t) = x(t) - £(t), t £ [0, T].

Then,y()eC([0,T);X),

(2.26) y(0) = x(0-),

and

ft

(2.27) y(t) = eAty(0) + / eA^-'^>f{s, y(s) - ((a), u(s))da
Jo

A^~Ti^iX[r,,T](0 - t(i), t 6 [0, T].

The cost functional can also be written as

(2.28) J(y{), «(•), «(•)) = I* f\*,
-70

It is possible to discuss our problem under this setting. But we find that these two
settings have the same level of complexity and the one we choose seems a little more
convenient.

3. PROOF OF THE MAXIMUM PRINCIPLE

In this section, we present a proof of our main result, Theorem 2.1. The proof
is long and technical. Thus, we split it into several lemmas. First of all, for any
(x0, «(•), £(•)) £ X x U X /C, we let x(;aJo> «(•)» £{•)) be the corresponding unique
solution of (2.6) with x(0~) = xo and let

(3.1)

x°(x0, «(•), «•)) = W ; *o, «(•), «•)). «(•), «•))

= fTf°(s, x(s; x0, «(•), «•)), «(
-70

where {TJ, ̂ -} is associated with £(•) in an obvious way. Now, for the given optimal

triplet (*(•), 5(0. ?(•)). we let

(32)
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And, we assume £;- 6 T)(A) for all 1 ^ j ^ m (the other case can be treated similarly).
Next, we define

^ = h ( ) = ^iX[r , ,(33)

and

(3.4)

It is not hard to see that d is a metric under which X x U x /Cm is complete
[9]. The following lemma shows that the trajectory x(-;x0, u(-), ^(-)) ^ i ^ t^e cost
x°(a;o) «(•), ^(-)) a r e continuous in (xo, «(•)> ^(0) under this metric.

LEMMA 3 . 1 . Let x0 e X, «(•) eU and £(•) = f) ^X[r,,T]() € /Cm be given

and 7et x(-) be tie corresponding solution of (2.6) with x(0~) = xo . Then, there exist
nan decreasing continuous functions Co, Q: R+ —* K+, witi w(0) = 0, such that for

d((xo, «(•), £(•))>

meas{f 6 [0, T] : «(<)

V(*o, «(•), «0)

any x0

(3.5)

ifx(-)

G

=

X , u(-

x(;x0,

) e

u(

U

• ) .

and

f())

f() =

, then

m

; = i

m,

(3.6)

0 < f < T.

In particular,

(3.7) |a

AZso,

(3.8)
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PROOF: Without

(3.9)

Then, we have

(3.10)

x(t)-x{t

loss of generality,

) = eM(x0-x0)

Jo

Jo

we assume

'(-,«(*), S(*))- / (

A, 2(4), u(fi))]<fo

., »(-), u{s))]ds

Thus, (3.6) follows from (H3) and Gronwall's inequality. Then (3.7) follows immediately
and (3.8) can be proved similarly. D

The next result is a key step in our proof of the main result.

LEMMA 3 . 2 . For any e > 0, thereexist <p', ij>' e X* and ifr0'' £ [0, 1] satisfying

(3.12) (? ' ,£o-s (O-) ) + (ifr',*i-5(T))<(r., V(x0, ?i) 6 O,

with ff«->0, independent of (x0, x\) € fl, such that for any xo G X, u() £ U , (j G K
and TJ G R (1 < jf ^ m),

(3.13) -Ve[|««| + T + f ] (|r,-| + |^|)] < {<p't x0) + {V, y'P(T)) + 4°'^

Here, o(l) —> 0, as p —• 0 and y*() and y°'e satisfy the following:

y'p{t) = eAtx0 + /V<«->A/e(a)<fo

A^9<p(s)y<p(s)ds + f ) • i < f - 1 ? - ' r ' W + ^ . o i W
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(3.14) £

V* € [0, T],

(3.15) y°p" = fT Af°e(*)ds
Jo

(3.16)

and

wiere

1, r > 0,

sgnr=
- 1 , r < 0.

PROOF: For any e > 0 and (x0, «(•), ((•)) e X xU x Km, we define

(3.17) *;(*o, «(•).*(•)) =

with

and

(3.18)

n°(e)=(-oo,50-e]>

- x ° | ) Vx° 6 R,

db(«o,«i)= inf {
(yo.»i)€0

, V(*o, «i) € X x
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From Lemma 3.1, we see that Fe(-, •, •) is continuous on (Jf x U x /Cm, d) and

Thus, by Ekeland's variationai principle [9], we can find a triplet

X xU X Km, such that
l, «*(•), £'())

F.(x'o, «'(•), «'((3.20)

(3.21)

(3.22)

Now, for xo &X, «(•) £W, £j£K, r5 £ R (1 < j < m) and p0 > 0 fixed, such that

(3.23) 0 < T/_J + prj-i <rf +prj^T, Kj^m, 0 < p < p0-

This is possible due to (2.13) and (3.21). From [14], we know that there exists a
measurable set E"p C [0, T], with the following properties

(3.24) meas££ = pT,

(3.25) p f eA(t-'\f(s, x«(s), «(,)) - /(,, x°(s), u°(s))}da
Jo

= I
J[o,,t]nE'p

uniformly in t £ [0, T) and

}[/(«, *e(^), «(a)) - f(s, x'(a), u'(a))]ds + o(p),

(3.26) p [ [f°(a, x'(a), u(a)) - f°(a, x'(a), u'(a))]da
Jo

= I [f(a, x°(s), u(a)) - f(a, x<(a), u°(a))}ds + o(p),
JEP

where the o(p) in (3.25) and (3.26) are uniform in e. Then, we define

xo,P = xo +Pxo,

(3.27)
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and denote

(3.28) xp{-) = x(.;»5ip> up(-), $(•)) , xp" = «•(*;,„ up{), £(•)) .

By (3.22), we have
(3.29)

By the continuity of Fe(-, •, •), we know tha t

(3.30) F.(x'Otpt up{-\ ?„{.)) = F.(x'Qt ue(-), V(-)) + o(l),

as p —• 0 uniformly in e g (0, 1].

On the other hand, by setting

and

* • =

we see that (3.14) and (3.15) are satisfied. Furthermore, by the strict convexity of X*,
we can define [15]

Then (3.13) follows from (3.29). Also, we see that (3.11) and (3.12) hold. D

Next, we define Gp(-, •) to be the evolution operator generated by A + gp(t), that
is, Ge

p(-, •) satisfies the following:

(3.32) <?•(*, «)x = e**-** + / e^«- r )^( r )G«(r , «)«iT> x 6 X,0 < « £ t

It is important that (from [8]), we have

(3.33) Gp(t, a)x = e ^ « - > * + / G°p(t, r ) g e
p ( r ) e A ^ - ^ x d r , x e X , 0 ^ s ^ t

The following result gives a representation for the solution yp(-) of (3.14).
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LEMMA 3 . 3 . The solution ye
p{) of (3.14) can be written as follows:

(3.34)

y'P(t) = G'p(i, 0)*0 + J* Gp(t, s)Afe(s)ds + f; {Gp(t, r/ +

~ Wit, Hi V (r/ + ̂ 0 ) ^ p ^ X [ r ; v ( r ; + / ) r y ) i T ] («).

+ 0(1), v* e [o, T],

where o(l) —> 0 as p —» 0, uniformly in t G [0, T] .

PROOF: First of all, for the equation

(3.35) z(t) = h{t) + I eA^-^gp(8)z{a)d8, t € [0, T],

by some direct computation, we cam show that the solution is given by

(3.36) z(t) = h(t) + f Gp{t, s)gp{a)h{8)d8, t e [0, T).
Jo

On the other hand, by (3.33), we have

E /*<W s)9;(8)eA('-Th^)(jX[T. ^^ds

(3.37)

Similarly, we have

(3.38)
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(3.39) / G'Jt, 8)g'Ja)eA'xod8 = G'Jt, 0)x0 - eAtx0

Jo
and

(3-40)

f G'p[t, s)g'p{a) f'e«'-^Af(T)dTds= f f' G'p[t, 8)gp{s)e«-^dsAfe
Jo Jo Jo Jo

= f* [G'p(t, s) - eA<«-'>] Afe(s)ds.

Thus, (3.34) Mows. D

Our next goal is to take the limits. The main point of the following result is the

existence of a nontrivial w*-limit point of {(<pe, i/>*, ^ o ' e ) } -

LEMMA 3 . 4 . Along some subsequence of {(<pe, rj>e, ^ ° ' e ) } , vre have

(3.41)

PROOF: let us note that (3.13) holds for all (xQ, «(•), £{•)) G X x U x Km. In
particular, it holds for the case that TJ = 0, 1 ^ j ^ m. In this case, we have (see
(3.34))

(3.42)

y'p(t) = Gp(t, 0)x0 + / G'p(t, s)Afe{s)ds + *£ G'p(t, r/ + pr^X^^

ve[o,T].

In what follows, we take

(3.43) p = e1/i.

Then, from (3.14), we see that for any given (x0, «(•), ({•)) € X x U X K.m,

(3.44) l im o |x^) -z e ( t ) |=O, Vt^r,-, 1 < i < m,

and by (3.6) and (3.21),

(3.45) |
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Thus, it is not hard to show that

(3.46) lim Ge
p(t, a)x = G(t, a)x,

Vsc £ X, uniformly in a, t with 0 ^ a ^ t ^ T,

where G(-, •) is the evolution operator generated by A + fx(t, x(t), u(t)) , that is, (2.14)
holds. Hence, in the case r,- = 0, 1 ^ j ^ m , by (3.42), we have that as e —> 0,

(3.47)

JO

As a consequence, we also have (as e —> 0)

(3.48) y°-e -» p° =

Next, by definition of (<pe, i/>e, i/>°'e) and the convexity of the set ft, we have

{ (v; x0 - xi) + (r, *i - *e(T)) ^ o, v(*o, xi) e n,

Thus, combining (3.13) with the above, we obtain

(3.50)

(<pe, x0 - (*o -*o)> + (r, V(T) - (*! -x(T)))+r>ey° > -6s,

with 5e —• 0 as e —» 0. We should note that the above holds uniformly for all xo £ X,

«(•) € U and ((•) = £ £,-X[ritT](-) G ^m. ^ ^ l*o|, 1^1(1 ^ i < »») being bounded.

Now, we let

(3.51) Q |
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and let

(3.52) = span I 11 + JT G{T, TJ)K - Q + X(T) - G(T, 0)x0 ) .

Then, X\ is finite codimensional in X. It is not hard to see that

,3.53, x 6 X, xi E X\ }•
By some direct argument, we can show that [15] TZ. — fl is finite codimensional in
X x X. Thus, similar to [10, 15], we can find a subsequence (still denote it by itself)
{(y>% V% ip°'°)} satisfying (3.41). D

It is clear that

(3.54)

and

(3.55) [0, 1].

Hereafter, we are always along the subsequence given in (3.41). It is important that
this subsequence is independent of (x0, «(•), £(•)) £ X x U x Km. Next, we would like
to introduce the approximating costate.

LEMMA 3 . 5 . Let V>£() be the solution of the following:

(3.56)
JM

+ f \j,0><eA'^g0/(T)*dT, a G [0, T).

Then, (3.13) implies

+ +
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eM
ri\ - T

V (r/ + pr,)), ph] Q) ~

(3.57)

PROOF: By (3.13), we have

<, x0)

9 Jo

UGp(T,ayr + J%°"Gp(r,

[(G<(T, r/ + ̂ ) V •
i = l

yd3, x0)
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Set

(3.58) ;{s) = Gp{T, s)*r + [Tr'eG°p(T, a? g\>'
J

s G [0, T\.

We see that ij>p() is the solution of (3.56). Then (3.57) follows easily. D

Now, we are ready to complete the proof of our main result.

COMPLETION OF THE PROOF OF THEOREM 2.1: We are going to take the limits in
(3.57) term by term. To this end, we first note that by (3.56) and Gronwall's inequality,
we see that there exists a constant C, such that

(3.59) \r/>e
p(s)\x,^C, se[0,T],e,p>0.

Hence, by (3.46) and (3.58) (or (3.56)), we may assume that (note p = e1/4 ) as e —> 0,

(3.60) (^(a) , x) -* @(a), x), V* G X, uniformly in s G [0, T],

and

(3.61) Vp() A ? ( ) , in L°°(0, T;X%

where

/

T
WG{T, s)*f2(T, X(T), u(r))*dr, a G [0, T].

Then, we see that

(3.63)

Urn

= f
JO

* + ^(0) , so) -* & + tf(0), *o>,

da

s, x(s), u(s)) - / ( , , x(*)f «(

(3.65)

By the definition of £j and (3.43), we have

(3.66)
tVl -T tM

ri\-i-

P\*j\ 3 M o.
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lim V (r/

322

Hence,

(3.67)

Finally, we would like to consider the last two terms in the right hand side of (3.57).
To this end, let us first assume that TJ > 0. Then, we claim that (note (3.43))

(3.68)

In fact, for any a 6 [T?, T?

| dr

(3.69)

»=i

On the other hand,

C\x'0-x0\

Jo

(3.70)
r?Vr,-

, X(T), u(

1

• = 1 »=1
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Hence, we see that

(3.71)

and

(3.72)

Then, it follows that

1 r'i

lim sup |*"(«) — :B(Jri)l — 0>

lim sup \x'p{s)-[x{rj)-ij)\=Q.

-rj(rl>(Tj), / fx (TJ + 0, X(TJ) - a(j, U(TJ •

C sup | eA'Cj ~ Jj | + C- meas{ue ^ «}

[fx(s, x'{s) + a(xp(B) - x*(s)), «(«))+ C sup
rf.rf

-U (rj + 0, X{TJ) - a(jt U(TJ + 0))] da\

1

P

1 /Tj ^ W * ) - ^ i ) , f1 hfa +0,x(rj) -
TJ JO

))

0))d<T(j)da

sup

sup 1/ [/.(«,*•(*) + *(*£(*)-«•(

- U (TJ + 0, X(T7) - ajj, U(TJ + 0))] da

P UT;

Hence (3.68) holds. Similarly, we have (still let TJ > 0),

(3.73)

/° (T,- + 0, 5(ri) - at;, u
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For the case rj < 0, we can similarly show that

(3.74)

and

h W " f^
(3.75) ~°

f f.(fi - 0, s(r,) - *tit 5(r,- - 0))**,.)
o

ft (r,- - 0, »(T,-) - <r?,., Ufa - 0))Ax, ^>.
./o

Then, we end up with

),*o)
T r

/ (a x(a) wfa)) — /(« ^(a) «(

, « ( * ) , « ( * ) ) - f ( s , x ( s ) , « ( }

(3.76) { I*
TJ>0

By setting

(3.77)
6 [0,21.

we see from (3.62) that ip(-) is a solution of (2.19). Then, our conclusion follows from

(3.76) easily. D
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