A CHARACTERIZATION OF TWO WEIGHT NORM INEQUALITIES FOR ONE-SIDED OPERATORS OF FRACTIONAL TYPE

MARIA LORENTE

ABSTRACT. In this paper we give a characterization of the pairs of weights (ω, v) such that $T \max L^p(v)$ into $L^q(\omega)$, where T is a general one-sided operator that includes as a particular case the Weyl fractional integral. As an application we solve the following problem: given a weight v, when is there a nontrivial weight ω such that $T \max L^p(v)$ into $L^q(\omega)$?

1. **Introduction.** In [M], B. Muckenhoupt raised the question of characterizing when the weighted norm inequality

(1.1)
$$\left(\int_{\mathbb{R}^m} |Tf(x)|^q \,\omega(x) \, dx\right)^{1/q} \leq C \left(\int_{\mathbb{R}^n} |f(x)|^p \, v(x) \, dx\right)^{1/p}$$

holds, where *T* is any classical operator. We are interested in the case m = n = 1 and *T* a one-sided operator. By a one-sided operator we mean an operator *T* acting on measurable functions *f* such that the values of Tf(x) depend only on the values of *f* either in (x, ∞) or in $(-\infty, x)$.

For f locally integrable on \mathbb{R} , the one-sided Hardy-Littlewood maximal functions are

$$M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(y)| \, dy \quad \text{and} \quad M^{-}f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f(y)| \, dy$$

In [S1], Eric Sawyer characterized for 1 , <math>p = q, the weights ω satisfying (1.1) for $T = M^+$ with $\omega = v$, as those weights ω satisfying the A_p^+ condition:

$$(A_p^+) \qquad \left(\frac{1}{h}\int_{a-h}^a \omega(x)\,dx\right) \left(\frac{1}{h}\int_a^{a+h} \omega^{\frac{-1}{p-1}}(x)\,dx\right)^{p-1} \le C, \quad \text{for all } a \in \mathbb{R} \text{ and } h > 0.$$

For $T = M^-$ the weights are characterized by the A_p^- condition:

$$(A_p^-) \qquad \left(\frac{1}{h}\int_a^{a+h}\omega(x)\,dx\right)\left(\frac{1}{h}\int_{a-h}^a\omega^{\frac{-1}{p-1}}(x)\,dx\right)^{p-1}\leq C,\quad\text{for all }a\in\mathbb{R}\text{ and }h>0.$$

This research has been supported by D.G.I.C.Y.T. grant (PB94-1496) and Junta de Andalucía.

Received by the editors November 30, 1995.

AMS subject classification: Primary: 26A33; secondary: 42B25.

Key words and phrases: Weyl fractional integral, weights

© Canadian Mathematical Society 1997.

In the same paper he proves that for $1 the pairs of weights <math>(\omega, \nu)$ satisfying (1.1) for $T = M^+$ are those satisfying the S_p^+ condition

$$(S_p^+) \qquad \qquad \int_I \left(M^+(\chi_I v^{\frac{-1}{p-1}}) \right)^p \omega \le C \int_I v^{\frac{-1}{p-1}} < \infty,$$

for all intervals I = (a, b) such that $\int_{-\infty}^{a} \omega > 0$. The corresponding result is obtained for $T = M^{-}$ changing S_{p}^{+} by the natural S_{p}^{-} condition.

For $0 < \alpha < 1$ the Weyl fractional integral W_{α} and the Riemann-Liouville fractional integral R_{α} are defined, for locally integrable functions on \mathbb{R} , by

$$W_{\alpha}f(x) = \int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} \, dy$$
 and $R_{\alpha}f(x) = \int_{-\infty}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} \, dy$

and for $0 \le \alpha < 1$, the fractional one-sided Hardy-Littlewood maximal functions M^+_{α} and M^-_{α} are defined by

$$M_{\alpha}^{+}f(x) = \sup_{h>0} h^{\alpha-1} \int_{x}^{x+h} |f(y)| \, dy \quad \text{and} \quad M_{\alpha}^{-}f(x) = \sup_{h>0} h^{\alpha-1} \int_{x-h}^{x} |f(y)| \, dy.$$

Andersen and Sawyer [AS] showed that, under the assumptions $1 and <math>\frac{1}{q} = \frac{1}{p} - \alpha$, the inequality (1.1) holds with $\omega = v$ for $T = M_{\alpha}^+$ or $T = W_{\alpha}$ ($\alpha > 0$) if and only if

$$(A_{p,q}^+) \qquad \left(\frac{1}{h}\int_{a-h}^a \omega(x)\,dx\right)^{1/q} \left(\frac{1}{h}\int_a^{a+h}\omega^{\frac{-1}{p-1}}(x)\,dx\right)^{1/p'} \le C, \quad \text{for all } a \in \mathbb{R}, h > 0,$$

and for $T = M_{\alpha}^{-}$ or $T = R_{\alpha} (\alpha > 0)$ if and only if

$$(A_{p,q}^{-}) \qquad \left(\frac{1}{h}\int_{a}^{a+h}\omega(x)\,dx\right)^{1/q} \left(\frac{1}{h}\int_{a-h}^{a}\omega^{\frac{-1}{p-1}}(x)\,dx\right)^{1/p'} \le C, \quad \text{for all } a \in \mathbb{R}, h > 0,$$

where p' is the conjugate exponent of p. To prove this, they used complex interpolation of analytic families of operators. A "geometric" type proof was given by Martín-Reyes and de la Torre in [MT]. They also solved the case of different weights for the fractional one-sided Hardy-Littlewood maximal functions, for 1 . More precisely, they $showed that the inequality (1.1) holds for <math>1 and <math>T = M_{\alpha}^+$ if, and only if,

 $(S_{p,q,\alpha}^+)$ there exists C such that for every interval I with $\sigma(I)$ finite

$$\left(\int_{I} \left(M^{+}_{lpha}(\sigma\chi_{I})
ight)^{q}\omega
ight)^{1/q} \leq C ig(\sigma(I)ig)^{1/p},$$

where $\sigma = v^{1-p'}$ and $\sigma(I) = \int_I \sigma$.

For the Weyl fractional integral and for $1 or <math>1 = p < q < \infty$ the pairs of weights for which the weak type inequality associated with (1.1) holds have been characterized ([LT]) as those pairs of weights (ω, ν) satisfying

$$\int_{I} \left(R_{\alpha}(\chi_{I}\omega) \right)^{p'} v^{1-p'} \leq C \left(\int_{I} \omega \right)^{p'/q'}, \quad \text{if } 1$$

or

1012

$$\|R_{lpha}(\chi_I\omega)v^{-1}\|_{L^{\infty}(v)} \leq C igg(\int_I \omegaigg)^{1/q'}, \quad ext{if } p=1 < q < \infty.$$

(For p < q this problem is solved in [LT] for a more general operator). However, as far as the author knows, there is not a characterization of the strong type inequality (1.1) with $T = W_{\alpha}$. In this paper we solve this problem for $1 . Actually, we characterize the pairs of weights <math>(\omega, v)$ for which (1.1) holds for a more general operator *T* defined by

(1.2)
$$Tf(x) = \int_x^\infty K(y-x)f(y)\,dy$$

where *K* is a positive measurable function, lower semicontinuous, with support in $(0, \infty)$, nonincreasing in $(0, \infty)$, with $\lim_{x\to\infty} K(x) = 0$ and satisfying $K(x) \leq CK(2x)$, $x \in (0, \infty)$. (Observe that if $K(x) = x^{\alpha-1}\chi_{(0,\infty)}(x)$ then $T = W_{\alpha}$). This result is in Theorem 1. In the proof of this theorem we follow the ideas in [S2], [SW] and [SWZ] but we also need the characterization of the good weights (ω, v) for a one-sided dyadic maximal operator associated with *K* and defined by

(1.3)
$$M_{K,d}^+ f(x) = \sup_{I \in A_x} K(|I|) \int_I |f(y)| \, dy$$

where $A_x = \{I = [a, b) : I \text{ is dyadic and } 0 \le a - x < b - a\}$. This characterization appears in Theorem 2.

As an application of these results, we solve the following problem: given a weight v, when is there a nontrivial weight ω , such that (1.1) holds for *T* defined by (1.2) or for M_{Kd}^+ ? The answer to these problems are contained in Theorems 3 and 4.

We end this section with some notation. Throughout the paper the letter *I* will denote an interval in \mathbb{R} , |I| will denote the Lebesgue measure of *I*. If λ is a positive real number, then λI will denote the interval with the same center as *I* and with $|\lambda I| = \lambda |I|$ and if *g* is a positive measurable function and *E* is a measurable set, then $g(E) = \int_E g$. If I = [a, b), I^* will be the interval [b, 2b - a). A weight will be a nonnegative measurable function. The letter *C* will always mean a positive constant not necessarily the same at each occurrence and if 1 then*p'*will denote the number such that <math>p + p' = pp'.

2. Statement of the results.

THEOREM 1. Suppose that $1 , <math>\omega$ and v are two weights and

$$Tf(x) = \int_x^\infty K(y - x)f(y) \, dy,$$

where *K* is a positive measurable function, lower semicontinuous, with support in $(0, \infty)$, nonincreasing in $(0, \infty)$, with $\lim_{x\to\infty} K(x) = 0$ and satisfying $K(x) \leq CK(2x)$, $x \in (0, \infty)$. Then the weighted inequality

(2.1)
$$\left(\int_{\mathbb{R}} |Tf|^q \omega\right)^{1/q} \le C \left(\int_{\mathbb{R}} |f|^p v\right)^{1/p}$$

holds for some constant C if, and only if, the following two conditions hold: (2.2) There exists C such that for every interval I = [a, b) with $\int_{(-\infty, a)} \omega > 0$,

$$\left(\int_{\mathbb{R}} \left(T(\chi_I \sigma)\right)^q \omega\right)^{1/q} \leq C \left(\sigma(I)\right)^{1/p} < \infty$$

and

(2.3) there exists C such that for every interval I = [a, b) with $\int_{[b,\infty)} \sigma > 0$,

$$\left(\int_{\mathbb{R}} \left(T^{\star}(\chi_{I}\omega)\right)^{p'}\sigma\right)^{1/p'} \leq C\left(\omega(I)\right)^{1/q'} < \infty,$$

where $\sigma = v^{1-p'}$ and T^* denotes the adjoint operator of T, $T^*g(x) = \int_{-\infty}^x K(x-y) g(y) dy$.

THEOREM 2. Let K be as in Theorem 1. Then for weights ω , v and 1 , the following two conditions are equivalent:

(2.4) There exists *C* such that for every $f \ge 0$

$$\left(\int (M_{K,d}^+ f)^q \omega\right)^{1/q} \leq C \left(\int f^p v\right)^{1/p}.$$

(2.5) There exists *C* such that for every dyadic interval I = [a, b) with $\int_{(-\infty,b)} \omega > 0$,

$$\int_{I^{\star}} \sigma < \infty \quad \text{and} \quad \left(\int_{I \cup I^{\star}} \left(M^+_{K,d}(\sigma \chi_{I^{\star}}) \right)^q \omega \right)^{1/q} \le C \left(\int_{I^{\star}} \sigma \right)^{1/p}$$

This theorem is an easy variant of Theorem 2.6 in [MT]. The proof is exactly as in [MT]. Thus we omit it.

THEOREM 3. Let 1 and let K be as in Theorem 1. Suppose that $there exists <math>q_0 > \frac{q}{p}$ such that $K(x) \le Cx^{-1/q_0}$, for all $x \in (0, \infty)$. Let v be a weight, $0 \le v(x) \le \infty$, such that v is not identically infinity in any interval of the form (c, ∞) . Then, there exists ω not identically zero such that the inequality

(2.6)
$$\left(\int_{\mathbb{R}} |Tf|^q \omega\right)^{1/q} \le C \left(\int_{\mathbb{R}} |f|^p v\right)^{1/p}$$

holds for some constant C and for all $f \in L^p(v)$, if, and only if, there exists $a \in \mathbb{R}$ such that for all b > a, we have

(2.7)
$$\int_{a}^{b} \sigma > 0 \quad and \quad \int_{b}^{\infty} K(y-a)^{p'} \sigma(y) \, dy < \infty.$$

THEOREM 4. Under the same assumptions of Theorem 3 we have that there exists ω not identically zero such that the inequality

(2.8)
$$\left(\int_{\mathbb{R}} |M_{K,d}^+ f|^q \omega\right)^{1/q} \le C \left(\int_{\mathbb{R}} |f|^p v\right)^{1/p}$$

holds for some constant C and for all $f \in L^p(v)$, if, and only if, there exists a dyadic interval I_0 with $0 < \int_{I_0^*} \sigma$ and such that

(2.9)
$$\sup_{\{I \text{ dyadic}: I_0 \subset I\}} K(|I|) \left(\int_{I^*} \sigma\right)^{1/p'} < \infty.$$

REMARKS.

- (1) Observe that for $f \ge 0$, we have $M_{K,d}^+ f(x) \le CTf(x)$. It follows that condition (2.2) implies that $M_{K,d}^+$ is bounded from $L^p(v)$ to $L^q(\omega)$.
- (2) If $K(x) \leq CK(x/2)$ for some C < 1 then $M^+_{K,d}$ is pointwise equivalent to the following maximal operator

$$M_{K}^{+}f(x) = \sup_{c>x} K(c-x) \int_{x}^{c} |f(y)| \, dy.$$

Observe that this condition holds if $K(x) = x^{\alpha-1}\chi_{(0,\infty)}(x)$, *i.e.*, the kernel for the Weyl operator. In this case M_K^+ is M_α^+ (for this case, see [MT]).

- (3) Of course, one can change the orientation of the real line and obtain Theorems 1 and 3 for T^* and Theorems 2 and 4 for M_{Kd}^- .
- (4) By duality we also can solve the following problem: given ω not identically zero, when there exists *v* not identically infinity such that (2.6) holds?
- (5) We ask for v not identically infinity in any interval of the form (c, ∞) in Theorems 3 and 4 because if there exists c such that $v = \infty$ a.e. in (c, ∞) , then it suffices to take $\omega = \chi_{(c,\infty)}$ to have (2.6) and (2.8).
- (6) Theorem 1 of [S2] can be easily obtained as a consequence of Theorem 1.
- (7) Theorem 3 is also valid for p > 1, 0 < q < p and assuming $q_0 > 1$. This follows using Hölder's inequality and the case p = q. Putting together Theorem 3 and this remark we observe that we have generalized Theorem 3 (b) in [AS] since we extend the range of p and q and we consider more general operators.
- 3. **Proof of Theorem 1.** Assume that (2.1) holds. Then so does its dual inequality

(3.1)
$$\left(\int |T^{\star}g|^{p'}\sigma\right)^{1/p'} \leq C \left(\int |g|^{q'}\omega^{1-q'}\right)^{1/q'}$$

Let I = [a, b) be such that $\int_{(-\infty, a)} \omega > 0$. Then there exists a bounded interval $J \subset (-\infty, a)$ such that $\int_J \omega > 0$. We first prove that $\sigma(I) < \infty$. Taking $g = \omega^{1/q} \chi_J$ in (3.1) we have that

$$\left(\int |T^{\star}(\omega^{1/q}\chi_J)|^{p'}\sigma\right)^{1/p'} \le C|J|^{1/q'} < \infty$$

and for all $x \in I$, $T^*(\omega^{1/q}\chi_J)(x) > T^*(\omega^{1/q}\chi_J)(b) > 0$. Therefore, $\sigma(I) < \infty$. To finish the proof of (2.2) it suffices to take $f = \chi_I \sigma$ in (2.1).

Now let I = [a, b) such that $\int_{[b,\infty)} \sigma > 0$ and consider a bounded interval $J \subset [b,\infty)$ such that $\int_J \sigma > 0$. Then (2.3) follows by taking $f = \sigma^{1/p'} \chi_I$ in (2.1) and $g = \chi_I \omega$ in (3.1).

To prove the converse, we suppose that $f \in L^p(v)$ is nonnegative, bounded with compact support and such that $f\sigma^{-1}$ is bounded. For each $k \in \mathbb{Z}$, the set $\Omega_k = \{x : Tf(x) > 2^k\}$ is open since *K* is lower semicontinuous and the fact that $\lim_{x\to\infty} K(x) = 0$ gives that the connected components of Ω_k are of finite length. Then, as in [S2] with the correction pointed out in [SW] and [SWZ], we have

- (i) $\Omega_k = \bigcup_j I_j^k$, I_j^k dyadic and $I_j^k \cap I_i^k = \emptyset$ for $i \neq j$,
- (ii) $3I_i^k \subset \Omega_k$ and $9I_i^k \cap \Omega_k^c \neq \emptyset$ for all k, j,

(3.2) (iii) $\sum_{j} \chi_{3I_{j}^{k}} \leq C \chi_{\Omega_{k}}$ for all k,

- (iv) the number of intervals I_s^k intersecting a fixed interval $3I_i^k$ is at most C,
- (v) $I_j^k \subset I_i^l$ implies k > l.

There are two types of intervals among the I_j^k 's. In order to classify them we consider the right endpoint *c* of the connected component of Ω_k which contains I_j^k . If $9I_j^k \cap \Omega_k^c \cap$ $(c, \infty) \neq \emptyset$, we denote I_i^k by J_i^k , otherwise, we denote I_i^k by L_i^k .

For fixed J_j^k , let *b* and *c* be the right endpoint of $3J_j^k$ and the connected component of Ω_k which contains J_j^k , respectively. Then if $x \in J_j^k$, we have

$$T(f\chi_{(3J_j^k)^c})(x) = \int_b^c K(y-x)f(y)\chi_{(3J_j^k)^c}(y)\,dy + \int_c^\infty K(y-x)f(y)\chi_{(3J_j^k)^c}(y)\,dy$$

Since *K* is nonincreasing and $c \notin \Omega_k$ it follows that

$$\int_{c}^{\infty} K(y-x)f(y)\chi_{(3J_{j}^{k})^{c}}(y)\,dy \leq \int_{c}^{\infty} K(y-c)f(y)\,dy = Tf(c) \leq 2^{k}$$

On the other hand, it is not very difficult to prove that the assumption on K, $K(x) \le CK(2x)$ for x > 0 and property (ii) in (3.2) give that

$$\int_{b}^{c} K(y-x)f(y)\chi_{(3J_{j}^{k})^{c}}(y)\,dy \leq CM_{K,d}^{+}f(x).$$

To prove this inequality we only have to observe that the interval (b, c) is contained in the union of at most two dyadic intervals of length comparable to $|J_j^k|$ and belonging to A_x . Therefore, for $x \in J_j^k$, we have

(3.3)
$$T(f\chi_{(3J_j^k)^c})(x) \le CM_{K,d}^+f(x) + 2^k.$$

This is the reason why we need to study this dyadic maximal operator.

Let us consider now an interval L_j^k . Let *a* be the left endpoint of the connected component of Ω_k which contains L_j^k and $[b, c) = 3L_j^k$. For $x \in L_j^k$, we have

$$Tf(x) = \int_{x}^{c} K(y-x)f(y) \, dy + \int_{c}^{\infty} K(y-a)f(y) \frac{K(y-x)}{K(y-a)} \, dy.$$

If y > c then $y - a = (y - x) + (x - a) \le (y - x) + 9|L_j^k| \le (y - x) + 9(y - x) = 10(y - x)$. Then $K(y - x) \le C^4 K(2^4(y - x)) \le C^4 K(y - a)$, by the growth condition of *K* and the fact that *K* is nonincreasing. Therefore

$$Tf(x) \le \int_x^c K(y-x)f(y) \, dy + C^4 \int_c^\infty K(y-a)f(y) \, dy$$

$$\le T(f\chi_{(3L_j^k)})(x) + C^4 Tf(a) \le T(f\chi_{(3L_j^k)})(x) + C^4 2^k$$

since $a \notin \Omega_k$. Choose an integer $m \geq 3$ such that $2^{m-2} > C^4$. Define $G_j^k = L_j^k \cap (\Omega_{k+m-1} - \Omega_{k+m})$. Then, for $x \in G_j^k$, we have

$$T(f\chi_{(3L_j^k)})(x) \ge Tf(x) - C^4 2^k > 2^{k+m-1} - 2^{k+m-2} \ge 2^k,$$

and so,

(3.4)
$$1 \leq \frac{1}{2^k} T(f\chi_{(3L_j^k)})(x), \quad \text{for } x \in G_j^k.$$

Let us consider again inequality (3.3). Define $A_j^k = \{x \in J_j^k : CM_{K,d}^+ f(x) \le 2^k\}$, where *C* is the constant appearing in (3.3), $B_j^k = J_j^k - A_j^k$ and let $D_j^k = A_j^k \cap (\Omega_{k+m-1} - \Omega_{k+m})$ and $F_j^k = B_j^k \cap (\Omega_{k+m-1} - \Omega_{k+m})$. Then,

$$(3.5) Tf(x) \le 2^{k+m} \text{ and } 2^k < CM^+_{K,d}f(x), \quad \text{for all } x \in F^k_j.$$

If $x \in D_i^k$ we have

$$2^{k+m-1} < Tf(x) = T(f\chi_{(3J_j^k)})(x) + T(f\chi_{(3J_j^k)^c})(x) \le T(f\chi_{(3J_j^k)})(x) + CM_{K,d}^+f(x) + 2^k \le T(f\chi_{(3J_j^k)})(x) + 2^{k+1}$$

and so

$$T(f\chi_{(3J_j^k)})(x) > 2^{k+m-1} - 2^{k+1} \ge 2^{k+2} - 2^{k+1} > 2^k.$$

Thus,

(3.6)
$$1 \le \frac{1}{2^k} T(f_{\chi_{(3J_j^k)}})(x), \quad \text{for } x \in D_j^k.$$

We now estimate the left side of (2.1) by

$$(3.7) \qquad \int_{\mathbb{R}} \left(Tf(x) \right)^{q} \omega(x) \, dx = \sum_{k \in \mathbb{Z}} \int_{\Omega_{k+m-1} - \Omega_{k+m}} \left(Tf(x) \right)^{q} \omega(x) \, dx$$
$$\leq \sum_{k,j} \int_{D_{j}^{k}} \left(Tf(x) \right)^{q} \omega(x) \, dx$$
$$+ \sum_{k,j} \int_{F_{j}^{k}} \left(Tf(x) \right)^{q} \omega(x) \, dx$$
$$+ \sum_{k,j} \int_{G_{j}^{k}} \left(Tf(x) \right)^{q} \omega(x) \, dx = (\mathbf{I}) + (\mathbf{II}) + (\mathbf{III}).$$

We first estimate the term (II). Using (3.5), the fact that the F_j^k are disjoint on k and j and remark (1), we have

(3.8) (II)
$$\leq \sum_{k,j} 2^{mq} \int_{F_j^k} 2^{kq} \omega(x) \, dx \leq C \sum_{k,j} \int_{F_j^k} (M_{K,d}^+ f(x))^q \omega(x) \, dx$$

 $\leq C \int_{\mathbb{R}} (M_{K,d}^+ f(x))^q \omega(x) \, dx \leq C \left(\int_{\mathbb{R}} f^p v \right)^{q/p}.$

To estimate the terms (I) and (III), we observe that (3.4) and (3.6) allow us to treat (I) and (III) jointly. If we denote J_j^k or L_j^k by I_j^k and D_j^k or G_j^k by E_j^k , the inequalities (3.4) and (3.6) can be unified as

$$1 \leq \frac{1}{2^k} T(f\chi_{(3I_j^k)})(x), \quad \text{for } x \in E_j^k.$$

Then

(3.9) (I) + (III)
$$\leq \sum_{k,j} \int_{E_j^k} \left(Tf(x) \right)^q \omega(x) \, dx \leq C \sum_{k,j} 2^{kq} \omega(E_j^k)$$

Now, using duality,

$$(3.10) \qquad \omega(E_{j}^{k}) \leq \frac{1}{2^{k}} \int_{E_{j}^{k}} T(f\chi_{(3I_{j}^{k})})(x)\omega(x) \, dx = \frac{1}{2^{k}} \int_{3I_{j}^{k}} f(x)T^{\star}(\chi_{E_{j}^{k}}\omega)(x) \, dx$$
$$= \frac{1}{2^{k}} \left(\int_{3I_{j}^{k}-\Omega_{k+m}} f(x)T^{\star}(\chi_{E_{j}^{k}}\omega)(x) \, dx + \int_{3I_{j}^{k}\cap\Omega_{k+m}} f(x)T^{\star}(\chi_{E_{j}^{k}}\omega)(x) \, dx \right)$$
$$= \frac{1}{2^{k}} (\sigma_{j}^{k} + \tau_{j}^{k}).$$

Define, as in [S2], the following sets:

$$E = \left\{ (k,j) : \omega(E_j^k) \le \beta \omega(I_j^k) \right\},$$

$$F = \left\{ (k,j) : \omega(E_j^k) > \beta \omega(I_j^k) \text{ and } \sigma_j^k > \tau_j^k \right\},$$

$$G = \left\{ (k,j) : \omega(E_j^k) > \beta \omega(I_j^k) \text{ and } \sigma_j^k \le \tau_j^k \right\},$$

where β satisfies $0 < \beta < 1$ and it will be chosen at the end of the proof. Then, taking into account (3.9) and (3.10) we can write

(3.11)
$$(\mathbf{I}) + (\mathbf{III}) \leq C \Big(\sum_{(k,j)\in E} + \sum_{(k,j)\in F} + \sum_{(k,j)\in G} \Big) 2^{kq} \omega(E_j^k)$$
$$= (\mathbf{IV}) + (\mathbf{V}) + (\mathbf{VI}).$$

Observe that we only have to consider those (k, j) for which $\omega(E_j^k) \neq 0$. If there exist (k, j) and (k + m, i) such that $I_j^k = I_i^{k+m}$, then $\omega(E_j^k) = 0$ because $E_j^k \subset I_j^k \cap (\Omega_{k+m-1} - \Omega_{k+m})$, thus we do not consider this (k, j). Therefore, fixed two intervals I_j^k and I_i^{k+m} , or they are disjoint or $I_i^{k+m} \subset I_j^k$.

To estimate the sum over the set *E*, we use the fact that the I_j^k are disjoint in *j* and Fubini's theorem. Then

$$(3.12) (IV) \leq C\beta \sum_{(k,j)\in E} 2^{kq} \omega(I_j^k) \\ \leq C\beta \sum_k 2^{kq} \omega(\{x : Tf(x) > 2^k\}) \\ = C\beta \sum_k \sum_{i=k}^{\infty} 2^{kq} \omega(\{x : 2^i < Tf(x) \leq 2^{i+1}\}) \\ \leq C\beta \sum_k \sum_{i=k}^{\infty} 2^{kq} 2^{-iq} \int_{\{x:2^i < Tf(x) \leq 2^{i+1}\}} (Tf(x))^q \omega(x) dx \\ = C\beta \sum_i \sum_{k=-\infty}^i 2^{kq} 2^{-iq} \int_{\{x:2^i < Tf(x) \leq 2^{i+1}\}} (Tf(x))^q \omega(x) dx \\ = C\beta \sum_i \frac{2^q}{2^q - 1} \int_{\{x:2^i < Tf(x) \leq 2^{i+1}\}} (Tf(x))^q \omega(x) dx \\ = C\beta \int_{\mathbb{R}} (Tf(x))^q \omega(x) dx. \end{aligned}$$

We now estimate (V). Using inequality (3.10), the definition of F, Hölder's inequality and condition (2.3) we get

(3.13)

$$\begin{split} (\mathbf{V}) &= C \sum_{(k,j) \in F} 2^{kq} \omega(E_j^k) = C \sum_{(k,j) \in F} \omega(E_j^k) \left(\frac{\sigma_j^k + \tau_j^k}{\omega(E_j^k)}\right)^q \\ &\leq C \beta^{-q} \sum_{(k,j) \in F} \omega(E_j^k) \frac{(\sigma_j^k)^q}{\omega(I_j^k)^q} \\ &= C \beta^{-q} \sum_{(k,j) \in F} \frac{\omega(E_j^k)}{\omega(I_j^k)^q} \left(\int_{3I_j^k - \Omega_{k+m}} fT^\star(\chi_{E_j^k}\omega) \right)^q \\ &\leq C \beta^{-q} \sum_{(k,j) \in F} \frac{\omega(E_j^k)}{\omega(I_j^k)^q} \left(\int_{3I_j^k - \Omega_{k+m}} f^p v \right)^{q/p} \left(\int_{3I_j^k - \Omega_{k+m}} (T^\star(\chi_{I_j^k}\omega))^{p'} \sigma \right)^{q/p'} \\ &\leq C \beta^{-q} \sum_{(k,j)} \frac{\omega(E_j^k)}{\omega(I_j^k)} \left(\int_{3I_j^k - \Omega_{k+m}} f^p v \right)^{q/p} \leq C \beta^{-q} \left(\sum_{(k,j)} \int_{3I_j^k - \Omega_{k+m}} f^p v \right)^{q/p} \\ &\leq C \beta^{-q} \left(\sum_k \int_{\Omega_k - \Omega_{k+m}} f^p v \right)^{q/p} \leq C \beta^{-q} \left(\int_{\mathbb{R}} f^p v \right)^{q/p}, \end{split}$$

where we have also used that $E_j^k \subset I_j^k$, the facts that the intervals of the form $3I_j^k$ are "almost" disjoint (parts (iii) and (iv) of (3.2)), that they are all contained in Ω_k and that $1 \leq q/p$. Observe that we can use the condition (2.3) because if $I_j^k = [a_j^k, b_j^k)$, then $\int_{b_j^k}^{\infty} \sigma > 0$, otherwise sop $f \subset (-\infty, b_j^k]$ and taking $x \in 3I_j^k$, $x > b_j^k$ we have Tf(x) = 0 but $3I_j^k \subset \Omega_k$ ((3.2), (ii)) which is a contradiction.

We are going now to estimate the sum over the set G in (3.11). In order to do this we estimate

$$au_j^k = \int_{\Im I_j^k \cap \Omega_{k+m}} fT^\star(\chi_{E_j^k}\omega).$$

Let $H_j^k = \{i : I_i^{k+m} \cap 3I_j^k \neq \emptyset\}$. Then $3I_j^k \cap \Omega_{k+m} \subset \bigcup_{i \in H_j^k} I_i^{k+m}$. Fix I_i^{k+m} and let *a* be the left end-point of the interval $3I_i^{k+m}$. If $y \notin 3I_i^{k+m}$ and $y \leq a$, then

$$\sup_{x\in I_i^{k+m}}(x-y)\leq 2\inf_{x\in I_i^{k+m}}(x-y),$$

which implies, by the growth condition imposed on K and the fact that K is nonincreasing, that

$$\sup_{x \in I_i^{k+m}} K(x-y) = K\left(\inf_{x \in I_i^{k+m}} (x-y)\right) \le CK\left(2\inf_{x \in I_i^{k+m}} (x-y)\right)$$
$$\le CK\left(\sup_{x \in I_i^{k+m}} (x-y)\right) = C\inf_{x \in I_i^{k+m}} K(x-y).$$

Since $3I_i^{k+m} \subset \Omega_{k+m}$ and $E_j^k \cap \Omega_{k+m} = \emptyset$, we have that $3I_i^{k+m} \cap E_j^k = \emptyset$. It follows that for all $x \in I_i^{k+m}$

$$T^{\star}(\chi_{E_j^k}\omega)(x) = \int_{-\infty}^a K(x-y)\chi_{E_j^k}(y)\omega(y)\,dy,$$

and thus

(3.14)
$$\sup_{x \in I_i^{k+m}} T^*(\chi_{E_j^k}\omega)(x) \le C \inf_{x \in I_i^{k+m}} T^*(\chi_{E_j^k}\omega)(x).$$

Using this we can write the following:

Observe that if $\sigma(I_i^{k+m}) = 0$ then $\int_{I_i^{k+m}} f(x) dx = 0$ since $f \in L^p(v)$ and therefore, from now on, in the last term we are summing over those *i*'s such that $\sigma(I_i^{k+m}) > 0$.

Let $C_j^k = (\sigma(I_j^k))^{-1} \int_{I_j^k} f(x) dx$ where the quotient is understood to be zero if $\sigma(I_j^k) = 0$. Then, for all $x \in I_j^k$ we have

$$C_j^k = \left(\sigma(I_j^k)\right)^{-1} \int_{I_j^k} f \sigma^{-1} \sigma \leq M_\sigma(f \sigma^{-1})(x),$$

where, if μ is a positive Borel measure, $M_{\mu}f(x) = \sup_{x \in I} (\mu(I))^{-1} \int_{I} |f| d\mu$ (and the quotient is understood to be zero if $\mu(I) = 0$). Let $N_{j}^{k} = \{s : I_{s}^{k} \cap 3I_{j}^{k} \neq \emptyset\}$. Notice that the cardinality of N_{j}^{k} is at most *C* by (3.2), (iv).

In the inequality (3.15) it appears the integral over I_i^{k+m} , with $i \in H_j^k$. Let $s \in N_j^k$. Then I_s^k and I_i^{k+m} are disjoint or $I_i^{k+m} \subset I_s^k$ by (3.2), (v) and the comment after (3.11). Then

(3.16)
$$\tau_j^k \leq C \sum_{i \in H_j^k} C_i^{k+m} \int_{I_i^{k+m}} T^*(\chi_{E_j^k}\omega)(x)\sigma(x) \, dx$$
$$\leq C \sum_{s \in N_j^k} \left[\sum_{i \in H_j^k: I_i^{k+m} \subset I_s^k} C_i^{k+m} \int_{I_i^{k+m}} T^*(\chi_{E_j^k}\omega)(x)\sigma(x) \, dx \right]$$

We remind that we are estimating

$$(\mathrm{VI}) = C \sum_{(k,j) \in G} 2^{kq} \omega(E_j^k).$$

Let *N* and *M* be integers such that $0 \le M < m$. Define

$$G_{N,M} = \left\{ (k,j) \in G : \omega(E_j^k) \neq 0, k \ge N \text{ and } k \equiv M \pmod{m} \right\}$$

We now claim that

(3.17)
$$\sum_{\{(k,j)\in G_{N,M}\}} 2^{kq} \omega(E_j^k) \le C \left(\int f^p v\right)^{q/p},$$

with constant C that not depends on N and M.

Fix *N* and *M* and consider the "principal" intervals as in [MW] defined as follows: $\Gamma_0 = \{(k,j) \in G_{N,M} : I_j^k \text{ is maximal}\}$. If Γ_n , has been defined, let Γ_{n+1} consist of those $(k,j) \in G_{N,M}$ for which there is $(t,u) \in \Gamma_n$ with $I_j^k \subset I_u^t$, $C_j^k > 2C_u^t$ and $C_i^l \leq 2C_u^t$ for those I_i^l such that $I_j^k \subset I_i^l \subset I_u^t$. Let $\Gamma = \bigcup_{n=0}^{\infty} \Gamma_n$. For each $(k,j) \in G_{N,M}$ let $P(I_j^k)$ be the smallest interval I_u^t containing I_j^k and such that $(t,u) \in \Gamma$. Observe that the map *P* is well defined because no interval I_j^k may occur as one of the I_i^{k+m} (since $\omega(E_j^k) \neq 0$). Observe that $P(I_j^k) = I_u^t$ implies $C_j^k \leq 2C_u^t$.

Using inequality (3.16) we estimate the first term of (3.17) as follows:

(3.18)

$$\begin{split} \sum_{(k,j)\in G_{N,M}} & 2^{kq}\omega(E_j^k) \\ & \leq \sum_{(k,j)\in G_{N,M}} \omega(E_j^k) \frac{(2\tau_j^k)^q}{\left(\omega(E_j^k)\right)^q} \\ & \leq C\beta^{-q} \sum_{(k,j)\in G_{N,M}} \frac{\omega(E_j^k)}{\left(\omega(I_j^k)\right)^q} (\tau_j^k)^q \end{split}$$

$$\leq C\beta^{-q} \sum_{(k,j)\in G_{N,M}} \sum_{s\in N_j^k} \frac{\omega(E_j^k)}{\left(\omega(I_j^k)\right)^q} \bigg[\sum_{\{i:I_i^{k+m}\subset I_s^k \text{ and } (k+m,i)\notin\Gamma\}} \bigg(\int_{I_i^{k+m}} T^\star(\chi_{E_j^k}\omega)\sigma \bigg) C_i^{k+m} \bigg]^q$$

$$+ C\beta^{-q} \sum_{(k,j)\in G_{N,M}} \sum_{s\in N_j^k} \frac{\omega(E_j^k)}{\left(\omega(I_j^k)\right)^q} \bigg[\sum_{\{i\in H_j^k: (k+m,i)\in\Gamma\}} \bigg(\int_{I_i^{k+m}} T^\star(\chi_{E_j^k}\omega)\sigma \bigg) C_i^{k+m} \bigg]^q$$

$$= (\text{VII}) + (\text{VIII}).$$

It appears on (VII) the sum over the set $\{i : I_i^{k+m} \subset I_s^k \text{ and } (k+m,i) \notin \Gamma\}$; notice that if $I_i^{k+m} \subset I_s^k$ and $(k+m,i) \notin \Gamma$ then $P(I_i^{k+m}) = P(I_s^k)$. To estimate (VII) we first observe that for a fixed $(t, u) \in \Gamma$ we have

(3.19)

$$\begin{split} \sum_{(k,j)\in G_{N,M}} & \sum_{\{s\in N_j^k: P(I_s^k)=I_u^r\}} \frac{\omega(E_j^k)}{\left(\omega(I_j^k)\right)^q} \bigg[\sum_{\{i:I_i^{k+m}\subset I_s^k \text{ and } (k+m,i)\notin\Gamma\}} C_i^{k+m} \int_{I_i^{k+m}} T^\star(\chi_{E_j^k}\omega)\sigma \bigg]^q \\ & \leq C \sum_{(k,j)\in G_{N,M}} \sum_{\{s\in N_j^k: P(I_s^k)=I_u^r\}} \omega(E_j^k) \bigg[\frac{1}{\omega(I_j^k)} \int_{I_s^k} T^\star(\chi_{I_j^k}\omega)\sigma \bigg]^q (C_u^l)^q. \end{split}$$

In the last inequality we have used the following: the I_i^{k+m} are disjoint on *i* and they are all contained in I_s^k ; $P(I_i^{k+m}) = P(I_s^k) = I_u^t$, thus $C_i^{k+m} \leq 2C_u^t$ and $E_j^k \subset I_j^k$. Let use now that $I_s^k \subset I_u^t$, duality, the fact that the cardinality of N_j^k is at most *C*, the fact that the E_j^k are disjoint on *k* and *j* and that for all $x \in E_j^k \subset I_j^k$ we have that $(\omega(I_j^k))^{-1} \int_{I_j^k} T(\chi_{I_u}\sigma)\omega \leq M_\omega(T(\chi_{I_u}\sigma))(x)$, to estimate right-hand side of (3.19) with the following:

q

$$(3.20) C(C_{u}^{t})^{q} \sum_{(k,j)\in G_{N,M}} \sum_{\{s\in N_{j}^{k}: P(I_{s}^{k})=I_{u}^{t}\}} \omega(E_{j}^{k}) \left[\frac{1}{\omega(I_{j}^{k})} \int_{I_{j}^{k}} T(\chi_{I_{u}^{t}}\sigma)\omega\right]$$

$$\leq C(C_{u}^{t})^{q} \sum_{(k,j)\in G_{N,M}} \int_{E_{j}^{k}} \left(M_{\omega}\left(T(\chi_{I_{u}^{t}}\sigma)\right)\right)^{q} \omega$$

$$\leq C(C_{u}^{t})^{q} \int_{\mathbb{R}} \left(M_{\omega}\left(T(\chi_{I_{u}^{t}}\sigma)\right)\right)^{q} \omega.$$

Finally, we use the fact that M_{ω} is bounded from $L^{q}(\omega)$ into $L^{q}(\omega)$ for all q > 1 and we apply condition (2.2) to get that the last term of (3.20) is bounded by

$$C(C_u^t)^q \int_{\mathbb{R}} \left(T(\chi_{I'_u} \sigma) \right)^q \omega \leq C(C_u^t)^q \left(\int_{I'_u} \sigma \right)^{q/p}.$$

Combining this with (3.19) and (3.20) and summing over $(t, u) \in \Gamma$ we obtain

(3.21)
$$(\text{VII}) \leq C\beta^{-q} \sum_{(t,u)\in\Gamma} \left(\int_{I_u^r} \sigma \right)^{q/p} (C_u^t)^q$$
$$\leq C\beta^{-q} \left(\sum_{(t,u)\in\Gamma} (C_u^t)^p \int_{I_u^r} \sigma \right)^{q/p}.$$

We now consider (VIII). Let us fix $(k, j) \in G_{N,M}$. It follows from Hölder's inequality, Jensen's inequality and condition (2.3) that

$$(3.22) \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg[\sum_{\{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})^{-1/p} \sigma(I_{i}^{k+m})^{1/p} \bigg(\int_{I_{i}^{k+m}} T^{*}(\chi_{E_{j}^{k}}\omega)\sigma \bigg) C_{i}^{k+m} \bigg]^{q} \\ \leq \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg[\sum_{i \in H_{j}^{k}} \sigma(I_{i}^{k+m})^{-p'/p} \bigg(\int_{I_{i}^{k+m}} T^{*}(\chi_{E_{j}^{k}}\omega)\sigma \bigg)^{p'} \bigg]^{q/p'} \\ \times \bigg[\sum_{\{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p} \\ = \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg[\sum_{i \in H_{j}^{k}} \sigma(I_{i}^{k+m})^{-p'+p'} \bigg(\sigma(I_{i}^{k+m})^{-1} \int_{I_{i}^{k+m}} T^{*}(\chi_{E_{j}^{k}}\omega)\sigma \bigg)^{p'} \bigg]^{q/p'} \\ \times \bigg[\sum_{\{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p} \\ \leq \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg(\sum_{i \in H_{j}^{k}} \int_{I_{i}^{k+m}} (T^{*}(\chi_{E_{j}^{k}}\omega))^{p'} \sigma \bigg)^{q/p'} \\ \times \bigg[\sum_{\{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p} \\ \leq \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg(\int_{\mathbb{R}} \bigg(T^{*}(\chi_{I_{j}^{k}}\omega) \bigg)^{p'} \sigma \bigg)^{q/p'} \bigg[\sum_{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p} \\ \leq C \frac{\omega(E_{j}^{k})}{\omega(I_{j}^{k})^{q}} \bigg(\int_{\mathbb{R}} (T^{*}(\chi_{I_{j}^{k}}\omega))^{p'} \sigma \bigg)^{q/p'} \bigg[\sum_{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p} \\ \leq C \bigg[\sum_{\{i \in H_{j}^{k}:(k+m,i) \in \Gamma\}} \sigma(I_{i}^{k+m})(C_{i}^{k+m})^{p} \bigg]^{q/p}.$$

Taking into account that $p \leq q$ we obtain

$$(\text{VIII}) \leq C\beta^{-q} \Big[\sum_{\{(k,j)\in G_{N,M}, i\in H_i^k: (k+m,i)\in \Gamma\}} \sigma(I_i^{k+m}) (C_i^{k+m})^p \Big]^{q/p}.$$

We claim now that the last sum can be changed by a sum over $(t, u) \in \Gamma$. In fact, for fixed (k + m, i), the number of index *j* such that $I_i^{k+m} \cap 3I_j^k \neq \emptyset$ is at most *C* (by (3.2), (iii) and (iv)). In fact, since $I_i^{k+m} \subset \Omega_{k+m} \subset \Omega_k$, there exists *s* such that $I_i^{k+m} \subset I_s^k$ and the number of index *j* such that $3I_j^k \cap I_s^k \neq \emptyset$ is at most *C*. Therefore

Combining (3.21) and (3.23) we get

(3.24) (VII) + (VIII)
$$\leq C\beta^{-q} \Big(\sum_{(t,u)\in\Gamma} \sigma(I_u^t)(C_u^t)^p\Big)^{q/p}$$

 $\leq C\beta^{-q} \Big(\int_{\mathbb{R}} \Big(\sum_{(t,u)\in\Gamma} (C_u^t)^p \chi_{I_u^t}(x)\Big) \sigma(x) \, dx\Big)^{q/p}.$

Observe that for fixed *x*

х

$$\sum_{(t,u)\in\Gamma} (C_u^t)^p \chi_{I_u^t}(x) = (C_{u_0}^{t_0})^p + (C_{u_1}^{t_1})^p + \cdots,$$

where

$$\in \cdots I_{u_2}^{t_2} \subset I_{u_1}^{t_1} \subset I_{u_0}^{t_0}$$
, with $(t_0, u_0), (t_1, u_1), (t_2, u_2), \ldots \in \Gamma$

and

$$C_{u_1}^{t_1} > 2C_{u_0}^{t_0}, \quad C_{u_2}^{t_2} > 2C_{u_1}^{t_1} > 2^2 C_{u_0}^{t_0}, \quad \dots$$

Each partial sum can be bounded as follows:

(3.25)

$$(C_{u_0}^{t_0})^p + (C_{u_1}^{t_1})^p + \dots + (C_{u_s}^{t_s})^p \leq (C_{u_s}^{t_s})^p \frac{2^p}{2^p - 1} \leq \frac{2^p}{2^p - 1} \sup_{\{I_u^t x \in I_u^t, (t, u) \in \Gamma\}} (C_u^t)^p \leq C (M_\sigma(f\sigma))^p (x).$$

Therefore, using that M_{σ} is of strong type (p, p) respect to the measure $\sigma(x) dx$, we have

(3.26) (VII) + (VIII)
$$\leq C\beta^{-q} \left(\int_{\mathbb{R}} (M_{\sigma}(f\sigma))^{p} \sigma \right)^{q/p}$$

 $\leq C\beta^{-q} \left(\int_{\mathbb{R}} f^{p} \sigma^{p} \sigma \right)^{q/p} = C\beta^{-q} \left(\int_{\mathbb{R}} f^{p} v \right)^{q/p}.$

Combining now inequalities (3.18) and (3.26) we get inequality (3.17) with a constant *C* independent of *N* and *M*. Then, from (3.7), (3.8), (3.11), (3.12), (3.13), (3.18) and (3.26) we get

(3.27)
$$\int_{\mathbb{R}} (Tf)^{q} \omega \leq C\beta \int_{\mathbb{R}} (Tf)^{q} \omega + C\beta^{-q} \left(\int_{\mathbb{R}} f^{p} v \right)^{q/p}.$$

Choose β small enough to have $C\beta < 1/2$. Observe that the conditions imposed on f implies that

$$\int_{\mathbb{R}} (Tf)^q \, \omega < \infty.$$

Then, we can substract $C\beta \int_{\mathbb{R}} (Tf)^q \omega$ in both members of inequality (3.27) to get

$$\int_{\mathbb{R}} (Tf)^q \omega \leq C \left(\int_{\mathbb{R}} f^p v \right)^{q/p},$$

for all $f \ge 0$, bounded, with compact support and such that $f\sigma^{-1}$ is bounded. This finishes the proof of Theorem 1.

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

4. Proofs of Theorem 3 and Theorem 4.

PROOF OF THEOREM 3. First suppose that there exists ω not identically zero such that (2.6) holds. Then there is an interval $I_0 = [a_0, b_0)$ such that $\omega(I_0) > 0$. If we denote by *A* the set $\{x > b_0 : v(x) < \infty\}$, then |A| > 0, since *v* is not identically infinity a.e. in (b_0, ∞) .

For fixed $N \in \mathbb{N}$ we consider $\sigma_N(x) = \min\{\sigma(x), N\}$. Then $\sigma_N \in L^1_{loc}(b_0, \infty)$, thus, Lebesgue differentiation theorem gives that

$$\sigma_N(x) = \lim_{h \to 0^+} \frac{1}{h} \int_x^{x+h} \sigma_N \quad \text{a.e. } x \in (b_0, \infty).$$

Since |A| > 0, there exists $a \in A$ such that

$$\sigma_N(a) = \lim_{h \to 0^+} \frac{1}{h} \int_a^{a+h} \sigma_N.$$

Taking into account that $\sigma_N(a) > 0$ we have that $\lim_{h\to 0^+} \frac{1}{h} \int_a^{a+h} \sigma_N > 0$. This implies that $\int_a^{a+h} \sigma_N > 0$ for all h > 0 and therefore $\int_a^b \sigma > 0$ for all b > a.

We are going to prove now that

$$\int_{b}^{\infty} K(y-a)^{p'} \sigma(y) \, dy < \infty, \quad \text{for all } b > a.$$

Suppose that $\int_b^{\infty} K(y-a)^{p'} \sigma(y) dy = \infty$. Then $v^{-1}(y)K(y-a)\chi_{(b,\infty)}(y) \notin L^{p'}(v)$ and therefore there is $g \ge 0$, $g \in L^p(v)$, such that $\int_b^{\infty} g(y)K(y-a) dy = \infty$. For each $x \in I_0$ we have

$$Tg(x) = \int_x^\infty K(y-x)g(y)\,dy \ge \int_b^\infty g(y)K(y-a)\frac{K(y-x)}{K(y-a)}\,dy$$

Let us dominate $\frac{K(y-x)}{K(y-a)}$ from below for $y \in (b, \infty)$. Let $c = a + (a - a_0)$. If $y \in (c, \infty)$, then $y - x \le 2(y - a)$ and thus $K(y - a) \le CK(2(y - a)) \le CK(y - x)$. This implies that

$$\frac{1}{C} \le \frac{K(y-x)}{K(y-a)}$$

for $y \in (c, \infty)$. If $c \le b$ this inequality holds for all y > b and in this case we would have obtained the estimation that we need. However if c > b we still have to dominate $\frac{K(y-x)}{K(y-a)}$ from below for the numbers $y \in (b, c)$. In this case, *i.e.*, c > b and $y \in (b, c)$, we have $y - x \le c - a_0$ and $y - a \ge b - a$, thus

$$\frac{K(c-a_0)}{K(b-a)} \le \frac{K(y-x)}{K(y-a)}$$

Therefore, in both cases, we have obtained that there exists a positive constant C such that

$$C \le \frac{K(y-x)}{K(y-a)}$$
, for all $y > b$.

As a consequence we obtain

$$Tg(x) \ge C \int_b^\infty g(y)K(y-a)\,dy = \infty$$

for all $x \in I_0$. By (2.6) and the fact that $\omega(I_0) > 0$ this inequality implies that

$$\infty = \int_{I_0} |Tg(x)|^q \omega(x) \, dx \le C \left(\int g^p(x) v(x) \, dx \right)^{q/p}$$

which is a contradiction since $g \in L^p(v)$.

Conversely, suppose that there exists $a \in \mathbb{R}$ such that (2.7) holds for all b > a. Then we can find an interval $I_0 = [a, b)$ such that $\sigma(I_0) > 0$ and $\sigma(I_0^*) > 0$. Fix I_0 and set $\omega = \chi_{I_0} (T(\sigma \chi_{I_0 \cup I_0^*}))^{-q/p'}$. Observe that $T(\sigma \chi_{I_0 \cup I_0^*})(x)$ is strictly positive in I_0 since $\sigma(I_0^*) > 0$. To see that ω is nontrivial we are going to prove that $T(\sigma \chi_{I_0 \cup I_0^*})(x) < \infty$ a.e. $x \in I_0$.

Let *m* be such that a < m < b and let *c* be the right endpoint of I_0^* . Then if $x \in [m, b)$

$$T(\sigma\chi_{I_0\cup I_0^{\star}})(x) = T(\sigma\chi_{[m,c)})(x)$$

The assumption on K, $K(x) \leq Cx^{-1/q_0}$, gives that T is dominated by the Weyl fractional integral W_{α} with $\alpha = 1 - q_0^{-1}$. Therefore T is of weak type $(1, q_0)$. This and condition (2.7) gives, for all $\lambda > 0$, the following:

$$\begin{split} \left| \left\{ x \in [m,b) : T(\sigma \chi_{I_0 \cup I_0^*})(x) > \lambda \right\} \right| \\ &= \left| \left\{ x \in [m,b) : T(\sigma \chi_{[m,c)})(x) > \lambda \right\} \right| \\ &\leq C \lambda^{-q_0} \left(\int_m^c \sigma(y) K(y-a)^{p'} K(y-a)^{-p'} dy \right)^{q_0} \\ &\leq C \lambda^{-q_0} K(c-a)^{-p'q_0} \left(\int_m^\infty \sigma(y) K(y-a)^{p'} dy \right)^{q_0} \leq C(m) \lambda^{-q_0}, \end{split}$$

where C(m) is a constant that depends on *m*. Letting λ go to infinity we have that

$$\left|\left\{x \in [m,b) : T(\sigma \chi_{I_0 \cup I_0^*})(x) = \infty\right\}\right| = 0$$

This argument is valid for all $m \in (a, b)$, therefore $T(\sigma \chi_{I_0 \cup I_0^*})(x) < \infty$ a.e. $x \in I_0$.

In order to prove (2.6) for the weight ω , it suffices by Theorem 1 to establish that (2.2) and (2.3) hold.

We first prove (2.2). Let I = [d, e) be such that $\int_{(-\infty,d)} \omega > 0$. Then d > a since the support of ω is I_0 . We begin by proving that $\sigma(I) < \infty$. This follows from (2.7) and the following inequality:

$$\sigma(I) = \int_{d}^{e} \sigma(y) K(y-a)^{p'} K(y-a)^{-p'} dy \le K(e-a)^{-p'} \int_{d}^{e} \sigma(y) K(y-a)^{p'} dy$$

Let $f_1 = \sigma \chi_{I \cap (I_0 \cup I_0^{\star})}$ and $f_2 = \sigma \chi_{I - (I_0 \cup I_0^{\star})}$. Then $\sigma \chi_I = f_1 + f_2$ and

(4.1)
$$\left(\int_{\mathbb{R}} (T(\sigma\chi_I))^q \omega\right)^{1/q} \le \left(\int_{\mathbb{R}} (Tf_1)^q \omega\right)^{1/q} + \left(\int_{\mathbb{R}} (Tf_2)^q \omega\right)^{1/q}$$

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

Since *T* is of weak type $(1, q_0)$ we obtain

(4.2)
$$\int_{\mathbb{R}} (Tf_1)^q \omega = \int_{I_0} \left(T(\sigma \chi_{I \cap (I_0 \cup I_0^*)}) \right)^q \left(T(\sigma \chi_{I_0 \cup I_0^*}) \right)^{-q/p'} \\ \leq \int_{I_0} \left(T(\sigma \chi_{I \cap (I_0 \cup I_0^*)}) \right)^{q/p} \\ \leq \int_0^\infty \frac{q}{p} \lambda^{\frac{q}{p}-1} \min\left\{ |I_0|, C\left(\frac{\sigma(I)}{\lambda}\right)^{q_0} \right\} d\lambda.$$

Now we write the integral over $(0, \infty)$ as the sum of the integral over $(0, C|I_0|^{-1/q_0}\sigma(I))$ and the integral over $[C|I_0|^{-1/q_0}\sigma(I), \infty)$, where *C* is the constant appearing in (4.2). In the first integral the minimum is $|I_0|$, while in the second integral the minimum is $C(\sigma(I))^{q_0}\lambda^{-q_0}$. Then using that $\frac{q}{p} - q_0 < 0$, we obtain that

(4.3)
$$\int_{\mathbb{R}} (Tf_1)^q \omega \le C \big(\sigma(I) \big)^{q/p},$$

where C depends only on p, q, q_0 , I_0 .

To handle Tf_2 , we observe that it suffices to consider only the intervals I = [d, e) such that e > c where $I_0^* = [b, c)$. Let y > c. Then for all $x \in I_0$ we have that $\frac{1}{2}(y - a) \le y - x \le y - a$. Using Hölder's inequality with the measure σ we obtain for all $x \in I_0$

$$Tf_2(x) \leq \int_c^\infty \sigma(y)\chi_I(y)K(y-x)\,dy \leq C \int_c^\infty \sigma(y)\chi_I(y)K(y-a)\,dy$$
$$\leq C \left(\int_c^\infty K(y-a)^{p'}\sigma(y)\,dy\right)^{1/p'} \left(\sigma(I)\right)^{1/p} \leq C \left(\sigma(I)\right)^{1/p} < \infty,$$

where we have used that $\int_{c}^{\infty} K(y-a)^{p'} \sigma(y) dy$ is a finite constant by (2.5). Consequently

(4.4)
$$\int_{\mathbb{R}} (Tf_2)^q \omega \leq C \omega(I_0) (\sigma(I))^{q/p} = C (\sigma(I))^{q/p}$$

since $\omega(I_0) < \infty$ (observe that ω is bounded with compact support, in fact $\omega(x) \leq (K(2|I_0|)\sigma(I_0^{\star}))^{-q/p'}$). This finishes the proof of (2.2).

Now, we are going to prove (2.3). Let I = [d, e) be such that $\int_{[e,\infty)} \sigma > 0$. Then $(\omega(I))^{1/q'} < \infty$ since ω is bounded with compact support. Let $\sigma = f_1 + f_2$ where $f_1 = \sigma \chi_{I_0 \cup I_0^*}$ and $f_2 = \sigma \chi_{\mathbb{R} - (I_0 \cup I_0^*)}$. By duality we have

$$(4.5) \qquad \left(\int_{\mathbb{R}} \left(T^{\star}(\omega\chi_{I})\right)^{p'} \sigma\right)^{1/p'} = \|T^{\star}(\omega\chi_{I})\|_{L^{p'}(\sigma)}$$
$$= \sup_{\{g \ge 0: \|g\|_{L^{p}(\sigma)}=1\}} \int_{\mathbb{R}} T^{\star}(\omega\chi_{I})g\sigma$$
$$= \sup_{\{g \ge 0: \|g\|_{L^{p}(\sigma)}=1\}} \int_{\mathbb{R}} \omega\chi_{I}T(g\sigma)$$
$$\leq \sup_{\{g \ge 0: \|g\|_{L^{p}(\sigma)}=1\}} \int_{I \cap I_{0}} \omega T(gf_{1})$$
$$+ \sup_{\{g \ge 0: \|g\|_{L^{p}(\sigma)}=1\}} \int_{I \cap I_{0}} \omega T(gf_{2}) = (I) + (II).$$

Let us estimate (I). If $x \in I \cap I_0$, Hölder's inequality gives that

(4.6)

$$T(gf_{1})(x) = \int_{(x,\infty)\cap (I_{0}\cup I_{0}^{*})} \sigma(y)g(y)K(y-x) dy$$

$$\leq \left(\int_{(x,\infty)\cap (I_{0}\cup I_{0}^{*})} \sigma(y)K(y-x) dy\right)^{1/p'} \left(\int_{(x,\infty)\cap (I_{0}\cup I_{0}^{*})} g^{p}(y)\sigma(y)K(y-x) dy\right)^{1/p}$$

$$= \left(T(\sigma\chi_{(I_{0}\cup I_{0}^{*})})(x)\right)^{1/p'} \left(T(g^{p}\sigma\chi_{(I_{0}\cup I_{0}^{*})})(x)\right)^{1/p}.$$

Now, we use Hölder's inequality to obtain

$$(4.7) \int_{I \cap I_{0}} \omega T(gf_{1}) \leq \left(\int_{I \cap I_{0}} \omega \right)^{1/q'} \left(\int_{I \cap I_{0}} \left(T(gf_{1}) \right)^{q} \omega \right)^{1/q} \leq \left(\omega(I) \right)^{1/q'} \left[\int_{I \cap I_{0}} \left(T(\sigma \chi_{(I_{0} \cup I_{0}^{\star})}) \right)^{q/p'} \left(T(\sigma \chi_{I_{0} \cup I_{0}^{\star}}) \right)^{-q/p'} \left(T(g^{p} \sigma \chi_{(I_{0} \cup I_{0}^{\star})}) \right)^{q/p} \right]^{1/q} = \left(\omega(I) \right)^{1/q'} \left(\int_{I \cap I_{0}} \left(T(g^{p} \sigma \chi_{(I_{0} \cup I_{0}^{\star})}) \right)^{q/p} \right)^{1/q}.$$

The weak type $(1, q_0)$ of T and the same argument as in the proof of (4.3) give that

(4.8)
$$\left(\int_{I\cap I_0} \left(T(g^p \sigma \chi_{(I_0\cup I_0^*)})\right)^{q/p}\right)^{1/q} \le C\left(\int_{(I_0\cup I_0^*)} g^p \sigma\right)^{1/p} \le C.$$

Putting together the inequalities (4.6), (4.7) and (4.8) we obtain (I) $\leq C(\omega(I))^{1/q'}$. We now estimate (II). Let $x \in I \cap I_0$, then the growth condition imposed on *K* gives that

(4.9)
$$T(gf_2)(x) = \int_{(x,\infty)\cap \left(\mathbb{R} - (I_0 \cup I_0^{\star})\right)} \sigma(y)g(y)K(y-x) dy$$
$$\leq \left(\int_{(x,\infty)\cap \left(\mathbb{R} - (I_0 \cup I_0^{\star})\right)} \sigma(y)K(y-x)^{p'} dy\right)^{1/p'} \left(\int g^p \sigma\right)^{1/p}$$
$$\leq C \left(\int_c^\infty \sigma(y)K(y-a)^{p'} dy\right)^{1/p'} = C.$$

As a consequence

(4.10)
$$\int_{I \cap I_0} \omega T(gf_2) \leq \left(\int_{I \cap I_0} \omega\right)^{1/q'} \left(\int_{I \cap I_0} C^q \omega\right)^{1/q} \leq C(\omega(I))^{1/q'} \omega(I_0)^{1/q} \leq C(\omega(I))^{1/q'}.$$

Then (II) $\leq C(\omega(I))^{1/q'}$ and so (2.3) holds.

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

PROOF OF THEOREM 4. We first assume that there exists ω not identically zero such that (2.8) holds. Let $I_1 = [a_1, b_1)$ be a dyadic interval such that $\omega(I_1) > 0$. As in the case of *T*, the fact that *v* is not identically infinity in (b_1, ∞) yields that there is $a > b_1$ such that $\int_a^b \sigma > 0$ for all b > a.

Let I_0 be dyadic with $I_1 \subset I_0$ and $a \in I_0^*$. This dyadic interval satisfies that $\omega(I_0) > 0$ and $\sigma(I_0^*) > 0$. We claim that if I is a dyadic interval with $I_0 \subset I$ then $\sigma(I^*) < \infty$. We are going to prove this by contradiction.

Suppose that $\sigma(I^*) = \infty$. Then $v^{-1}\chi_{I^*} \notin L^{p'}(v)$ and thus there is $g \ge 0, g \in L^p(v)$, such that $\int gv^{-1}\chi_{I^*}v = \int_{I^*} g = \infty$. Let $x \in I$, then $I^* \in A_x$ and

$$M_{K,d}^+g(x) \ge K(|I|) \int_{I^*} |g(t)| dt = \infty.$$

But, since $I_1 \subset I$, this implies that

$$\infty = \left(\int_{I} (M_{K,d}^{+}g)^{q}\omega\right)^{1/q} \leq \left(\int_{\mathbb{R}} (M_{K,d}^{+}g)^{q}\omega\right)^{1/q} \leq C \left(\int_{\mathbb{R}} |g|^{p}v\right)^{1/p} < \infty.$$

This is a contradiction. Therefore $\sigma(I^*) < \infty$.

On the other hand, if $\sigma(I^*) > 0$, we have

$$K(|I|)\sigma(I^{\star})(\omega(I))^{1/q} \leq \left(\int_{I} (M_{K,d}^{+}(\sigma\chi_{I^{\star}}))^{q}\omega\right)^{1/q} \leq C(\sigma(I^{\star}))^{1/p} < \infty,$$

which implies that $\omega(I) < \infty$. Since $\omega(I_0) \le \omega(I)$, we obtain

$$K(|I|)\sigma(I^{\star})(\omega(I_0))^{1/q} \leq C(\sigma(I^{\star}))^{1/q}$$

and then, taking into account that $0 < \sigma(I^*) < \infty$ and $0 < \omega(I_0) < \infty$, this inequality yields that

$$K(|I|) \Big(\int_{I^{\star}} \sigma\Big)^{1/p'} \leq C \Big(\omega(I_0)\Big)^{-1/q} = C.$$

Consequently

$$\sup_{\{I \text{ dyadic, } I \supset I_0\}} K(|I|) \left(\int_{I^\star} \sigma \right)^{1/p'}$$
$$= \sup_{\{I \text{ dyadic, } I \supset I_0 \text{ and } \sigma(I^\star) > 0\}} K(|I|) \left(\int_{I^\star} \sigma \right)^{1/p'} < \infty$$

Conversely, assume that (2.9) holds. Let J_1 be the left half part of I_0^{\star} . If $x \in J_1$ then

$$M_{K,d}^+(\sigma\chi_{I_0^*})(x) \geq K(|J_1|) \int_{J_1^*} \sigma.$$

If $\int_{J_1^*} \sigma > 0$, we take $\omega = \chi_{J_1} (M_{K,d}^+(\sigma\chi_{I_0^*}))^{-q/p'}$. If $\int_{J_1^*} \sigma = 0$, we consider the left half part of J_1 and call it J_2 . Then, for $x \in J_2$, we have

$$M_{K,d}^+(\sigma\chi_{I_0^*})(x) \geq K(|J_2|) \int_{J_2^*} \sigma.$$

If $\int_{J_2^*} \sigma > 0$, we take $\omega = \chi_{J_2} \left(M_{K,d}^+(\sigma\chi_{I_0^*}) \right)^{-q/p'}$. If $\int_{J_2^*} \sigma = 0$, we consider J_3 , etc. This process can not continue indefinitely, because $\int_{I_0^*} \sigma > 0$ and $\bigcup_{i=1}^{\infty} J_i^* = I_0^*$. Then there is a dyadic interval J strictly contained in I_0^* , with the same left endpoint that I_0^* and such that $\int_{J^*} \sigma > 0$. Fix J and set $\omega = \chi_J \left(M_{K,d}^+(\sigma\chi_{I_0^*}) \right)^{-q/p'}$. Observe that for all $x \in J$, $M_{K,d}^+(\sigma\chi_{I_0^*})(x) > 0$. Furthermore, by (2.9), $\int_{I_0^*} \sigma < \infty$. This and the fact that $M_{K,d}^+$ is of weak type $(1, q_0)$ (because $M_{K,d}^+|f| \leq CT|f|$) give that $M_{K,d}^+(\sigma\chi_{I_0^*})(x) < \infty$ a.e. $x \in J$. Then ω is nontrivial and it is bounded with compact support.

To prove (2.8) we use Theorem 2. We are going to show that for every dyadic interval I = [a, b) with $\int_{(-\infty,b)} \omega > 0$, one has that

$$\int_{I^{\star}} \sigma < \infty \quad \text{and} \quad \left(\int_{I \cup I^{\star}} \left(M_{K,d}^{+}(\sigma \chi_{I^{\star}}) \right)^{q} \omega \right)^{1/q} \leq C \left(\int_{I^{\star}} \sigma \right)^{1/p}$$

Let I = [a, b) dyadic with $\int_{(-\infty, b)} \omega > 0$. To prove that $\int_{I^*} \sigma < \infty$ we are going to see that there exists a dyadic interval Q such that $I_0 \subset Q$ and $I^* \subset Q^*$. Once we have proved this, we have that $\int_{I^*} \sigma < \infty$ by (2.9). In order to prove the existence of Q, we observe that we have the following three cases: $I_0 \subset I$, $I \subset I_0$, and $I_0 \cap I = \emptyset$. In the first case we choose Q = I. The second case is impossible because $\int_{(-\infty,b)} \omega > 0$ and the support of ω is J. In the third case we have to work harder. First we observe that I is on the right of I_0 . If $I_0 \subset (-\infty, 0)$, and $I \subset [0, \infty)$, then it is obvious that there exists Q with the required property. If $I_0 \subset (-\infty, 0)$ and $I \subset (-\infty, 0)$ or $I_0 \subset [0, \infty)$ and $I \subset [0, \infty)$ then there is a dyadic interval H such that I_0 , $I \subset H$. Let H be the smallest one with this property and let $H_1, H_2 \subset H$ be the dyadic intervals with $|H_1| = \frac{1}{2}|H| = |H_2|$. Then necessarily $I_0 \subset H_1$ and $I \subset H_2$. Since $H_1^* = H_2$ we have that $I^* \subset H_1^*$ or $I^* \subset H^*$. If $I^* \subset H_1^*$, we choose $Q = H_1$ and if $I^* \subset H^*$, we choose Q = H.

In order to prove that

$$\left(\int_{I\cup I^{\star}} \left(M_{K,d}^{+}(\sigma\chi_{I^{\star}})\right)^{q} \omega\right)^{1/q} \leq C \left(\int_{I^{\star}} \sigma\right)^{1/p},$$

it is clear that we only have to consider I with $(I \cup I^*) \cap J \neq \emptyset$. Let $f_1 = \sigma \chi_{I^* \cap I_0^*}$ and $f_2 = \sigma \chi_{(I^* - I_0^*)}$. It suffices to prove the above inequality with $\sigma \chi_{I^*}$ replaced by f_1 and f_2 . Using that $M_{K,d}^+$ is of weak type $(1, q_0)$ and arguing as we did with T in the proof of Theorem 3, we obtain

(4.11)
$$\int_{I\cup I^*} (M^+_{K,d}f_1)^q \omega \leq \int_{(I\cup I^*)\cap I} \left(M^+_{K,d}(\sigma\chi_{I^*\cap I^*_0})\right)^{q/p} \leq C|J|^{1-\frac{q}{q_0p}} \left(\sigma(I^*)\right)^{q/p} = C\left(\sigma(I^*)\right)^{q/p},$$

where C depends only on p, q, q_0 and J.

Let us estimate now $\int_{I \cup I^*} (M_{K,d}^+ f_2)^q \omega$.

If $I^* \subset I_0^*$ then $f_2 = 0$ and there is nothing to prove. If $I^* \not\subseteq I_0^*$ then $I^* \cap (\mathbb{R} - I_0^*) \neq \emptyset$. Since we are considering that $(I \cup I^*) \cap J \neq \emptyset$, we have that $I \cap J \neq \emptyset$ or $I^* \cap J \neq \emptyset$. If $I^* \cap J \neq \emptyset$ then $I^* \cap I_0^* \neq \emptyset$, but this implies that $I_0^* \subset I^*$ which is a contradiction with the fact that $\int_{(-\infty,b)} \omega > 0$. Thus, necessarily $I^* \cap J = \emptyset$ and $I \cap J \neq \emptyset$. We have two possibilities, $I \subset J$ or $J \subset I$. Observe that $I \subset J$ leads to $I^* \subset I_0^*$ which is a contradiction. Then we have that $J \subset I$. If $I \not\supseteq I_0^*$ then $I^* \cap I_0^* \neq \emptyset$ and since $I^* \cap (\mathbb{R} - I_0^*) \neq \emptyset$ we obtain that $I_0^* \subset I^*$ which is again a contradiction. Therefore $J \subset I_0^* \subset I$.

Recall that we are estimating $\int_{I \cup I^*} (M^+_{K,d} f_2)^q \omega$. Let $x \in J$ and let \tilde{I} be such that $\tilde{I}^* \in A_x$ and $\tilde{I}^* \cap I^* \neq \emptyset$. Then we can find a dyadic interval H such that $I_0 \subset H, I^* \cap \tilde{I}^* \subset H^*$ and such that $|H| = |I^* \cap \tilde{I}^*|$ or $|H| = 2|I^* \cap \tilde{I}^*|$. Thus, by condition (2.7),

$$\begin{split} K(|\tilde{I}|) \int_{\tilde{I}^{\star}} \sigma \chi_{(I^{\star} - I_{0}^{\star})} &= K(|\tilde{I}|) \int_{\tilde{I}^{\star} \cap I^{\star}} \sigma \leq K(|\tilde{I}|) \left(\int_{\tilde{I}^{\star} \cap I^{\star}} \sigma \right)^{1/p'} \left(\int_{I^{\star}} \sigma \right)^{1/p} \\ &\leq CK(|H|) \left(\int_{H^{\star}} \sigma \right)^{1/p'} \left(\int_{I^{\star}} \sigma \right)^{1/p} \leq C \left(\int_{I^{\star}} \sigma \right)^{1/p}. \end{split}$$

It follows that

$$\left(\int_{I\cup I^{\star}} (M^+_{K,d}f_2)^q \omega\right)^{1/q} \leq C(\omega(J))^{1/q} (\sigma(I^{\star}))^{1/p} = C(\sigma(I^{\star}))^{1/p}.$$

This finishes the proof of Theorem 4.

FINAL REMARKS.

(1) It is possible to change the integrals over \mathbb{R} in conditions (2.2) and (2.3) of Theorem 1, by integrals over *I*. We can do it by the following result.

THEOREM 5. Let $1 or <math>p = 1 < q < \infty$. Let K, T and T^{*} be as in Theorem 1.

(1) If 1 the following conditions are equivalent

(a) There exists C such that for all $f \in L^p(v)$ and all $\lambda > 0$,

$$\omega(\left\{x: |Tf(x)| > \lambda\right\}) \le C\left(\frac{1}{\lambda^p} \int |f|^p v\right)^{q/p}$$

(b) There exists C such that for every interval I = [a, b) with $\int_{[b,\infty)} \sigma > 0$,

$$\left(\int_{\mathbb{R}} \left(T^{\star}(\chi_{I}\omega)\right)^{p'}\sigma\right)^{1/p'} \leq C\left(\omega(I)\right)^{1/q'} < \infty$$

(c) There exists C such that for every interval I = [a, b) with $\int_{[b,\infty)} \sigma > 0$,

$$\left(\int_{I} (T^{\star}(\chi_{I}\omega))^{p'}\sigma\right)^{1/p'} \leq C(\omega(I))^{1/q'} < \infty.$$

(2) If $p = 1 < q < \infty$ then (a) is equivalent to

(d) There exists C such that for every bounded interval I

$$\|T^{\star}(\chi_{I}\omega)\nu^{-1}\|_{L^{\infty}(\nu)} \leq C(\omega(I))^{1/q'} < \infty.$$

PROOF OF THEOREM 5. We first prove that $(a) \Rightarrow (b)$. Using duality and (a) we have

$$\begin{split} \left(\int_{\mathbb{R}} \left(T^{\star}(\chi_{I}\omega)\right)^{p'}\sigma\right)^{1/p'} &= \|T^{\star}(\chi_{I}\omega)v^{-1}\|_{L^{p'}(v)} \\ &= \sup_{\{g \ge 0: \|g\|_{L^{p}(v)}=1\}} \int_{\mathbb{R}} T^{\star}(\chi_{I}\omega)g \\ &= \sup_{\{g \ge 0: \|g\|_{L^{p}(v)}=1\}} \int_{I} Tg \ \omega \\ &= \sup_{\{g \ge 0: \|g\|_{L^{p}(v)}=1\}} \int_{0}^{\infty} \omega(\left\{x \in I: Tg(x) > \lambda\right\}) d\lambda \\ &\leq C \int_{0}^{\infty} \min(\omega(I), C\lambda^{-q}) d\lambda = C\omega(I)^{1/q'}. \end{split}$$

It is obvious that (b) \Rightarrow (c).

To prove that (c) \Rightarrow (a) observe that this is a generalization of Theorem 2 in [LT]. The proof follows the same pattern, changing the kernel $\frac{1}{x^{1-\alpha}}$ by K(x), the only exception being the point where we have to prove that $A_t = \sup_{0 < \lambda < t} \lambda^q \omega(\{x : Tf(x) > \lambda\})$ is finite. We are going to prove this.

As in [LT] it is enough to consider the case of small *t* and we may assume that *f* is nonnegative and bounded with compact support $[a, b] \subset (-\infty, \beta)$, where $\beta = \inf\{x : \int_{[x,\infty)} \sigma = 0\}$. Therefore, $\int_{[b,\infty)} \sigma > 0$ and $\omega(a, b) < \infty$ by condition (c). Then, as in [LT] we only have to prove that

$$\sup_{0<\lambda< t}\lambda^q \omega(\{x< a: Tf(x)>\lambda\})<\infty.$$

Observe that x < a and $Tf(x) > \lambda$ imply that $\lambda < K(a - x) \int_a^b f$. Let

$$B_{\lambda} = \left\{ y : K(y) > \frac{\lambda}{\int_a^b f} \right\}.$$

Since *K* is nonincreasing and lower semicontinuous, B_{λ} is an open interval, $B_{\lambda} = (0, s)$. Since $\lim_{x\to\infty} K(x) = 0$, *s* can not be infinity. On the other hand, $K(s) = \lambda (\int_a^b f)^{-1}$, since *K* is lower semicontinuous. Therefore, x < a and $Tf(x) > \lambda$ imply that $a - x \in B_{\lambda}$ and then $x \in (a - s, a)$.

Choose *t* small enough to have that if $\lambda < t$ then s > b - a. Then

$$\lambda^{q} \omega \left(\left\{ x < a : Tf(x) > \lambda \right\} \right) \le \lambda^{q} \int_{a-s}^{a} \omega = K(s)^{q} \left(\int_{a}^{b} f \right)^{q} \int_{a-s}^{a} \omega$$

If p > 1 we may use Hölder's inequality and get

$$\begin{split} \lambda^{q} \omega \Big(\Big\{ x < a : Tf(x) > \lambda \Big\} \Big) &\leq \Big(\int_{a}^{b} f^{p} v \Big)^{q/p} \Big(\int_{a}^{b} \sigma \Big)^{q/p'} K(s)^{q} \int_{a-s}^{a} \omega \\ &= \Big(\int_{a}^{b} f^{p} v \Big)^{q/p} \Big(\int_{a}^{b} \sigma(y) K(s)^{p'} dy \Big)^{q/p'} \int_{a-s}^{a} \omega \\ &\leq C \Big(\int_{a}^{b} f^{p} v \Big)^{q/p} \Big(\int_{a}^{b} \sigma(y) K(y-a+s)^{p'} dy \Big)^{q/p'} \int_{a-s}^{a} \omega \\ &\leq C \Big(\int_{a}^{b} f^{p} v \Big)^{q/p} < \infty. \end{split}$$

We have used that s > b - a implies y - a + s < 2s, the growth condition of *K* and the fact that (c) implies that there exists *C* such that

$$\left(\int_a^b \sigma(y)K(y-a+s)^{p'}dy\right)^{q/p'}\int_{a-s}^a \omega \leq C.$$

(Claim (1.3) \Rightarrow (2.1) in [LT]). If p = 1 we follow the same proof as in [LT].

(2) Changing the orientation of the real line we obtain the last theorem for T^{*}. Therefore, for 1 p</sup>(v) to L^q(ω), if, and only if, it is of weak type (p, q) with respect to the measures (v, ω) and T^{*} is of weak type (q', p') with respect to the measures (ω^{1-q'}, v^{1-p'}).

ACKNOWLEDGEMENT. We want to thank the referee for his helpful comments and indications on how to improve the paper.

REFERENCES

- [AS] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators. Trans. Amer. Math. Soc. (2) 308(1988), 547–558.
- [LT] M. Lorente and A. de la Torre, Weighted inequalities for some one-sided operators. Proc. Amer. Math. Soc. 124(1996), 839–848.
- [MT] F. J. Martín-Reyes and A. de la Torre, Two weight norm inequalities for fractional one-sided maximal operators. Proc. Amer. Math. Soc. 117(1993), 483–489.
- [M] B. Muckenhoupt, Weighted norm inequalities for classical operators. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, R.I., (1) 35(1979), 69–83.
- [MW] B. Muckenhoupt and R. L. Wheeden, Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Indiana Univ. Math. J. 26(1977), 801–816.
- [S1] E. T. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297(1986), 53–61.
- [S2] _____, A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Amer. Math. Soc. 308(1988), 533–545.
- [S3] _____, Two weight norm inequalities for certain maximal and integral operators. In: Harmonic Analysis. Lect. Notes in Math. 908 (Eds. F. Ricci and G. Weiss), Springer-Verlag, 1982, 102–127.

[SW] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneus spaces. Amer. J. Math. 114(1992), 813–874.

[SWZ] E. T. Sawyer, R. L. Wheeden and S. Zhao, *Weighted norm inequalities for operators of potential type and fractional maximal functions*. Potential Anal. 5(1996), 523–580.

Análisis Matemático Facultad de Ciencias Universidad de Málaga 29071 Málaga Spain