
ON CAYLEY'S PARAMETERIZATION 

M. H. PEARL 

1. I n t r o d u c t i o n . A matr ix P with elements from an arb i t ra ry field % is 
called a cogredient automorph (c.a.) of a symmetr ic matr ix A if P'AP = A, 
where P' is the transpose of P. A fundamental theorem concerning cogredient 
au tomorphs is: 

T H E O R E M (Cayley). If A is a non-singular symmetric matrix and if Q is a 
skew-symmetric matrix such that A + Q is non-singular, then 

(1) P = {A + Q)-1 (A - Q) 

is a c.a. of A and I + P is non-singular. 
Conversely, if P is a c.a. of A such that I + P is non-singular, then there 

exists a unique skew-symmetric matrix Q such that P can be expressed by means 
of equation (1). 

T h e main purpose of this paper is to demonst ra te the following generalization 
of Cayley's theorem as applied to the real field. (Henceforth all matrices are 
assumed to be real unless otherwise stated.) 

T H E O R E M 1. If A is a {not necessarily non-singular) symmetric matrix and if 
Q is a skew-symmetric matrix such that A + Q is non-singular, then equation 
(1) defines a c.a. P of A whose determinant is + 1 and having the property that 
A and I + P span the same row space. 

Conversely, if P is a c.a. of A whose determinant is + 1 and if P has the 
property that I + P and A span the same row space, then there exists a skew-
symmetric matrix Q such that P is given by equation (1). 

T h e matr ix Q is not unique. However, the size of the family of matrices Q 
which yield a part icular c.a. P of A will be found and a set of necessary and 
sufficient conditions for two skew-symmetric matrices to yield the same 
c.a. will be given. A simple example will be included to show t h a t Theorem 1 
is false over a field of characteristic two. 

2. Proof of t h e t h e o r e m . The first pa r t of the theorem is immediate. Let 
A + Q = U, A - Q = V. Then (see 2) A = ± ( [ / + V) and 

P'AP = | UV-1 (U + V)U-X V = A. 
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Furthermore \P\ = \(A + QT^KA - Q)\ = \(A + QT^^A + Q)'\ = + 1 
and I + P = (A + Q)~l (2A). Thus I + P and A span the same row spaces. 

Proof of the converse. In order to facilitate the construction of a skew-
symmetric matrix Q satisfying equation (1), we shall first simplify the forms 
of P and A. This can be done by repeated application of the following lemma. 

LEMMA 1. Let U be an orthogonal matrix. Then U'PU is a c.a. of UfA U if 
and only if P is a c.a. of A. Equation (1) holds if and only if 

(2) U'PU = (U'AU + U'QU)'1 (U'AU- U'QU). 

Moreover, \P\ = \ U'PU\ and I + P spans the same row space as A if and only 
if I + U'P U spans the same row space as U'A U. 

When it is convenient to do so, we shall specify U and replace P, A and Q 
by U'PU, U'A U and U'QU respectively. In an effort to keep the notation as 
simple as possible, we shall refer to U'PU, U'AU and U'QU simply as P, 
A and Q whenever it is clear from the context what these symbols mean. 

Let A be an arbitrary symmetric matrix of order n and rank r. Since there 
is an orthogonal matrix U such that 

Xi 
x2 

x , 
U'AU = 

0 

OJ 

(A* * 0), 

and all the remaining elements are 0, we shall apply Lemma 1 and assume that 
A is in this form. 

Equation (1) is equivalent to the two conditions 

(30 Q(I + P) =A(I-P) 
(3") \A + Q\* 0. 

Let P and A be partitioned as follows : 

\ B E~\ . \ d o l 
IC F J' L 0 0 J ' 

B E 
C F 

where B and d are of order r. Since I + P spans the same row space as A, 
we must have E = 0, F = —1\ (where I\ is the identity matrix of order n — r) 
and the rank of the n by r array consisting of the first r columns of I + P 
must be r. Furthermore, since P is a c.a. of A, B'dB = d; also \P\ = + 1 
implies that \B\ = \F\. Equation (3') has become 

r h + B 0 1 [" d(h -B) 0 1 
c oJ L o oJ ' (4) Q-

where I2 is the identity matrix of order r. 
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Let the rank of 72 + B be s. Since the rank of 7 + P is r, there is a re
arrangement of the rows of 72 + B and of C such that the matrix formed by 
the last 5 rows of 72 + B and the first r — s rows of C is non-singular. This 
rearrangement can be carried out using Lemma 1 without disturbing the form 
of A, as there are orthogonal matrices u and v of orders r and n — r respectively, 
whose rows are permutations of the rows of the identity matrices 72 and 7i 
and which effect the desired rearrangements when operating on 72 + B and C 
respectively on the left. Let U = u + v. After applying Lemma 1 once again, 
and denoting u'Bu by B, u'du by d and v'Cu by C, equations (3'), (3") and 
(4) remain unchanged. It is to be noted here for subsequent use that the set 
of principal submatrices of 72 + B is invariant under a similarity transforma
tion by u + v. 

Now partition I + P into 

h + B 
C ] • 

~ G o l 
H 0 i 

LGi 0 J 

where H is the non-singular matrix constructed above. 
By two transformations similar to those described by Lemma 1, G and Gi 

may be eliminated. It is possible to eliminate G\ without disturbing the right 
side of equation (3')) for there is a matrix 

V = h 
V1 ° 1 

/J ' where 73 and IA are identity matrices of orders 2r — s and n — 2r -\- s res
pectively, such that 

" G 0 
V(I + P) = H 

0 

Clearly, 2r — s > r and hence ( F ' ) - 1 A = A. Thus equation (3') becomes 

(V'^QV-i-VV + P) = (F')"1 A (I - P) = A(I-P). 

This process is repeated once again to eliminate G and, at the same time, 
to replace H by an 72 which is more conveniently positioned. Let 75 denote 
the identity matrix of order r — s and define 

0 H-1 0 1 
h -GH'1 

0 
0 0 hi 

M --

Then MV(I + P) = 72 + 0 and so we have 

(5) ((MV)T1 Q (MVy1. {MV){I + P) = <2i(72 + 0) = {M'y1 A {I - P) 

where Qi = {{MV)f)~l Q {MV)~l. A direct computation shows that 
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(h + B)'d{h 
K 

-B) 0 
0 

L o 0 
(MT'Ail -P) = 

where the r — s by r array K consists of the first r — s rows of d(I2 — B)~ 
Since B is a c.a. of d, (I2 + B)'d(I2 — B) is skew-symmetric. 

The problem has now been reduced to the construction of a skew-symmetric 
matrix Q which satisfies the conditions (3") and (5). Equation (5) uniquely 
defines the first r rows and the first r columns of Qi but places no further 
restrictions on it. Hence, if such a matrix Qi exists, it must be of the form 

( / , + B)'d(h • -B) -K' 0 
K X - Y' 
0 Y Z 

and it only remains to find matrices X, Y and Z satisfying the two conditions: 
(i) X and Z are skew-symmetric matrices of orders r — s and n — 2r + s 

respectively, 
(ii) \A1 + <2i| ^ 0, where Ax is defined to be ( ( I F ) ' ) " 1 A{MV)~\ By 

simplifying Ai~\-Qi, it will be shown that X and Y are completely arbitrary 
(except for the restriction that X is skew-symmetric) but that Z must also 
be non-singular. A computation shows that 

Ai + Qi 

where 5 is the uppermost principal submatrix of order r — s of d and [Ô 0] 
is the r — s by r array 

2( / 2 + B)'d * i ' 0 
2[S 0] Ô+X - Y' 

0 Y Z 

Xi 
0 

.0 

0 
x2 

0 

0 
0 

0 

0 
0 

oj 
and where K\ consists of the first r — s rows of 2dB, i.e., K\ consists of the 
first r — s columns of 2B'd. By using a series of elementary transformations, 
it can be shown that A i + Qi is equivalent to 

0 i i - 25 0 
0 u 0 0 
25 0 - Ô+X - Y' 
0 0 Y Z 

where L is the lower right-hand principal submatrix of 2d(/ 2 + B) of order 
s. It is not necessary to define L\ explicity. 

By the Laplace development of the determinant, we have \A\ + Çi| = 
± |2ô|2|Z/||Z|. It is clear that |2<5| ^ 0 and hence the proof of the theorem 
will be complete when it is shown that 
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(60 the order of Z is even, 

<6") \L\ * 0. 

Condition (60 follows directly from 

LEMMA 2. Let B be a c.a. of the non-singular matrix d and let the multiplicity 
x)f — 1 as a root of B be a. Then \B\ = (— l) a . 

Since B is a c.a. of d, B = d~l (B')~l d and xl - B = drl (xl - (B')-l)d, 
tha t is, B and {Bf)~l have the same characteristic equations and hence the 
same characteristic roots. Thus, the characteristic roots of B, other than 
+ 1 and — 1 occur in reciprocal pairs. Since \B\ is a product of these roots, 
the lemma follows. 

Let us return to condition (60. The order of F = — Ii is n — r and 
\F\ = (— l)w _ r . Furthermore, — 1 appears as a root of B with multiplicity 
r — 5 and hence, by Lemma 2, \B\ = (— l) r~ s . Moreover, it has been shown 
that \P\ = \F\-\B\ = + 1 and so 

(n — r) + (r — s) = n — s 

is even. The order of Z is 

n — 2r -\- s = n — s — 2(r — s) 

and thus is also even. We have shown that a non-singular skew-symmetric 
matrix Z always exists. 

It remains to show that condition (6") is always satisfied and this will 
constitute the second part of the proof. 

3. Pr and CPr matrices. It is now possible to prove a corollary to the 
first half of the proof of the converse of Theorem 1 which will be used as a 
lemma to the second half. 

The first application of Lemma 1 transformed A into d + 0. It is not 
necessary to determine what effect it had on B. However, the second applica
tion of Lemma 1, using U = u + v, has the property that it leaves the set 
of principal submatrices of I2 + B invariant. Thus, once A has been reduced 
to the form d + 0, the set of principal submatrices is fixed. We selected an 
arbitrary set of linearly independent rows of I2 + B and then showed that, 
for the given c.a. P of A, a skew-symmetric matrix Q satisfying conditions 
(30 and (3") can be found if and only if the principal submatrix of these 
rows, which has been denoted by L, is non-singular; that is, the non-singularity 
of L is independent of the particular set of rows of I2 + B selected. Further
more, if B is a c.a. of d, there is some n for which a c.a. P of A exists which 
satisfies the hypotheses of the theorem and which is in the form 

[? -il 
tha t is, this discussion pertains to all B. Thus, we have proved part (a) of the 
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COROLLARY, (a) Let B be a c.a. of a non-singular diagonal matrix d of order 
r. Let I2 + B have rank s and let Xi be a set of s linearly independent rows of 
I2 + B such that the principal submatrix of I2 + B determined by these rows is 
non-singular. If X2 is any set of s linearly independent rows of 12 + B, then the 
principal submatrix of 7 2 + B determined by these rows is non-singular. 

(b) Let b be a c.a. of d. If Y is a set of s linearly independent rows of b~l 

(12 + B)b, then the principal submatrix determined by these rows is non-singular. 

To prove part (b), we define B\ = b + I. The matrix P has a parameter
ization in the form of equation (1) if and only if Px = B\~l PB\ has such a 
parameterization, for Px = Br1 (A + Q)~l ( ^ / ) _ 1 (Si') {A - Q) Bl = (A 
+ <2i)-1 {A - Qi), where Qx = B^QBL Moreover, b-l{I2 + B)b = I2+b-1Bb 
in I -\- Pi corresponds to I2 + B in I + P and thus the principal submatrix 
of a set of 5 linearly independent rows is non-singular in one if and only if it is 
non-singular in the other. 

Schwerdtfeger (1) has called a matrix of rank r which has a principal non-
singular submatrix of order r a Pr matrix. We shall define a CPr matrix to 
be a matrix of rank r with the following property : whenever a set of s rows is 
linearly independent, then the set of the corresponding 5 columns is also 
linearly independent and conversely; that is, the same set of rows of the 
transpose of the matrix is linearly independent. Equivalently, a CPr matrix 
can be defined as a matrix of rank r such that the principal submatrix deter
mined by any set of r linearly independent rows is non-singular. Clearly, a 
CPr matrix is always a Pr matrix. The preceding corollary asserts that if 
B is a c.a. of a non-singular diagonal matrix d and if I2 + B is a Pr matrix, 
then I2 + B is a CPr matrix. Theorem 1 will follow when we have proved 

THEOREM 2. If B is a c.a. of a non-singular diagonal matrix d, then 12 + B 
is a Pr matrix. 

It is sufficient to prove this theorem for the case where the non-zero elements 
of d are each + 1 or — 1, since there is a non-singular diagonal ma t r ix / such 
that fdf is a diagonal matrix whose diagonal elements are each + 1 or — 1. 
T h e n / - 1 Bf is a c.a. of fdf and 12 + / _ 1 Bf is a Pr matrix if and only if 72 + B 
is. Hence, for the remainder of the proof we can assume that d is already in this 
form. 

Williamson (3) has called a c.a. of such a matrix d, a quasi-unitary matrix 
and he has given a comprehensive discussion of the problem of reducing a 
quasi-unitary matrix to a canonical form by a quasi-unitary similarity trans
formation. He has shown that, with at most an interchange of the rows and 
the corresponding columns, B can be made quasi-unitarily similar to a matrix 
of the form 

A0 + A1 + . . . + Ak + Ak+l + . . . + Ak+m} 

where no root of A 0 is — 1, where A\, . . . , Ak are each of odd order (say the 
order of Ah is 2ah + 1, h = 1, 2, . . . , k) and Ah ( ! < / & < & ) has 
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(X + l)2ah+1 

as its only elementary divisor, and where Ak+h . . . , Ak+m are each of order 
divisible by 4 (say the order of Ak+h is 4bk+h; h = 1,2, . . . , m) and Ak+h 

(1 < h < m) has 
(X + lfH+h 

as an elementary divisor of multiplicity two. By the above corollary, the 
property of being a Pr matrix is invariant under such a transformation. Let 
Ih be the identity matrix whose order is equal to that of Ah. This transforma
tion does not effect the identity matrix and since I2 + B is a Pr matrix if and 
only if Ih + Ah is a Pr matrix for each h, we may consider each Ih + Ah 

separately. 

Case I : Jo + A0. Since A0 does not have — 1 as a characteristic root, I0 + A0 

is non-singular and hence is a Pr matrix. 

Case I I : Ih + Ah, (1 < h < &). For convenience we shall drop the subscript 
h from / , A and a. Since 7 + 4̂ has nullity 1, we wish to show that I + A 
has a principal non-singular submatrix of order a — 1. Let WT be the matrix 
of the same order as A which has l 's just above the main diagonal and zeros 
elsewhere, that is, W = [ditj-i].2 Then the Jordan form for A is — / — W. In 
particular, Williamson has shown that there exist matrices D and T such that 

(7) TDT' 

1 
- 1 

( ~ l ) a 

S' 
\_ 1 

= eA (e = ± 1) 

and r _ 1 (— I — W)T = ^4, where D is a matrix having the same form as d 
(a diagonal matrix whose diagonal elements are each + 1 or — 1) and where 
S represents a triangular array of terms which need not be specified here since 
it is soon to be eliminated. Furthermore, Williamson has shown that if T 
is any matrix satisfying equation (7) and if a = T~l{— I — W)T, then a 
is quasi-unitarily similar to A. Clearly a can be considered here instead of A. 

Rewrite equation (7) as r~1(^A)(r /)~1 = D. We shall construct a matrix T 
satisfying this form of equation (7) and then show that the resulting a is a 
Pr matrix. First, define H to be the matrix which has + l's and — l's alter
nating along its skew-diagonal and zeros elsewhere, that is, 

H = [(— 1)Z 8i7 2o-<+2]. 
25 is the Kronecker delta. 
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Then the arrays S and S' may be eliminated as follows: there exists a matrix 
Ti = r + la, where r is a triangular matrix of order a + 1 which has l's 
on its main diagonal and zeros above it and where Ia is the identity matrix 
of order a, such that Tr1 (eA) (7Y)_ 1 = eH. Now, let E be the matrix of order 
a which has l 's on its skew diagonal and zeros elsewhere, that is, E = [ôi,a-i+i]. 
If we now define T2 to be 

\ V2 Ia 0 \ V 2 E " 
0 1 0 

_ 4 V2 -E 0 J V2 A -
and define T to be T1T2, then T~l (eA){T')~l is in the desired form 
eD. Furthermore, 

I + a = = i + r~x(- / - wor= - T _1WT. 

namely 

A computation will show that the first row of T is [J \ /2 0 . . . 0 — %y/2] 
and the last row is [\y/2 0 . . . 0 \\/2\. Hence, if the first row and the last 
column of T are removed, leaving the matrix t\ of order 2a, then t\ is non-
singular since \T\ = V2|^i| ^ 0. Similarly, if the last row and the last column 
of T~l are removed, leaving the matrix t2 of order 2a, then t2 is non-singular 
since | r _ 1 | = V2\t2\ 7*0. The principal submatrix of order 2a of I + a 
which is formed by removing the last row and the last column of I + a is 
— t2ti, which is non-singular. Thus, we have shown that I + a and hence 
I + A, are Pr matrices. 

Case I I I : I + Ak+n, (1 < h < m). As before, we shall drop the subscript 
k + h from / , A and b. Let Ib denote the identity matrix of order 2b. William
son has shown that in this case there exist matrices D and T such that 

(8) TDT' 0 J 
0 
h o 

and T-1 ( ( - Ib - W) + ( - h - W')-l)T = A, where D is of the same 
form as in Case II. Again, if T satisfies equation (8) and if 

a = T~\(- Ib ~ W) + ( - 7, 

then a is quasi-unitarily similar to A. Set V • 
easily seen that T may be taken as 

( - Ib - W')-1 + /». It is 

j_r j» j>i 
V2 L h - i J ' 

in which case 

I + a = [ W -

w + 
W+ V 
W- VA 

In order to show that I -\- a is a Pr matrix, consider the principal submatrix 
t formed by deleting the first and last rows and the first and last columns of 
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7 + a. Partition t as [tif\, i, j = 1, 2, where the tij are square matrices of 
order 26 — 1. A series of elementary transformations will show that t is 
non-singular. First, subtract the (i + l ) s t row of [t2i t22] from the ith row of 
[̂ 11 In] (i = 1,2, . . . , 2b — 2). The resulting tu is non-singular. Now, add the 

(i + l)8t column of | [12 to the tth column of M 1 1 (* = 1, 2, . . . , 26 - 2). 

The resulting /n is zero and the resulting /2i is a non-singular diagonal matrix. 
Hence, |/| 9e 0, that is, I + a and hence I + A, are Pr matrices, which 
completes the proofs of Theorems 1 and 2. 

COROLLARY. If B is a c.a. of a non-singular diagonal matrix d, then I + B 
is a CPr matrix. 

We have already shown that if B is a c.a. of a non-singular diagonal matrix 
d and if Xi is a set of linearly independent rows of I + B, then the set X1 

of the corresponding columns is also linearly independent. However, B' is a 
c.a. of d~l and so linear independence amongst a set of columns of / + B 
implies linear independence amongst the set of the corresponding rows. 

We wish to characterize all of the skew-symmetric matrices q which yield 
the same c.a. P as the skew-symmetric matrix Q which has just been con
structed. Certainly, necessary and sufficient conditions that q also yields P 
are 

(i) (q - Q) (I + P) = 0 

(ii) \A+q\* 0. 

Theorem 3 will provide a simpler set of conditions. 

THEOREM 3. Let P be a c.a. of A, having a parameterization as defined by 
equation (1). Then necessary and sufficient conditions that the skew-symmetric 
matrix q also yields P are 

(90 (i) (q -Q) (I + P) = 0, 
(9") (ii) Rank of q = Rank of Q (= Rank of I - P). 

Let P = (A + q) (A - q). Then 2q = (A + q) (I - P) proving (9"). 
Furthermore, equation (9') follows immediately from equation (3')-

Conversely, let q satisfy (90 and (9"). By (90, <Zi (the analogue of Qlt 

formed by applications of Lemma 1 and similar transformations on q) is 
given by (10) for some X, Y and Z. Let 76 denote the identity matrix of 
order s (s is the rank of I2 + B). Now, partition B as [£ î ; ] , (i, j = 1,2), 
such that .B22 is of order 5 and 76 + £22 is non-singular. Define R by B2\ 
= (h + B22)R. Then 

(72 + B) [h - R'Y = 0, (72 - B) [h - R']' = 2 [75 - R']'. 

Hence, if we set 
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then 

S = 

5^15' = 

h 0 0 
0 h 0 

_è F o ^ - i ? ' ] 0 h 

(h + B')d(I2 - B) -K' 
K X 
0 0 

0 
0 
Z 

which has rank equal to that of Qi if and only if \Z\ ^ 0. However, we have 
previously shown that \Z\ ^ 0 if and only if \A + q\ ^ 0. 

By considering matrices whose elements are taken from an arbitrary field 
of characteristic two, we can exhibit a counterexample to Theorem 1. It is 
easily seen that the matrix 

P = 
0 
1 

is a c.a. of the symmetric matrix 4̂ = 1 + 0 and that I -\- P spans the same 
row space as A. Furthermore, \P\ = + 1. However, for any skew-symmetric 
matrix Q, (A + Q)'1 (A - Q) = I. 

4. The complex case. Since the proof of the theorem, analogous to Theorem 
1, in which the underlying field is the complex field and in which transpose is 
replaced by conjugate transpose, is slightly simpler but extremely similar to 
the proof of Theorem 1, we shall only state the theorem and not repeat the 
proof. 

THEOREM 4. If A is a (not necessarily non-singular) Hermitian matrix and 
if Q is a skew-Hermitian matrix such that A + Q is non-singular, then equation 
(1) defines a c.a. P of A having the property that A and I -f- P span the same 
row space. 

Conversely, if P is a c.a. of A having the property that I + P and A span 
the same row space, then there is a skew-Hermitian matrix Q such that P is 
given by equation (1). 

REFERENCES 

1. H. Schwerdtfeger. Introduction to Linear Algebra and the Theory of Matrices (Groningen, 
1950). 

2. H. Taber. On the automorphic linear transformation of an alternate bilinear form. Math. Ann., 
46 (1895), 561-583. 

3. J. Williamson. On the normal forms of linear canonical transformations in dynamics. Amer. 
J. Math., 59 (1937), 599-617. 

4. . Quasi-unitary matrices, Duke Math. ]., 8 (1937), 715-725. 

The University of Wisconsin 
and 

The University of Rochester 

https://doi.org/10.4153/CJM-1957-063-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-063-9

