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Abstract

Kernel regularized least squares (KRLS) is a popular method for flexibly estimating models that may
have complex relationships between variables. However, its usefulness to many researchers is limited
for two reasons. First, existing approaches are inflexible and do not allow KRLS to be combined with
theoretically motivated extensions such as random effects, unregularized fixed effects, or non-Gaussian
outcomes. Second, estimation is extremely computationally intensive for evenmodestly sized datasets. Our
paper addresses both concerns by introducing generalized KRLS (gKRLS). We note that KRLS can be re-
formulated as a hierarchical model thereby allowing easy inference andmodularmodel construction where
KRLS can be used alongside random effects, splines, and unregularized fixed effects. Computationally, we
also implement random sketching to dramatically accelerate estimationwhile incurring a limited penalty in
estimation quality.Wedemonstrate thatgKRLS can be fit on datasets with tens of thousands of observations
in under 1 min. Further, state-of-the-art techniques that require fitting the model over a dozen times (e.g.,
meta-learners) can be estimated quickly.
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1. Introduction

Designing models that can correctly estimate complex interactions between covariates or nonlinear
effects of continuous predictors is an important but challenging problem.Thesemodels are increasingly
popular not only as a robustness test to check the impact of functional form assumptions, but also as
key constituent components to a variety of increasingly popular machine learning algorithms designed
to estimate causal effects.

One popular method in political science to estimate a highly flexible model while maintaining good
out-of-sample predictive performance is “kernel regularized least squares” (KRLS; Hainmueller and
Hazlett 2014), also known as “kernel ridge regression” (e.g., Yang, Pilanci, and Wainwright 2017). This
method provides a flexible approach to estimate a possibly complex underlying function and can easily
capture interactions between covariates or nonlinear effects of certain predictors. It is simple to use as it
only requires the researcher to provide a matrix of relevant predictors. Hainmueller and Hazlett (2014)
describe other attractive features. However, it has two noticeable drawbacks that have likely limited
its more widespread adoption. First, traditional approaches to estimating KRLS are rather inflexible as
they require that all variables are included in a single kernel and regularized.1 This prevents common
extensions such as (unregularized) fixed effects, random effects, or multiple kernels for different sets
of predictors from being included; further, it is challenging to estimate models with non-Gaussian

1KSPM (Schramm et al. 2020) is an exception, although it has some limitations discussed in Section E of the Supplementary
Material.
©The Author(s), 2023. Published by Cambridge University Press on behalf of the Society for Political Methodology.
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outcomes (e.g., binary, ordered, or categorical outcomes) and difficult to implement alternative standard
errors (e.g., cluster-robust standard errors). In many applied settings, researchers desire a “modular”
approach like that found when using hierarchical models where different variables can be included in
the model in different ways based on the researcher’s theoretical beliefs.

Second, and equally importantly, traditional versions of KRLS are highly computationally expensive
as the cost of estimation is dominated by the cube of the number of observations (Mohanty and Shaffer
2019; Yang et al. 2017).Without additional modification, it is difficult to fit thesemodels withmore than
10,000 observations—and even this may take many hours.

We introduce “generalized KRLS” (gKRLS) to tackle these issues. Our solution has two parts;
first, some existing literature shows that (regular) KRLS can be re-formulated as a carefully chosen
hierarchical model (e.g., Liu, Lin, and Ghosh 2007; Zhang, Dai, and Jordan 2011). Theoretically, this
reformulation facilitates amodularmodel building strategy that can containmultiple kernels in addition
to random effects, other smooth terms, and unpenalized fixed effects. However, using rich modular
models can considerably complicate estimation using existing approaches given the need to tune
multiple different regularization parameters. Fortunately, this hierarchical perspective also facilitates
estimation techniques for fast tuning of the regularization parameters without expensive grid searches
or cross-validation. These techniques also immediately extend to non-Gaussian outcomes and provide
well-calibrated standard errors on key quantities of interest (Wood 2017). This reformulation alone,
however, is insufficient tomake gKRLS practical on large datasets given the cubic cost noted previously.
We address this by using the popular “sub-sampling sketching” to reduce the cost of estimation by
building the kernel based on a random sample of the original dataset (Drineas and Mahoney 2005;
Yang et al. 2017).

Our paper proceeds as follows: Sections 2 and 3 describe gKRLS. Section 4 provides two simulations
to illustrate its advantages; first, we examine the scalability of gKRLS.2 While maintaining accurate
estimates,gKRLS takes around 6 s for a dataset with 10,000 observations and two covariates and around
2 min with 100,000 observations without any parallelization and only 8GB of RAM. This compares
with hours needed for existing approaches. Our second simulation shows the importance of having
a flexible modular approach. We consider a data generating process that includes fixed effects for a
groupmembership outside of the kernel. Traditional KRLS includes the fixed effects in the kernel which
assumes the effect of all covariates can vary by group. We find this model is too flexible for modestly
sized datasets and performance can be improved by including the fixed effects as unregularized terms
“outside” the kernel.

Finally, we conduct two empirical analyses. Section 5 reanalyzes Newman’s (2016) study of gender
and beliefs in meritocracy. Building on theory from the original paper, we use the modular nature
of gKRLS to estimate a logistic regression includes three hierarchical terms (random effects, splines,
and KRLS) as well as unpenalized covariates (fixed effects). Estimation takes around 10 min with 8GB
of RAM. Section 6 explores Gulzar, Haas, and Pasquale’s (2020) study of the implications of political
affirmative action for development in India. This is a larger dataset (around 30,000 observations), and
our preferredmodel includesmany unpenalized covariates and a single kernel. To address regularization
bias, we also use gKRLS in algorithms that require fitting gKRLS between 10 and 15 times (e.g.,
double/debiased machine learning (DML); Chernozhukov et al. 2018). Estimation takes a few minutes.

2. Generalizing KRLS

There are many different approaches to presenting KRLS (Hainmueller and Hazlett 2014). We focus on
the penalized regression presentation to build connections with hierarchical models. In this view, KRLS
creates covariates that measure the similarity of observations (e.g., the transformed distance between
covariate vectors) while penalizing the estimated coefficients to encourage estimation of conditional
expectation functions that are relatively smooth and penalize excessively “wiggly” functions where the

2Chang and Goplerud (2023) contains the code to replicate these analyses.
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outcomewould vary dramatically given small changes in the predictors (Hainmueller andHazlett 2014).
This is a common goal for smoothingmethods, and different underlyingmodels lead to different design
matrices and penalty terms (Wood 2017, Chapter 5). KRLS is especially useful when there are multiple
variables that could interact in complex and possibly nonlinear ways as it does not require the explicit
formulation of which interactions or non-linearities may be relevant. This differs from sparsity-based
frameworks such as the LASSO that require creating a set of possibly relevant interactions and bases
before deciding which ones are relevant.

Formally, assume the dataset has N observations with covariate vectors wi. We assume that {wi}Ni=1
has been standardized—as our software does automatically—to ensure different covariates are compara-
ble in scale.This prevents arbitrary changes (e.g., changing units frommeters to feet) from affecting the
analysis. Hainmueller and Hazlett (2014) center each covariate to have mean zero and variance one. We
use Mahalanobis distance to also address potentially correlated input covariates; we thus assume that a
mean-centering and whitening transformation has been applied to {wi}Ni=1 such that the covariance of
the stacked wi equals the identity matrix.

Given this standardized data, we create anN×N kernelmatrixK that contains the similarity between
two observations. We use the popular Gaussian kernel, but our method can be used with other kernels.
Equation (1) defines K that depends on a transformation of the squared Euclidean distance between
the observations scaled by the kernel bandwidth which we fix to P—the number of covariates in wi—
following Hainmueller and Hazlett (2014).3

K ij = exp(−∣∣wi−wj∣∣2
P

) . (1)

In traditional KRLS, K becomes the design matrix in a least-squares problem with parameters α
to predict the outcome yi with error variance σ2. To prevent overfitting, KRLS includes a term that
penalizes the wiggliness of the estimated function where a parameter λ determines the strength of the
penalty. As λ grows very large, all observations are predicted the same value (i.e., there is no effect of
any covariate on the outcome). As λ approaches zero, the function becomes increasingly wiggly, and
predicted values might change dramatically for small changes in the covariates.

Equation (2) presents the KRLS objective where ki denotes row i of kernel K . It is equivalent to
traditional KRLS as maximizing Equation (2), for a fixed λ, gives coefficient estimates α̂λ (denoting the
dependence on λ) that are identical to Hainmueller and Hazlett (2014).

α̂λ = argmax
α

{− 1
2σ2 [

N∑
i=1

(yi−kTi α)2+λαTKα]} ; α̂λ = (K +λI)−1 y. (2)

We start by viewing the problem from a more Bayesian perspective and choose a Gaussian prior
for α that implies a posterior mode on α, conditional on σ2 and λ, that is identical to the penalized
objective (see also Appendix 2 of Hainmueller and Hazlett 2014). This prior, sometimes known as the
“Silverman g-prior,” can also be derived from an independent and identically distributed Gaussian prior
on each of the coefficients from the underlying feature space associated with the kernel K (Zhang et al.
2011). Thus, KRLS can be viewed as a traditional random effects model (or ridge regression) on the
feature space associated with K . Equation (3) displays this generative view of KRLS where K− denotes
the pseudo-inverse of K in the case of a non-invertible kernel.

yi ∼N(kTi α,σ2); α ∼N(0, σ2

λ
K−) . (3)

A key advantage of this Bayesian view is that KRLS becomes simply a hierarchical model with
particular choice of design and prior. This leads to the idea of “modular” model construction where

3If the designmatrix of stackedwi is not full rank, we use its rank instead of P and use a generalized inverse in the whitening
transformation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

27
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.27


“PAN_Driver” — 2024/2/19 — 18:53 — page 160 — #4

160 Qing Chang and Max Goplerud

different priors are used for different components of the model. For example, it is common to have
unpenalized terms (e.g., “fixed effects”) alongside the regularized terms. Alternatively, theory may call
for the inclusion of more traditional random effects for a geographic unit such as county. We define
gKRLS, therefore, as a hierarchical model with at one least KRLS term on some covariates. Equation
(4) presents the general model. Fixed effects (β) have design (xi) for each observation xi. There are
J penalized terms, indexed by j ∈ {1, . . . ,J}, with parameters αj and designs zij. As is standard for
hierarchical models, eachαj has a multivariate normal prior with precision Sj. Each hierarchical term j
has its own parameter λj that governs the amount of regularization.

yi ∼N
⎛
⎝xTi β+ J∑

j=1
zTijαj, σ

2⎞⎠ ; αj ∼N(0, σ2

λj
S−j ) for j ∈ {1,⋯,J}, (4a)

lnp(β,{αj}Jj=1∣ {yi}Ni=1,σ2,{λj}Jj=1)∝ − 1
2σ2

⎡⎢⎢⎢⎢⎣
∑N

i=1 (yi−xTi β−∑J
j=1 z

T
ijαj)2+

∑J
j=1λjα

T
j Sjαj

⎤⎥⎥⎥⎥⎦
. (4b)

Specific choices of design and prior give well-known models. If zij is a vector of group membership
indicators and Sj is an identity matrix, this is a traditional random intercept. If zij = ki and Sj = K , we
recover KRLS from Equation (3).

If one fixes σ2 and {λj}Jj=1, point estimates can be obtained by maximizing the log-posterior
(Equation (4b)). Equation (5) shows the estimates, noting their dependence on the vector of smoothing
parameters denoted as λ = {λj}Jj=1. Despite our different presentation, this gives identical point
estimates to classical presentations of multilevel models (e.g., Hazlett and Wainstein 2022; see our
Section A.1 of the Supplementary Material). We use X for the design of the fixed effects; Z denotes
the matrix corresponding to all of the design matrices for the hierarchical effects stacked together and
α denotes the concatenated parameters {αj}Jj=1. Sλ represents the block-diagonal concatenation of each
penalty term λjSj.

[ β̂λ

α̂λ
] = [ XTX XTZ

ZTX ZTZ+Sλ
]−1 [ XT

ZT ]y. (5)

A key difficulty in using (generalized) KRLS is choosing the appropriate amount of regularization,
that is, calibrating {λ1,λ2, . . . ,λJ}. In the case of a single KRLS term (e.g., J = 1) and a Gaussian
likelihood, Hainmueller and Hazlett (2014) use an efficient method where the leave-one-out cross-
validated error can be computed as a function of λ and requires only a single decomposition of the
kernel K . One could employ K-fold cross-validation to tune λ if a non-Gaussian likelihood were used
(Sonnet and Hazlett 2018). However, existing strategies encounter considerable challenges when there
are multiple hierarchical terms (J > 1). Since Hainmueller and Hazlett’s (2014) method may not be
available, a popular alternative—grid searches across different possible values for each λj to minimize
some criterion (e.g., cross-validated error)—is very costly even for modest J.

Our hierarchical and Bayesian perspective provides a different strategy for tuningλ for any choice of
J: restricted maximum likelihood (REML).4 This approach observes that β has a flat (improper) prior
and considers the marginal likelihood after integrating out β and all αj. A REML strategy estimates λ
and σ2 by maximizing the log of this marginal likelihood; this is also referred to as an empirical Bayes
approach (Wood 2017, 263). Equation (6) shows this objective, noting that it is a function of λ and
σ2. �(β̂λ,α̂λ) denotes the log-likelihood (Equation 4b) evaluated at the penalized estimates given λ
(Equation 5). ∣S∣+ denotes the product of the nonzero eigenvalues of S;Mp is the dimension of the null

4Wood (2017) discusses other criterion, for example, generalized cross-validation, that could be employed.
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space of Sλ.

λ̂,σ̂2 = argmax
λ,σ2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�(β̂λ,α̂λ)− α̂T
λSλα̂λ

2σ2 + ln ∣Sλ/σ2∣+
2

+
− 1
2
ln ∣ 1

σ2 [ XTX XTZ
ZTX ZTZ+Sλ

]∣+ Mp

2
ln(2π)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (6)

After finding λ̂ and σ̂2, point estimates for β and α are obtained by plugging the estimated λ̂ into
Equation (5). Liu et al. (2007) use the REML approach for a single KRLS hierarchical term (e.g., J = 1),
and we push that intuition further by noting that that KRLS can be part of a general J approach to
hierarchical and generalized additive models.

In practical terms, Wood (2017) summarizes the extensive research into numerically stable and
efficient approaches to optimizingEquation (6) anddescribeswell-established andhigh-quality software
(mgcv in R). For very large problems (in terms of the number of observations or parameters), further
acceleration may be needed. Section A.2 of the Supplementary Material discusses a set of less stable but
faster estimation techniques implemented in the same software.

The final piece of inference is quantifying uncertainty. The Bayesian perspective on hierarchical
models suggests using the inverse of the Hessian of the log-posterior on {β,α} for the estimated
variance matrix (Wood 2017).5 In the linear case, this is the first term in Equation (5), scaled by σ̂2.
Section A.1 of the SupplementaryMaterial summarizes existing literature that suggests this should have
good frequentist coverage.

2.1. Extensions to Generalized KRLS
The above presentation focused on a Gaussian outcome with arbitrary J and homoskedastic errors.
We discuss four important extensions that our hierarchical perspective facilitates. First, the preceding
exposition is easily generalized to non-Gaussian likelihoods:One changes the likelihood inEquation (4),
for example, yi ∼ Poisson(exp(ψi)), where ψi = xTi β+∑J

j=1 z
T
ijαj, and adjusts the objective in Equation

(6). This is justified using a Laplace approximation for evaluating the integral of the log-posterior; β̂λ

and α̂λ are obtained using penalized iteratively re-weighted least squares (Wood 2017, Chapter 3).
Second, the hierarchical perspective also justifies robust and/or clustered standard errors. SectionA.1

of the Supplementary Material provides a detailed justification of the typical “sandwich” formula with
slight modifications. We also show existing standard errors for KRLS (Hainmueller and Hazlett 2014)
differ from those derived using the Bayesian perspective discussed above. A simple example suggests
that using the Bayesian perspective results in considerably better coverage.

Third, a key use for gKRLS is in machine learning techniques such as stacking or double/debiased
machine learning. We provide a software integration of gKRLS (and mgcv) into popular packages for
both methods. Section F of the Supplementary Material provides details.

Finally, we provide new software for easily calculating marginal effects and predicted outcomes for a
variety of likelihoods (e.g., Gaussian, binomial, multinomial, etc.). Among other quantities, this allows
users to calculate the “averagemarginal effect” (i.e., the partial derivative of the predictionwith respect to
a specific covariate averaged across all observations in the data; Hainmueller and Hazlett 2014). Section
A.3 of the Supplementary Material provides details. We are able to properly incorporate uncertainty for
both fixed and random effects for these quantities.

3. Improving Scalability of Generalized KRLS

The optimism of the above discussion, however, elides a critical limitation of gKRLS as currently
proposed. We focus on the traditional KRLS case (J = 1, no fixed effects) to illustrate the problem.

5Wood, Pya, and Säfken (2016) discuss how to incorporate uncertainty from estimating λ̂.
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Recall that the model has N observations but requires the estimation of N coefficients. Estimation is
extremely time- and memory-intensive as the computational cost is roughly cubic in the number of
observations and requires storing a possibly huge N ×N matrix (Hainmueller and Hazlett 2014; Yang
et al. 2017). While some work in political science has focused on reducing this cost, the fundamental
problem remains and, in practice, limits its applicability to around 10,000 observations with 8GB of
memory (Mohanty and Shaffer 2019) and possibly taking hours to estimate—as Section 4 shows. Thus,
usinggKRLSwithoutmodifications is simply impractical formost applied settings. Further, if one needs
to fit the model repeatedly (e.g., for cross-validation), it is prohibitively expensive.

Fortunately, there is a large literature on how to approximately estimate kernel methods on large
datasets. We employ “random sketching,” focusing on “sub-sampling sketching” or “uniform sampling”
(e.g., Drineas and Mahoney 2005; Lee and Ng 2020; Yang et al. 2017) to dramatically accelerate the
estimation; othermethods could be explored in future research (e.g., random features; Rahimi andRecht
2007).6 The sub-sampling sketching method takes a random sample ofM data points and uses them to
build the kernel, reducing the size of the design to N×M. IfM is much smaller than N, this can reduce
the cost of estimation considerably. Formally, define theM sampled observations asw∗m, m ∈ {1, . . . ,M}.
If k(wi,wm) is the function to evaluate the kernel (e.g., Equation 1), define the sketched kernel K∗ as an
N ×M matrix with the (i,m)th element as follows:

K∗im = k(wi,w∗m). (7)

Equivalently, one can defineK∗ bymultiplyingK by a sketchingmatrix Swith dimensionalityM×N,
that is, K∗ =KST . For sub-sampling sketching, S is proportional to a sparse matrix of zeros where each
rowm contains a “1” for the column index corresponding to the sampled observationm. Returning to
simplest version of KRLS (Equation 2), Equation (8) shows the sketched version. αS denotes a M× 1
vector of coefficients for the sketched kernel, where k∗i is the i-th row ofK∗.The analog formore complex
models is straightforward.

α̂S = argmax
αS

{− 1
2σ2 [

N∑
i=1

(yi−[k∗i ]TαS)2+λαT
S PαS]} ; P = SKST . (8)

3.1. Calibrating the Sketched Kernel
We note two key points to consider when using sub-sampling sketching. First, the sketching dimension
M clearly affects performance. As M increases, the model will likely perform better (see Section C.5
of the Supplementary Material). Inspired by some literature on the Laplace approximation for standard
hierarchical models (e.g., Shun andMcCullagh 1995), the default setting in our software setsM = δN1/3,
for example, growing at a rate of N1/3 times a (constant) sketching multiplier δ; this can be manually
increased by the researcher as appropriate.

We show that δ = 5 often provides good performance, but one could use a larger multiplier such
as δ = 15 if feasible. The sub-sampling sketching method can be used on very large datasets with this
slowly growingM; for example, ifN = 100,000, thenM = 232 with a multiplier of five andM = 696 with
a multiplier of fifteen. Section 4 shows both can be fit quite rapidly.

Even if M is relatively large, the sub-sampling sketching method may sometimes fail to provide a
good representation of the original data (Yang et al. 2017). We also find some evidence of this when
the kernel is complex (see Section C.5 of the Supplementary Material). Lee and Ng (2020) review the
literature on how to improve these methods; future research could explore these techniques.

Second, sub-sampling sketching will not generate identical estimates if the model is re-estimated
due to different sketching matrices. While this randomness is common to some statistical methods
(e.g., random forests), researchers should carefully examine the sensitivity of their results to the specific

6Section B.2 of the Supplementary Material discusses an alternative form of sketching (“Gaussian sketching”) and shows it
incurs a significantly higher computational cost at little systematic improvement in performance.
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sketching matrix chosen. Exactly characterizing the impact of this variability is outside of the scope
of this paper, although it may often be relatively small especially when δ = 15. Sections C.5 and E of
the Supplementary Material examine this for our simulations and applied examples. Corroborating
the above discussion about potential limitations of the sub-sampling sketching method, we find that
when the kernel is relatively simple, there is a high degree of stability. When the kernel is complex,
a larger multiplier may be needed to ensure stable estimates. Assuming it is computationally feasible,
a researcher might fit the model multiple times with different sketching matrices to show robustness.
If the quantity of interest seems to vary considerably, we suggest increasing the size of the sketching
dimension.

4. Evaluating the Performance of Generalized KRLS

We evaluate the scalability of gKRLS when performing the tasks used in standard applications:
estimating the model, calculating average marginal effects, and generating predictions on a new dataset
of the same size as the training data. We compare gKRLS against popular existing implementations:
KRLS (Hainmueller and Hazlett 2014) and bigKRLS (Mohanty and Shaffer 2019)—where we examine
truncating the eigenvalues to speed estimation (“bigKRLS (T)” using a truncation threshold of 0.001)
and not doing so (“bigKRLS (NT)”).7 Finally, to examine the role of the sketching multiplier, we fit
gKRLS with δ ∈ {5,15} [“gKRLS (5)” and “gKRLS (15),” respectively]. All numerical results in this
paper are run on a single core with 8GB of RAM. We explore a range of sample sizes spaced from 100
to 1,000,000—spaced evenly on the log-10 scale. For this initial examination, we rely on a generative
model from Hainmueller and Hazlett (2014) (“Three Hills, Three Valleys”) shown below:

yi ∼N(μi,0.25); μi = sin(xi,1) ⋅cos(xi,2). (9)

We generate 50 datasets and calculate the average estimation time and accuracy across the simu-
lations. We stop estimating methods once costs increase dramatically to limit computational burden.
Figure 1 reports the estimation time: KRLS and bigKRLS (with truncation) can be estimated quickly
when the number of observations is relatively small, but this increases rapidly as the sample size grows
(around the rate ofN3).When there aremore than 10,000 observations, even bigKRLSwould take hours
to estimate. By contrast, gKRLS is at least an order of magnitude faster.

Figure 1b illustrates this more starkly by reporting the logarithm of time on the vertical axis. Even
with the large multiplier (“gKRLS (15)”), gKRLS takes a few minutes for 100,000 observations. Section
B.2 of the Supplementary Material calculates an empirical estimate of the computational complexity of
gKRLS and shows it is substantially lower than traditional methods. Even with 1 million observations,
gKRLS (δ = 5) takes under 1 h. Section A.2 of the Supplementary Material discusses an alternative
estimation technique (bam) that decreases this time to around 3 min with no decline in performance.

Figure 2 demonstrates that sketching does not come at a material expense of performance in this
simple case. We assess the out-of-sample predictive accuracy by generating a test dataset of equivalent
size to the training data and report the root mean squared error (RMSE) of the predicted values. With
the exception of bigKRLS with truncation (“bigKRLS(T)”) that performs considerably worse, Figure 2
shows all that methods have similar performance. Section B.1 of the Supplementary Material examines
the error on estimating the average marginal effect; it shows similarly equivalent performance.

4.1. Kernels and Fixed Effects
Traditional KRLS usually requires that one include all covariates in a single kernel.This has the benefit of
allowing the marginal effect of each variable to depend on all others. However, this could be too flexible
and require enormous amounts of data to reliably learn the underlying relationship. This problem is
likely especially severe when considering fixed effects for group membership. Allowing all marginal

7KRLS also can truncate eigenvalues and returns nearly identical results to bigKRLS.
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Figure 1. Comparison of running time for different models. This figure shows the average computational time in minutes averaged

across simulations with 95% confidence intervals. Panel (a) presents average time in minutes. Panel (b) uses a logarithmic scale.

Figure 2. Performance on out of sample predictions. This figure shows the RMSE of predicting the outcome, averaged across 50

simulations. 95% confidence intervals using a percentile bootstrap (1,000 bootstrap samples) are shown.

effects to vary by group (e.g., a nonlinear analog to interacting group indicators with all covariates) is
often too flexible given the potentially limited data in each group.

However, if one has theoretical reason to believe parts of the underlying model are additive (e.g.,
including fixed effects to address [additive] unobserved confounding), then including indicators for
group outside the kernel (i.e., in β) will likely improve performance for modestly sized datasets. Since
the group indicators are unregularized, this ensures that the usual “within-group” and “de-meaning”
interpretation associated with fixed effects holds; this would not occur if they were included in the
kernel.

We use a simulation environment that mimics traditional explorations of fixed effects (e.g., Bell and
Jones 2015) but where the functional form of two continuous covariates is possibly nonlinear. One

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

27
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.27


“PAN_Driver” — 2024/2/19 — 18:53 — page 165 — #9

Political Analysis 165

of these covariates (xi,1) is correlated with the fixed effects; and thus, its estimation should be more
challenging as the correlation increases. The data generating process is shown below:

● Assume there are J groups with some number of observations T.● Define flinear(x1,x2) = 0.5x1 +0.2x2. Define fnonlinear(x1,x2) as follows, following Table 3 in
Hainmueller and Hazlett (2014):

fnonlinear(x1,x2) =exp(−(x1−0.15)2−(x2−0.15)2
4

)+
2.5 ⋅exp(−(x1−0.5)2−(x2−0.5)2

2.5
) .

● Assign each observation i to some group j at random.● Generate the covariates for each observation as follows: First, draw a fixed effect μj and a
group level mean x̄j for each group. ρ controls the amount of correlation. Larger ρ implies
“random effects” should perform less well.

[ μj

x̄j
] ∼N([ 0

0
], [ 3 ρ

ρ 0.3
]) ; xi,1 ∼N(x̄j[i],1); xi,2 ∼N(0,1)

● Generate the outcome as follows for eachm ∈ {linear,nonlinear}:
yi = fm(xi,1,xi,2)+μj[i]+εi; εi ∼N(0,1.25).

In our analysis, we set ρ ∈ {0,0.3,0.6,0.9} to vary the degree of correlation between xi,1 and μj.8 We
assume a reasonable number of groups (J = 50) and 10 observations per group (T = 10).We compare the
following models: (linear) OLS, fixed, and random effect models. We also examine two kernel methods:
bigKRLS (without truncation; with all variables in the kernel) and gKRLS (with a multiplier of five).
For gKRLS, we use a kernel on xi,1 and xi,2 and include indicators for group membership outside the
kernel as unregularized fixed effects (β). We run each simulation 1,000 times. We expect that all kernel
methods should incur some penalty versus linear fixed effects when the true data generating process is
linear. Figure 3 reports the RMSE of estimating the average marginal effect (following Hainmueller and
Hazlett 2014) on the correlated covariate xi,1.

First considering the linear data generating process (left panel), the traditional estimators (OLS,
random effects, and fixed effects) behave as expected: OLS and random effects perform increasingly
poorly as ρ increases. In the nonlinear data generating process, the same pattern holds although all
three linear models perform less well as they are not able to capture the true underlying non-linearity.

When we compare the kernel methods used in the linear data generating process, both perform
worse than fixed effects—that is, a correctly specified model—and neither method is affected much
by ρ. However, gKRLS consistently outperforms bigKRLS by a considerable margin. In the nonlinear
case, we see that both kernel methods perform well versus the linear alternatives, although gKRLS still
has a considerable and constant advantage over bigKRLS. Section C.4 of the Supplementary Material
shows that including the two covariates as fixed effects (β) in addition to their inclusion in the kernel
improves performance considerably on the linear data generating process but incurs some penalty for
the nonlinear case.

Section C of the Supplementary Material provides additional simulations. Section C.1 of the
Supplementary Material considers alternative metrics for assessing the performance of the methods,
for example, out of sample predictive accuracy. The results show a similar story: gKRLS is either

8The “true R2” (i.e., the R2 of a model that knew the true function) are similar to those in Hainmueller and Hazlett (2014),
on average falling between 0.35 and 0.50.
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Figure 3. Performance for average marginal effect. The figure reports the RMSE of the estimated average marginal effect on xi,1 as
ρ varies. Each panel shows a different data generating process (linear or nonlinear). 95% confidence intervals using a percentile

bootstrap (1,000 bootstrap samples) are shown.

close to bigKRLS or beats it by a considerable margin. Section C.2 of the Supplementary Material also
explores the performance on estimating the effect of the second covariate (xi,2): gKRLS outperforms
bigKRLS. Section C.3 of the Supplementary Material considers an increasing number of observations
per group (T). As T grows, both kernel methods improve—although gKRLS continues to perform
better even when T = 50. To better understand why gKRLS improves upon bigKRLS, Section C.4 of
the Supplementary Material shows that the improvement can be attributed solely to including the fixed
effects outside the kernel—not additional changes such as how the smoothing parameter is selected,
using Mahalanobis distance for creating the kernel, or sub-sampling sketching.

Finally, Section C.5 of the Supplementary Material explores the impact of sketching in this more
complex case. It estimates models with different sketching matrices for fixed multiplier δ to understand
the impact on the RMSE versus the unsketched estimates. It finds that sketching incurs some penalty on
the accuracy of the estimated average marginal effect, although this declines as the sketching multiplier
increases. When fixed effects are included in the kernel, this decline is considerably slower. When fixed
effects are not included in the kernel, virtually any sketching multiplier can recover nearly identically
accurate estimates to the corresponding unsketched procedure.

5. Generalized KRLS for Observational Data

Our first empirical application examines an observational study by Newman (2016). The paper focuses
on the contextual effects of gender-based earnings inequality for women’s belief in meritocracy.The key
theoretical discussion concerns how gender inequality in earnings in the local area where a woman lives
affects their rejection of a belief in meritocracy (e.g., “hard work and determination are no guarantee of
success for most people”). Newman (2016, 1009–1111) compares a number of theoretical perspectives:
Some (e.g., relative deprivation theory) suggest that women in areas with more economic inequality
between men and women should show more rejection of meritocracy. However, Newman’s (2016)
preferred theoretical expectation, drawing on literature on “glass ceilings” and rising expectations
theory, suggests a nonlinear effect: Rejection of meritocracy should be highest when women have come
close to—but not quite achieved—economic parity as they have experienced large gains but still have
failed to achieve equality. Once parity is achieved, the rejection of meritocracy should fall. Specifically,
Newman (2016, 1011) expects a “nonlinear, concave quadratic effect of local gender-based earnings
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Figure 4. Re-analysis of Newman (2016). The average predicted probability (a) and average marginal effect (b) with 95% confidence

intervals are shown.

inequality on women’s likelihood of rejecting meritocracy.” Newman (2016) tests this using hierarchical
logistic regressions where the key variable (earnings inequality, operationalized as the ratio of female
median income to male median income at the county of residence) is included quadratically.

gKRLS’s modularity allows us to more robustly test Newman’s (2016) argument. Our first hierarchi-
cal term is a kernel including all covariates to capture possible interactions or non-linearities omitted
by the original (additive) model and thereby improve the robustness of the reported results. We also
include a random intercept for county, following Newman (2016), to address the nested nature of the
data.

However, Section 4 illustrated that relying exclusively on gKRLS given limited data may be undesir-
able as it could be too flexible. An additional risk of relying exclusively on KRLS is that if the estimated
λ were very large, that would effectively exclude all covariates and mimic an intercept-only model. A
more modular approach uses a KRLS term to flexibly estimate interactions or nonlinear effects while
additionally including “primary” covariates of interest.

We include additional terms following Newman (2016). First, we include all controls in the fixed
effects (β). Second, we perform a more robust examination of the effect of earnings inequality. Rather
than assuming the relationship is quadratic, we additively include a thin plate regression spline (Wood
2017, 216) on earnings inequality. This does not impose a specific functional form and allows the data
to reveal whether the relationship is quadratic or has some other shape. This expanded model ensures
that we include a specification that is comparable to Newman (2016) while also allowing for extra
interactions using KRLS.

Overall, we estimate a logistic regressionwith four parts (J = 3): (i) a KRLS term including all controls
and earnings inequality, (ii) a random effect for county; (iii) a spline on earnings inequality; and (iv)
24 controls entered in linearly and unpenalized (in β). The three tuning parameters (separate λj for [i],
[ii], and [iii]) are estimated using REML.

Figure 4 shows (a) the average predicted probability of rejecting meritocracy and (b) the average
marginal effect across a grid of earning inequality values from the lowest to the highest value in
the data—following Newman (2016). Section D of the Supplementary Material provides the question
wording and definition of these quantities. Figure 4 reports the original specification in Newman (2016)
as well as gKRLS.
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The results partially support Newman (2016). The point estimates from gKRLS show a nonlinear
inverted “u-shaped” relationship that is similar to the original results (“Newman”), although the
curve is noticeably flatter for extreme values of earnings inequality. This occurs because gKRLS
estimates relatively constant average marginal effects at extreme values of earnings inequality versus
the mechanically increasing or decreasing values assumed by a quadratic specification.

When considering estimated uncertainty, however, we note that the 95% confidence intervals
for the marginal effect from gKRLS cross zero at all points—unlike the original model. Section D
of the Supplementary Material provides additional tests (e.g., average second derivative, difference in
the average marginal effects at the extreme values) that show the same result (confidence intervals
that contain zero for gKRLS). Thus, despite similar point estimates, relaxing the strong functional
form assumptions in Newman (2016) returns limited evidence for a statistically detectable nonlinear
relationship. Section D of the Supplementary Material corroborates this with other examples from the
original paper: Using five other questions (binary and ordered logistic regressions), gKRLS generally
finds an inverted “u-shaped” in the point estimates but little evidence of a statistically detectable
nonlinear relationship.

6. Generalized KRLS with Machine Learning

Our second empirical replication considers a geographic regression discontinuity analysis in Gulzar
et al. (2020). They focus on the effects of improving political representation using quotas on the
economic welfare of various groups in society. They examine how electoral quotas for members of
Scheduled Tribes affect the economic welfare of members of that group, members of a different
historically disadvantaged group not affected by the quota (members of Scheduled Castes), members
in neither group (“Non-Minorities”), as well as the total population.

We focus on their analysis of three economic outcome variables from theNational Rural Employment
Guarantee Scheme that offers 100 days of employment for rural households (Gulzar et al. 2020, 1231).
The outcomes we consider are “(log) jobcards” (the total number of documents issued to prospective
workers under the program), “(log) households” (the number of households who participated in the
program), and “(log) workdays” (the total number of days worked by individuals in the program). The
treatment is whether a village is part of a scheduled area that imposes an electoral quota. Across the three
outcomes, the key findings from Gulzar et al. (2020) are that (i) there is no effect on the total economic
welfare, (ii) the targeted minorities (Scheduled Tribes) see increases in economic welfare; (iii) the non-
targeted minority groups (Scheduled Castes) do not see any significant changes; and (iv) non-minority
groups see decreases in economic outcomes.

gKRLS can improve the original analysis in two ways. First, Gulzar et al. (2020) include the
interaction of fourth-order polynomials on latitude and longitude following previous work on geo-
graphic regression discontinuity designs (replicated as “GHP” in Figure 5). gKRLS enables a more
flexible solution, even on this larger dataset (32,461 observations), by using a kernel on the geographic
coordinates9 while including the treatment and other covariates linearly as unpenalized terms (β). We
denote this model as “gKRLS (Geog.).” Second, Gulzar et al. (2020, 1238) report some imbalance on
certain pre-treatment covariates; they include controls additively and linearly to improve the robustness
of their results. Including these variables (and treatment) in aKRLS termprovides additional robustness.
We use “gKRLS (All)” for this model that includes the KRLS term (J = 1) as well as all variables linearly
in the fixed effects (β) to ensure their inclusion. In both models, we use cluster-robust standard errors
following the original specification.

The use of penalized terms, however, raises a concern about regularization bias in the estimated
treatment effect; we address this using double/debiasedmachine learning (DML) that removes such bias
(Chernozhukov et al. 2018). We use the specification from “gKRLS (All)” (after removing the treatment

9In this specification only, we rely on raw Euclidean distance, without standardization, due to the direct meaning of
geographic distance.
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Figure 5. Effects of electoral quotas. This figure reports estimated treatment effects for all groups and outcomes. 95% confidence

intervals are shown.

indicator) for our machine learning model. Estimation with five folds requires fitting gKRLS 10 or
15 times depending on whether one uses the partially linear model (“DML-PLR”) or the dedicated
algorithm for estimating the ATE (“DML-ATE”), respectively.10 Both procedures estimate conditional
expectation functions with Gaussian outcomes, while the latter (DML-ATE) also estimates a propensity
score for being treated using a binomial outcome with a logistic link. Either procedure takes only a few
minutes to estimate. To address clustering within the data, we use stratified sampling to create the folds
for DML and produce the standard error on the treatment effect using an analog to the usual cluster-
robust estimator (Chiang et al. 2022).

Figure 5 presents the results. The results are generally robust regardless of the specification chosen.
The one exception is DML-ATE that has consistently larger standard errors (around 40% greater than
other specifications) and somewhat larger point estimates for effects on Scheduled Tribes across two
outcome variables.

Section E of the SupplementaryMaterial provides additional analyses. Section E.1 of the Supplemen-
tary Material repeats the analysis 50 times to examine variability across different sketching matrices. It
finds relatively low variability of the point estimates relative to the magnitude of the estimated standard
errors. Section E.2 of the Supplementary Material uses gKRLS with a machine learning algorithm to
estimate heterogeneous treatment effects (“R-learner”; Nie andWager 2021). Even though this method
requires fitting gKRLS over a dozen times (with both Gaussian and binomial outcomes), estimation
takes only a few minutes. We find that one state (Himachal Pradesh) has noticeably larger treatment
effects than other states.

7. Conclusion

Our paper generalized KRLS in two meaningful directions by drawing together different existing
literatures. First, we recast the original model into the modular framework of hierarchical and gener-
alized additive models where adding a kernel on some variables can be thought of as simply adding
one additional hierarchical term (i.e., increasing J by one). This allows researchers using gKRLS
to modularly build their model by including variables in different ways based on their substantive
knowledge. For models with multiple hierarchical terms and/or non-Gaussian outcomes, a hierarchical

10Following Chernozhukov et al. (2018), we trim the estimated propensity scores at 0.01 and 0.99.
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perspective on KRLS allows for easy tuning of the regularization parameters, efficient estimation, and
well-calibrated standard errors. Empirically, we show that in a stylized example with additive fixed
effects, thinking carefully about how to include different terms in the model (e.g., unregularized fixed
effects versus including them in the kernel) can be critically important to performance. The second
generalization employed sub-sampling sketching to allow gKRLS to be easily scalable to most datasets
encountered in social science. By breaking the requirement that the cost of the model depends on the
cube of the number of observations, sub-sampling sketching allows the model to be estimated very
quickly on tens or hundreds of thousands of observations. Even for methods that require repeated
estimation of gKRLS (e.g., DML), models can be estimated with limited computational cost. Our paper
and accompanying software, therefore, allows KRLS to become a more widely used part of the applied
researcher’s toolkit.
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