Raising Operators of Row Type for Macdonald Polynomials

YASUSHI KAJIHARA and MASATOSHI NOUMI
Department of Mathematics, Graduate School of Science and Technology, Kobe University, Rokko, Kobe 657-8501, Japan. e-mail: kaji@math.kobe-u.ac.jp noumi@math.kobe-u.ac.jp

(Received: 30 March 1998; accepted in final form: 16 September 1998)

Abstract

We construct certain raising operators of row type for Macdonald's symmetric polynomials by an interpolation method.

Mathematics Subject Classifications (1991): Primary 05E05, Secondary 05A19, 33D45.
Key words: Macdonald polynomials, raising operators, q-binomial theorem.

1. Introduction

Throughout this paper, we denote by $J_{\lambda}(x ; q, t)$ the integral form of Macdonald's symmetric polynomial in n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ (of type A_{n-1}) associated with a partition λ ([6]). For each $m=0,1,2, \ldots$, we consider a q-difference operator B_{m} which should satisfy the following condition: For any partition $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ whose longest part λ_{1} has length $\leqslant m$, one has

$$
B_{m} J_{\lambda}(x ; q, t)=\left\{\begin{array}{l}
J_{(m, \lambda)}(x ; q, t), \quad \text { if } \ell(\lambda)<n \tag{1.1}\\
0, \quad \text { if } \ell(\lambda)=n
\end{array}\right.
$$

where $(m, \lambda)=\left(m, \lambda_{1}, \lambda_{2}, \ldots\right)$ stands for the partition obtained by adding a row of length m to λ. An operator B_{m} having this property will be called a raising operator of row type for Macdonald polynomials. With such operators, the Macdonald polynomial $J_{\lambda}(x ; q, t)$ for a general partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ can be expressed as

$$
\begin{equation*}
B_{\lambda_{1}} B_{\lambda_{2}} \ldots B_{\lambda_{n}} \cdot 1=J_{\lambda}(x ; q, t), \quad\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0\right) . \tag{1.2}
\end{equation*}
$$

Namely, one can obtain $J_{\lambda}(x ; q, t)$ by an successive application of the operators B_{m} starting from $J_{\phi}(x ; q, t)=1$.

The purpose of this paper is to give an explicit construction of such operators B_{m} ($m=0,1,2, \ldots$). These operators B_{m} can be considered as a dual version of the raising operators of column type introduced by A. N. Kirillov and the second author
$[4,5]$. We remark that, as to the Hall-Littlewood polynomials (the case when $q=$ 0), such a class of raising operators B_{m} of row type has been implicitly employed in Macdonald [6], Chapter III, (2.14)

$$
\begin{equation*}
B_{m}=(1-t) \sum_{i=1}^{n} x_{i}^{m}\left(\prod_{j \neq i} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right) T_{0, x_{i}} \tag{1.3}
\end{equation*}
$$

for $m=1,2, \ldots$, where $T_{0, x_{i}}$ is the ' 0 -shift operator' in x_{i}, namely, the substitution of zero for x_{i}. Our raising operators of row type for Macdonald polynomials can be considered as a generalization of these operators for Hall-Littlewood polynomials.

We will propose first a theorem of unique existence for raising operators of row type. For each multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and

$$
\begin{equation*}
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \quad T_{q, x}^{\alpha}=T_{q, x_{1}}^{\alpha_{1}} \cdots T_{q, x_{n}}^{\alpha_{n}} \tag{1.4}
\end{equation*}
$$

where $T_{q, x_{i}}$ is the q-shift operator in x_{i}, defined by

$$
\begin{equation*}
T_{q, x_{i}} f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, q x_{i}, \ldots, x_{n}\right), \tag{1.5}
\end{equation*}
$$

for $i=1, \ldots, n$.
THEOREM 1.1. For each $m=0,1,2, \ldots$, there exists a unique q-difference operator

$$
\begin{equation*}
B_{m}=\sum_{|\gamma| \leqslant m} b_{\gamma}^{(m)}(x) T_{q, x}^{\gamma} \tag{1.6}
\end{equation*}
$$

of order $\leqslant m$ satisfying the condition (1.1), where $b_{\gamma}^{(m)}(x)$ are rational functions in x with coefficients in $\mathbb{Q}(q, t)$. Furthermore, the operator B_{m} is invariant under the action of the symmetric group \mathfrak{S}_{n} of degree n.

We will also determine the operator B_{m} explicitly by an interpolation method. In the following, we use the notation $\alpha \leqslant \beta$ for the partial ordering of multi-indices defined by

$$
\begin{equation*}
\alpha \leqslant \beta \Leftrightarrow \alpha_{i} \leqslant \beta_{i} \quad(i=1, \ldots, n) . \tag{1.7}
\end{equation*}
$$

In order to describe the coefficients of our raising operators, we introduce a variant of q-binomial coefficients $C_{\alpha, \beta}(x ; q)$ including the variables $x=\left(x_{1}, \ldots, x_{n}\right)$. For any pair (α, β) of multi-indices such that $\alpha \geqslant \beta$, we set

$$
\begin{align*}
C_{\alpha, \beta}(x ; q) & =\prod_{1 \leqslant i, j \leqslant n} \frac{\left(q^{\alpha_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}} \\
& =\prod_{j=1}^{n} \frac{\left(q^{\alpha_{j}-\beta_{j}+1}\right)_{\beta_{j}}}{(q)_{\beta_{j}}} \prod_{i \neq j} \frac{\left(q^{\alpha_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}} \tag{1.8}
\end{align*}
$$

with the notation $(a)_{k}=(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$ of the q-shifted factorial. We remark that, if $n=1, C_{\alpha, \beta}(x ; q)$ reduce to the ordinary q-binomial coefficients $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]_{q}$.

THEOREM 1.2. The q-difference operator B_{m} of Theorem 1.1 can be expressed in the form

$$
\begin{equation*}
B_{m}=\sum_{|\alpha|=m} b_{\alpha}^{(m)}(x) \phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right), \tag{1.9}
\end{equation*}
$$

where

$$
\begin{align*}
& b_{\alpha}^{(m)}(x)=\left.(-1)^{|\alpha|} q^{\left.\sum_{i}{ }_{2}^{\alpha_{i}}\right)} x^{\alpha} \sum_{\beta \leqslant \alpha}(-1)^{|\beta|} q^{(|\beta|} 2\right) \\
& \alpha_{\alpha, \beta}(x ; q) \times \tag{1.10}\\
& \times \prod_{i, j=1}^{n} \frac{\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}}{\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)=\sum_{\beta \leqslant \alpha}(-1)^{|\alpha|-|\beta|} q^{(|\alpha|-|\beta|+1)} C_{\alpha, \beta}(x ; q) T_{q, x}^{\beta}, \tag{1.11}
\end{equation*}
$$

for each α with $|\alpha|=m$.
In the course of the proof of Theorem 1.2, we will make use of a variant of the q-binomial theorem for our $C_{\alpha, \beta}(x ; q)$, which might also deserve attention (see Proposition 5.2 in Section 5).

THEOREM 1.3. For any $\alpha \in \mathbb{N}^{n}$, one has

$$
\begin{equation*}
\sum_{\beta \leqslant \alpha}(-1)^{|\beta|} q^{\left(\frac{(\beta \mid}{2}\right)} C_{\alpha, \beta}(x ; q) u^{|\beta|}=(u)_{|\alpha|} . \tag{1.12}
\end{equation*}
$$

We remark that formula (1.12) also implies a generalization of q-Chu-Vandermonde formulas

$$
\sum_{\beta \leqslant \alpha,|\beta|=r} \prod_{j=1}^{n}\left[\begin{array}{c}
\alpha_{j} \tag{1.13}\\
\beta_{j}
\end{array}\right]_{q} \prod_{i \neq j} \frac{\left(q^{\alpha_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}=\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q},
$$

for any α with $|\alpha|=n$ and $0 \leqslant r \leqslant n$.
After recalling some basic facts about Macdonald polynomials in Section 2, we will prove the uniqueness and the existence of raising operators of row type in Section 3 and in Section 4, respectively. Explicit formulas for the q-difference
operators $\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)$ and the coefficients $b_{\alpha}^{(m)}(x)(|\alpha|=m)$ of Theorem 1.2 will be given in Section 5 and in Section 6, respectively.

2. Macdonald Polynomials

In order to fix the notation, we recall some basic facts about Macdonald's symmetric polynomials of type A_{n-1}. For the details see [6].

Let $\mathbb{K}[x]=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ring of polynomials in n variables $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with coefficients in $\mathbb{K}=\mathbb{Q}(q, t)$, and $\mathbb{K}[x]^{\mathfrak{S}_{n}}$ the subring of all invariant polynomials under the natural action of the symmetric group \mathfrak{S}_{n} of degree n.

Macdonald's commuting family of q-difference operators $D_{1}, D_{2}, \ldots, D_{n}$ is defined by the generating function

$$
\begin{align*}
D_{x}(u ; q, t) & =\sum_{r=0}^{n}(-u)^{r} D_{r} \\
& =\sum_{K \subset\{1, \ldots, n\}}(-u)^{|K|} t^{\binom{|K|}{2}} \prod_{i \in K, j \notin K} \frac{1-t x_{i} / x_{j}}{1-x_{i} / x_{j}} \prod_{i \in K} T_{q, x_{i}} . \tag{2.1}
\end{align*}
$$

Note that $D_{x}(u ; q, t)$ has the determinantal formula

$$
\begin{align*}
D_{x}(u ; q, t) & =\frac{1}{\Delta(x)} \operatorname{det}\left(x_{j}^{n-i}\left(1-u t^{n-i} T_{q, x_{i}}\right)\right)_{i, j} \\
& =\frac{1}{\Delta(x)} \sum_{w \in \mathfrak{S}_{n}} \varepsilon(w) w\left(\prod_{i=1}^{n} x_{i}^{n-i}\left(1-u t^{n-i} T_{q, x_{i}}\right)\right) \tag{2.2}
\end{align*}
$$

where $\Delta(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)$. Macdonald's symmetric polynomials $P_{\lambda}(x)=$ $P_{\lambda}(x ; q, t)$ are the joint eigenfunctions of the operators D_{1}, \ldots, D_{n} on $\mathbb{K}[x]^{\mathfrak{S}_{n}}$, satisfying the equations

$$
\begin{equation*}
D_{x}(u) P_{\lambda}(x)=P_{\lambda}(x) \prod_{i=1}^{n}\left(1-u q^{\lambda_{i}} t^{n-i}\right) \tag{2.3}
\end{equation*}
$$

each $P_{\lambda}(x)$ is normalized so that the coefficient of x^{λ} should be equal to 1 . The integral form $J_{\lambda}(x)=J_{\lambda}(x ; q, t)$ of $P_{\lambda}(x)$ is defined as

$$
\begin{equation*}
J_{\lambda}(x ; q, t)=c_{\lambda} P_{\lambda}(x ; q, t), \quad c_{\lambda}=\prod_{s \in \lambda}\left(1-q^{a(s)} t^{l(s)+1}\right) \tag{2.4}
\end{equation*}
$$

It is known in fact that $J_{\lambda}(x)$ are linear combinations of monomial symmetric functions with coefficients in $\mathbb{Z}[q, t]$ (see [4] for example).

We recall that the Macdonald polynomials have the generating function

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} P_{\lambda}(x ; q, t) P_{\lambda^{\prime}}(y ; t, q) \tag{2.5}
\end{equation*}
$$

for another set of variables $y=\left(y_{1}, \ldots, y_{m}\right)$, where λ^{\prime} stands for the conjugate partition of λ, and the summation is taken over all partitions λ such that $l\left(\lambda^{\prime}\right)=$ $\lambda_{1} \leqslant m, l(\lambda)=\lambda^{\prime}{ }_{1} \leqslant n$. This formula will be the key to our study of raising operators of row type. Notice that the dual version of the generation function (2.5) has been employed in [4] for the construction of raising operators of column type.

3. Raising Operators of Row Type and their Uniqueness

Fixing a nonnegative integer m, we will prove in this section the uniqueness of a q-difference operator

$$
\begin{equation*}
B_{m}=\sum_{|\gamma| \leqslant m} b_{\gamma}^{(m)}(x) T_{q, x}^{\gamma}, \quad\left(b_{\gamma}^{(m)}(x) \in \mathbb{K}(x)\right) \tag{3.1}
\end{equation*}
$$

of order $\leqslant m$ such that

$$
B_{m} J_{\lambda}(x ; q, t)=\left\{\begin{array}{l}
J_{(m, \lambda)}(x ; q, t), \quad \text { if } l\left(\lambda^{\prime}\right) \leqslant m, l(\lambda)<n \tag{3.2}\\
0, \quad \text { if } l\left(\lambda^{\prime}\right) \leqslant m, l(\lambda)=n
\end{array}\right.
$$

where $(m, \lambda)=\left(m, \lambda_{1}, \lambda_{2}, \ldots\right)$. We remark that the invariance of B_{m} under the action of \mathfrak{S}_{n} follows immediately from the uniqueness theorem. Existence of such an operator will be established in the next section.

LEMMA 3.1. A q-difference operator B_{m} of order $\leqslant m$ in the form (3.1) satisfies the condition (3.2) if and only if the following equality holds

$$
\begin{equation*}
B_{m, x} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)=\frac{1}{y_{1} \ldots y_{m}} D_{y}(1 ; t, q) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right) \tag{3.3}
\end{equation*}
$$

Proof. Note first that, for each partition $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$ of length $\leqslant m$, one has

$$
\begin{align*}
& \frac{1}{y_{1} \ldots y_{m}} D_{y}(1 ; t, q) P_{\mu}(y ; t, q) \\
& \quad= \begin{cases}P_{\mu-(1)^{m}}(y ; t, q) \prod_{i=1}^{m}\left(1-q^{m-i} t^{\mu_{i}}\right), & \text { if } \mu_{m}>0 \\
0, \quad \text { if } \mu_{m}=0\end{cases} \tag{3.4}
\end{align*}
$$

Hence we obtain

$$
\begin{align*}
& \frac{1}{y_{1} \ldots y_{m}} D_{y}(1 ; t, q) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right) \\
& =\sum_{l(\nu) \leqslant n, l\left(\nu^{\prime}\right)=m} P_{v}(x ; q, t) P_{\nu^{\prime}-(1)^{m}}(y ; t, q) \prod_{i=1}^{m}\left(1-q^{m-i} t^{\left(\nu^{\prime}\right)_{i}}\right) \\
& =\sum_{l(\lambda) \leqslant n-1, l^{\prime}(\lambda) \leqslant m} P_{(m, \lambda)}(x ; q, t) P_{\lambda^{\prime}}(y ; t, q) \prod_{i=1}^{m}\left(1-q^{m-i} t^{\left(\lambda^{\prime}\right)_{i}+1}\right) . \tag{3.5}
\end{align*}
$$

This implies that Equation (3.3) is equivalent to the condition

$$
B_{m} P_{\lambda}(x ; q, t)=\left\{\begin{array}{l}
0, \quad(\text { if } l(\lambda)=n), \tag{3.6}\\
P_{\lambda}(x ; q, t) \prod_{i=1}^{m}\left(1-q^{m-i} t^{\left(\lambda^{\prime}\right)_{i}+1}\right), \quad(\text { if } l(\lambda)<n),
\end{array}\right.
$$

for any λ with $l\left(\lambda^{\prime}\right) \leqslant m$. It is easily seen that this coincides with condition (3.2) in terms of the integral forms.

By making the action of $D_{y}(1 ; t, q)$ in (3.3) explicit, we obtain
PROPOSITION 3.1. A q-difference operator B_{m} of order $\leqslant m$ is a raising operator of row type for Macdonald polynomials if and only if its coefficients satisfy the following identity of rational functions

$$
\begin{align*}
& \sum_{|\gamma| \leqslant m} b_{\gamma}^{(m)}(x) \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1+q^{\gamma_{i}} x_{i} y_{j}}{1+x_{i} y_{j}} \\
& =\frac{1}{y_{1} \ldots y_{m}} \sum_{K \subset\{1, \ldots, m\}}(-1)^{|K|} q^{\left(\frac{(K)}{2}\right)} \times \\
& \quad \times \prod_{k \in K, l \notin K} \frac{1-q y_{k} / y_{l}}{1-y_{k} / y_{l}} \prod_{i=1}^{n} \prod_{k \in K} \frac{1+t x_{i} y_{k}}{1+x_{i} y_{k}} . \tag{3.7}
\end{align*}
$$

Remark 3.1. By the determinantal representation of $D_{y}(1 ; t, q)$, equality (3.7) can also be rewritten in the form

$$
\begin{align*}
& \sum_{|\gamma| \leqslant m} b_{\gamma}^{(m)}(x) \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1+q^{\gamma_{i}} x_{i} y_{j}}{1+x_{i} y_{j}} \\
& \quad=\frac{1}{y_{1} \ldots y_{m} \Delta(y)} \operatorname{det}\left(y_{j}^{m-i}\left(1-q^{m-i} \prod_{r=1}^{n} \frac{1+t x_{r} y_{j}}{1+x_{r} y_{j}}\right)\right)_{i, j} \tag{3.8}
\end{align*}
$$

Let now B and B^{\prime} be two q-difference operators of order $\leqslant m$ and suppose that they both satisfy the condition (3.2) of raising operators. Then by Lemma 3.1 one has

$$
\begin{equation*}
\left(B_{x}-B_{x}^{\prime}\right) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)=0 \tag{3.9}
\end{equation*}
$$

Hence the uniqueness of B_{m} of Theorem 1.1 follows immediately from the following general proposition on q-difference operators.

PROPOSITION 3.2. Let $P=\Sigma_{|\gamma| \leqslant m} a_{\gamma}(x) T_{q, x}^{\gamma}$ be a q-difference operator of order $\leqslant m$ with coefficients in $\mathbb{K}(x)$.
(a) If $P_{x} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)=0$, then $P=0$ as a q-difference operator.
(b) If $\operatorname{Pf}(x)=0$ for any symmetric polynomial $f(x) \in \mathbb{K}[x]^{\mathfrak{S}_{n}}$ of degree $\leqslant m n$, then $P=0$ as a q-difference operator.

Since the statement (b) follows from (a), we give a proof of (a) of Proposition. For each multi-index $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$, we define a point $p_{\alpha}(x) \in \mathbb{K}(x)^{m}$ by

$$
\begin{align*}
p_{\alpha}(x)= & \left(-1 / x_{1},-1 / q x_{1}, \ldots,-1 / q^{\alpha_{1}-1} x_{1}, \ldots,\right. \\
& \left.-1 / x_{n},-1 / q x_{n}, \ldots,-1 / q^{\alpha_{n}-1} x_{n}\right) \tag{3.10}
\end{align*}
$$

Then we have
LEMMA 3.2. For any multi-index $\gamma \in \mathbb{N}^{n}$, one has

$$
\begin{align*}
& \left.\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\gamma_{i}} x_{i} y_{j}\right)\right|_{y=p_{\alpha}(x)} \\
& \quad=\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{v=0}^{\alpha_{j}-1}\left(1-q^{\gamma_{i}-v} x_{i} / x_{j}\right) \\
& \quad=\prod_{1 \leqslant i, j \leqslant n}\left(q^{\gamma_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}} \tag{3.11}
\end{align*}
$$

In particular, one has $\left.\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\gamma_{i}} x_{i} y_{j}\right)\right|_{y=p_{\alpha}(x)}=0$ unless $\gamma \geqslant \alpha$.
Under the assumption of Proposition 3.2(a), we may assume that $a_{\alpha}(x) \neq 0$ for some $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$ without loosing generality. (If P is of order $l<m$, set $y_{l+1}=\cdots=y_{m}=0$ and apply the following argument by replacing m by l.) The assumption on P implies

$$
\begin{equation*}
\sum_{|\gamma| \leqslant m} a_{\gamma}(x) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\gamma_{i}} x_{i} y_{j}\right)=0 \tag{3.12}
\end{equation*}
$$

Evaluating this equality at $y=p_{\alpha}(x)$, we have

$$
\begin{equation*}
a_{\alpha}(x) \prod_{1 \leqslant i, j \leqslant n}\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}=0, \tag{3.13}
\end{equation*}
$$

by Lemma 3.2, since, if $|\gamma| \leqslant m$ and $\gamma \geqslant \alpha$, then $\gamma=\alpha$. This contradicts to the assumption $a_{\alpha}(x) \neq 0$. This completes the proofs of Proposition 3.2 and the uniqueness of B_{m} in Theorem 1.1.

4. Existence of $\boldsymbol{B}_{\boldsymbol{m}}$

In this section, we discuss the existence of a raising operator B_{m}.
We begin with a lemma which will play an important role in the following argument.

LEMMA 4.1. Let $F(y) \in \mathbb{K}(x)[y]^{\mathfrak{S}_{m}}$ be a symmetric polynomial in $y=\left(y_{1}, \ldots\right.$, y_{m}) with coefficients in $\mathbb{K}(x)$, and suppose that $F(y)$ is of degree $\leqslant n-1$ in y_{j} for each $j=1, \ldots$, m. If $F\left(p_{\alpha}(x)\right)=0$ for all $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$, then $F(y)$ is identically zero as a polynomial in y.

Proof. We prove Lemma by the induction on m. The case when $m=1$ is obvious since $F(y)$ is of degree $\leqslant n-1$ and has n distinct zeros $-1 / x_{1}, \ldots,-1 / x_{n}$. For $m \geqslant 2$, we first expand $F(y)$ in terms of y_{m} as follows

$$
\begin{equation*}
F(y)=F\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=0}^{n-1} F_{i}\left(y_{1}, \ldots, y_{m-1}\right) y_{m}^{i}, \tag{4.1}
\end{equation*}
$$

where each coefficient $F_{i}\left(y_{1}, \ldots, y_{m-1}\right)$ has degree $\leqslant n-1$ in all $y_{j}(j=1, \ldots$, $m-1$). Let $\beta \in \mathbb{N}^{n}$ a multi-index with $|\beta|=m-1$ and consider the polynomial

$$
\begin{equation*}
f\left(y_{m}\right)=F\left(p_{\beta}(x), y_{m}\right)=\sum_{i=0}^{n-1} F_{i}\left(p_{\beta}(x)\right) y_{m}^{i}, \tag{4.2}
\end{equation*}
$$

by evaluating $F(y)$ at $\left(y_{1}, \ldots, y_{m-1}\right)=p_{\beta}(x)$. From the assumption on $F(y)$, it follows that the polynomial $f\left(y_{m}\right)$ has n distinct zeros $y_{m}=-1 / q^{\beta_{i}} x_{i}(i=$ $1, \ldots, n)$. Hence $f\left(y_{m}\right)$ is identically 0 as a polynomial in y_{m}. This implies that $F_{i}\left(p_{\beta}(x)\right)=0$ for each $i=0, \ldots, m-1$ and for any $\beta \in \mathbb{N}^{n}$ with $|\beta|=m-1$. By the induction hypothesis, we conclude that the coefficients $F_{i}\left(y_{1}, \ldots, y_{m-1}\right)$ are identically zero as polynomials in (y_{1}, \ldots, y_{m-1}), namely, $F(y)$ is identically zero as a polynomial in $y=\left(y_{1}, \ldots, y_{m}\right)$.

In view of Lemma 3.1, we propose to construct a q-difference operator

$$
\begin{equation*}
B=\sum_{|\alpha| \leqslant m} b_{\alpha}(x) T_{q, x}^{\alpha} \tag{4.3}
\end{equation*}
$$

of order $\leqslant m$ such that

$$
\begin{equation*}
B_{x} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)=\frac{1}{y_{1} \ldots y_{m}} D_{y}(1 ; t, q) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right) \tag{4.4}
\end{equation*}
$$

In the following, we denote the left-hand side and the right-hand side of this equality by $\Phi(x ; y)$ and by $\Psi(x ; y)$, respectively. In terms of the coefficients $b_{\alpha}(x)$, $\Phi(x ; y)$ is expressed as

$$
\begin{equation*}
\Phi(x ; y)=\sum_{|\alpha| \leqslant m} b_{\alpha}(x) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\alpha_{i}} x_{i} y_{j}\right) \tag{4.5}
\end{equation*}
$$

Note also that $\Psi(x ; y)$ is a polynomial in $y=\left(y_{1}, \ldots, y_{m}\right)$ and has degree $\leqslant n-1$ in each $y_{j}(j=1, \ldots, m)$ as can be seen from (3.4). Hence, by Lemma 4.1, we see that B satisfies the desired equality if and only if
(1) $\Phi(x ; y)$ is of degree $\leqslant n-1$ in each y_{j} for $j=1, \ldots, m$.
(2) $\Phi\left(x ; p_{\alpha}(x)\right)=\Psi\left(x ; p_{\alpha}(x)\right)$ for all $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$.

Suppose now that the operator B has the property (1) mentioned above. Since the degree of $\Phi(x ; y)$ in y_{j} is less than n for each $j=1, \ldots, m$, we have

$$
\begin{equation*}
\left.\Phi(x ; y) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)^{-1}\right|_{y_{1} \rightarrow \infty, \ldots, y_{m} \rightarrow \infty}=0 \tag{4.6}
\end{equation*}
$$

Hence by (4.5) we obtain

$$
\begin{equation*}
\sum_{|\alpha| \leqslant m} b_{\alpha}(x) q^{|\alpha| m}=0, \quad \text { i.e., } \quad b_{0}(x)=-\sum_{0<|\alpha| \leqslant m} b_{\alpha}(x) q^{|\alpha| m} \tag{4.7}
\end{equation*}
$$

This implies that B can be represent as

$$
\begin{equation*}
B=\sum_{1 \leqslant|\alpha| \leqslant m} b_{\alpha}(x)\left(T_{q, x}^{\alpha}-q^{|\alpha| m}\right) \tag{4.8}
\end{equation*}
$$

Note that a general B of order $\leqslant m$ has an expression of this form if and only if

$$
\begin{equation*}
F_{1}\left(x ; y_{1}\right)=\left.\Phi(x ; y) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)^{-1}\right|_{y_{2} \rightarrow \infty, \ldots, y_{m} \rightarrow \infty} \tag{4.9}
\end{equation*}
$$

is of degree $\leqslant n-1$ in y_{1}. We now show inductively that, for $l=0,1, \ldots, m, B$ can be represented as follows

$$
\begin{equation*}
B=\sum_{l \leqslant|\alpha| \leqslant m} b_{\alpha}(x) \phi_{l ; \alpha}\left(x, T_{q, x}\right), \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{l ; \alpha}\left(x, T_{q, x}\right)=T_{q, x}^{\alpha}+\sum_{\beta<\alpha,|\beta|<l} \phi_{l ; \alpha, \beta}(x) T_{q, x}^{\beta} \tag{4.11}
\end{equation*}
$$

Assume that we have constructed such an expression for l with $l<m$. Note that

$$
\begin{align*}
\Phi(x ; y)=\sum_{l \leqslant|\alpha| \leqslant m} b_{\alpha}(x)(& \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\alpha_{i}} x_{i} y_{j}\right)+ \\
& \left.+\sum_{\beta \leqslant \alpha,|\beta|<l} \phi_{l ; \alpha, \beta}(x) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+q^{\beta_{i}} x_{i} y_{j}\right)\right) \tag{4.12}
\end{align*}
$$

Since property (1) of $\Phi(x ; y)$ implies

$$
\begin{equation*}
\left.\Phi(x ; y) \prod_{i=1}^{n} \prod_{j=l+1}^{m}\left(1+x_{i} y_{j}\right)^{-1}\right|_{y_{l+1} \rightarrow \infty, \ldots, y_{m} \rightarrow \infty}=0 \tag{4.13}
\end{equation*}
$$

we obtain the relation

$$
\begin{align*}
& \sum_{l \leqslant|\alpha| \leqslant m} b_{\alpha}(x)\left(q^{|\alpha|(m-l)} \prod_{i=1}^{n} \prod_{j=1}^{l}\left(1+q^{\alpha_{i}} x_{i} y_{j}\right)+\right. \\
&\left.+\sum_{\beta \leqslant \alpha,|\beta|<l} \phi_{l ; \alpha, \beta}(x) q^{|\beta|(m-l)} \prod_{i=1}^{n} \prod_{j=1}^{l}\left(1+q^{\beta_{i}} x_{i} y_{j}\right)\right)=0 \tag{4.14}
\end{align*}
$$

In this formula we consider to specialize $y^{\prime}=\left(y_{1}, \ldots, y_{l}\right)$ at $p_{\gamma}(x)$, with the notation of (3.10), for each γ with $|\gamma|=l$. By Lemma 3.2

$$
\left.\prod_{i=1}^{n} \prod_{j=1}^{l}\left(1+q^{\beta_{i}} x_{i} y_{j}\right)\right|_{y^{\prime}=p_{\gamma}(x)}=0
$$

unless $\beta \geqslant \gamma$. Hence formula (4.14) with $y^{\prime}=p_{\gamma}(x)$ gives rise to

$$
\begin{align*}
& b_{\gamma}(x) q^{l(m-l)} \prod_{1 \leqslant i, j \leqslant n}\left(q^{\gamma_{i}-\gamma_{j}+1} x_{i} / x_{j}\right)_{\gamma_{j}}+ \\
& \quad+\sum_{|\alpha|>l} b_{\alpha}(x) q^{|\alpha|(m-l)} \prod_{1 \leqslant i, j \leqslant n}\left(q^{\alpha_{i}-\gamma_{j}+1} x_{i} / x_{j}\right)_{\gamma_{j}}=0 \tag{4.15}
\end{align*}
$$

From this we have

$$
\begin{equation*}
b_{\gamma}(x)=-\sum_{\alpha>\gamma} b_{\alpha}(x) \psi_{\alpha, \gamma}(x) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{align*}
\psi_{\alpha, \gamma}(x) & =q^{(|\alpha|-|\gamma|)(m-|\gamma|)} \prod_{1 \leqslant i, j \leqslant n} \frac{\left(q^{\alpha_{i}-\gamma_{j}+1} x_{i} / x_{j}\right)_{\gamma_{j}}}{\left(q^{\gamma_{i}-\gamma_{j}+1} x_{i} / x_{j}\right)_{\gamma_{j}}} \\
& =q^{(|\alpha|-|\gamma|)(m-|\gamma|)} C_{\alpha, \gamma}(x ; q) \tag{4.17}
\end{align*}
$$

with the notation of (1.8). Note that $\psi_{\alpha, \gamma}(x)$ depends on m but does not on B. Thus we obtain

$$
\begin{align*}
B & =\sum_{|\gamma|=l} b_{\gamma}(x) \phi_{l ; \gamma}\left(x, T_{q, x}\right)+\sum_{l<|\alpha| \leqslant m} b_{\alpha}(x) \phi_{l ; \alpha}\left(x, T_{q, x}\right) \\
& =\sum_{l+1 \leqslant|\alpha| \leqslant m} b_{\alpha}(x) \phi_{l+1 ; \alpha}\left(x, T_{q, x}\right) \tag{4.18}
\end{align*}
$$

where $\phi_{l+1 ; \alpha}\left(x, T_{q, x}\right)(l+1 \leqslant|\alpha| \leqslant m)$ are determined by

$$
\begin{equation*}
\phi_{l+1 ; \alpha}\left(x, T_{q, x}\right)=\phi_{l ; \alpha}\left(x, T_{q, x}\right)-\sum_{\gamma<\alpha,|\gamma|=l} \psi_{\alpha, \gamma}(x) \phi_{l ; \gamma}\left(x, T_{q, x}\right) . \tag{4.19}
\end{equation*}
$$

In other words, the coefficients of $\phi_{l+1 ; \alpha}\left(x ; T_{q, x}\right)$ are determined by the recurrence formula

$$
\begin{equation*}
\phi_{l+1 ; \alpha, \beta}(x)=\phi_{l ; \alpha, \beta}(x)-\sum_{\beta<\gamma<\alpha,|\gamma|=l} \psi_{\alpha, \gamma}(x) \phi_{l ; \gamma, \beta}(x) \tag{4.20}
\end{equation*}
$$

for all β such that $\beta<\alpha$ and $|\beta|<l$. In this induction procedure, it is also seen by Lemma 4.1 that a general B of order $\leqslant m$ has an expression of this form (4.10) with (4.11) if and only if

$$
\begin{equation*}
F_{l}\left(x ; y_{1}, \ldots, y_{m}\right)=\left.\Phi(x ; y) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)^{-1}\right|_{y_{l+1} \rightarrow \infty, \ldots, y_{m} \rightarrow \infty} \tag{4.21}
\end{equation*}
$$

is of degree $\leqslant n-1$ in y_{j} for each $j=1, \ldots, l$.
In this way, we can define the q-difference operators $\phi_{l ; \alpha}\left(x ; T_{q, x}\right)(l \leqslant|\alpha| \leqslant m)$ for $l=0, \ldots, m$, inductively on l by (4.19). Note that these operators depend on the m that we have fixed in advance, but do not on the operator B. By using the operators we obtained at the final step $l=m$, we have the expression

$$
\begin{equation*}
B=\sum_{|\alpha|=m} b_{\alpha}(x) \phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right) \tag{4.22}
\end{equation*}
$$

for B, where $\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)=\phi_{m ; \alpha}\left(x ; T_{q, x}\right)$.
From this construction, we obtain the following proposition.

PROPOSITION 4.1. For each $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$, define the q-difference operator $\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)$ as above. Then, for any q-difference operator B of order $\leqslant m$ with coefficients in $\mathbb{K}(x)$, the following two conditions are equivalent.
(a) $\Phi(x ; y)=B_{x} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right)$ is of degree $\leqslant n-1$ in y_{j} for each $j=1, \ldots, m$.
(b) B is represented as

$$
\begin{equation*}
B=\sum_{|\alpha|=m} b_{\alpha}(x) \phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right) \tag{4.23}
\end{equation*}
$$

for some $b_{\alpha}(x) \in \mathbb{K}(x)$.
We now consider a q-difference operator B of the form Proposition 4.1, (b), so that $\Phi(x ; y)$ is of degree $\leqslant n-1$ in each $y_{j}(j=1, \ldots, m)$. With $\Psi(x ; y)$ being the right-hand side of (4.4), the equality $\Phi(x ; y)=\Psi(x ; y)$ holds if and only if $\Phi\left(x ; p_{\alpha}(x)\right)=\Psi\left(x ; p_{\alpha}(x)\right)$ for any α with $|\alpha|=m$, as we remarked before. Since

$$
\begin{equation*}
\Phi\left(x ; p_{\alpha}(x)\right)=b_{\alpha}(x) \prod_{1 \leqslant i, j \leqslant n}\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}} \tag{4.24}
\end{equation*}
$$

by Lemma 3.2, the coefficients $b_{\alpha}(x)$ are determined as

$$
\begin{equation*}
b_{\alpha}(x)=\Psi\left(x ; p_{\alpha}(x)\right) \prod_{1 \leqslant i, j \leqslant n}\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}^{-1} \tag{4.25}
\end{equation*}
$$

for all α with $|\alpha|=m$. This completes the proof of existence of a raising operator B_{m}.

From the recurrence formula (4.20) we see that, for any α with $l \leqslant|\alpha| \leqslant m$, the coefficients $\phi_{l ; \alpha, \beta}(x)$ of $\phi_{l ; \alpha}\left(x ; T_{q, x}\right)$ are expressed as

$$
\begin{align*}
& \phi_{l ; \alpha, \beta}(x) \\
& \quad=\sum_{r=1}^{l}(-1)^{r} \sum_{\alpha>\gamma_{1}>\cdots>\gamma_{r}=\beta ;\left|\gamma_{1}\right|<l} \psi_{\alpha, \gamma_{1}}(x) \psi_{\gamma_{1}, \gamma_{2}}(x) \cdots \psi_{\gamma_{r-1}, \gamma_{r}}(x), \tag{4.26}
\end{align*}
$$

for all β with $\beta<\alpha,|\beta|<l$. In particular, we have
PROPOSITION 4.2. For any pair (α, β) of multi-indices with $\beta \leqslant \alpha$, define a rational function $\psi_{\alpha, \beta}^{(m)}(x)$ by

$$
\begin{align*}
\psi_{\alpha, \beta}^{(m)}(x) & =q^{(|\alpha|-|\beta|)(m-|\beta|)} C_{\alpha, \beta}(x ; q) \\
& =q^{(|\alpha|-|\beta|)(m-|\beta|)} \prod_{1 \leqslant i, j \leqslant n} \frac{\left(q^{\alpha_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}} \tag{4.27}
\end{align*}
$$

Then, for any $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=m$, the coefficients of the q-difference operator

$$
\begin{equation*}
\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)=\sum_{\beta \leqslant \alpha} \phi_{\alpha, \beta}^{(m)}(x) T_{q, x}^{\beta} \tag{4.28}
\end{equation*}
$$

are determined by the formula

$$
\begin{equation*}
\phi_{\alpha, \beta}^{(m)}(x)=\sum_{r=0}^{m}(-1)^{r} \sum_{\alpha=\gamma_{0}>\gamma_{1}>\ldots>\gamma_{r}=\beta} \psi_{\gamma_{0}, \gamma_{1}}^{(m)}(x) \cdots \psi_{\gamma_{r-1}, \gamma_{r}}^{(m)}(x), \tag{4.29}
\end{equation*}
$$

where the summation is taken over all paths in the lattice \mathbb{N}^{n} connecting α and β.
In the next section, we will give explicit formulas for these coefficients $\phi_{\alpha, \beta}^{(m)}(x)$.

5. Explicit Formulas for $\phi_{\boldsymbol{\alpha}}^{(m)}\left(\boldsymbol{x} ; \boldsymbol{T}_{q, x}\right)$

The goal of this section is to give the explicit formula

$$
\begin{equation*}
\left.\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)=\sum_{\beta \leqslant \alpha}(-1)^{|\alpha|-|\beta|} q^{(|\alpha|-|\beta|+1}\right)^{(1)} C_{\alpha, \beta}(x ; q) T_{q, x}^{\beta} \tag{5.1}
\end{equation*}
$$

for $\phi_{\alpha}^{(m)}\left(x, T_{q, x}\right)(|\alpha|=m)$ as in Theorem 1.2. With the notation of Proposition 4.2, this formula is equivalent to

$$
\begin{align*}
\phi_{\alpha, \beta}^{(m)}(x) & =(-1)^{|\alpha|-|\beta|} q^{(|\alpha|-|\beta|+1} 2 \\
& =(-1)^{|\alpha|-|\beta|} C_{\alpha, \beta}(x ; q) \tag{5.2}\\
\left.r^{|\alpha|-|\beta|+1}\right) & \prod_{1 \leqslant i, j \leqslant n} \frac{\left(q^{\alpha_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}} .
\end{align*}
$$

for $\beta \leqslant \alpha$.
In view of the dependence of $\psi_{\alpha, \beta}^{(m)}(x)$ on m (see Proposition 4.2), we define a function $g_{\alpha, \beta}(x)$ by

$$
\begin{equation*}
g_{\alpha, \beta}(x)=q^{-(|\alpha|-|\beta|)|\beta|} C_{\alpha, \beta}(x ; q), \tag{5.3}
\end{equation*}
$$

for any $\alpha, \beta \in \mathbb{N}^{n}$ with $\beta \leqslant \alpha$, so that $\psi_{\alpha, \beta}^{(m)}(x)=q^{(|\alpha|-|\beta|) m} g_{\alpha, \beta}(x)$. With these $g_{\alpha, \beta}(x)$, we also define a function $f_{\alpha, \beta}(x)$, by

$$
\begin{equation*}
f_{\alpha, \beta}(x)=\sum_{r=0}^{|\alpha|-|\beta|}(-1)^{r} \sum_{\alpha=\gamma_{0}>\gamma_{1}>\cdots>\gamma_{r}=\beta} g_{\gamma_{0}, \gamma_{1}}(x) \cdots g_{\gamma_{r-1}, \gamma_{r}}(x), \tag{5.4}
\end{equation*}
$$

for any $\alpha, \beta \in \mathbb{N}^{n}$ with $\beta \leqslant \alpha$. Then by Proposition 4.2 we have

$$
\begin{equation*}
\phi_{\alpha, \beta}^{(m)}(x)=q^{(|\alpha|-|\beta|) m} f_{\alpha, \beta}(x) \tag{5.5}
\end{equation*}
$$

if $|\alpha|=m$ and $\beta \leqslant \alpha$. Hence, the formula (5.2) follows from the following proposition.

PROPOSITION 5.1. Define the rational functions $f_{\alpha, \beta}(x)(\beta \leqslant \alpha)$ by the formulas (5.4) together with (5.3). Then they can be determined as

$$
\begin{equation*}
f_{\alpha, \beta}(x)=(-1)^{|\alpha|-|\beta|} q^{-\binom{|\alpha|-|\beta|}{2}-(|\alpha|-|\beta|)|\beta|} C_{\alpha, \beta}(x ; q) \tag{5.6}
\end{equation*}
$$

for any α, β with $\beta \leqslant \alpha$.
For the proof of Proposition 5.1, notice that the functions $f_{\alpha, \beta}(x)$ are defined as the matrix elements of the inverse matrix of the lower unitriangular matrix $G=$ $\left(g_{\alpha, \beta}(x)\right)_{\alpha, \beta}$. Hence we have only to show the inverse matrix of G is given by $G^{-1}=\left(\widetilde{f}_{\alpha, \beta}(x)\right)_{\alpha, \beta}$ with

$$
\begin{equation*}
\widetilde{f}_{\alpha, \beta}(x)=(-1)^{|\alpha|-|\beta|} q^{-(|\alpha|-|\beta|} 2_{2}^{|\beta|-(|\alpha|-|\beta|)|\beta|} C_{\alpha, \beta}(x ; q) \tag{5.7}
\end{equation*}
$$

Proposition 5.1 thus reduces to
LEMMA 5.1. For any α, β with $\alpha>\beta$, one has

$$
\begin{equation*}
\sum_{\alpha \geqslant \gamma \geqslant \beta} \tilde{f}_{\alpha, \gamma}(x) g_{\gamma, \beta}(x)=0 . \tag{5.8}
\end{equation*}
$$

By the definition of $g_{\alpha, \beta}(x)$ and $\widetilde{f}_{\alpha, \beta}(x)$, we have

$$
\begin{align*}
& \sum_{\alpha \geqslant \gamma \geqslant \beta} \widetilde{f_{\alpha, \gamma}}(x) g_{\gamma, \beta}(x) \\
& \quad=\sum_{\alpha \geqslant \gamma \geqslant \beta}(-1)^{|\alpha|-|\gamma|} q^{-\left({ }^{|\alpha|-|\gamma|}\right)-(|\alpha|-|\gamma|)|\gamma|-(|\gamma|-|\beta|)|\beta|} \times \\
& \quad \times C_{\alpha, \gamma}(x ; q) C_{\gamma, \beta}(x ; q) \tag{5.9}
\end{align*}
$$

Just as in the case of binomial coefficients, it is directly shown that our $C_{\alpha, \beta}(x ; q)$ satisfy the following identity

$$
\begin{align*}
C_{\alpha, \gamma}(x ; q) C_{\gamma, \beta}(x ; q) & =C_{\alpha, \beta}(x ; q) \prod_{i, j} \frac{\left(q^{\gamma_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\alpha_{i}-\gamma_{i}}}{\left(q^{\gamma_{i}-\gamma_{j}+1} x_{i} / x_{j}\right)_{\alpha_{i}-\gamma_{i}}} \\
& =C_{\alpha, \beta}(x ; q) C_{\alpha-\beta, \alpha-\gamma}\left(1 / q^{\alpha} x ; q\right) \tag{5.10}
\end{align*}
$$

where $1 / q^{\alpha} x=\left(1 / q^{\alpha_{1}} x_{1}, \ldots, 1 / q^{\alpha_{n}} x_{n}\right)$. Hence we obtain

$$
\begin{align*}
& \sum_{\alpha \geqslant \gamma \geqslant \beta} \widetilde{f_{\alpha, \gamma}}(x) g_{\gamma, \beta}(x) \\
& =q^{-(|\alpha|-|\beta|)|\beta|} C_{\alpha, \beta}(x ; q) \times \\
& \quad \times \sum_{\alpha \geqslant \gamma \geqslant \beta}(-1)^{|\alpha|-|\gamma|} q^{-\left({ }^{|\alpha|-|\gamma|} 2_{2}\right)-(|\alpha|-|\gamma|)(|\gamma|-|\beta|)} C_{\alpha-\beta, \alpha-\gamma}\left(1 / q^{\alpha} x ; q\right) \tag{5.11}
\end{align*}
$$

Setting $\alpha-\beta=\lambda$ and $\alpha-\gamma=\mu$, the last summation can be rewritten in the form

$$
\begin{equation*}
\sum_{0 \leqslant \mu \leqslant \lambda}(-1)^{|\mu|} q^{|\mu|(1-|\lambda|)} q^{(\stackrel{|\mu|}{2})} C_{\lambda, \mu}\left(1 / q^{\alpha} x\right) \tag{5.12}
\end{equation*}
$$

Hence Lemma 5.1 is reduced to proving that this formula becomes zero. It is in fact a special case of the following analogue of the q-binomial theorem. (Replace x by $1 / q^{\alpha} x$ and set $u=q^{1-|\lambda|}$ in (5.13) below, to see that (5.12) becomes zero.)

PROPOSITION 5.2. For any $\lambda \in \mathbb{N}^{n}$, one has

$$
\begin{equation*}
\sum_{0 \leqslant \mu \leqslant \lambda}(-u)^{|\mu|} q^{\left(\frac{|\mu|}{2}\right)} C_{\lambda, \mu}(x ; q)=(u)_{|\lambda|} \tag{5.13}
\end{equation*}
$$

where u is an indeterminate.
Proof. This ' q-binomial theorem' follows from an identity for Macdonald's q difference operator $D_{z}(u ; t, q)$ in N variables $z=\left(z_{1}, \ldots, z_{N}\right)$ with $N=|\lambda|$. Since $D_{z}(u ; t, q) .1=(u)_{N}$, we have

$$
\begin{equation*}
\sum_{K \subset\{1, \ldots, N\}}(-u)^{|K|} q^{\binom{|K|}{2}} \prod_{k \in K ; l \notin K} \frac{1-q z_{k} / z_{l}}{1-z_{k} / z_{l}}=(u)_{N} . \tag{5.14}
\end{equation*}
$$

For a multi-index $\lambda \in \mathbb{N}^{n}$ with $|\lambda|=N$, let us specialize (5.14) at $z=p_{\lambda}(x)$ with the notation of (3.10). Note that, when we specialize z at $p_{\lambda}(x)$, the indexing set $\{1, \ldots, N\}$ is divided into n blocks with cardinality $\lambda_{1}, \ldots, \lambda_{n}$, respectively. Furthermore, for a configuration K of points in $\{1, \ldots, N\}$, the product $\prod_{k \in K ; l \notin K}(1-$ $\left.q z_{k} / z_{l}\right) /\left(1-z_{k} / z_{l}\right)$ becomes zero unless the elements of K should be packed to the left in each block. Such configurations K are parameterized by multi-indices $\mu \leqslant \lambda$ such that $|\mu|=|K|$ and that μ_{i} denotes the number of points of K sitting in the i th block for $i=1, \ldots, n$. For such a K, one has

$$
\begin{align*}
\left.\prod_{k \in K ; l \notin K} \frac{1-q z_{k} / z_{l}}{1-z_{k} / z_{l}}\right|_{z=p_{\lambda}(x)} & =\prod_{1 \leqslant i, j \leqslant n} \prod_{\mu_{i} \leqslant a<\lambda_{i} ; 0 \leqslant b<\mu_{j}} \frac{1-q^{a-b+1} x_{i} / x_{j}}{1-q^{a-b} x_{i} / x_{j}} \\
& =\prod_{1 \leqslant i, j \leqslant n} \frac{\left(q^{\lambda_{i}-\mu_{j}+1} x_{i} / x_{j}\right)_{\mu_{j}}}{\left(q^{\mu_{i}-\mu_{j}+1} x_{i} / x_{j}\right)_{\mu_{j}}}=C_{\lambda, \mu}(x ; q) \tag{5.15}
\end{align*}
$$

(The indices are renamed by $k \rightarrow(j, b), l \rightarrow(i, a)$.) Hence we obtain (5.13).
This completes the proof of formula (5.1).
Remark. 5.1. In the case of one variable, Equation (5.13) reduces the ordinary q-binomial theorem

$$
\sum_{k=0}^{l}(-1)^{k} q^{\binom{k}{2}} u^{k}\left[\begin{array}{l}
l \tag{5.16}\\
k
\end{array}\right]_{q}=(u)_{l}
$$

If we take the coefficient of u^{k} in formula (5.13), we obtain

$$
\sum_{\mu \leqslant \lambda,|\mu|=k} \prod_{j=1}^{n}\left[\begin{array}{l}
\lambda_{j} \tag{5.17}\\
\mu_{j}
\end{array}\right]_{q} \prod_{i \neq j} \frac{\left(q^{\lambda_{i}-\mu_{j}+1} x_{i} / x_{j}\right)_{\mu_{j}}}{\left(q^{\mu_{i}-\mu_{j}+1} x_{i} / x_{j}\right)_{\mu_{j}}}=\left[\begin{array}{l}
|\lambda| \\
k
\end{array}\right]_{q},
$$

for $k=0,1, \ldots,|\lambda|$. This gives a generalization of the q-Chu-Vandermonde formula. From (5.13), we also obtain another type of q-Chu-Vandermonde formula for our $C_{\alpha, \beta}(x ; q)$

$$
\sum_{\mu \leqslant \alpha, v \leqslant \beta,|\mu|+|\nu|=k} q^{(|\alpha|+|\mu|)|\nu|} C_{\alpha, \mu}(x ; q) C_{\beta, v}(x ; q)=\left[\begin{array}{c}
|\alpha|+|\beta| \tag{5.18}\\
k
\end{array}\right]_{q}
$$

6. Determination of $\boldsymbol{b}_{\boldsymbol{\alpha}}^{(\boldsymbol{m})}(x)$

We have already proved that our raising operator

$$
\begin{equation*}
B_{m}=\sum_{|\gamma| \leqslant m} b_{\gamma}^{(m)}(x) T_{q, x}^{\gamma} \tag{6.1}
\end{equation*}
$$

of row type for Macdonald polynomials has an expression

$$
\begin{equation*}
B_{m}=\sum_{|\alpha|=m} b_{\alpha}^{(m)}(x) \phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right) \tag{6.2}
\end{equation*}
$$

with the q-difference operators $\phi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)$ of (5.1). In this section, we give explicit formulas for $b_{\alpha}^{(m)}(x)$ for all α with $|\alpha|=m$.

As we already remarked in Section 4, the coefficients $b_{\alpha}^{(m)}(x)(|\alpha|=m)$ are determined by

$$
\begin{equation*}
b_{\alpha}(x)=\Psi\left(x ; p_{\alpha}(x)\right) \prod_{1 \leqslant i, j \leqslant n}\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}^{-1} \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(x ; y)=\frac{1}{y_{1} \ldots y_{n}} D_{y}(1 ; t, q) \prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+x_{i} y_{j}\right) \tag{6.4}
\end{equation*}
$$

(See (4.25).) Recall that

$$
\begin{aligned}
\Psi(x ; y)= & \frac{1}{y_{1} \cdots y_{m}} \sum_{K \in\{1, \ldots m\}}(-1)^{|K|} q^{\binom{|K|}{2}} \prod_{k \in K, l \notin K} \frac{1-q y_{k} / y_{l}}{1-y_{k} / y_{l}} \times \\
& \times \prod_{i=1}^{n}\left\{\prod_{k \in K}\left(1+t x_{i} y_{k}\right) \prod_{l \notin K}\left(1+x_{i} y_{l}\right)\right\} .
\end{aligned}
$$

We specialize this formula at $y=p_{\alpha}(x)$ for each α with $|\alpha|=m$, in the same way as we did in the proof of Proposition 5.2. All the subsets K that give rise to nonzero summands after the specialization $y=p_{\alpha}(x)$ are parameterized by the multi-indices β such that $\beta \leqslant \alpha$ and $|\beta|=K$. With this parameterization, we already showed that

$$
\begin{equation*}
\left.\prod_{k \in K, l \notin K} \frac{1-q y_{k} / y_{l}}{1-y_{k} / y_{l}}\right|_{y=p_{\alpha}(x)}=C_{\alpha, \beta}(x ; q) \tag{6.5}
\end{equation*}
$$

Renaming the indices by $k \rightarrow(j, b)$, we have

$$
\begin{align*}
& \prod_{i=1}^{n}\left\{\prod_{k \in K}\left(1+t x_{i} y_{k}\right) \prod_{l \notin K}\left(1+x_{i} y_{l}\right)\right\} \\
& \quad=\prod_{1 \leqslant i, j \leqslant n} \prod_{b=0}^{\beta_{j}-1}\left(1-t q^{-b} x_{i} / x_{j}\right) \prod_{b=\beta_{j}}^{\alpha_{j}-1}\left(1-q^{-b} x_{i} / x_{j}\right) \\
& \quad=\prod_{1 \leqslant i, j \leqslant n}\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}} \tag{6.6}
\end{align*}
$$

Hence we have

$$
\begin{aligned}
\Psi\left(x ; p_{\alpha}(x)\right)= & (-1)^{m} q^{\sum_{i}\binom{\alpha_{i}}{2}} x^{\alpha} \sum_{\beta \leqslant \alpha}(-1)^{|\beta|} q^{\binom{|\beta|}{2}} C_{\alpha, \beta}(x ; q) \times \\
& \times \prod_{1 \leqslant i, j \leqslant n}\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}
\end{aligned}
$$

By (6.3), we finally obtain

$$
\begin{aligned}
b_{\alpha}^{(m)}(x)= & q^{\sum_{i}\binom{\alpha_{i}}{2}} x^{\alpha} \sum_{\beta \leqslant \alpha}(-1)^{|\alpha|-|\beta|} q^{\binom{|\beta|}{2}} C_{\alpha, \beta}(x ; q) \times \\
& \times \prod_{1 \leqslant i, j \leqslant n} \frac{\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}}{\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}} \\
= & q^{\sum_{i}\binom{\alpha_{i}}{2}} x^{\alpha} \sum_{\beta \leqslant \alpha}(-1)^{|\alpha|-|\beta|} q^{\binom{|\beta|}{2}} \times \\
& \times \prod_{1 \leqslant i, j \leqslant n} \frac{\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}}{\left(q^{\beta_{i}-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{\alpha_{i} \alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}}
\end{aligned}
$$

for any α with $|\alpha|=m$. This completes the proof of Theorem 1.2.

Notes added

After finishing this work, Prof. C. Krattenthaller kindly gave us a comment that formula (1.12) is a special case of the ${ }_{6} \phi_{6}$ Bailey summation theorem in $\operatorname{SU}(n)$ due to R. A. Gustafson [1]. Dr. M. Schlosser also pointed out that (1.13) is precisely Theorem 5.44 in S. C. Milne [7]. We are grateful for their comments. We also remark that lowering operators of row type can be constructed by the method of this paper. For each $m=1,2, \ldots$, we consider the following q-difference operator $A_{m}=\sum_{|\alpha|=m} a_{\alpha}^{(m)}(x) \psi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)$, with

$$
\psi_{\alpha}^{(m)}\left(x ; T_{q, x}\right)=\sum_{\beta \leqslant \alpha} q^{-(|\alpha|-|\beta|)} \phi_{\alpha, \beta}^{(m)}(x) T_{q, x}^{\beta}
$$

where the coefficients $a_{\alpha}^{(m)}(x)$ are defined by

$$
\begin{aligned}
a_{\alpha}^{(m)}(x)= & (-1)^{m} q^{\sum_{i}\binom{\alpha_{i}}{2}} x^{-\alpha} \sum_{\beta \leqslant \alpha}\left(-q^{-n} t^{1-m}\right)^{|\beta|} q^{\binom{|\beta|}{2}} C_{\alpha, \beta}(x ; q) \times \\
& \times \prod_{i, j} \frac{\left(t q^{-\beta_{j}+1} x_{i} / x_{j}\right)_{\beta_{j}}\left(q^{-\alpha_{i}+1} x_{i} / x_{j}\right)_{\alpha_{j}-\beta_{j}}}{\left(q^{\alpha_{i}-\alpha_{j}+1} x_{i} / x_{j}\right)_{\alpha_{j}}}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& A_{m} J_{\lambda}(x ; q, t)=a_{\lambda}^{m} J_{\lambda-(m)}(x ; q, t), \\
& a_{\lambda}^{m}=\prod_{i=1}^{m}\left(1-t^{\left(\lambda^{\prime}\right)_{i}} q^{m-i}\right)\left(1-t^{\left(\lambda^{\prime}\right)_{i}-n-1} q^{1-i}\right),
\end{aligned}
$$

for any λ with $\lambda_{1} \leqslant m$, where $\lambda-(m)=\left(\lambda_{2}, \lambda_{3}, \ldots\right)$.

References

1. Gustafson, R. A.: Multilateral summation theorem for ordinary and basic hypergeometric series in $U(n)$, SIAM J. Math. Anal. 18 (1987), 1576-1596.
2. Jing, N.: Vertex operators and Hall-Littlewood symmetric functions, Adv. in Math. 87 (1991), 226-248.
3. Jing, N. and Jozefiak, T.: A formula for two-row Macdonald functions, Duke Math. J. 67(2) (1992), 377-385.
4. Kirillov, A. N. and Noumi, M.: q-difference raising operators for Macdonald Polynomials and the integrality of transution coefficients, Preprint, q-alg/9605005.
5. Kirillov, A. N. and Noumi, M.: Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93(1) (1998), 1-39.
6. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd edn, Oxford Univ Press, 1995.
7. Milne, S. C.: Balanced ${ }_{3} \phi_{2}$ summation formulas for $U(n)$ basic hypergeometric series, $A d v$. in Math. to appear.
