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Abstract

We study the existence and uniqueness of S-asymptotically periodic solutions for a general class of
abstract differential equations with state-dependent delay. Some examples related to problems arising
in population dynamics are presented.
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1. Introduction

This paper continues our study [5] of abstract differential equations with state-
dependent delay. Specifically, we study the existence and uniqueness of S-
asymptotically ω-periodic solutions for abstract problems of the form

u′(t) = Au(t) + F(t, uσ(t,ut)), t ≥ 0, (1.1)
u0 = ϕ with ϕ ∈ BX = C([−p, 0]; X)), (1.2)

where A : D(A) ⊂ X → X is the generator of an analytic semigroup of bounded linear
operators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖) and F, σ are functions to be
specified later.

The theory of differential equations with state-dependent delay is a field of
intense research because of its many applications and the fact that the qualitative
theory is different from those for equations with discrete and time-dependent delays.
For differential equations on finite-dimensional spaces, we cite the survey by
Hartung et al. [3], and for related differential equations on abstract Banach spaces, the
recent papers [4, 5, 7–9, 12]. For global solutions of problems on unbounded intervals,
see [6, 11, 13] for equations on finite-dimensional spaces, [1, 10, 20] for abstract and
partial differential equations and [1, 10] for problems with almost periodic solutions.
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[2] S-asymptotically periodic solutions 457

The concept of S-asymptotically periodic functions was introduced recently in
[17, 18]. For the existence of S-asymptotically ω-periodic solutions of differential
equations, see [2, 21, 22] for equations on finite-dimensional spaces and [16–19]
for equations on abstract spaces. We present here a unified approach which is of
interest in itself and can be applied to study other types of abstract and applicable
differential problems and the existence of other types of special solutions (for example,
almost periodic, asymptotically almost periodic, or almost automorphic solutions) for
problems similar to (1.1)–(1.2).

The problem of the existence and uniqueness of solutions for (1.1)–(1.2) is non-
trivial because functions of the form u 7→ uη(·,u(·)) are (in general) nonlinear and
non-Lipschitz on spaces of continuous functions. When the functions involved are
Lipschitz,

‖uσ(·,u(·)) − vσ(·,v(·))‖C([0,a];BX) ≤ (1 + [v]CLip([−p,a];X)[σ]CLip )‖u − v‖C([−p,a];X),

so we study the existence of solutions for (1.1)–(1.2) on spaces of Lipschitz functions,
a hard problem in the framework of semigroup theory.

We next describe some notation and results used in this work. Let (Z, ‖ · ‖Z),
(W, ‖ · ‖W) be Banach spaces and l > 0. Let Bl(z, Z) = {x ∈ Z : ‖x − z‖Z ≤ l}. Denote by
BZ the space C([−p, 0]; Z) endowed with the uniform norm ‖ · ‖BZ , and by L(Z,W)
the space of bounded linear operators from Z into W endowed with the operator
norm ‖ · ‖L(Z,W). If Z = W, we write L(Z) and ‖ · ‖L(Z). Let C([0,∞), Z) denote the
space of all bounded continuous functions from [0,∞) into Z endowed with the
uniform norm ‖ · ‖C([0,∞),Z), and let C0([0,∞), Z) be the subspace of all functions
f ∈ C([0,∞), Z) such that limt→∞ f (t) = 0. Let CLip([0,∞); Z) be the subspace of all
functions ξ ∈ C([0,∞),Z) such that

[ξ]CLip([0,∞);Z) = sup
t,s∈[0,∞),t,s

‖ξ(s) − ξ(t)‖Z/|t − s| <∞,

endowed with the norm ‖ · ‖CLip([0,∞),Z) = ‖ · ‖C([0,∞),Z) + [·]CLip([0,∞);Z). Similarly, define
(C([0,∞) × Z; W), ‖ · ‖C([0,∞)×Z;W)) and (CLip([0,∞) × Z; W), ‖ · ‖CLip([0,∞)×Z;W)). We
write simply [g]CLip for the Lipschitz seminorm of a function g.

For simplicity, we assume that 0 ∈ ρ(A) and we use the notation (−A) β (β > 0) for
the β-fractional power (−A) β : D(−A) β ⊂ X 7→ X of A. Let Xβ denote the domain of
(−A) β endowed with the norm ‖x‖β = ‖(−A) βx‖. We assume that there are γ > 0 and
constants Ci,β > 0 such that ‖(−A)i+βT (t)‖ ≤ Ci,βe−γt/ti+β for all β > 0, i ∈ {0} ∪ N and
t > 0.

The following useful lemma follows from [5, Lemma 1].

Lemma 1.1. If ζ1 ∈ CLip([0,∞) × BZ; [0,∞)) and u, v ∈ CLip([−p,∞); Z), then

[uζ1(·,u(·))]CLip([0,∞);BZ ) ≤ [u]CLip [ζ1]CLip (1 + [u]CLip ),
‖uζ1(·,u(·)) − vζ1(·,v(·))‖C([0,∞);BZ ) ≤ (1 + [v]CLip [ζ1]CLip )‖u − v‖C([−p,∞);Z).

We now give the definitions of some well-known concepts.
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Definition 1.2. A function f ∈ C([0,∞),Z) is called S-asymptotically periodic if there
exists ω > 0 such that limt→∞( f (t + ω) − f (t)) = 0. In this case, we say that ω is an
asymptotic period of f (·) and that f (·) is S-asymptotically ω-periodic.

We denote by SAPω(Z) the subspace of C([−p,∞), Z) formed by all the S-
asymptotically ω-periodic functions. It is well known that SAPω(Z) is a Banach space.

Definition 1.3 [17]. A function G ∈ C([0,∞) × Z; W) is said to be uniformly S-
asymptotically ω-periodic on bounded sets if for every bounded subset K of Z, the
set {G(t, x) : t ≥ 0, x ∈ K} is bounded and limt→∞(G(t, x) −G(t + ω, x)) = 0 uniformly
for x ∈ K.

Definition 1.4 [17]. A function G ∈ C([0,∞) × Z; W) is said to be asymptotically
uniformly continuous on bounded sets if for every ε > 0 and all bounded sets K ⊆ Z,
there exist Lε,K ≥ 0 and δε,K > 0 such that ‖G(t, x) −G(t, y)‖ ≤ ε, for all t ≥ Lε,K and all
x, y ∈ K with ‖x − y‖ ≤ δε,K .

For additional details on such almost periodic functions, we refer the reader to [23].

2. Existence of S-asymptotically ω-periodic solutions

To begin we give two definitions for types of solutions.

Definition 2.1. A function u : [−p,∞)→ X is called a strict solution of (1.1)–(1.2) if
u|[0,∞) ∈ C1([0,∞); X) ∩C([0,∞); X1), u0 = ϕ and u(·) satisfies (1.1) on [0,∞).

Definition 2.2. A function u : [−p,∞)→ X is said to be a mild solution of (1.1)–(1.2)
if u ∈ C([−p,∞); X), u0 = ϕ and

u(t) = T (t)ϕ(0) +

∫ t

0
T (t − s)F(s, uσ(s,us)) ds for all t ≥ 0.

The next lemma follows from the proof of [17, Lemma 4.1 and Theorem 4.3].

Lemma 2.3. Assume that F ∈ C([0,∞) × BXα ; X), σ ∈ C([0,∞) × BXα ;R+), 0 < α < 1,
and that F(·) and σ(·) are uniformly S-asymptotically ω-periodic and asymptotically
uniformly continuous on bounded sets. If u ∈ SAPω(Xα) and v,w : [0,∞)→ X are
defined by v(t) = F(t, uσ(t,ut)) and w(t) =

∫ t
0 T (t − s)v(s) ds, then v ∈ SAPω(X) and

w ∈ SAPω(Xα).

Proof. From the proof of [17, Lemma 4.1], u(·) ∈ SAPω(BXα), σ(·,u(·)) ∈ SAPω(R+) and
v ∈ SAPω(X). Since v ∈ SAPω(X), given ε > 0, we select L2

ε > L1
ε > 0 such that

Θ(α, γ)‖v(s + ω) − v(s)‖ ≤ ε for all s ≥ L1
ε,

‖v‖C([0,∞);X)Θ(α, γ)(e−γL2
ε + 2e−γ(L2

ε−L1
ε)) ≤ ε, (2.1)
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where Θ(α, γ) = C0,α[1/(1−α) + 1/γ]. Now
∫ l

0 (e−γ(l−s)/(l−s)α) ds≤ [1/(1−α) + 1/γ]
for all l ≥ 0, so for t ≥ L2

ε,

‖w(t + ω) − w(t)‖α ≤
∫ ω

0
‖(−A)αT (t + ω − s)v(s)‖ ds

+

∫ L1
ε

0
‖(−A)αT (t − s)(v(s + ω) − v(s))‖ ds

+

∫ t

L1
ε

‖(−A)αT (t − s)(v(s + ω) − v(s))‖ ds

≤ C0,α‖v‖C([0,∞);X)e−γt
∫ ω

0

e−γ(ω−s)

(ω − s)α
ds

+ 2C0,α‖v‖C([0,∞);X)e−γ(t−L1
ε)
∫ L1

ε

0

e−γ(L1
ε−s)

(L1
ε − s)α

ds

+ C0,α

∫ t

L1
ε

e−γ(t−s)

(t − s)α
ds · sup

s≥L1
ε

‖v(s + ω) − v(s)‖

≤ ‖v‖C([0,∞);X)Θ(α, γ)(e−γL2
ε + 2e−γ(L2

ε−L1
ε)) + ε,

which proves that w ∈ SAPω(Xα) and completes the proof. �

Theorem 2.4. Assume F ∈ CLip([0,∞) × BXα ; X), σ ∈ CLip([0,∞) × BXα ; R+), the
functions F(·) and σ(·) are uniformly S-asymptotically ω-periodic and asymptotically
uniformly continuous on bounded sets, and ϕ ∈ CLip([−p, 0]; Xα), σ(0, ϕ) = 0,
T (·)ϕ(0) ∈ CLip([0,∞); Xα), T (·)F(0, ϕ) ∈ L∞([0,∞); Xα), and

2[F]CLipΘ(α, γ)(2[σ]CLip (2Λ + 1) + 1) < 1, (2.2)

where Θ(α, γ) = C0,α[1/(1 − α) + 1/γ] and

Λ = [T (·)ϕ(0)]CLip([0,∞);Xα) + ‖T (·)F(0, ϕ)‖L∞([0,∞);Xα) + 2[F]CLipΘ(α, γ).

Then there exists a unique mild solution u ∈ CLip([−p,∞); Xα) ∩ S APω(Xα) of (1.1)–
(1.2). Moreover, u(·) is a strict solution if ϕ(0) ∈ X1.

Proof. Let P : R→ R be the polynomial given by

P(x) = Λ + Θ(α, γ)[F]CLip (2([σ]CLip + 1) − 1)x + 2Θ(α, γ)[F]CLip [σ]CLip x2.

From (2.2) and noting that Θ(α, γ)[F]CLip (2([σ]CLip + 1) − 1) < 0, we infer that P(·) has
a root R1 > 0. Thus, there exists R > 0 such that P(R) < 0, which implies that

Λ + 2[F]CLipΘ(α, γ)[σ]CLip R(1 + R) ≤ R,
Θ(α, γ)[F]CLip (1 + R[σ]CLip ) < 1.

Let S(R) = {u ∈ SAPω(Xα) : u0 = ϕ, [u]CLip([−p,∞);Xα) ≤ R} endowed with the metric
d(u, v) = ‖u − v‖C([0,∞);Xα) and let Γ : S(R)→ C([−p,∞); X) be the map defined by
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(Γu)0 = ϕ and

Γu(t) = T (t)ϕ(0) +

∫ t

0
T (t − s)F(s, uσ(s,us)) ds for t ∈ [0,∞).

Let u ∈ S(R). From Lemma 2.3 it is easy to see that Γ(u) ∈ SAPω(Xα). To estimate
[Γu]CLip([0,∞);Xα), note that from Lemma 1.1,

[F(·, uσ(·,u(·)))]CLip([0,∞);X) ≤ [F]CLip (1 + R[σ]CLip (1 + R)).

Using this estimate, for t, h ∈ [0,∞),

‖Γu(t + h) − Γu(t)‖Xα

≤ [T (·)ϕ(0)]CLip([0,∞);Xα)h +

∫ h

0
‖(−A)αT (t + h − s)F(0, ϕ)‖ ds

+

∫ h

0
‖(−A)αT (t + h − s)‖L(X)‖F(s, uσ(s,us)) − F(0, ϕ)‖ ds

+

∫ t

0
‖(−A)αT (t − s)‖L(X)‖F(s + h, uσ(s+h,us+h)) − F(s, uσ(s,us))‖ ds

≤ [T (·)ϕ(0)]CLip([0,∞);Xα)h + ‖T (·)F(0, ϕ)‖L∞([0,∞);Xα)h

+ [F(·, uσ(·,u(·)))]CLip([0,∞);X)h
∫ h

0

C0,αe−γ(h−s)

(h − s)α
ds

+ [F(·, uσ(·,u(·)))]CLip([0,∞);X)h
∫ t

0

C0,αe−γ(t−s)

(t − s)α
ds

≤ [T (·)ϕ(0)]CLip([0,∞);Xα)h + ‖T (·)F(0, ϕ)‖L∞([0,∞);Xα)h
+ 2[F(·, uσ(·,u(·)))]CLip([0,∞);X)Θ(α, γ)h,

and hence, [Γu]CLip([0,∞);Xα) ≤ Λ + 2[F]CLipΘ(α, γ)[σ]CLip R(1 + R) ≤ R. From this
estimate, [Γu]CLip([−p,∞);Xα) ≤ R since [ϕ]CLip([−p,0];Xα) ≤ R, which shows that Γu ∈ S(R).

On the other hand, for u, v ∈ S(R) and t ≥ 0,

‖Γu(t) − Γv(t)‖Xα ≤
∫ t

0
‖(−A)αT (t − s)‖L(X)[F]CLip‖uσ(s,us) − vσ(s,vs)‖α ds

≤ C0,α

∫ t

0

e−γ(t−s)

(t − s)α
[F]CLip (1 + R[σ]CLip ) d(u, v) ds

≤ Θ(α, γ)[F]CLip (1 + R[σ]CLip ) d(u, v),

which proves that Γ is a contraction on S(R) and so there exists a unique mild solution
u ∈ CLip([0,∞); Xα) ∩ SAPω(Xα) of (1.1)–(1.2). In addition, from [15, Theorem 4.3.2],
we infer that u(·) is a strict solution if ϕ(0) ∈ X1. �

Remark 2.5. The proofs of Lemma 2.3 and Theorem 2.4 depend on the asymptotic
stability of (T (t))t≥0. The relation between stability of C0-semigroups, the spectrum of
the associated generator and the existence of almost periodic solutions is an important
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field of research. In this connection, an interesting question arises: is there a result
similar to Theorem 2.4 if (T (t))t≥0 is strongly S -asymptotically periodic (that is, for
each x ∈ X there is ωx > 0 such that T (·)x is S -asymptotically ωx-periodic)? We will
address this question in a forthcoming paper.

Next, we study asymptotically ω-periodic solutions. Let u ∈ C([0,∞); Z). We say
that u is NS-asymptotically ω-periodic if limt→∞(u(t + nω) − u(t)) = 0 uniformly for
n ∈ N and we denote byNSAPω(Z) the space of functions of this type endowed with the
norm ‖ · ‖C([0,∞);Z). It is easy to see that NSAPω(Z) is a Banach space. In addition, we
say that G ∈ C([0,∞) × Z; W) is uniformly NS-asymptotically ω-periodic on bounded
sets if, for every bounded set K ⊂W, limt→∞(G(t + nω, x) −G(t, x)) = 0 uniformly for
x ∈ K and n ∈ N.

Lemma 2.6. Assume that F ∈ C([0,∞) × BXα ; X) and σ ∈ C([0,∞) × BXα ;R+) for some
α ∈ (0, 1), and that F(·) and σ(·) are uniformly NS-asymptotically ω-periodic and
asymptotically uniformly continuous on bounded sets. If u ∈ NSAPω(Xα) and v(·), w(·)
are the functions in Lemma 2.3, then v ∈ NS APω(X) and w ∈ NSAPω(Xα).

Proof. Assuming that v ∈ NSAPω(X) and proceeding as in the proof of Lemma 2.3,
we select L2

ε > L1
ε > 0 such that (2.1) is satisfied and

‖v‖C([0,∞);X)Θ(α, γ)‖v(s + nω) − v(s)‖ ≤ ε for all n ∈ N, s ≥ L1
ε.

For t ≥ L2
ε and n ∈ N,

‖w(t + nω) − w(t)‖Xα ≤
∫ nω

0
‖(−A)αT (t + nω − s)v(s)‖ ds

+

∫ L1
ε

0
‖(−A)αT (t − s)(v(s + nω) − v(s))‖ ds

+

∫ t

L1
ε

‖(−A)αT (t − s)(v(s + nω) − v(s))‖ ds

≤ ‖v‖C([0,∞);X)Θ(α, γ)(e−γL2
ε + 2e−γ(L2

ε−L1
ε)) + ε,

which allows us to conclude that w ∈ NSAPω(Xα). �

Proposition 2.7. Assume that the conditions in Theorem 2.4 are satisfied and that
F(·) and σ(·) are uniformly NS-asymptotically ω-periodic on bounded sets. Then
there exists a unique asymptotically ω-periodic mild solution u ∈ CLip([−p,∞); Xα) ∩
NSAPω(Xα) of (1.1)–(1.2) and u(·) is a strict solution if ϕ(0) ∈ X1.

Proof. The existence of a mild solution u ∈ CLip([−p,∞); Xα) ∩ NSAPω(Xα) follows
by combining Theorem 2.4, Lemmas 2.6 and 2.3 and using NSAPω(Xα) instead
of SAPω(Xα). The fact that u(·) is asymptotically ω-periodic follows from
[17, Corollary 3.1]. The last assertion is a consequence of [15, Theorem 4.3.2]. �
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Finally, we study the existence of S-asymptotically periodic solutions when F(·)
and σ(·) are locally Lipschitz. To avoid additional notation and concepts, in the
next result we say that f ∈ C([0,∞) × Z; W) is locally Lipschitz if f is Lipschitz on
[0,∞) × Br(0,Z) for all r > 0 and we use the notation [ f ]CLip,r for the Lipschitz constant
of f on [0,∞) × Br(0,Z). We can prove the following theorem by proceeding as in the
proof of Theorem 2.4.

Proposition 2.8. Suppose the conditions in Theorem 2.4 hold but assume that F(·) and
σ(·) are locally Lipschitz and that there is an r > 0 such that (2.2) is valid with [F]CLip,r
and [σ]CLip,r in place of [F]CLip and [σ]CLip , and

Λ(r) = [T (·)ϕ(0)]CLip([0,∞);Xα) + ‖T (·)F(0, ϕ)‖L∞([0,∞);Xα) + 2Θ(α, γ)[F]CLip,r

in place of Λ. If max{‖ϕ‖BXα
,C0‖ϕ(0)‖Xα + ‖F‖Br(0,BXα )Θ(α, γ)} ≤ r, then there exists

a unique mild solution u ∈ CLip([−p,∞); Xα) ∩ SAPω(Xα) of (1.1)–(1.2). Moreover,
u ∈ Br(0,C([−p,∞); Xα)) and u(·) is a strict solution if ϕ(0) ∈ X1.

3. Examples

We now present some examples related to problems in population dynamics. For
simplicity, we assume that A : D(A) ⊂ X → X is the generator of an exponentially
asymptotically stable analytic semigroup of bounded linear operators (T (t))t≥0 on X
with X = L2(Ω;R) or X = C(Ω;R), where Ω ⊂ Rn is an open bounded set with smooth
boundary ∂Ω. We use the notation and properties from the previous sections.

We assume that σ(·) is a Lipschitz function satisfying the general conditions in
Section 2. We can think of σ(·) as defined via a threshold condition of the form

S (σ(u), u) =

∫ σ(u)

−p

( D1

D2 + ‖u(s)‖2L2(Ω)

+ D3

)
ds = D4

(see [3, 9]), where the Di are fixed positive numbers. In particular, in the example
presented in [9], the function σ(·) is a C1 function, and hence, locally Lipschitz.

Motivated by the problems studied in [20], we consider

u′(t, x) = Au(t, x) +

∫
Ω

b(u(σ(ut), y)) f (x − y) dy + g(t)H(u(t, x)),

for t ≥ 0, x ∈ Ω, (3.1)
u(θ, y) = ϕ(θ, y), θ ∈ [−p, 0], y ∈ Ω, (3.2)

where ϕ ∈ CLip([−p, 0]; X), X = L2(Ω;R), f ∈ C(Rn;R), σ ∈ CLip(BX; [0,∞)), H ∈
CLip(R;R), b ∈ CLip(R;R) and g ∈ CLip([0,∞);R) ∩ SAPω(R). For the sake of brevity,
we assume that g, H and b are bounded and µ =

( ∫
Ω

∫
Ω

f (x − y)2dy dx
)1/2 is finite.

Define F : BX → X by F(ψ)(x) =
∫

Ω
b(ψ(0, y)) f (x − y) dy + g(t)H(ψ(0, x)). Note that

‖F‖C(BX ;X) ≤ ‖b‖C(R;R)µ + ‖g‖C([0,∞);R)‖H‖C(Rn;R)m(Ω),
[F]CLip ≤ LF := [b]CLipµ + ‖g‖CLip‖H‖CLip(R;R),

where m(·) denotes the Lebesgue measure.

https://doi.org/10.1017/S0004972718000771 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000771


[8] S-asymptotically periodic solutions 463

In the next result, which follows from Theorem 2.4 with α = 0, we say that
u ∈ C([−p,∞); X) is a mild (strict) solution of (3.1)–(3.2), if u(·) is a mild (strict)
solution of the associated problem (1.1)–(1.2). We adopt a similar convention for the
second example.

Proposition 3.1. Assume that ϕ(0) ∈ D(A) and 2LFγ
−1(2[σ]CLip (2Λ + 1) + 1) < 1

where Λ = C0‖Aϕ(0)‖ + ‖b‖C(R;R)µ + ‖g‖C(R;R)‖H‖C(Rn;R)m(Ω) + (2C0/γ)LF . Then there
exists a unique strict solution u ∈ CLip([−p,∞); Xα) ∩ SAPω(Xα) of (3.1)–(3.2).

The next example is motivated by the Fisher–Kolmogorov and Hutchinson
equations (see [11, 14, 20] for details). Consider the diffusive equation with state-
dependent delay

w′(t, ξ) = Aw(t, ξ) + µ(t)w(σ(t,wt), ξ)[1 − w(σ(t,wt), ξ)], t ∈ R, ξ ∈ Ω, (3.3)
w(θ, y) = ϕ(θ, y), θ ∈ [−p, 0], y ∈ Ω, (3.4)

where σ ∈ CLip(R × BX;R+), µ ∈ CLip(R,R) and X = C(Ω).
Let F : R × BX → X be defined by F(t, ψ)(x) = µ(t)ψ(0, x)[1 − ψ(0, x)]. For r > 0,

t, s ∈ [0,∞) and ψ, φ ∈ Br(0,BX), we have ‖F(t, ψ)‖ ≤ ‖µ‖C(R;R)r(1 + r) and

‖F(t, ψ) − F(s, φ)‖ ≤ [µ]CLip(R;R) | t − s | r(1 + r) + ‖µ‖C(R;R)(1 + 2r)‖ψ − φ‖BX ,

[F]CLip,r ≤ ‖µ‖CLip(R;R)(r2 + 3r + 1).

Moreover, if ϕ(0) ∈ D(A), the number Λ(r) in Proposition 2.7 is given by

Λ(r) = C0‖Aϕ(0)‖ + C0‖µ‖C(R;R)r(1 + r) + 2‖µ‖CLip(R;R)(r2 + 3r + 1)γ−1.

The following result follows from Proposition 2.7.

Proposition 3.2. If there is an r > 0 such that 2[F]CLip,r (2[σ]CLip,r(2Λ(r) + 1) + 1) < γ
and max{‖ϕ‖BX ,C0‖ϕ(0)‖ + ‖F‖Br(0,BX)/γ} ≤ r, then there exists a unique strict solution
u ∈ CLip([−p,∞); Xα) ∩ SAPω(Xα) of (3.3)–(3.4) such that u ∈ Br(0,C([−p,∞); X)).
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