A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR ONE-SIDED OPERATORS OF FRACTIONAL TYPE

MARIA LORENTE

Abstract

In this paper we give a characterization of the pairs of weights (ω, v) such that T maps $L^{p}(v)$ into $L^{q}(\omega)$, where T is a general one-sided operator that includes as a particular case the Weyl fractional integral. As an application we solve the following problem: given a weight v, when is there a nontrivial weight ω such that T maps $L^{p}(v)$ into $L^{q}(\omega)$?

1. Introduction. In [M], B. Muckenhoupt raised the question of characterizing when the weighted norm inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{m}}|T f(x)|^{q} \omega(x) d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} v(x) d x\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

holds, where T is any classical operator. We are interested in the case $m=n=1$ and T a one-sided operator. By a one-sided operator we mean an operator T acting on measurable functions f such that the values of $T f(x)$ depend only on the values of f either in (x, ∞) or in $(-\infty, x)$.

For f locally integrable on \mathbb{R}, the one-sided Hardy-Littlewood maximal functions are

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f(y)| d y \quad \text { and } \quad M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f(y)| d y
$$

In [S1], Eric Sawyer characterized for $1<p<\infty, p=q$, the weights ω satisfying (1.1) for $T=M^{+}$with $\omega=v$, as those weights ω satisfying the A_{p}^{+}condition:
$\left(A_{p}^{+}\right) \quad\left(\frac{1}{h} \int_{a-h}^{a} \omega(x) d x\right)\left(\frac{1}{h} \int_{a}^{a+h} \omega^{\frac{-1}{p-1}}(x) d x\right)^{p-1} \leq C, \quad$ for all $a \in \mathbb{R}$ and $h>0$.
For $T=M^{-}$the weights are characterized by the A_{p}^{-}condition:
$\left(A_{p}^{-}\right) \quad\left(\frac{1}{h} \int_{a}^{a+h} \omega(x) d x\right)\left(\frac{1}{h} \int_{a-h}^{a} \omega^{\frac{-1}{p-1}}(x) d x\right)^{p-1} \leq C, \quad$ for all $a \in \mathbb{R}$ and $h>0$.

This research has been supported by D.G.I.C.Y.T. grant (PB94-1496) and Junta de Andalucía. Received by the editors November 30, 1995.
AMS subject classification: Primary: 26A33; secondary: 42B25.
Key words and phrases: Weyl fractional integral, weights
(c) Canadian Mathematical Society 1997.

In the same paper he proves that for $1<p<\infty$ the pairs of weights (ω, v) satisfying (1.1) for $T=M^{+}$are those satisfying the S_{p}^{+}condition

$$
\begin{equation*}
\int_{I}\left(M^{+}\left(\chi_{I} v^{\frac{-1}{p-1}}\right)\right)^{p} \omega \leq C \int_{I} v^{\frac{-1}{p-1}}<\infty, \tag{p}
\end{equation*}
$$

for all intervals $I=(a, b)$ such that $\int_{-\infty}^{a} \omega>0$. The corresponding result is obtained for $T=M^{-}$changing S_{p}^{+}by the natural S_{p}^{-}condition.

For $0<\alpha<1$ the Weyl fractional integral W_{α} and the Riemann-Liouville fractional integral R_{α} are defined, for locally integrable functions on \mathbb{R}, by

$$
W_{\alpha} f(x)=\int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} d y \quad \text { and } \quad R_{\alpha} f(x)=\int_{-\infty}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} d y
$$

and for $0 \leq \alpha<1$, the fractional one-sided Hardy-Littlewood maximal functions M_{α}^{+} and M_{α}^{-}are defined by

$$
M_{\alpha}^{+} f(x)=\sup _{h>0} h^{\alpha-1} \int_{x}^{x+h}|f(y)| d y \quad \text { and } \quad M_{\alpha}^{-} f(x)=\sup _{h>0} h^{\alpha-1} \int_{x-h}^{x}|f(y)| d y .
$$

Andersen and Sawyer [AS] showed that, under the assumptions $1<p<\frac{1}{\alpha}$ and $\frac{1}{q}=$ $\frac{1}{p}-\alpha$, the inequality (1.1) holds with $\omega=v$ for $T=M_{\alpha}^{+}$or $T=W_{\alpha}(\alpha>0)$ if and only if
$\left(A_{p, q}^{+}\right) \quad\left(\frac{1}{h} \int_{a-h}^{a} \omega(x) d x\right)^{1 / q}\left(\frac{1}{h} \int_{a}^{a+h} \omega^{\frac{-1}{p-1}}(x) d x\right)^{1 / p^{\prime}} \leq C, \quad$ for all $a \in \mathbb{R}, h>0$,
and for $T=M_{\alpha}^{-}$or $T=R_{\alpha}(\alpha>0)$ if and only if
$\left(A_{p, q}^{-}\right) \quad\left(\frac{1}{h} \int_{a}^{a+h} \omega(x) d x\right)^{1 / q}\left(\frac{1}{h} \int_{a-h}^{a} \omega^{\frac{-1}{p-1}}(x) d x\right)^{1 / p^{\prime}} \leq C, \quad$ for all $a \in \mathbb{R}, h>0$,
where p^{\prime} is the conjugate exponent of p. To prove this, they used complex interpolation of analytic families of operators. A "geometric" type proof was given by Martín-Reyes and de la Torre in [MT]. They also solved the case of different weights for the fractional one-sided Hardy-Littlewood maximal functions, for $1<p \leq q$. More precisely, they showed that the inequality (1.1) holds for $1<p \leq q$ and $T=M_{\alpha}^{+}$if, and only if,
$\left(S_{p, q, \alpha}^{+}\right)$there exists C such that for every interval I with $\sigma(I)$ finite

$$
\left(\int_{I}\left(M_{\alpha}^{+}\left(\sigma \chi_{I}\right)\right)^{q} \omega\right)^{1 / q} \leq C(\sigma(I))^{1 / p}
$$

where $\sigma=v^{1-p^{\prime}}$ and $\sigma(I)=\int_{I} \sigma$.
For the Weyl fractional integral and for $1<p \leq q<\infty$ or $1=p<q<\infty$ the pairs of weights for which the weak type inequality associated with (1.1) holds have been characterized ([LT]) as those pairs of weights (ω, v) satisfying

$$
\int_{I}\left(R_{\alpha}\left(\chi_{I} \omega\right)\right)^{p^{\prime}} v^{1-p^{\prime}} \leq C\left(\int_{I} \omega\right)^{p^{\prime} / q^{\prime}}, \quad \text { if } 1<p \leq q<\infty
$$

or

$$
\left\|R_{\alpha}\left(\chi_{I} \omega\right) \nu^{-1}\right\|_{L^{\infty}(\nu)} \leq C\left(\int_{I} \omega\right)^{1 / q^{\prime}}, \quad \text { if } p=1<q<\infty
$$

(For $p<q$ this problem is solved in [LT] for a more general operator). However, as far as the author knows, there is not a characterization of the strong type inequality (1.1) with $T=W_{\alpha}$. In this paper we solve this problem for $1<p \leq q<\infty$. Actually, we characterize the pairs of weights (ω, v) for which (1.1) holds for a more general operator T defined by

$$
\begin{equation*}
T f(x)=\int_{x}^{\infty} K(y-x) f(y) d y \tag{1.2}
\end{equation*}
$$

where K is a positive measurable function, lower semicontinuous, with support in $(0, \infty)$, nonincreasing in $(0, \infty)$, with $\lim _{x \rightarrow \infty} K(x)=0$ and satisfying $K(x) \leq C K(2 x), x \in$ $(0, \infty)$. (Observe that if $K(x)=x^{\alpha-1} \chi_{(0, \infty)}(x)$ then $T=W_{\alpha}$). This result is in Theorem 1. In the proof of this theorem we follow the ideas in [S2], [SW] and [SWZ] but we also need the characterization of the good weights (ω, v) for a one-sided dyadic maximal operator associated with K and defined by

$$
\begin{equation*}
\mathcal{M}_{K, d}^{+} f(x)=\sup _{I \in A_{x}} K(|I|) \int_{I}|f(y)| d y \tag{1.3}
\end{equation*}
$$

where $A_{x}=\{I=[a, b): I$ is dyadic and $0 \leq a-x<b-a\}$. This characterization appears in Theorem 2.

As an application of these results, we solve the following problem: given a weight v, when is there a nontrivial weight ω, such that (1.1) holds for T defined by (1.2) or for $\mathcal{M}_{K, d}^{+}$? The answer to these problems are contained in Theorems 3 and 4.

We end this section with some notation. Throughout the paper the letter I will denote an interval in $\mathbb{R},|I|$ will denote the Lebesgue measure of I. If λ is a positive real number, then λI will denote the interval with the same center as I and with $|\lambda I|=\lambda|I|$ and if g is a positive measurable function and E is a measurable set, then $g(E)=\int_{E} g$. If $I=[a, b), I^{\star}$ will be the interval $[b, 2 b-a)$. A weight will be a nonnegative measurable function. The letter C will always mean a positive constant not necessarily the same at each occurrence and if $1<p<\infty$ then p^{\prime} will denote the number such that $p+p^{\prime}=p p^{\prime}$.

2. Statement of the results.

ThEOREM 1. Suppose that $1<p \leq q<\infty, \omega$ and v are two weights and

$$
T f(x)=\int_{x}^{\infty} K(y-x) f(y) d y
$$

where K is a positive measurable function, lower semicontinuous, with support in $(0, \infty)$, nonincreasing in $(0, \infty)$, with $\lim _{x \rightarrow \infty} K(x)=0$ and satisfying $K(x) \leq C K(2 x), x \in$ $(0, \infty)$. Then the weighted inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|T f|^{q} \omega\right)^{1 / q} \leq C\left(\int_{\mathbb{R}}|f|^{p} v\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

holds for some constant C if, and only if, the following two conditions hold:
(2.2) There exists C such that for every interval $I=[a, b)$ with $\int_{(-\infty, a)} \omega>0$,

$$
\left(\int_{\mathbb{R}}\left(T\left(\chi_{I} \sigma\right)\right)^{q} \omega\right)^{1 / q} \leq C(\sigma(I))^{1 / p}<\infty
$$

and
(2.3) there exists C such that for every interval $I=[a, b)$ with $\int_{[b, \infty)} \sigma>0$,

$$
\left(\int_{\mathbb{R}}\left(T^{\star}\left(\chi_{I} \omega\right)\right)^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} \leq C(\omega(I))^{1 / q^{\prime}}<\infty
$$

where $\sigma=v^{1-p^{\prime}}$ and T^{\star} denotes the adjoint operator of $T, T^{\star} g(x)=\int_{-\infty}^{x} K(x-y) g(y) d y$.
THEOREM 2. Let K be as in Theorem 1. Then for weights ω, v and $1<p \leq q$, the following two conditions are equivalent:
(2.4) There exists C such that for every $f \geq 0$

$$
\left(\int\left(\mathcal{M}_{K, d}^{+} f\right)^{q} \omega\right)^{1 / q} \leq C\left(\int f^{p} v\right)^{1 / p}
$$

(2.5) There exists C such that for every dyadic interval $I=[a, b)$ with $\int_{(-\infty, b)} \omega>0$,

$$
\int_{I^{\star}} \sigma<\infty \quad \text { and } \quad\left(\int_{I \cup I^{\star}}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I^{\star}}\right)\right)^{q} \omega\right)^{1 / q} \leq C\left(\int_{I^{\star}} \sigma\right)^{1 / p}
$$

This theorem is an easy variant of Theorem 2.6 in [MT]. The proof is exactly as in [MT]. Thus we omit it.

Theorem 3. Let $1<p \leq q<\infty$ and let K be as in Theorem 1. Suppose that there exists $q_{0}>\frac{q}{p}$ such that $K(x) \leq C x^{-1 / q_{0}}$, for all $x \in(0, \infty)$. Let v be a weight, $0 \leq v(x) \leq \infty$, such that v is not identically infinity in any interval of the form (c, ∞). Then, there exists ω not identically zero such that the inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|T f|^{q} \omega\right)^{1 / q} \leq C\left(\int_{\mathbb{R}}|f|^{p} v\right)^{1 / p} \tag{2.6}
\end{equation*}
$$

holds for some constant C and for all $f \in L^{p}(v)$, if, and only if, there exists $a \in \mathbb{R}$ such that for all $b>a$, we have

$$
\begin{equation*}
\int_{a}^{b} \sigma>0 \quad \text { and } \quad \int_{b}^{\infty} K(y-a)^{p^{\prime}} \sigma(y) d y<\infty \tag{2.7}
\end{equation*}
$$

THEOREM 4. Under the same assumptions of Theorem 3 we have that there exists ω not identically zero such that the inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left|\mathcal{M}_{K, d}^{+} f\right|^{q} \omega\right)^{1 / q} \leq C\left(\int_{\mathbb{R}}|f|^{p} \nu\right)^{1 / p} \tag{2.8}
\end{equation*}
$$

holds for some constant C and for all $f \in L^{p}(v)$, if, and only if, there exists a dyadic interval I_{0} with $0<\int_{I_{0}^{\star}} \sigma$ and such that

$$
\begin{equation*}
\sup _{\left\{I \text { dyadic: } I_{0} \subset I\right\}} K(|I|)\left(\int_{I^{*}} \sigma\right)^{1 / p^{\prime}}<\infty \tag{2.9}
\end{equation*}
$$

REMARKS.
(1) Observe that for $f \geq 0$, we have $\mathcal{M}_{K, d}^{+} f(x) \leq C T f(x)$. It follows that condition (2.2) implies that $\mathcal{M}_{K, d}^{+}$is bounded from $L^{p}(v)$ to $L^{q}(\omega)$.
(2) If $K(x) \leq C K(x / 2)$ for some $C<1$ then $\mathcal{M}_{K, d}^{+}$is pointwise equivalent to the following maximal operator

$$
\mathcal{M}_{K}^{+} f(x)=\sup _{c>x} K(c-x) \int_{x}^{c}|f(y)| d y .
$$

Observe that this condition holds if $K(x)=x^{\alpha-1} \chi_{(0, \infty)}(x)$, i.e., the kernel for the Weyl operator. In this case \mathcal{M}_{K}^{+}is M_{α}^{+}(for this case, see [MT]).
(3) Of course, one can change the orientation of the real line and obtain Theorems 1 and 3 for T^{\star} and Theorems 2 and 4 for $\mathcal{M}_{K, d}^{-}$.
(4) By duality we also can solve the following problem: given ω not identically zero, when there exists v not identically infinity such that (2.6) holds?
(5) We ask for v not identically infinity in any interval of the form (c, ∞) in Theorems 3 and 4 because if there exists c such that $v=\infty$ a.e. in (c, ∞), then it suffices to take $\omega=\chi_{(c, \infty)}$ to have (2.6) and (2.8).
(6) Theorem 1 of [S2] can be easily obtained as a consequence of Theorem 1.
(7) Theorem 3 is also valid for $p>1,0<q<p$ and assuming $q_{0}>1$. This follows using Hölder's inequality and the case $p=q$. Putting together Theorem 3 and this remark we observe that we have generalized Theorem 3 (b) in [AS] since we extend the range of p and q and we consider more general operators.
3. Proof of Theorem 1. Assume that (2.1) holds. Then so does its dual inequality

$$
\begin{equation*}
\left(\int\left|T^{\star} g\right|^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} \leq C\left(\int|g|^{q^{\prime}} \omega^{1-q^{\prime}}\right)^{1 / q^{\prime}} \tag{3.1}
\end{equation*}
$$

Let $I=[a, b)$ be such that $\int_{(-\infty, a)} \omega>0$. Then there exists a bounded interval $J \subset$ $(-\infty, a)$ such that $\int_{J} \omega>0$. We first prove that $\sigma(I)<\infty$. Taking $g=\omega^{1 / q} \chi_{J}$ in (3.1) we have that

$$
\left(\int\left|T^{\star}\left(\omega^{1 / q} \chi_{J}\right)\right|^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} \leq C|J|^{1 / q^{\prime}}<\infty
$$

and for all $x \in I, T^{\star}\left(\omega^{1 / q} \chi_{J}\right)(x)>T^{\star}\left(\omega^{1 / q} \chi_{J}\right)(b)>0$. Therefore, $\sigma(I)<\infty$. To finish the proof of (2.2) it suffices to take $f=\chi_{I} \sigma$ in (2.1).

Now let $I=[a, b)$ such that $\int_{[b, \infty)} \sigma>0$ and consider a bounded interval $J \subset[b, \infty)$ such that $\int_{J} \sigma>0$. Then (2.3) follows by taking $f=\sigma^{1 / p^{\prime}} \chi_{I}$ in (2.1) and $g=\chi_{I} \omega$ in (3.1).

To prove the converse, we suppose that $f \in L^{p}(v)$ is nonnegative, bounded with compact support and such that $f \sigma^{-1}$ is bounded. For each $k \in \mathbb{Z}$, the set $\Omega_{k}=\{x: T f(x)>$ $\left.2^{k}\right\}$ is open since K is lower semicontinuous and the fact that $\lim _{x \rightarrow \infty} K(x)=0$ gives that the connected components of Ω_{k} are of finite length. Then, as in [S2] with the correction pointed out in [SW] and [SWZ], we have
(i) $\Omega_{k}=\cup_{j} I_{j}^{k}, I_{j}^{k}$ dyadic and $I_{j}^{k} \cap I_{i}^{k}=\emptyset$ for $i \neq j$,
(ii) $3 I_{j}^{k} \subset \Omega_{k}$ and $9 I_{j}^{k} \cap \Omega_{k}^{c} \neq \emptyset$ for all k, j,
(iii) $\sum_{j} \chi_{3 l_{j}^{k}} \leq C \chi_{\Omega_{k}}$ for all k,
(iv) the number of intervals I_{s}^{k} intersecting a fixed interval $3 I_{j}^{k}$ is at most C,
(v) $I_{j}^{k} \subset I_{i}^{l}$ implies $k>l$.

There are two types of intervals among the I_{j}^{k} 's. In order to classify them we consider the right endpoint c of the connected component of Ω_{k} which contains I_{j}^{k}. If $9 I_{j}^{k} \cap \Omega_{k}^{c} \cap$ $(c, \infty) \neq \emptyset$, we denote I_{j}^{k} by J_{j}^{k}, otherwise, we denote I_{j}^{k} by L_{j}^{k}.

For fixed J_{j}^{k}, let b and c be the right endpoint of $3 J_{j}^{k}$ and the connected component of Ω_{k} which contains J_{j}^{k}, respectively. Then if $x \in J_{j}^{k}$, we have

$$
T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x)=\int_{b}^{c} K(y-x) f(y) \chi_{\left(3 J_{j}^{k}\right)^{c}}(y) d y+\int_{c}^{\infty} K(y-x) f(y) \chi_{\left(3 J_{j}^{k}\right)^{c}}(y) d y
$$

Since K is nonincreasing and $c \notin \Omega_{k}$ it follows that

$$
\int_{c}^{\infty} K(y-x) f(y) \chi_{\left(3 J_{j}^{k}\right)}(y) d y \leq \int_{c}^{\infty} K(y-c) f(y) d y=T f(c) \leq 2^{k}
$$

On the other hand, it is not very difficult to prove that the assumption on $K, K(x) \leq$ $C K(2 x)$ for $x>0$ and property (ii) in (3.2) give that

$$
\int_{b}^{c} K(y-x) f(y) \chi_{\left(3 J_{j}^{k}\right)^{c}}(y) d y \leq C \mathcal{M}_{K, d}^{+} f(x)
$$

To prove this inequality we only have to observe that the interval (b, c) is contained in the union of at most two dyadic intervals of length comparable to $\left|J_{j}^{k}\right|$ and belonging to A_{x}. Therefore, for $x \in J_{j}^{k}$, we have

$$
\begin{equation*}
T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x) \leq C \mathcal{M}_{K, d}^{+} f(x)+2^{k} \tag{3.3}
\end{equation*}
$$

This is the reason why we need to study this dyadic maximal operator.
Let us consider now an interval L_{j}^{k}. Let a be the left endpoint of the connected component of Ω_{k} which contains L_{j}^{k} and $[b, c)=3 L_{j}^{k}$. For $x \in L_{j}^{k}$, we have

$$
T f(x)=\int_{x}^{c} K(y-x) f(y) d y+\int_{c}^{\infty} K(y-a) f(y) \frac{K(y-x)}{K(y-a)} d y .
$$

If $y>c$ then $y-a=(y-x)+(x-a) \leq(y-x)+9\left|L_{j}^{k}\right| \leq(y-x)+9(y-x)=10(y-x)$. Then $K(y-x) \leq C^{4} K\left(2^{4}(y-x)\right) \leq C^{4} K(y-a)$, by the growth condition of K and the fact that K is nonincreasing. Therefore

$$
\begin{aligned}
T f(x) & \leq \int_{x}^{c} K(y-x) f(y) d y+C^{4} \int_{c}^{\infty} K(y-a) f(y) d y \\
& \leq T\left(f \chi_{\left(3 L_{j}^{k}\right)}\right)(x)+C^{4} T f(a) \leq T\left(f \chi_{\left(3 L_{j}^{k}\right)}\right)(x)+C^{4} 2^{k}
\end{aligned}
$$

since $a \notin \Omega_{k}$. Choose an integer $m \geq 3$ such that $2^{m-2}>C^{4}$. Define $G_{j}^{k}=L_{j}^{k} \cap$ $\left(\Omega_{k+m-1}-\Omega_{k+m}\right)$. Then, for $x \in G_{j}^{k}$, we have

$$
T\left(f \chi_{\left(3 L_{j}^{k}\right)}\right)(x) \geq T f(x)-C^{4} 2^{k}>2^{k+m-1}-2^{k+m-2} \geq 2^{k}
$$

and so,

$$
\begin{equation*}
1 \leq \frac{1}{2^{k}} T\left(f \chi_{\left(3 L_{j}^{k}\right)}\right)(x), \quad \text { for } x \in G_{j}^{k} \tag{3.4}
\end{equation*}
$$

Let us consider again inequality (3.3). Define $A_{j}^{k}=\left\{x \in J_{j}^{k}: C \mathcal{M}_{K, d}^{+} f(x) \leq 2^{k}\right\}$, where C is the constant appearing in (3.3), $B_{j}^{k}=J_{j}^{k}-A_{j}^{k}$ and let $D_{j}^{k}=A_{j}^{k} \cap\left(\Omega_{k+m-1}-\Omega_{k+m}\right)$ and $F_{j}^{k}=B_{j}^{k} \cap\left(\Omega_{k+m-1}-\Omega_{k+m}\right)$. Then,

$$
\begin{equation*}
T f(x) \leq 2^{k+m} \text { and } 2^{k}<C \mathcal{M}_{K, d}^{+} f(x), \quad \text { for all } x \in F_{j}^{k} \tag{3.5}
\end{equation*}
$$

If $x \in D_{j}^{k}$ we have

$$
\begin{aligned}
& 2^{k+m-1}<T f(x)=T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x)+T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x) \leq T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x) \\
&+C \mathcal{M}_{K, d}^{+} f(x)+2^{k} \leq T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x)+2^{k+1}
\end{aligned}
$$

and so

$$
T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x)>2^{k+m-1}-2^{k+1} \geq 2^{k+2}-2^{k+1}>2^{k}
$$

Thus,

$$
\begin{equation*}
1 \leq \frac{1}{2^{k}} T\left(f \chi_{\left(3 J_{j}^{k}\right)}\right)(x), \quad \text { for } x \in D_{j}^{k} \tag{3.6}
\end{equation*}
$$

We now estimate the left side of (2.1) by

$$
\begin{align*}
& \int_{\mathbb{R}}(T f(x))^{q} \omega(x) d x= \sum_{k \in \mathbb{Z}} \int_{\Omega_{k+m-1}-\Omega_{k+m}}(T f(x))^{q} \omega(x) d x \tag{3.7}\\
& \leq \leq \sum_{k, j} \int_{D_{j}^{k}}(T f(x))^{q} \omega(x) d x \\
& \quad+\sum_{k, j} \int_{F_{j}^{k}}(T f(x))^{q} \omega(x) d x \\
& \quad+\sum_{k, j} \int_{G_{j}^{k}}(T f(x))^{q} \omega(x) d x=(\mathrm{I})+(\mathrm{II})+(\mathrm{III}) .
\end{align*}
$$

We first estimate the term (II). Using (3.5), the fact that the F_{j}^{k} are disjoint on k and j and remark (1), we have

$$
\begin{align*}
(\text { II }) & \leq \sum_{k, j} 2^{m q} \int_{F_{j}^{k}} 2^{k q} \omega(x) d x \leq C \sum_{k, j} \int_{F_{j}^{k}}\left(\mathcal{M}_{K, d}^{+} f(x)\right)^{q} \omega(x) d x \tag{3.8}\\
& \leq C \int_{\mathbb{R}}\left(\mathcal{M}_{K, d}^{+} f(x)\right)^{q} \omega(x) d x \leq C\left(\int_{\mathbb{R}} f^{p} v\right)^{q / p}
\end{align*}
$$

To estimate the terms (I) and (III), we observe that (3.4) and (3.6) allow us to treat (I) and (III) jointly. If we denote J_{j}^{k} or L_{j}^{k} by I_{j}^{k} and D_{j}^{k} or G_{j}^{k} by E_{j}^{k}, the inequalities (3.4) and (3.6) can be unified as

$$
1 \leq \frac{1}{2^{k}} T\left(f \chi_{\left(3 I_{j}^{k}\right)}\right)(x), \quad \text { for } x \in E_{j}^{k}
$$

Then

$$
\begin{equation*}
(\mathrm{I})+(\mathrm{III}) \leq \sum_{k, j} \int_{E_{j}^{k}}(T f(x))^{q} \omega(x) d x \leq C \sum_{k, j} 2^{k q} \omega\left(E_{j}^{k}\right) \tag{3.9}
\end{equation*}
$$

Now, using duality,

$$
\begin{align*}
\omega\left(E_{j}^{k}\right) & \leq \frac{1}{2^{k}} \int_{E_{j}^{k}} T\left(f \chi_{\left(3 l_{j}^{k}\right.}\right)(x) \omega(x) d x=\frac{1}{2^{k}} \int_{3 I_{j}^{k}} f(x) T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x \\
& =\frac{1}{2^{k}}\left(\int_{3 I_{j}^{k}-\Omega_{k+m}} f(x) T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x+\int_{3 l_{j}^{k} \cap \Omega_{k+m}} f(x) T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x\right) \tag{3.10}\\
& =\frac{1}{2^{k}}\left(\sigma_{j}^{k}+\tau_{j}^{k}\right) .
\end{align*}
$$

Define, as in [S2], the following sets:

$$
\begin{aligned}
E & =\left\{(k, j): \omega\left(E_{j}^{k}\right) \leq \beta \omega\left(I_{j}^{k}\right)\right\} \\
F & =\left\{(k, j): \omega\left(E_{j}^{k}\right)>\beta \omega\left(I_{j}^{k}\right) \text { and } \sigma_{j}^{k}>\tau_{j}^{k}\right\} \\
G & =\left\{(k, j): \omega\left(E_{j}^{k}\right)>\beta \omega\left(I_{j}^{k}\right) \text { and } \sigma_{j}^{k} \leq \tau_{j}^{k}\right\}
\end{aligned}
$$

where β satisfies $0<\beta<1$ and it will be chosen at the end of the proof. Then, taking into account (3.9) and (3.10) we can write

$$
\begin{align*}
(\mathrm{I})+(\mathrm{III}) & \leq C\left(\sum_{(k, j) \in E}+\sum_{(k, j) \in F}+\sum_{(k, j) \in G}\right) 2^{k q} \omega\left(E_{j}^{k}\right) \tag{3.11}\\
& =(\mathrm{IV})+(\mathrm{V})+(\mathrm{VI}) .
\end{align*}
$$

Observe that we only have to consider those (k, j) for which $\omega\left(E_{j}^{k}\right) \neq 0$. If there exist (k, j) and $(k+m, i)$ such that $I_{j}^{k}=I_{i}^{k+m}$, then $\omega\left(E_{j}^{k}\right)=0$ because $E_{j}^{k} \subset I_{j}^{k} \cap\left(\Omega_{k+m-1}-\Omega_{k+m}\right)$, thus we do not consider this (k, j). Therefore, fixed two intervals I_{j}^{k} and I_{i}^{k+m}, or they are disjoint or $I_{i}^{k+m} \underset{\neq}{\subset} I_{j}^{k}$.

To estimate the sum over the set E, we use the fact that the I_{j}^{k} are disjoint in j and Fubini's theorem. Then

$$
\begin{align*}
(\mathrm{IV}) & \leq C \beta \sum_{(k, j) \in E} 2^{k q} \omega\left(I_{j}^{k}\right) \tag{3.12}\\
& \leq C \beta \sum_{k} 2^{k q} \omega\left(\left\{x: T f(x)>2^{k}\right\}\right) \\
& =C \beta \sum_{k} \sum_{i=k}^{\infty} 2^{k q} \omega\left(\left\{x: 2^{i}<T f(x) \leq 2^{i+1}\right\}\right) \\
& \leq C \beta \sum_{k} \sum_{i=k}^{\infty} 2^{k q} 2^{-i q} \int_{\left\{x: 2^{i}<T f(x) \leq 2^{i+1}\right\}}(T f(x))^{q} \omega(x) d x \\
& =C \beta \sum_{i} \sum_{k=-\infty}^{i} 2^{k q} 2^{-i q} \int_{\left\{x: 2^{i}<T f(x) \leq 2^{i+1}\right\}}(T f(x))^{q} \omega(x) d x \\
& =C \beta \sum_{i} \frac{2^{q}}{2^{q}-1} \int_{\left\{x: 2^{i}<T f(x) \leq 2^{i+1}\right\}}(T f(x))^{q} \omega(x) d x \\
& =C \beta \int_{\mathbb{R}}(T f(x))^{q} \omega(x) d x .
\end{align*}
$$

We now estimate (V). Using inequality (3.10), the definition of F, Hölder's inequality and condition (2.3) we get

$$
\begin{align*}
(\mathrm{V}) & =C \sum_{(k, j) \in F} 2^{k q} \omega\left(E_{j}^{k}\right)=C \sum_{(k, j) \in F} \omega\left(E_{j}^{k}\right)\left(\frac{\sigma_{j}^{k}+\tau_{j}^{k}}{\omega\left(E_{j}^{k}\right)}\right)^{q} \tag{3.13}\\
& \leq C \beta^{-q} \sum_{(k, j) \in F} \omega\left(E_{j}^{k}\right) \frac{\left(\sigma_{j}^{k}\right)^{q}}{\omega\left(I_{j}^{k}\right)^{q}} \\
& =C \beta^{-q} \sum_{(k, j) \in F} \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left(\int_{3 l_{j}^{k}-\Omega_{k+m}} f T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)\right)^{q} \\
& \leq C \beta^{-q} \sum_{(k, j) \in F} \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left(\int_{3 l_{j}^{k}-\Omega_{k+m}} f^{p} v\right)^{q / p}\left(\int_{3 I_{j}^{k}-\Omega_{k+m}}\left(T^{\star}\left(\chi_{l_{j}^{k}} \omega\right)\right)^{p^{\prime}} \sigma\right)^{q / p^{\prime}} \\
& \leq C \beta^{-q} \sum_{(k, j)} \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)}\left(\int_{3 l_{j}^{k}-\Omega_{k+m}} f^{p} v\right)^{q / p} \leq C \beta^{-q}\left(\sum_{(k, j)} \int_{3 I_{j}^{k}-\Omega_{k+m}} f^{p} v\right)^{q / p} \\
& \leq C \beta^{-q}\left(\sum_{k} \int_{\Omega_{k}-\Omega_{k+m}} f^{p} v\right)^{q / p} \leq C \beta^{-q}\left(\int_{\mathbb{R}} f^{p} v\right)^{q / p},
\end{align*}
$$

where we have also used that $E_{j}^{k} \subset I_{j}^{k}$, the facts that the intervals of the form $3 I_{j}^{k}$ are "almost" disjoint (parts (iii) and (iv) of (3.2)), that they are all contained in Ω_{k} and that $1 \leq q / p$. Observe that we can use the condition (2.3) because if $I_{j}^{k}=\left[a_{j}^{k}, b_{j}^{k}\right)$, then $\int_{b_{j}^{k}}^{\infty} \sigma>0$, otherwise sop $f \subset\left(-\infty, b_{j}^{k}\right]$ and taking $x \in 3 I_{j}^{k}, x>b_{j}^{k}$ we have $T f(x)=0$ but $3 I_{j}^{k} \subset \Omega_{k}((3.2),($ ii $))$ which is a contradiction.

We are going now to estimate the sum over the set G in (3.11). In order to do this we estimate

$$
\tau_{j}^{k}=\int_{3 l_{j}^{k} \cap \Omega_{k+m}} f T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)
$$

Let $H_{j}^{k}=\left\{i: I_{i}^{k+m} \cap 3 I_{j}^{k} \neq \emptyset\right\}$. Then $3 I_{j}^{k} \cap \Omega_{k+m} \subset \cup_{i \in H_{j}^{k}} I_{i}^{k+m}$. Fix I_{i}^{k+m} and let a be the left end-point of the interval $3 I_{i}^{k+m}$. If $y \notin 3 I_{i}^{k+m}$ and $y \leq a$, then

$$
\sup _{x \in I_{i}^{K_{i}+m}}(x-y) \leq 2 \inf _{x \in I_{i}^{k+m}}(x-y)
$$

which implies, by the growth condition imposed on K and the fact that K is nonincreasing, that

$$
\begin{aligned}
\sup _{x \in I_{i}^{k+m}} K(x-y) & =K\left(\inf _{x \in I_{i}^{k+m}}(x-y)\right) \leq C K\left(2 \inf _{x \in I_{i}^{k+m}}(x-y)\right) \\
& \leq C K\left(\sup _{x \in I_{i}^{l+m}}(x-y)\right)=C \inf _{x \in I_{i}^{k+m}} K(x-y)
\end{aligned}
$$

Since $3 I_{i}^{k+m} \subset \Omega_{k+m}$ and $E_{j}^{k} \cap \Omega_{k+m}=\emptyset$, we have that $3 I_{i}^{k+m} \cap E_{j}^{k}=\emptyset$. It follows that for all $x \in I_{i}^{k+m}$

$$
T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x)=\int_{-\infty}^{a} K(x-y) \chi_{E_{j}^{k}}(y) \omega(y) d y
$$

and thus

$$
\begin{equation*}
\sup _{x \in I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \leq C \inf _{x \in I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \tag{3.14}
\end{equation*}
$$

Using this we can write the following:

$$
\begin{align*}
\tau_{j}^{k} & =\int_{3 I_{j}^{k} \cap \Omega_{k+m}} f(x) T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x \tag{3.15}\\
& \leq \sum_{i \in H_{j}^{k}} \int_{I_{i}^{k+m}} f(x) T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x \\
& \leq \sum_{i \in H_{j}^{k}} \int_{I_{i}^{k+m}} f(x) \sup _{x \in I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) d x \\
& \leq C \sum_{i \in H_{j}^{k}} \inf _{x \in I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \int_{I_{i}^{k+m}} f(x) d x \\
& \leq C \sum_{i \in H_{j}^{k}} \int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \sigma(x) d x\left(\sigma\left(I_{i}^{k+m}\right)\right)^{-1} \int_{I_{i}^{k+m}} f(x) d x
\end{align*}
$$

Observe that if $\sigma\left(I_{i}^{k+m}\right)=0$ then $\int_{I_{i}^{k+m}} f(x) d x=0$ since $f \in L^{p}(v)$ and therefore, from now on, in the last term we are summing over those i 's such that $\sigma\left(I_{i}^{k+m}\right)>0$.

Let $C_{j}^{k}=\left(\sigma\left(I_{j}^{k}\right)\right)^{-1} \int_{I_{i}^{k}} f(x) d x$ where the quotient is understood to be zero if $\sigma\left(I_{j}^{k}\right)=0$. Then, for all $x \in I_{j}^{k}$ we have

$$
C_{j}^{k}=\left(\sigma\left(I_{j}^{k}\right)\right)^{-1} \int_{l_{j}^{k}} f \sigma^{-1} \sigma \leq M_{\sigma}\left(f \sigma^{-1}\right)(x)
$$

where, if μ is a positive Borel measure, $M_{\mu} f(x)=\sup _{x \in I}(\mu(I))^{-1} \int_{I}|f| d \mu$ (and the quotient is understood to be zero if $\mu(I)=0)$. Let $N_{j}^{k}=\left\{s: I_{s}^{k} \cap 3 I_{j}^{k} \neq \emptyset\right\}$. Notice that the cardinality of N_{j}^{k} is at most C by (3.2), (iv).

In the inequality (3.15) it appears the integral over I_{i}^{k+m}, with $i \in H_{j}^{k}$. Let $s \in N_{j}^{k}$. Then I_{s}^{k} and I_{i}^{k+m} are disjoint or $I_{i}^{k+m} \not \models I_{s}^{k}$ by (3.2), (v) and the comment after (3.11). Then

$$
\begin{align*}
\tau_{j}^{k} & \leq C \sum_{i \in H_{j}^{k}} C_{i}^{k+m} \int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \sigma(x) d x \tag{3.16}\\
& \leq C \sum_{s \in N_{j}^{k}}\left[\sum_{i \in H_{j}^{k}: l_{i}^{k^{+m}} \subset I_{s}^{k}} C_{i}^{k+m} \int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)(x) \sigma(x) d x\right]
\end{align*}
$$

We remind that we are estimating

$$
(\mathrm{VI})=C \sum_{(k, j) \in G} 2^{k q} \omega\left(E_{j}^{k}\right)
$$

Let N and M be integers such that $0 \leq M<m$. Define

$$
G_{N, M}=\left\{(k, j) \in G: \omega\left(E_{j}^{k}\right) \neq 0, k \geq N \text { and } k \equiv M(\bmod m)\right\}
$$

We now claim that

$$
\begin{equation*}
\sum_{\left\{(k, j) \in G_{N, M}\right\}} 2^{k q} \omega\left(E_{j}^{k}\right) \leq C\left(\int f^{p} v\right)^{q / p} \tag{3.17}
\end{equation*}
$$

with constant C that not depends on N and M.
Fix N and M and consider the "principal" intervals as in [MW] defined as follows: $\Gamma_{0}=\left\{(k, j) \in G_{N, M}: I_{j}^{k}\right.$ is maximal $\}$. If Γ_{n}, has been defined, let Γ_{n+1} consist of those $(k, j) \in G_{N, M}$ for which there is $(t, u) \in \Gamma_{n}$ with $I_{j}^{k} \subset I_{u}^{t}, C_{j}^{k}>2 C_{u}^{t}$ and $C_{i}^{l} \leq 2 C_{u}^{t}$ for those I_{i}^{l} such that $I_{j}^{k} \subset I_{i}^{l} \subset I_{u}^{t}$. Let $\Gamma=\cup_{n=0}^{\infty} \Gamma_{n}$. For each $(k, j) \in G_{N, M}$ let $P\left(I_{j}^{k}\right)$ be the smallest interval I_{u}^{t} containing I_{j}^{k} and such that $(t, u) \in \Gamma$. Observe that the map P is well defined because no interval I_{j}^{k} may occur as one of the $I_{i}^{k+m}\left(\right.$ since $\left.\omega\left(E_{j}^{k}\right) \neq 0\right)$. Observe that $P\left(I_{j}^{k}\right)=I_{u}^{t}$ implies $C_{j}^{k} \leq 2 C_{u}^{t}$.

Using inequality (3.16) we estimate the first term of (3.17) as follows:
(3.18)

$$
\begin{aligned}
\sum_{(k, j) \in G_{N, M}} & 2^{k q} \omega\left(E_{j}^{k}\right) \\
& \leq \sum_{(k, j) \in G_{N, M}} \omega\left(E_{j}^{k}\right) \frac{\left(2 \tau_{j}^{k}\right)^{q}}{\left(\omega\left(E_{j}^{k}\right)\right)^{q}} \\
& \leq C \beta^{-q} \sum_{(k, j) \in G_{N, M}} \frac{\omega\left(E_{j}^{k}\right)}{\left(\omega\left(I_{j}^{k}\right)\right)^{q}}\left(\tau_{j}^{k}\right)^{q}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leq C \beta^{-q} \sum_{(k, j) \in G_{N, M}} \sum_{s \in N_{j}^{k}} \frac{\omega\left(E_{j}^{k}\right)}{\left(\omega\left(I_{j}^{k}\right)\right)^{q}} \sum_{\left\{: I l_{i}^{l+m} \subset I_{s}^{k}\right.} \sum_{\text {and }(k+m, i) \notin \Gamma\}}\left(\int_{l_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right) C_{i}^{k+m}\right]^{q} \\
& \quad+C \beta^{-q} \sum_{(k, j) \in G_{N, M}} \sum_{s \in N_{j}^{k}} \frac{\omega\left(E_{j}^{k}\right)}{\left(\omega\left(I_{j}^{k}\right)\right)^{q}}\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}}\left(\int_{l_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right) C_{i}^{k+m}\right]^{q} \\
& = \\
& (\mathrm{VII})+(\mathrm{VIII}) .
\end{aligned}
$$

It appears on (VII) the sum over the set $\left\{i: I_{i}^{k+m} \subset I_{s}^{k}\right.$ and $\left.(k+m, i) \notin \Gamma\right\}$; notice that if $I_{i}^{k+m} \subset I_{s}^{k}$ and $(k+m, i) \notin \Gamma$ then $P\left(I_{i}^{k+m}\right)=P\left(I_{s}^{k}\right)$. To estimate (VII) we first observe that for a fixed $(t, u) \in \Gamma$ we have

$$
\begin{gather*}
\sum_{(k, j) \in G_{N, M}} \sum_{\left\{s \in N_{j}^{k}: P\left(I_{s}^{k}\right)=I_{u}^{L}\right\}} \frac{\omega\left(E_{j}^{k}\right)}{\left(\omega\left(I_{j}^{k}\right)\right)^{q}}\left[\sum_{\left\{i: I_{i}^{l+m} \subset I_{s}^{k}\right.} \text { and }(k+m, i) \notin \Gamma\right\} \tag{3.19}\\
\left.\leq C \sum_{(k, j) \in G_{N, M}} C_{\left\{s \in N_{j}^{k}: P\left(l_{s}^{k}\right)=I_{u}^{l}\right\}} \omega\left(E_{j}^{k}\right)\left[\frac{1}{\omega\left(I_{j}^{k}\right)} \int_{I_{s}^{k}} T^{\star}\left(\chi_{I_{j}^{k}} \omega\right) \sigma\right]^{q}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right]^{q}
\end{gather*}
$$

In the last inequality we have used the following: the I_{i}^{k+m} are disjoint on i and they are all contained in $I_{s}^{k} ; P\left(I_{i}^{k+m}\right)=P\left(I_{s}^{k}\right)=I_{u}^{t}$, thus $C_{i}^{k+m} \leq 2 C_{u}^{t}$ and $E_{j}^{k} \subset I_{j}^{k}$. Let use now that $I_{s}^{k} \subset I_{u}^{t}$, duality, the fact that the cardinality of N_{j}^{k} is at most C, the fact that the E_{j}^{k} are disjoint on k and j and that for all $x \in E_{j}^{k} \subset I_{j}^{k}$ we have that $\left(\omega\left(I_{j}^{k}\right)\right)^{-1} \int_{I_{j}^{k}} T\left(\chi_{I_{u}} \sigma\right) \omega \leq$ $M_{\omega}\left(T\left(\chi_{I_{u}} \sigma\right)\right)(x)$, to estimate right-hand side of (3.19) with the following:

$$
\begin{align*}
& C\left(C_{u}^{t}\right)^{q} \sum_{(k, j) \in G_{N, M}} \sum_{\left\{s \in N_{j}^{k}: P\left(I_{s}^{k}\right)=I_{u}^{L}\right\}} \omega\left(E_{j}^{k}\right)\left[\frac{1}{\omega\left(I_{j}^{k}\right)} \int_{I_{j}^{k}} T\left(\chi_{I_{u}^{I}} \sigma\right) \omega\right]^{q} \tag{3.20}\\
& \quad \leq C\left(C_{u}^{t}\right)^{q} \sum_{(k, j) \in G_{N, M}} \int_{E_{j}^{k}}\left(M_{\omega}\left(T\left(\chi_{I_{u}} \sigma\right)\right)\right)^{q} \omega \\
& \quad \leq C\left(C_{u}^{t}\right)^{q} \int_{\mathbb{R}}\left(M_{\omega}\left(T\left(\chi_{I_{u}} \sigma\right)\right)\right)^{q} \omega
\end{align*}
$$

Finally, we use the fact that M_{ω} is bounded from $L^{q}(\omega)$ into $L^{q}(\omega)$ for all $q>1$ and we apply condition (2.2) to get that the last term of (3.20) is bounded by

$$
C\left(C_{u}^{t}\right)^{q} \int_{\mathbb{R}}\left(T\left(\chi_{I_{u}^{\prime}} \sigma\right)\right)^{q} \omega \leq C\left(C_{u}^{t}\right)^{q}\left(\int_{I_{u}^{t}} \sigma\right)^{q / p}
$$

Combining this with (3.19) and (3.20) and summing over $(t, u) \in \Gamma$ we obtain

$$
\begin{align*}
(\mathrm{VII}) & \leq C \beta^{-q} \sum_{(t, u) \in \Gamma}\left(\int_{I_{u}^{\prime}} \sigma\right)^{q / p}\left(C_{u}^{t}\right)^{q} \tag{3.21}\\
& \leq C \beta^{-q}\left(\sum_{(t, u) \in \Gamma}\left(C_{u}^{t}\right)^{p} \int_{I_{u}^{\prime}} \sigma\right)^{q / p}
\end{align*}
$$

We now consider (VIII). Let us fix $(k, j) \in G_{N, M}$. It follows from Hölder's inequality, Jensen's inequality and condition (2.3) that

$$
\begin{align*}
& \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)^{-1 / p} \sigma\left(I_{i}^{k+m}\right)^{1 / p}\left(\int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right) C_{i}^{k+m}\right]^{q} \tag{3.22}\\
& \leq \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left[\sum_{i \in H_{j}^{k}} \sigma\left(I_{i}^{k+m}\right)^{-p^{\prime} / p}\left(\int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right)^{p^{\prime}}\right]^{q / p^{\prime}} \\
& \times\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} \\
& =\frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left[\sum_{i \in H_{j}^{k}} \sigma\left(I_{i}^{k+m}\right)^{\frac{-p^{\prime}}{p}+p^{\prime}}\left(\sigma\left(I_{i}^{k+m}\right)^{-1} \int_{I_{i}^{k+m}} T^{\star}\left(\chi_{E_{j}^{k}} \omega\right) \sigma\right)^{p^{\prime}}\right]^{q / p^{\prime}} \\
& \times\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} \\
& \leq \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left(\sum_{i \in H_{j}^{k}} \int_{I_{i}^{k+m}}\left(T^{\star}\left(\chi_{E_{j}^{k}} \omega\right)\right)^{p^{\prime}} \sigma\right)^{q / p^{\prime}} \\
& \times\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} \\
& \leq \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}}\left(\int_{\mathbb{R}}\left(T^{\star}\left(\chi_{I_{j}^{k}} \omega\right)\right)^{p^{\prime}} \sigma\right)^{q / p^{\prime}}\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} \\
& \leq C \frac{\omega\left(E_{j}^{k}\right)}{\omega\left(I_{j}^{k}\right)^{q}} \omega\left(I_{j}^{k}\right)^{q / q^{\prime}}\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} \\
& \leq C\left[\sum_{\left\{i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} .
\end{align*}
$$

Taking into account that $p \leq q$ we obtain

$$
(\mathrm{VIII}) \leq C \beta^{-q}\left[\sum_{\left\{(k, j) \in G_{N, M}, i \in H_{j}^{k}:(k+m, i) \in \Gamma\right\}} \sigma\left(I_{i}^{k+m}\right)\left(C_{i}^{k+m}\right)^{p}\right]^{q / p} .
$$

We claim now that the last sum can be changed by a sum over $(t, u) \in \Gamma$. In fact, for fixed $(k+m, i)$, the number of index j such that $I_{i}^{k+m} \cap 3 I_{j}^{k} \neq \emptyset$ is at most C (by (3.2), (iii) and (iv)). In fact, since $I_{i}^{k+m} \subset \Omega_{k+m} \subset \Omega_{k}$, there exists s such that $I_{i}^{k+m} \subset I_{s}^{k}$ and the number of index j such that $3 I_{j}^{k} \cap I_{s}^{k} \neq \emptyset$ is at most C. Therefore

$$
\begin{equation*}
(\mathrm{VIII}) \leq C \beta^{-q}\left(\sum_{(t, u) \in \Gamma} \sigma\left(I_{u}^{t}\right)\left(C_{u}^{t}\right)^{p}\right)^{q / p} \tag{3.23}
\end{equation*}
$$

Combining (3.21) and (3.23) we get

$$
\begin{align*}
(\mathrm{VII})+(\mathrm{VIII}) & \leq C \beta^{-q}\left(\sum_{(t, u) \in \Gamma} \sigma\left(I_{u}^{t}\right)\left(C_{u}^{t}\right)^{p}\right)^{q / p} \tag{3.24}\\
& \leq C \beta^{-q}\left(\int_{\mathbb{R}}\left(\sum_{(t, u) \in \Gamma}\left(C_{u}^{t}\right)^{p} \chi_{I_{u}^{t}}(x)\right) \sigma(x) d x\right)^{q / p} .
\end{align*}
$$

Observe that for fixed x

$$
\sum_{(t, u) \in \Gamma}\left(C_{u}^{t}\right)^{p} \chi_{I_{u}}(x)=\left(C_{u_{0}}^{t_{0}}\right)^{p}+\left(C_{u_{1}}^{t_{1}}\right)^{p}+\cdots,
$$

where

$$
x \in \cdots I_{u_{2}}^{t_{2}} \subset I_{u_{1}}^{t_{1}} \subset I_{u_{0}}^{t_{0}}, \text { with }\left(t_{0}, u_{0}\right),\left(t_{1}, u_{1}\right),\left(t_{2}, u_{2}\right), \ldots \in \Gamma
$$

and

$$
C_{u_{1}}^{t_{1}}>2 C_{u_{0}}^{t_{0}}, \quad C_{u_{2}}^{t_{2}}>2 C_{u_{1}}^{t_{1}}>2^{2} C_{u_{0}}^{t_{0}}, \quad \ldots
$$

Each partial sum can be bounded as follows:
(3.25)

$$
\begin{aligned}
\left(C_{u_{0}}^{t_{0}}\right)^{p}+\left(C_{u_{1}}^{t_{1}}\right)^{p}+\cdots+\left(C_{u_{s}}^{t_{s}}\right)^{p} & \leq\left(C_{u_{s}}^{t_{s}}\right)^{p} \frac{2^{p}}{2^{p}-1} \\
& \leq \frac{2^{p}}{2^{p}-1} \sup _{\left\{I_{u}: x \in I_{u}(t, u) \in \Gamma\right\}}\left(C_{u}^{t}\right)^{p} \leq C\left(M_{\sigma}(f \sigma)\right)^{p}(x)
\end{aligned}
$$

Therefore, using that M_{σ} is of strong type (p, p) respect to the measure $\sigma(x) d x$, we have

$$
\begin{align*}
(\mathrm{VII})+(\mathrm{VIII}) & \leq C \beta^{-q}\left(\int_{\mathbb{R}}\left(M_{\sigma}(f \sigma)\right)^{p} \sigma\right)^{q / p} \tag{3.26}\\
& \leq C \beta^{-q}\left(\int_{\mathbb{R}} f^{p} \sigma^{p} \sigma\right)^{q / p}=C \beta^{-q}\left(\int_{\mathbb{R}} f^{p} v\right)^{q / p}
\end{align*}
$$

Combining now inequalities (3.18) and (3.26) we get inequality (3.17) with a constant C independent of N and M. Then, from (3.7), (3.8), (3.11), (3.12), (3.13), (3.18) and (3.26) we get

$$
\begin{equation*}
\int_{\mathbb{R}}(T f)^{q} \omega \leq C \beta \int_{\mathbb{R}}(T f)^{q} \omega+C \beta^{-q}\left(\int_{\mathbb{R}} f^{p} v\right)^{q / p} \tag{3.27}
\end{equation*}
$$

Choose β small enough to have $C \beta<1 / 2$. Observe that the conditions imposed on f implies that

$$
\int_{\mathbb{R}}(T f)^{q} \omega<\infty
$$

Then, we can substract $C \beta \int_{\mathbb{R}}(T f)^{q} \omega$ in both members of inequality (3.27) to get

$$
\int_{\mathbb{R}}(T f)^{q} \omega \leq C\left(\int_{\mathbb{R}} f^{p} v\right)^{q / p}
$$

for all $f \geq 0$, bounded, with compact support and such that $f \sigma^{-1}$ is bounded. This finishes the proof of Theorem 1.

4. Proofs of Theorem 3 and Theorem 4.

Proof of Theorem 3. First suppose that there exists ω not identically zero such that (2.6) holds. Then there is an interval $I_{0}=\left[a_{0}, b_{0}\right)$ such that $\omega\left(I_{0}\right)>0$. If we denote by A the set $\left\{x>b_{0}: v(x)<\infty\right\}$, then $|A|>0$, since v is not identically infinity a.e. in $\left(b_{0}, \infty\right)$.

For fixed $N \in \mathbb{N}$ we consider $\sigma_{N}(x)=\min \{\sigma(x), N\}$. Then $\sigma_{N} \in L_{l o c}^{1}\left(b_{0}, \infty\right)$, thus, Lebesgue differentiation theorem gives that

$$
\sigma_{N}(x)=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{x}^{x+h} \sigma_{N} \quad \text { a.e. } x \in\left(b_{0}, \infty\right) .
$$

Since $|A|>0$, there exists $a \in A$ such that

$$
\sigma_{N}(a)=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{a}^{a+h} \sigma_{N}
$$

Taking into account that $\sigma_{N}(a)>0$ we have that $\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{a}^{a+h} \sigma_{N}>0$. This implies that $\int_{a}^{a+h} \sigma_{N}>0$ for all $h>0$ and therefore $\int_{a}^{b} \sigma>0$ for all $b>a$.

We are going to prove now that

$$
\int_{b}^{\infty} K(y-a)^{p^{\prime}} \sigma(y) d y<\infty, \quad \text { for all } b>a
$$

Suppose that $\int_{b}^{\infty} K(y-a)^{p^{\prime}} \sigma(y) d y=\infty$. Then $v^{-1}(y) K(y-a) \chi_{(b, \infty)}(y) \notin L^{p^{\prime}}(v)$ and therefore there is $g \geq 0, g \in L^{p}(v)$, such that $\int_{b}^{\infty} g(y) K(y-a) d y=\infty$. For each $x \in I_{0}$ we have

$$
T g(x)=\int_{x}^{\infty} K(y-x) g(y) d y \geq \int_{b}^{\infty} g(y) K(y-a) \frac{K(y-x)}{K(y-a)} d y
$$

Let us dominate $\frac{K(y-x)}{K(y-a)}$ from below for $y \in(b, \infty)$. Let $c=a+\left(a-a_{0}\right)$. If $y \in(c, \infty)$, then $y-x \leq 2(y-a)$ and thus $K(y-a) \leq C K(2(y-a)) \leq C K(y-x)$. This implies that

$$
\frac{1}{C} \leq \frac{K(y-x)}{K(y-a)}
$$

for $y \in(c, \infty)$. If $c \leq b$ this inequality holds for all $y>b$ and in this case we would have obtained the estimation that we need. However if $c>b$ we still have to dominate $\frac{K(y-x)}{K(y-a)}$ from below for the numbers $y \in(b, c)$. In this case, i.e., $c>b$ and $y \in(b, c)$, we have $y-x \leq c-a_{0}$ and $y-a \geq b-a$, thus

$$
\frac{K\left(c-a_{0}\right)}{K(b-a)} \leq \frac{K(y-x)}{K(y-a)}
$$

Therefore, in both cases, we have obtained that there exists a positive constant C such that

$$
C \leq \frac{K(y-x)}{K(y-a)}, \quad \text { for all } y>b
$$

As a consequence we obtain

$$
T g(x) \geq C \int_{b}^{\infty} g(y) K(y-a) d y=\infty
$$

for all $x \in I_{0}$. By (2.6) and the fact that $\omega\left(I_{0}\right)>0$ this inequality implies that

$$
\infty=\int_{I_{0}}|T g(x)|^{q} \omega(x) d x \leq C\left(\int g^{p}(x) v(x) d x\right)^{q / p}
$$

which is a contradiction since $g \in L^{p}(v)$.
Conversely, suppose that there exists $a \in \mathbb{R}$ such that (2.7) holds for all $b>a$. Then we can find an interval $I_{0}=[a, b)$ such that $\sigma\left(I_{0}\right)>0$ and $\sigma\left(I_{0}^{\star}\right)>0$. Fix I_{0} and set $\omega=\chi_{I_{0}}\left(T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)\right)^{-q / p^{\prime}}$. Observe that $T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)$ is strictly positive in I_{0} since $\sigma\left(I_{0}^{\star}\right)>0$. To see that ω is nontrivial we are going to prove that $T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)<\infty$ a.e. $x \in I_{0}$.

Let m be such that $a<m<b$ and let c be the right endpoint of I_{0}^{\star}. Then if $x \in[m, b)$

$$
T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)=T\left(\sigma \chi_{[m, c)}\right)(x)
$$

The assumption on $K, K(x) \leq C x^{-1 / q_{0}}$, gives that T is dominated by the Weyl fractional integral W_{α} with $\alpha=1-q_{0}^{-1}$. Therefore T is of weak type ($1, q_{0}$). This and condition (2.7) gives, for all $\lambda>0$, the following:

$$
\begin{aligned}
\mid\{x \in[m, b): & \left.T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)>\lambda\right\} \mid \\
& =\left|\left\{x \in[m, b): T\left(\sigma \chi_{[m, c)}\right)(x)>\lambda\right\}\right| \\
& \leq C \lambda^{-q_{0}}\left(\int_{m}^{c} \sigma(y) K(y-a)^{p^{\prime}} K(y-a)^{-p^{\prime}} d y\right)^{q_{0}} \\
& \leq C \lambda^{-q_{0}} K(c-a)^{-p^{\prime} q_{0}}\left(\int_{m}^{\infty} \sigma(y) K(y-a)^{p^{\prime}} d y\right)^{q_{0}} \leq C(m) \lambda^{-q_{0}}
\end{aligned}
$$

where $C(m)$ is a constant that depends on m. Letting λ go to infinity we have that

$$
\left|\left\{x \in[m, b): T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)=\infty\right\}\right|=0
$$

This argument is valid for all $m \in(a, b)$, therefore $T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)(x)<\infty$ a.e. $x \in I_{0}$.
In order to prove (2.6) for the weight ω, it suffices by Theorem 1 to establish that (2.2) and (2.3) hold.

We first prove (2.2). Let $I=[d, e)$ be such that $\int_{(-\infty, d)} \omega>0$. Then $d>a$ since the support of ω is I_{0}. We begin by proving that $\sigma(I)<\infty$. This follows from (2.7) and the following inequality:

$$
\sigma(I)=\int_{d}^{e} \sigma(y) K(y-a)^{p^{\prime}} K(y-a)^{-p^{\prime}} d y \leq K(e-a)^{-p^{\prime}} \int_{d}^{e} \sigma(y) K(y-a)^{p^{\prime}} d y
$$

Let $f_{1}=\sigma \chi_{I \cap\left(I_{0} \cup I_{0}^{\star}\right)}$ and $f_{2}=\sigma \chi_{I-\left(I_{0} \cup U_{0}^{\star}\right)}$. Then $\sigma \chi_{I}=f_{1}+f_{2}$ and

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left(T\left(\sigma \chi_{I}\right)\right)^{q} \omega\right)^{1 / q} \leq\left(\int_{\mathbb{R}}\left(T f_{1}\right)^{q} \omega\right)^{1 / q}+\left(\int_{\mathbb{R}}\left(T f_{2}\right)^{q} \omega\right)^{1 / q} \tag{4.1}
\end{equation*}
$$

Since T is of weak type $\left(1, q_{0}\right)$ we obtain

$$
\begin{align*}
\int_{\mathbb{R}}\left(T f_{1}\right)^{q} \omega & =\int_{I_{0}}\left(T\left(\sigma \chi_{I \cap\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q}\left(T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)\right)^{-q / p^{\prime}} \tag{4.2}\\
& \leq \int_{I_{0}}\left(T\left(\sigma \chi_{I \cap\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q / p} \\
& \leq \int_{0}^{\infty} \frac{q}{p} \lambda^{q-1} \min \left\{\left|I_{0}\right|, C\left(\frac{\sigma(I)}{\lambda}\right)^{q_{0}}\right\} d \lambda .
\end{align*}
$$

Now we write the integral over $(0, \infty)$ as the sum of the integral over $\left(0, C\left|I_{0}\right|^{-1 / q_{0}} \sigma(I)\right)$ and the integral over $\left[C\left|I_{0}\right|^{-1 / q_{0}} \sigma(I), \infty\right)$, where C is the constant appearing in (4.2). In the first integral the minimum is $\left|I_{0}\right|$, while in the second integral the minimum is $C(\sigma(I))^{q_{0}} \lambda^{-q_{0}}$. Then using that $\frac{q}{p}-q_{0}<0$, we obtain that

$$
\begin{equation*}
\int_{\mathbb{R}}\left(T f_{1}\right)^{q} \omega \leq C(\sigma(I))^{q / p} \tag{4.3}
\end{equation*}
$$

where C depends only on p, q, q_{0}, I_{0}.
To handle $T f_{2}$, we observe that it suffices to consider only the intervals $I=[d, e)$ such that $e>c$ where $I_{0}^{\star}=[b, c)$. Let $y>c$. Then for all $x \in I_{0}$ we have that $\frac{1}{2}(y-a) \leq$ $y-x \leq y-a$. Using Hölder's inequality with the measure σ we obtain for all $x \in I_{0}$

$$
\begin{aligned}
T f_{2}(x) & \leq \int_{c}^{\infty} \sigma(y) \chi_{I}(y) K(y-x) d y \leq C \int_{c}^{\infty} \sigma(y) \chi_{I}(y) K(y-a) d y \\
& \leq C\left(\int_{c}^{\infty} K(y-a)^{p^{\prime}} \sigma(y) d y\right)^{1 / p^{\prime}}(\sigma(I))^{1 / p} \leq C(\sigma(I))^{1 / p}<\infty
\end{aligned}
$$

where we have used that $\int_{c}^{\infty} K(y-a)^{p^{\prime}} \sigma(y) d y$ is a finite constant by (2.5). Consequently

$$
\begin{equation*}
\int_{\mathbb{R}}\left(T f_{2}\right)^{q} \omega \leq C \omega\left(I_{0}\right)(\sigma(I))^{q / p}=C(\sigma(I))^{q / p} \tag{4.4}
\end{equation*}
$$

since $\omega\left(I_{0}\right)<\infty$ (observe that ω is bounded with compact support, in fact $\omega(x) \leq$ $\left.\left(K\left(2\left|I_{0}\right|\right) \sigma\left(I_{0}^{\star}\right)\right)^{-q / p^{\prime}}\right)$. This finishes the proof of (2.2).

Now, we are going to prove (2.3). Let $I=[d, e)$ be such that $\int_{[e, \infty)} \sigma>0$. Then $(\omega(I))^{1 / q^{\prime}}<\infty$ since ω is bounded with compact support. Let $\sigma=f_{1}+f_{2}$ where $f_{1}=$ $\sigma \chi_{I_{0} \cup I_{0}^{\star}}$ and $f_{2}=\sigma \chi_{\mathbb{R}-\left(I_{0} \cup I_{0}^{\star}\right)}$. By duality we have

$$
\begin{align*}
\left(\int_{\mathbb{R}}\left(T^{\star}\left(\omega \chi_{I}\right)\right)^{p^{\prime}} \sigma\right)^{1 / p^{\prime}}= & \left\|T^{\star}\left(\omega \chi_{I}\right)\right\|_{L^{p^{\prime}}(\sigma)} \tag{4.5}\\
= & \sup _{\left\{g \geq 0:\|g\|_{L_{(\sigma)}}=1\right\}} \int_{\mathbb{R}} T^{\star}\left(\omega \chi_{I}\right) g \sigma \\
= & \sup _{\left\{g \geq 0:\|g\|_{\left.L^{(}()\right)}=1\right\}} \int_{\mathbb{R}} \omega \chi_{I} T(g \sigma) \\
\leq & \sup _{\left\{g \geq 0:\|g\|_{L_{(\sigma)}}=1\right\}} \int_{I \cap I_{0}} \omega T\left(g f_{1}\right) \\
& +\sup _{\left\{g \geq 0:\|g\|_{\left.L_{(\sigma)}\right)}=1\right\}} \int_{I \cap I_{0}} \omega T\left(g f_{2}\right)=(\mathrm{I})+(\mathrm{II}) .
\end{align*}
$$

Let us estimate (I). If $x \in I \cap I_{0}$, Hölder's inequality gives that

$$
\begin{align*}
T\left(g f_{1}\right)(x) & =\int_{(x, \infty) \cap\left(I_{0} \cup I_{0}^{\star}\right)} \sigma(y) g(y) K(y-x) d y \tag{4.6}\\
& \leq\left(\int_{(x, \infty) \cap\left(I_{0} \cup I_{0}^{\star}\right)} \sigma(y) K(y-x) d y\right)^{1 / p^{\prime}}\left(\int_{(x, \infty) \cap\left(I_{0} \cup I_{0}^{\star}\right)} g^{p}(y) \sigma(y) K(y-x) d y\right)^{1 / p} \\
& =\left(T\left(\sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)(x)\right)^{1 / p^{\prime}}\left(T\left(g^{p} \sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)(x)\right)^{1 / p}
\end{align*}
$$

Now, we use Hölder's inequality to obtain
(4.7)

$$
\begin{aligned}
\int_{I \cap I_{0}} & \omega T\left(g f_{1}\right) \\
& \leq\left(\int_{I \cap I_{0}} \omega\right)^{1 / q^{\prime}}\left(\int_{I \cap I_{0}}\left(T\left(g f_{1}\right)\right)^{q} \omega\right)^{1 / q} \\
& \leq(\omega(I))^{1 / q^{\prime}}\left[\int_{I \cap I_{0}}\left(T\left(\sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q / p^{\prime}}\left(T\left(\sigma \chi_{I_{0} \cup I_{0}^{\star}}\right)\right)^{-q / p^{\prime}}\left(T\left(g^{p} \sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q / p}\right]^{1 / q} \\
& =(\omega(I))^{1 / q^{\prime}}\left(\int_{I \cap I_{0}}\left(T\left(g^{p} \sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q / p}\right)^{1 / q}
\end{aligned}
$$

The weak type $\left(1, q_{0}\right)$ of T and the same argument as in the proof of (4.3) give that

$$
\begin{equation*}
\left(\int_{I \cap I_{0}}\left(T\left(g^{p} \sigma \chi_{\left(I_{0} \cup I_{0}^{\star}\right)}\right)\right)^{q / p}\right)^{1 / q} \leq C\left(\int_{\left(I_{0} \cup I_{0}^{\star}\right)} g^{p} \sigma\right)^{1 / p} \leq C \tag{4.8}
\end{equation*}
$$

Putting together the inequalities (4.6), (4.7) and (4.8) we obtain $(\mathrm{I}) \leq C(\omega(I))^{1 / q^{\prime}}$.
We now estimate (II). Let $x \in I \cap I_{0}$, then the growth condition imposed on K gives that

$$
\begin{align*}
T\left(g f_{2}\right)(x) & =\int_{(x, \infty) \cap\left(\mathbb{R}-\left(I_{0} \cup I_{0}^{\star}\right)\right)} \sigma(y) g(y) K(y-x) d y \tag{4.9}\\
& \leq\left(\int_{(x, \infty) \cap\left(\mathbb{R}-\left(I_{0} \cup I_{0}^{\star}\right)\right)} \sigma(y) K(y-x)^{p^{\prime}} d y\right)^{1 / p^{\prime}}\left(\int g^{p} \sigma\right)^{1 / p} \\
& \leq C\left(\int_{c}^{\infty} \sigma(y) K(y-a)^{p^{\prime}} d y\right)^{1 / p^{\prime}}=C
\end{align*}
$$

As a consequence

$$
\begin{align*}
\int_{I \cap I_{0}} \omega T\left(g f_{2}\right) & \leq\left(\int_{I \cap I_{0}} \omega\right)^{1 / q^{\prime}}\left(\int_{I \cap I_{0}} C^{q} \omega\right)^{1 / q} \tag{4.10}\\
& \leq C(\omega(I))^{1 / q^{\prime}} \omega\left(I_{0}\right)^{1 / q} \leq C(\omega(I))^{1 / q^{\prime}}
\end{align*}
$$

Then $(\mathrm{II}) \leq C(\omega(I))^{1 / q^{\prime}}$ and so (2.3) holds.

Proof of Theorem 4. We first assume that there exists ω not identically zero such that (2.8) holds. Let $I_{1}=\left[a_{1}, b_{1}\right)$ be a dyadic interval such that $\omega\left(I_{1}\right)>0$. As in the case of T, the fact that v is not identically infinity in $\left(b_{1}, \infty\right)$ yields that there is $a>b_{1}$ such that $\int_{a}^{b} \sigma>0$ for all $b>a$.

Let I_{0} be dyadic with $I_{1} \subset I_{0}$ and $a \in I_{0}^{\star}$. This dyadic interval satisfies that $\omega\left(I_{0}\right)>0$ and $\sigma\left(I_{0}^{\star}\right)>0$. We claim that if I is a dyadic interval with $I_{0} \subset I$ then $\sigma\left(I^{\star}\right)<\infty$. We are going to prove this by contradiction.

Suppose that $\sigma\left(I^{\star}\right)=\infty$. Then $v^{-1} \chi_{I^{\star}} \notin L^{p^{\prime}}(v)$ and thus there is $g \geq 0, g \in L^{p}(v)$, such that $\int g v^{-1} \chi_{I^{\star}} v=\int_{I^{\star}} g=\infty$. Let $x \in I$, then $I^{\star} \in A_{x}$ and

$$
\mathcal{M}_{K, d}^{+} g(x) \geq K(|I|) \int_{I^{\star}}|g(t)| d t=\infty
$$

But, since $I_{1} \subset I$, this implies that

$$
\infty=\left(\int_{I}\left(\mathcal{M}_{K, d}^{+} g\right)^{q} \omega\right)^{1 / q} \leq\left(\int_{\mathbb{R}}\left(\mathcal{M}_{K, d}^{+} g\right)^{q} \omega\right)^{1 / q} \leq C\left(\int_{\mathbb{R}}|g|^{p} v\right)^{1 / p}<\infty
$$

This is a contradiction. Therefore $\sigma\left(I^{\star}\right)<\infty$.
On the other hand, if $\sigma\left(I^{\star}\right)>0$, we have

$$
K(|I|) \sigma\left(I^{\star}\right)(\omega(I))^{1 / q} \leq\left(\int_{I}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I^{\star}}\right)\right)^{q} \omega\right)^{1 / q} \leq C\left(\sigma\left(I^{\star}\right)\right)^{1 / p}<\infty
$$

which implies that $\omega(I)<\infty$. Since $\omega\left(I_{0}\right) \leq \omega(I)$, we obtain

$$
K(|I|) \sigma\left(I^{\star}\right)\left(\omega\left(I_{0}\right)\right)^{1 / q} \leq C\left(\sigma\left(I^{\star}\right)\right)^{1 / p}
$$

and then, taking into account that $0<\sigma\left(I^{\star}\right)<\infty$ and $0<\omega\left(I_{0}\right)<\infty$, this inequality yields that

$$
K(|I|)\left(\int_{I^{\star}} \sigma\right)^{1 / p^{\prime}} \leq C\left(\omega\left(I_{0}\right)\right)^{-1 / q}=C
$$

Consequently

$$
\begin{gathered}
\sup _{\left\{I \text { dyadic, } I \supset I_{0}\right\}} K(|I|)\left(\int_{I^{\star}} \sigma\right)^{1 / p^{\prime}} \\
=\sup _{\left\{I \text { dyadic, } I \supset I_{0} \text { and } \sigma\left(I^{\star}\right)>0\right\}} K(|I|)\left(\int_{I^{\star}} \sigma\right)^{1 / p^{\prime}}<\infty .
\end{gathered}
$$

Conversely, assume that (2.9) holds. Let J_{1} be the left half part of I_{0}^{\star}. If $x \in J_{1}$ then

$$
\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)(x) \geq K\left(\left|J_{1}\right|\right) \int_{J_{1}^{\star}} \sigma
$$

If $\int_{J_{1}^{\star}} \sigma>0$, we take $\omega=\chi_{J_{1}}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)\right)^{-q / p^{\prime}}$. If $\int_{J_{1}^{\star}} \sigma=0$, we consider the left half part of J_{1} and call it J_{2}. Then, for $x \in J_{2}$, we have

$$
\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)(x) \geq K\left(\left|J_{2}\right|\right) \int_{J_{2}^{\star}} \sigma .
$$

If $\int_{J_{2}^{\star}} \sigma>0$, we take $\omega=\chi_{J_{2}}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)\right)^{-q / p^{\prime}}$. If $\int_{J_{2}^{\star}} \sigma=0$, we consider J_{3}, etc. This process can not continue indefinitely, because $\int_{I_{0}^{\star}} \sigma>0$ and $\cup_{i=1}^{\infty} J_{i}^{\star}=I_{0}^{\star}$. Then there is a dyadic interval J strictly contained in I_{0}^{\star}, with the same left endpoint that I_{0}^{\star} and such that $\int_{J^{\star}} \sigma>0$. Fix J and set $\omega=\chi_{J}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)\right)^{-q / p^{\prime}}$. Observe that for all $x \in J$, $\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)(x)>0$. Furthermore, by (2.9), $\int_{I_{0}^{\star}} \sigma<\infty$. This and the fact that $\mathcal{M}_{K, d}^{+}$is of weak type $\left(1, q_{0}\right)$ (because $\left.\mathcal{M}_{K, d}^{+}|f| \leq C T|f|\right)$ give that $\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I_{0}^{\star}}\right)(x)<\infty$ a.e. $x \in J$. Then ω is nontrivial and it is bounded with compact support.

To prove (2.8) we use Theorem 2. We are going to show that for every dyadic interval $I=[a, b)$ with $\int_{(-\infty, b)} \omega>0$, one has that

$$
\int_{I^{\star}} \sigma<\infty \quad \text { and } \quad\left(\int_{I \cup I^{\star}}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I^{\star}}\right)\right)^{q} \omega\right)^{1 / q} \leq C\left(\int_{I^{\star}} \sigma\right)^{1 / p}
$$

Let $I=[a, b)$ dyadic with $\int_{(-\infty, b)} \omega>0$. To prove that $\int_{I^{\star}} \sigma<\infty$ we are going to see that there exists a dyadic interval Q such that $I_{0} \subset Q$ and $I^{\star} \subset Q^{\star}$. Once we have proved this, we have that $\int_{I^{\star}} \sigma<\infty$ by (2.9). In order to prove the existence of Q, we observe that we have the following three cases: $I_{0} \subset I, I \subset I_{0}$, and $I_{0} \cap I=\emptyset$. In the first case we choose $Q=I$. The second case is impossible because $\int_{(-\infty, b)} \omega>0$ and the support of ω is J. In the third case we have to work harder. First we observe that I is on the right of I_{0}. If $I_{0} \subset(-\infty, 0)$, and $I \subset[0, \infty)$, then it is obvious that there exists Q with the required property. If $I_{0} \subset(-\infty, 0)$ and $I \subset(-\infty, 0)$ or $I_{0} \subset[0, \infty)$ and $I \subset[0, \infty)$ then there is a dyadic interval H such that $I_{0}, I \subset H$. Let H be the smallest one with this property and let $H_{1}, H_{2} \subset H$ be the dyadic intervals with $\left|H_{1}\right|=\frac{1}{2}|H|=\left|H_{2}\right|$. Then necessarily $I_{0} \subset H_{1}$ and $I \subset H_{2}$. Since $H_{1}^{\star}=H_{2}$ we have that $I^{\star} \subset H_{1}^{\star}$ or $I^{\star} \subset H^{\star}$. If $I^{\star} \subset H_{1}^{\star}$, we choose $Q=H_{1}$ and if $I^{\star} \subset H^{\star}$, we choose $Q=H$.

In order to prove that

$$
\left(\int_{I U I^{\star}}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I^{\star}}\right)\right)^{q} \omega\right)^{1 / q} \leq C\left(\int_{I^{\star}} \sigma\right)^{1 / p}
$$

it is clear that we only have to consider I with $\left(I \cup I^{\star}\right) \cap J \neq \emptyset$. Let $f_{1}=\sigma \chi_{I^{\star} \cap I_{0}^{\star}}$ and $f_{2}=\sigma \chi_{\left(I^{\star}-I_{0}^{\star}\right)}$. It suffices to prove the above inequality with $\sigma \chi_{I^{\star}}$ replaced by f_{1} and f_{2}. Using that $\mathcal{M}_{K, d}^{+}$is of weak type $\left(1, q_{0}\right)$ and arguing as we did with T in the proof of Theorem 3, we obtain

$$
\begin{align*}
\int_{I \backslash I^{\star}}\left(\mathcal{M}_{K, d}^{+} f_{1}\right)^{q} \omega & \leq \int_{\left(\Omega \cup I^{\star}\right) \cap J}\left(\mathcal{M}_{K, d}^{+}\left(\sigma \chi_{I^{\star} \cap I_{0}^{\star}}\right)\right)^{q / p} \tag{4.11}\\
& \leq C|J|^{1-\frac{q}{q_{0} p}}\left(\sigma\left(I^{\star}\right)\right)^{q / p}=C\left(\sigma\left(I^{\star}\right)\right)^{q / p}
\end{align*}
$$

where C depends only on p, q, q_{0} and J.
Let us estimate now $\int_{N I^{\star}}\left(\mathcal{M}_{K, d}^{+} f_{2}\right)^{q} \omega$.
If $I^{\star} \subset I_{0}^{\star}$ then $f_{2}=0$ and there is nothing to prove. If $I^{\star} \nsubseteq I_{0}^{\star}$ then $I^{\star} \cap\left(\mathbb{R}-I_{0}^{\star}\right) \neq \emptyset$. Since we are considering that $\left(I \cup I^{\star}\right) \cap J \neq \emptyset$, we have that $I \cap J \neq \emptyset$ or $I^{\star} \cap J \neq \emptyset$. If $I^{\star} \cap J \neq \emptyset$ then $I^{\star} \cap I_{0}^{\star} \neq \emptyset$, but this implies that $I_{0}^{\star} \subset I^{\star}$ which is a contradiction with
the fact that $\int_{(-\infty, b)} \omega>0$. Thus, necessarily $I^{\star} \cap J=\emptyset$ and $I \cap J \neq \emptyset$. We have two possibilities, $I \subset J$ or $J \subset I$. Observe that $I \subset J$ leads to $I^{\star} \subset I_{0}^{\star}$ which is a contradiction. Then we have that $J \underset{\neq}{\subset}$. If $I \nsupseteq I_{0}^{\star}$ then $I^{\star} \cap I_{0}^{\star} \neq \emptyset$ and since $I^{\star} \cap\left(\mathbb{R}-I_{0}^{\star}\right) \neq \emptyset$ we obtain that $I_{0}^{\star} \subset I^{\star}$ which is again a contradiction. Therefore $J \subset I_{0}^{\star} \subset I$.

Recall that we are estimating $\int_{I U I^{\star}}\left(\mathcal{M}_{K, d}^{+} f_{2}\right)^{q} \omega$. Let $x \in J$ and let \tilde{I} be such that $\tilde{I}^{\star} \in A_{x}$ and $\tilde{I}^{\star} \cap I^{\star} \neq \emptyset$. Then we can find a dyadic interval H such that $I_{0} \subset H, I^{\star} \cap \tilde{I}^{\star} \subset H^{\star}$ and such that $|H|=\left|I^{\star} \cap \tilde{I}^{\star}\right|$ or $|H|=2\left|I^{\star} \cap \tilde{I}^{\star}\right|$. Thus, by condition (2.7),

$$
\begin{aligned}
K(|\tilde{I}|) \int_{\tilde{I}^{\star}} \sigma \chi_{\left(I^{\star}-I_{0}^{\star}\right)} & =K(|\tilde{I}|) \int_{\tilde{I}^{\star} \cap I^{\star}} \sigma \leq K(|\tilde{I}|)\left(\int_{\tilde{I}_{\star} \cap I^{\star}} \sigma\right)^{1 / p^{\prime}}\left(\int_{I^{\star}} \sigma\right)^{1 / p} \\
& \leq C K(|H|)\left(\int_{H^{\star}} \sigma\right)^{1 / p^{\prime}}\left(\int_{I^{\star}} \sigma\right)^{1 / p} \leq C\left(\int_{I^{\star}} \sigma\right)^{1 / p}
\end{aligned}
$$

It follows that

$$
\left(\int_{I \cup I^{\star}}\left(\mathcal{M}_{K, d}^{+} f_{2}\right)^{q} \omega\right)^{1 / q} \leq C(\omega(J))^{1 / q}\left(\sigma\left(I^{\star}\right)\right)^{1 / p}=C\left(\sigma\left(I^{\star}\right)\right)^{1 / p}
$$

This finishes the proof of Theorem 4.
Final remarks.
(1) It is possible to change the integrals over \mathbb{R} in conditions (2.2) and (2.3) of Theorem 1 , by integrals over I. We can do it by the following result.

THEOREM 5. Let $1<p \leq q<\infty$ or $p=1<q<\infty$. Let K, T and T^{\star} be as in Theorem 1.
(1) If $1<p \leq q<\infty$ the following conditions are equivalent
(a) There exists C such that for all $f \in L^{p}(v)$ and all $\lambda>0$,

$$
\omega(\{x:|T f(x)|>\lambda\}) \leq C\left(\frac{1}{\lambda^{p}} \int|f|^{p} v\right)^{q / p}
$$

(b) There exists C such that for every interval $I=[a, b)$ with $\int_{[b, \infty)} \sigma>0$,

$$
\left(\int_{\mathbb{R}}\left(T^{\star}\left(\chi_{I} \omega\right)\right)^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} \leq C(\omega(I))^{1 / q^{\prime}}<\infty
$$

(c) There exists C such that for every interval $I=[a, b)$ with $\int_{[b, \infty)} \sigma>0$,

$$
\left(\int_{I}\left(T^{\star}\left(\chi_{I} \omega\right)\right)^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} \leq C(\omega(I))^{1 / q^{\prime}}<\infty
$$

(2) If $p=1<q<\infty$ then (a) is equivalent to
(d) There exists C such that for every bounded interval I

$$
\left\|T^{\star}\left(\chi_{I} \omega\right) v^{-1}\right\|_{L^{\infty}(v)} \leq C(\omega(I))^{1 / q^{\prime}}<\infty
$$

PROOF OF THEOREM 5. We first prove that $(a) \Rightarrow(b)$. Using duality and (a) we have

$$
\begin{aligned}
\left(\int_{\mathbb{R}}\left(T^{\star}\left(\chi_{I} \omega\right)\right)^{p^{\prime}} \sigma\right)^{1 / p^{\prime}} & =\left\|T^{\star}\left(\chi_{I} \omega\right) v^{-1}\right\|_{L^{p^{\prime}}(v)} \\
& =\sup _{\left\{g \geq 0:\|g\|_{L^{(v)}}=1\right\}} \int_{\mathbb{R}} T^{\star}\left(\chi_{I} \omega\right) g \\
& =\sup _{\left\{g \geq 0:\| \|_{L^{p^{(v)}}}=1\right\}} \int_{I} T g \omega \\
& =\sup _{\left\{g \geq 0:\|g\|_{L^{(v)}}=1\right\}} \int_{0}^{\infty} \omega(\{x \in I: T g(x)>\lambda\}) d \lambda \\
& \leq C \int_{0}^{\infty} \min \left(\omega(I), C \lambda^{-q}\right) d \lambda=C \omega(I)^{1 / q^{\prime}} .
\end{aligned}
$$

It is obvious that $(\mathrm{b}) \Rightarrow(\mathrm{c})$.
To prove that (c) \Rightarrow (a) observe that this is a generalization of Theorem 2 in [LT]. The proof follows the same pattern, changing the kernel $\frac{1}{x^{1-\alpha}}$ by $K(x)$, the only exception being the point where we have to prove that $A_{t}=\sup _{0<\lambda<t} \lambda^{q} \omega(\{x: T f(x)>\lambda\})$ is finite. We are going to prove this.

As in [LT] it is enough to consider the case of small t and we may assume that f is nonnegative and bounded with compact support $[a, b] \subset(-\infty, \beta)$, where $\beta=\inf \{x$: $\left.\int_{[x, \infty)} \sigma=0\right\}$. Therefore, $\int_{[b, \infty)} \sigma>0$ and $\omega(a, b)<\infty$ by condition (c). Then, as in [LT] we only have to prove that

$$
\sup _{0<\lambda<t} \lambda^{q} \omega(\{x<a: T f(x)>\lambda\})<\infty .
$$

Observe that $x<a$ and $T f(x)>\lambda$ imply that $\lambda<K(a-x) \int_{a}^{b} f$. Let

$$
B_{\lambda}=\left\{y: K(y)>\frac{\lambda}{\int_{a}^{b} f}\right\}
$$

Since K is nonincreasing and lower semicontinuous, B_{λ} is an open interval, $B_{\lambda}=(0, s)$. Since $\lim _{x \rightarrow \infty} K(x)=0$, s can not be infinity. On the other hand, $K(s)=\lambda\left(\int_{a}^{b} f\right)^{-1}$, since K is lower semicontinuous. Therefore, $x<a$ and $T f(x)>\lambda$ imply that $a-x \in B_{\lambda}$ and then $x \in(a-s, a)$.

Choose t small enough to have that if $\lambda<t$ then $s>b-a$. Then

$$
\lambda^{q} \omega(\{x<a: T f(x)>\lambda\}) \leq \lambda^{q} \int_{a-s}^{a} \omega=K(s)^{q}\left(\int_{a}^{b} f\right)^{q} \int_{a-s}^{a} \omega .
$$

If $p>1$ we may use Hölder's inequality and get

$$
\begin{aligned}
\lambda^{q} \omega(\{x<a: T f(x)>\lambda\}) & \leq\left(\int_{a}^{b} f^{p} v\right)^{q / p}\left(\int_{a}^{b} \sigma\right)^{q / p^{\prime}} K(s)^{q} \int_{a-s}^{a} \omega \\
& =\left(\int_{a}^{b} f^{p} v\right)^{q / p}\left(\int_{a}^{b} \sigma(y) K(s)^{p^{\prime}} d y\right)^{q / p^{\prime}} \int_{a-s}^{a} \omega \\
& \leq C\left(\int_{a}^{b} f^{p} v\right)^{q / p}\left(\int_{a}^{b} \sigma(y) K(y-a+s)^{p^{\prime}} d y\right)^{q / p^{\prime}} \int_{a-s}^{a} \omega \\
& \leq C\left(\int_{a}^{b} f^{p} v\right)^{q / p}<\infty .
\end{aligned}
$$

We have used that $s>b-a$ implies $y-a+s<2 s$, the growth condition of K and the fact that (c) implies that there exists C such that

$$
\left(\int_{a}^{b} \sigma(y) K(y-a+s)^{p^{\prime}} d y\right)^{q / p^{\prime}} \int_{a-s}^{a} \omega \leq C .
$$

(Claim $(1.3) \Rightarrow(2.1)$ in [LT]). If $p=1$ we follow the same proof as in [LT].
(2) Changing the orientation of the real line we obtain the last theorem for T^{\star}. Therefore, for $1<p \leq q<\infty$ the operator T is bounded from $L^{p}(v)$ to $L^{q}(\omega)$, if, and only if, it is of weak type (p, q) with respect to the measures (v, ω) and T^{\star} is of weak type (q^{\prime}, p^{\prime}) with respect to the measures $\left(\omega^{1-q^{\prime}}, v^{1-p^{\prime}}\right)$.

ACKNOWLEDGEMENT. We want to thank the referee for his helpful comments and indications on how to improve the paper.

References

[AS] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators. Trans. Amer. Math. Soc. (2) 308(1988), 547-558.
[LT] M. Lorente and A. de la Torre, Weighted inequalities for some one-sided operators. Proc. Amer. Math. Soc. 124(1996), 839-848.
[MT] F. J. Martín-Reyes and A. de la Torre, Two weight norm inequalities for fractional one-sided maximal operators. Proc. Amer. Math. Soc. 117(1993), 483-489.
[M] B. Muckenhoupt, Weighted norm inequalities for classical operators. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, R.I., (1) 35(1979), 69-83.
[MW] B. Muckenhoupt and R. L. Wheeden, Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Indiana Univ. Math. J. 26(1977), 801-816.
[S1] E. T. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297(1986), 53-61.
[S2] _ A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Amer. Math. Soc. 308(1988), 533-545.
[S3] \qquad , Two weight norm inequalities for certain maximal and integral operators. In: Harmonic Analysis. Lect. Notes in Math. 908 (Eds. F. Ricci and G. Weiss), Springer-Verlag, 1982, 102-127.
[SW] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneus spaces. Amer. J. Math. 114(1992), 813-874.
[SWZ] E. T. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions. Potential Anal. 5(1996), 523-580.

Análisis Matemático
Facultad de Ciencias
Universidad de Málaga
29071 Málaga
Spain

