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Abstract. We revisit a phenomenological description of turbulent thermal convection along the
lines proposed originally by Gough (1965) in which eddies grow solely by extracting energy from
the unstably stratified mean state and are subsequently destroyed by internal shear instability.
This work is part of an ongoing investigation for finding a procedure to calculate the turbulent
fluxes of heat and momentum in the presence of a shearing background flow in stars.
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Introduction
Convection models based on the mixing-length approach still represent the main method

for computing the turbulent fluxes in stars with convectively unstable regions. In such
regions the pulsational stability of the star is affected not only by the radiative heat
flux but also by the modulation of the convective heat flux and by direct mechanical
coupling of the pulsation with the convective motion via the Reynolds stresses. Time-
dependent formulations of the mixing-length approach for radial pulsation have been
proposed by, for example, Gough (1965, 1977a) and Unno (1967). In a first step towards
a generalization to nonradially pulsating stars, Gough & Houdek (2001) adopted Gough’s
formulation, incorporating into it a treatment of the influence of a shearing background
flow. In this generalized framework of the mixing-length formalism, in which turbulent
convective eddies grow according to linearized theory and are subsequently broken up by
internal shear instability, there is a consequent reduction in the mean amplitude of the
eddy motion, and a corresponding reduction in the heat flux.

In order to test and calibrate the formalism, it is preferable first to compare its predic-
tions with existing results of hopefully more reliable investigations, such as experiments or
numerical simulations. Here we extend our earlier work (Gough & Houdek 2001), compar-
ing the functional forms of our mean temperature and shear profiles with those of direct
numerical simulations (DNS; Domaradzki & Metcalfe 1988, DM88) of Rayleigh-Bénard
convection in air (Prandtl number, σ = 0.71) with a strongly shearing background flow.
We consider a plane-parallel layer of fluid confined between rigid horizontal perfectly
conducting boundaries of infinite extent at fixed temperatures, the lower being hotter
than the upper by ∆T . The upper boundary moves horizontally with constant velocity
∆U , and we assume, in accordance with the Boussinesq approximation, that the shear,
E, in the mean (plane Couette) flow does not vary over the scale of an eddy.

Turbulent fluxes and mean equations in the presence of a shear
We follow the basic procedure by Gough & Houdek (2001) to solve the linearized

equations describing the dynamics in a statistically stationary flow of a viscous Boussi-
nesq fluid confined between two horizontal planes. In Cartesian co-ordinates (x, y, z) the
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Figure 1. Mean temperature T/∆T (left panel) and mean velocity U/∆U (right panel) as a
function of height z are compared with DNS data (crosses) for different ∆U values.

equations are nondimensionalized using the vertical distance between the planes, d, and
the thermal diffusion time across d as units of space and time. Linearized modes of convec-
tion are obtained by expansion about E := dzU = 0 (where dz ≡ d/dz) to second order
in E. The resulting expressions for the eigenfunctions of the fluctuating temperature,
T ′, and turbulent velocity field, u = (u, v, w), are then used to compute the turbulent
fluxes of heat, wT ′, and momentum (Reynolds stresses), ρuiuj , in the manner of Gough
(1977a). A horizontal bar denotes statistical average (average over the horizontal plane).
In our dimensionless formulation, the sum of the radiative and convective fluxes is inde-
pendent of z and equal to the Nusselt number of the layer, N = Fr(z) + Fc(z). In the
diffusion approximation the radiative flux is equal to the mean temperature gradient,
Fr(z) = −dzT . The thermal mean equation is solved simultaneously with (the only non-
trivial (x-) component of) the mean momentum equation: dz ρuw − σdzzU = 0 (where
dzz ≡ d2/dz2). Note that the Reynolds stress ρuw distorts the shear, and consequently
the x-component of the mean flow, U , is not a linear function of height z.

Results and conclusions
Fig. 1 shows the normalized mean vertical velocity profiles, U/∆U and mean tempera-

ture profiles, T/∆T , for four values of ∆U : 50, 100, 150 and 200. Our results are compared
with DNS data (DM88), which assume ∆U = 700. The mean profiles are in reasonable
agreement with the DNS data, but for smaller values of ∆U in our model computations.
Best agreement with the DNS data is obtained with ∆U = 150. Two factors may be
responsible for the discrepancy in the values of ∆U : (i) to maintain greatest simplicity,
we adopted horizontal-stress-free boundary conditions for the eddies, whereas in the sim-
ulations the bounding planes were taken to be rigid – this may perhaps account for up to
a factor of about three in the ∆U differences between the model (∆U=150) and the sim-
ulation (∆U=700); (ii) nonlocal effects may also contribute to the remaining differences
between our results and the DNS data. We plan to investigate these issues, extending
our model in the manner of Gough (1977b) to accommodate nonlocal behaviour.
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