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1. Introduction

Throughout this paper, we denote BBy(x; g, ¢) the integral form of Macdonald’s
symmetric polynomial im variablesx = (xy, ..., x,) (of type A,,_1) associated
with a partition A ([6]). For eachm = 0,1,2, ..., we consider a;-difference
operatorB,, which should satisfy the following conditiofffor any partition A =
(A1, A2, ...) whose longest partt; has length< m, one has

Jm, ('x7 ’ t)’ If Z()") <n,
By Ji(xiqg.n =] "1 (1.1)
0. if (0 =n,

where(m, 1) = (m, A1, A, ...) Stands for the partition obtained by adding a row
of lengthm to A. An operatorB,, having this property will be called eaising
operator of row typdor Macdonald polynomials. With such operators, the Mac-
donald polynomial/; (x; g, t) for a general partitiol. = (A1, Ao, ..., A,) can be
expressed as

By Bs,... B, 1=J(xiq.1), (A=A >---2 4, 20). (1.2)

Namely, one can obtaid; (x; ¢, t) by an successive application of the operators
B,, starting fromJy(x; ¢, t) = 1.

The purpose of this paper is to give an explicit construction of such ope#jors
(m=0,12,...). These operator8,, can be considered asdaal versionof the
raising operatorsf column typentroduced by A. N. Kirillov and the second author
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[4, 5]. We remark that, as to the Hall-Littlewood polynomials (the case when
0), such a class of raising operat@g of row type has been implicitly employed
in Macdonald [6], Chapter IIl, (2.14)

Bm=(1—t)2n:x;“ 12— ., (1.3)
i=1

jei TN

form =1,2,..., whereTp,, is the ‘0-shift operator’ inx;, namely, the substitution

of zero forx;. Our raising operators of row type for Macdonald polynomials can be

considered as a generalization of these operators for Hall-Littlewood polynomials.
We will propose first a theorem of unique existence for raising operators of row

type. For each multi-index = (a4, ..., «,) € N", we sefja| = a1+ - - -+, and
x¢ = )Cfl e len’ Tqa,x — T;fil e quf')’cn, (14)

whereT, ,, is theg-shift operator iny;, defined by

Tq,x,‘f(xl,--~7-xi’~~~7-xn) = f(xl’---aqxia~--axn)’ (15)

fori =1,...,n.

THEOREM 1.1. For eachm = 0,1, 2,..., there exists a unique-difference
operator

B, = Z b ()T, (1.6)

lyl<m

of order < m satisfying the conditioril.1), whereb(y’”)(x) are rational functions
in x with coefficients ifQ(q, ¢). Furthermore, the operatoB,, is invariant under
the action of the symmetric group, of degreen.

We will also determine the operat®,, explicitly by an interpolation method.
In the following, we use the notatian < g for the partial ordering of multi-indices
defined by

a<Bsa<p (=1...,n). .7

In order to describe the coefficients of our raising operators, we introduce a variant
of g-binomial coefficient€, z(x; ¢) including the variables = (x4, ..., x,). For

any pair(a, 8) of multi-indices such that > 8, we set

(g% Pithx; [x))g,

(qﬂi*ﬂ_/+lxi /x,/)/ffj

Caplxiq) = ]

1<, j<n

_ ﬁ (qaj—ﬁj-i-l)ﬁ/ (qai_ﬁj+lxi/xj)ﬂ_/ (l 8)
j:l (q)ﬁl l#] (qﬁifﬂ/‘l’lxi /X])ﬂ/ )
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with the notation(a); = (a; ¢)x = (L—a)(l—agq) - - - (1—ag*™1) of theg-shifted
factorial. We remark that, it = 1, C, g(x; ¢) reduce to the ordinary-binomial

coefficients[z ] .
q

THEOREM 1.2. Theg-difference operatomB,, of Theoreml.1 can be expressed

in the form

By= Y b (x)pl" (x: Ty, (1.9)

la|=m

where

@) = (—1)“lgZ (Dx 3 (—1)flg(2) ¢, p(x1 g) x

B<La
y ﬁ (tq*ﬂ_/Jrlxi/:C.j_)aﬁ.]ff*aﬂrlxi/x./)aj_ﬁj (110)
=t (@ ™TXi X))o
and
_ lee|—|Bl+1
S (i Ty) = Y (=D=BgTED e, s ) TE (1.11)
B<a

for eacha with || = m.

In the course of the proof of Theorem 1.2, we will make use of a variant of
theg-binomial theorentor our C,, s (x; ¢), which might also deserve attention (see
Proposition 5.2 in Section 5).

THEOREM 1.3. For anya € N, one has
181
> 0P, pxs @ = (). (1.12)
B<La

We remark that formula (1.12) also implies a generalizatiop-Ghu-Vandermonde
formulas

e (g% Pithx;/x})p, n
! = , 1.13
Z 1_[ |: :| 1_[ (qﬂiiﬁj‘klxi/xj)ﬁj , ( )

. ; ., r
B<a,|Bl=r j=1 ’B/ q i#i

for anya with |a| = n and 0< r < n.

After recalling some basic facts about Macdonald polynomials in Section 2,
we will prove the uniqueness and the existence of raising operators of row type
in Section 3 and in Section 4, respectively. Explicit formulas fordkdifference

https://doi.org/10.1023/A:1001771421176 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001771421176

122 YASUSHI KAJIHARA AND MASATOSHI NOUMI

operatorsp™ (x; T, ) and the coefficients™ (x) (|| = m) of Theorem 1.2 will
be given in Section 5 and in Section 6, respectively.

2. Macdonald Polynomials

In order to fix the notation, we recall some basic facts about Macdonald’s symmet-
ric polynomials of typeA,,_;. For the details see [6].

Let K[x] = K[x1, x2, ..., x,] be the ring of polynomials im variablesx =
(x1, X2, ..., x,) With coefficients inK = Q(q, t), andK[x]®" the subring of all
invariant polynomials under the natural action of the symmetric g@®upf degree
n.

Macdonald’s commuting family of-difference operator®;, Dy, ..., D, is
defined by the generating function

D.(u;q,1) = Y (—u)'D,

K tx;/
= Z (—u) K1£(3) 1_[ _;/;j] 1_[ - 2.1)

Kc{l,...n} iek,j¢K iek

Note thatD, (u; g, t) has the determinantal formula

1 n—i n—i
Dy(u;q,1) = mdeitx., L= ut""Ty 1)),
= LS e ([T @ wit 2.2
= AW w)w | X; u g.xi) | .
weS, i=1
where A(x) = Hi<j(x,~ — x;). Macdonald’s symmetric polynomialB; (x) =
P, (x: g, t) are the joint eigenfunctions of the operatdbs, . .., D, on K[x]®

satisfying the equations

D, (u)Py(x) = P(x) [ [ = ug™'e" ™), (2.3)

i=1
each P, (x) is normalized so that the coefficient f should be equal to 1. The
integral formJ, (x) = J,(x; g, t) of P,(x) is defined as
Lx:iq.0) = Pxiqg.n), o =]]d-g WO, (2.4)
SEA

It is known in fact thatJ, (x) are linear combinations of monomial symmetric
functions with coefficients iZ[g, t] (see [4] for example).
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We recall that the Macdonald polynomials have the generating function

H 1‘[<1+xy,)—ZPA<x a4, 0Py (y; 1, q), (2.5)
i=1 j=1
for another set of variables = (y4, ..., y,), whered’ stands for the conjugate

partition of A, and the summation is taken over all partitionsuch that (A") =

A < m, l(A) = XMy < n. This formula will be the key to our study of raising
operators of row type. Notice that the dual version of the generation function (2.5)
has been employed in [4] for the construction of raising operators of column type.

3. Raising Operators of Row Type and their Uniqueness

Fixing a nonnegative integet, we will prove in this section the uniqueness of a
g-difference operator

= ) b@Tr, GBIk e K@), (3.1)

ly|<m
of order< m such that

T @i g, 1), I 1Y) <m,1(0) < n,
Budixiq.) =1 ™" (3.2)
0, if I\)<<m,I(A)=n,

where(m, L) = (m, A1, Ao, ...). We remark that the invariance &, under the
action of&,, follows immediately from the uniqueness theorem. Existence of such
an operator will be established in the next section.

LEMMA 3.1. A g-difference operatoB,, of order < m in the form(3.1) satisfies
the condition(3.2) if and only if the following equality holds

Bml_[l_[<1+x,y,>— o D o [TTTa+xy). (3.3)
i=1 j=1 i=1 j=1
Proof. Note first that, for each partition = (u1, ..., ) of length< m, one
has
1
—D,(Lt,q)P.(y; 1, q)
Y1 Ym

Py it )| [(L—gq™ "), if p, >0,
_ [l 34)

o, if w,=0.
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Hence we obtain

D y(1s ¢, q)l_[ l_[(l—i-xy]

yi- i=1 j=1

m
= Y PAg.DPranGitg) [[@—-g" ")

L(W)<n, [(V)=m i=1

m

= Y PangnPuGitg) [[A—g" ¥, (35)

IM<n—=L1'"(A)<m i=1
This implies that Equation (3.3) is equivalent to the condition
0, (f i) =n),

B,P(x;q,t) = m o ) 3.6
D=0 b g o] JA - g, 10y <m, O

i=1
for any A with /(A") < m. Itis easily seen that this coincides with condition (3.2)
in terms of the integral forms. a
By making the action oD, (1; ¢, ¢) in (3.3) explicit, we obtain

PROPOSITION 3.1.A ¢-difference operatoB,, of order < m is a raising oper-
ator of row type for Macdonald polynomials if and only if its coefficients satisfy the
following identity of rational functions

m l+ i
> oo [T [1HE

ly|<m i=1 j=1

1—gw/n 1+ txiyx
< ] ]_[ [[—— (3.7)
keK,IgK 1=e/y i=1 kek L4 xiy

Remark3.1. By the determinantal representation/af(1; ¢, ¢), equality (3.7)
can also be rewritten in the form

m 1+4q"xy;
S b1 Ty

lyI<m i=1 j=1

1 _ 1+1txy;
= ————det{y" " (1-g¢" | | — . (3.8)
Yieo YmA®Y) ( ! ( 11 Ttxyi )],
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Let now B and B’ be twog-difference operators of ordet m and suppose that
they both satisfy the condition (3.2) of raising operators. Then by Lemma 3.1 one
has

B.—B)[[]]A+xy) =0 (3.9)

i=1 j=1
Hence the uniqueness Bf, of Theorem 1.1 follows immediately from the follow-
ing general proposition og-difference operators.
PROPOSITION 3.2Let P = X, <na, (x)T, . be ag-difference operator of order
< m with coefficients irK(x).

@ If P [Ty [1/22(1 + xi;) = O, thenP = 0 as ag-difference operator.
(b) If Pf(x) = O for any symmetric polynomiaf (x) € K[x]®" of degree< mn,
then P = 0 as ag-difference operator.

Since the statement (b) follows from (a), we give a proof of (a) of Proposition. For
each multi-indexx € N" with |«| = m, we define a poinp, (x) € K(x)" by

Pa(X) = (—1/x1, —1/gxq,..., —1/q°‘1*lx1, e
—1/x,, —1/gx,, ..., —1/q% 1x,). (3.10)

Then we have

LEMMA 3.2. For any multi-indexy € N”, one has

n m
1_[ 1_[(1 +q"xi Y ) y=po )

i=1 j=1

n n O(jfl

=[TITIJTT@a-a""x/xp

i=1 j=1 v=0

= (@" X /x))a, - (3.11)

1<i, j<n
In particular, one had [;_; [T}y (1 +¢"xiyj)|y=p.x) = Ounlessy > a.

Under the assumption of Proposition 3.2(a), we may assumehat # 0 for
somea € N" with |«| = m without loosing generality. (I is of order! < m, set

yii1 = -+ = yn, = 0 and apply the following argument by replacimgoy [.) The
assumption orP implies
da,@]]]]a+q"xy) =0. (3.12)

lyl<m i=1j=1
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Evaluating this equality at = p, (x), we have

a () [T @ xi/x)e, =0, (3.13)

1<i j<n

by Lemma 3.2, since, ify| < m andy > «, theny = «. This contradicts to
the assumptiom, (x) # 0. This completes the proofs of Proposition 3.2 and the
uniqueness oB,, in Theorem 1.1.

4. Existence ofB,

In this section, we discuss the existence of a raising opeBator
We begin with a lemma which will play an important role in the following
argument.

LEMMA 4.1. Let F(y) € K(x)[y]®" be a symmetric polynomial in= (ys, ...,
ym) With coefficients ifK(x), and suppose that (y) is of degree< n — 1in y; for
eachj =1,...,m. If F(p,(x)) = Ofor all « € N* with |«| = m, thenF(y) is
identically zero as a polynomial in.

Proof. We prove Lemma by the induction on. The case whem = 1 is
obvious sincer (y) is of degree< n—1 and has distinct zeros-1/x4, ..., —1/x,.
Form > 2, we first expand-(y) in terms ofy,, as follows

n—1
FO) =FO1ooym) =Y Fi( s Y1) (4.1)
i=0

where each coefficienf;(y1, ..., y,—1) hasdegreec n — Linally; (j =1,...,
m — 1). Let € N" a multi-index with|8| = m — 1 and consider the polynomial

n—1

fOm) = F(pp(), ym) = D Fi(pp(0))yl,, (4.2)

i=0

by evaluatingF (y) at (y1, ..., yn—1) = pg(x). From the assumption oA (y),
it follows that the polynomialf(y,,) hasn distinct zerosy,, = —1/¢%x; (i =
1,...,n). Hencef(y,) is identically O as a polynomial im,,. This implies that
Fi(pg(x)) = 0foreachi =0,...,m — 1 and for anyg € N" with [8] =m — 1.
By the induction hypothesis, we conclude that the coefficidhtsy, ..., yu_1)
are identically zero as polynomials (g1, ..., y._1), namely,F(y) is identically
zero as a polynomial in = (y1, ..., Yim)- O

In view of Lemma 3.1, we propose to construet-difference operator

B= Y by(0)T, (4.3)

la|<m
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of order< m such that

n

B [T [TA+xiy) = L o L) [TTTA@+xy). (4.4)
i=1 j=1

Yi-.-Ym i=1 j=1

In the following, we denote the left-hand side and the right-hand side of this equal-
ity by ®(x; y) and by W (x; y), respectively. In terms of the coefficienbs(x),
d(x; y) is expressed as

O(x;y) = Y b []]A+ g% xiy. (4.5)

la|<m i=1 j=1

Note also thatl (x; y) is a polynomial iny = (y4, ..., y,) and has degre€ n — 1
in eachy; (j = 1,...,m) as can be seen from (3.4). Hence, by Lemma 4.1, we
see thatB satisfies the desired equality if and only if

(1) ®(x;y) is of degree< n — lineachy; for j =1,..., m.
(2) ©(x; po(x)) = W(x; pe(x)) for all « € N" with |«| = m.

Suppose now that the operatBrhas the property (1) mentioned above. Since
the degree ofb (x; y) in y; is less tham for eachj = 1, ..., m, we have

(s ) [ [TTA+ %90 ™ i ooryu—oo = O. (4.6)
i=1j=1

Hence by (4.5) we obtain
Y by(x)g" =0, Qe bo(x)=— ) ba(x)g"". (4.7)
la|<m O<|a|<m
This implies thatB can be represent as
B= Y by(x)(Ty, —q"™. (4.8)
1<la|<m

Note that a genera® of order< m has an expression of this form if and only if

n m

Fix;yn) = @0 ) [ [ JA+ %) o o00ymsoo (4.9)
i=1 j=1

is of degree< n — 1 in y;. We now show inductively that, fdr=0,1,...,m, B
can be represented as follows

B= Y byx)ralx,T,), (4.10)

I< | <m
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where
Pra@. T, =T8 + Y Grap®TL,. (4.11)
B<a,|Bl<l

Assume that we have constructed such an expressidnfitih / < m. Note that

n

O(x;y) = Y ba<x><]_[ [Ja+q“xyp+

I<|a|<m i=1 j=1
+ > bras®]] 1‘[<1+qﬂfxiyj>>. (4.12)
B<a, 1B1<l i=1 j=1
Since property (1) ofb (x; y) implies
CD(X; Y) l_[ l_[ (1 + xiyj)_l|y1+1—>oo,...,ym—>oo = 0, (413)
i=1 j=I+1

we obtain the relation

n I
> ba(X)(q“'(’"’) [TT]A+q%xyp)+

I<|a|<m i=1 j=1

n 1
S ¢l;a,ﬁ<x>qﬂ<'"”1‘[1‘[<1+qﬂfx,~yj>)=o. (4.14)

B<a, |Bl<I i=1j=1

In this formula we consider to specializé = (y1,...,y) at p,(x), with the
notation of (3.10), for each with |y| = 1. By Lemma 3.2

n l
[TTIQ+d%xyply=p, =0,
i=1 j=1
unlessg > y. Hence formula (4.14) with’ = p,, (x) gives rise to

by(x)ql(mfl) 1_[ (q)/i*}’_/+lxi/xj)yj+

1<i,j<n

+ Y ba()g“ " [T @77 xi/xp), =0 (4.15)

lor|>1 1<i j<n

From this we have

by () == ba () Py (¥), (4.16)

o>y
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where

ai=vitly. /x.
Yy () = ge=0o=rD T @™ xi /X))y,
24 (qyﬁyﬁrlxi/xj)yj

1<i,j<n
= q(‘o"_”")(”’_‘y‘)Ca,y(x;q), (4.17)
with the notation of (1.8). Note that, , (x) depends om but doeshoton B. Thus
we obtain
B = Z by(X)(P[;y(X, Tq,x) + Z ba(x)¢l;a(xv Tq,x)
ly|=l I<|a|<m
= D baMriralx, Ty, (4.18)
[+1<|a|<m

whereg; 1.4 (x, T, ) ([ + 1 < |a| < m) are determined by

¢l+l;oz(-x’ Tq,x) = ¢l;a(x’ Tq,x) - Z wa,y(x)(pl:y(-xv Tq,x)- (419)

y<a,|y|=l

In other words, the coefficients ¢f, 1., (x; 7, ) are determined by the recurrence
formula

Bt p() = Grap) — D Vuy (D1 p(x) (4.20)

B<y<a,lyl=l

for all 8 such that8 < « and|B| < [. In this induction procedure, it is also seen
by Lemma 4.1 that a gener&l of order< m has an expression of this form (4.10)
with (4.11) if and only if

Fi(x;y, o0, ym) = @(x5y) 1_[ 1_[(1 + xiyj)illyl_kl—wo,...,ym—mo (421)

i=1 j=1

is of degree< n —1iny; foreachj =1,...,1.

In this way, we can define thedifference operatorg;.. (x; T, ) (I < |a| < m)
forl = 0,...,m, inductively on/ by (4.19). Note that these operators depend on
the m that we have fixed in advance, but dot on the operatoB. By using the
operators we obtained at the final step m, we have the expression

B= Y by(x)p{" (x: Tp), (4.22)

la|=m

for B, whereg™ (x; T, ) = ¢ma(x; Ty 1) -
From this construction, we obtain the following proposition.
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PROPOSITION 4.1.For eacha € N" with |«| = m, define theg-difference
operator ¢{™ (x; T, ) as above. Then, for any-difference operatorB of order
< m with coefficients irfK(x), the following two conditions are equivalent.

(@ @(x;y) = B [[i_y [1721(1 + x;y)) is of degree< n — 1in y; for each

j=1...,m.
(b) B is represented as
B= )" ba(0)${" (x; T,0), (4.23)
loe|=m

for someb, (x) € K(x).

We now consider g-difference operatoB of the form Proposition 4.1, (b), so
that® (x; y) is of degree< n — 1in eachy; (j = 1,...,m). With W (x; y) being
the right-hand side of (4.4), the equali®(x; y) = ¥(x; y) holds if and only if
D(x; pe(x)) = ¥(x; p, (x)) for anya with |«| = m, as we remarked before. Since

D(x; pa(x)) =ba(x) [T @ xi/x))a;, (4.24)

1<i j<n

by Lemma 3.2, the coefficients, (x) are determined as

ba(x) = W(x; pax)  [] @ xi/x)5 (4.25)

1<i,j<n

for all « with |a| = m. This completes the proof of existence of a raising operator
B,,.
From the recurrence formula (4.20) we see that, foranyith I < |«| < m,
the coefficientsp;., s(x) of ¢y.o(x; T, ) are expressed as

¢l;a,ﬂ(x)

l
= Z(_l)r Z Wa,yl(x)wyl,yg(x) T Wy,_l,yr (x)’ (426)
r=1

a>y1>-->yr=fily1l<l

for all 8 with 8 < «, || < I. In particular, we have

PROPOSITION 4.2.For any pair («a, 8) of multi-indices withg < «, define a
rational functiony,"y (x) by

Yy = gl e, (x: g)

= gle-en-ig T (g Xi/Xj)p;
i —Bi+1,. . .
1<i,j<n (qP=Prixi [x ),

ai—Bj+1

(4.27)
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Then, for anyr € N" with |«| = m, the coefficients of the-difference operator
G Tya) = Y by (TL, (4.28)
B<a

are determined by the formula

o) (x) = Z( i A € RERE G €O} (4.29)

a=yp>y1>...>yr=p
where the summation is taken over all paths in the lafi€eonnectingx and 8.

In the next section, we will give explicit formulas for these coefficie;tifg(x).

5. Explicit Formulas for ¢%" (x; T qx)

The goal of this section is to give the explicit formula

$ (i Ty = > (DG (s ) TY, (5.1)

B

for o™ (x, T, ) (l¢| = m) as in Theorem 1.2. With the notation of Proposition 4.2,
this formula is equivalent to

¢( (X) — (_1)\0!|*\/3‘q(‘a‘7|2m+1)Ca)ﬁ(x;q)

gl (ll-lBI+L (g% Fitx;i /x;)p,
= (—Dl g2 — (5.2)
1<1i,_j[<n (g ﬁ’+lxi/xj)ﬂ_/
forp <a
In view of the dependence axf;f’/'g) (x) onm (see Proposition 4.2), we define a
function g, g (x) by

Gup(x) = g WTEVPLC, 4 (x; q), (5.3)

for anye, p € N" with # < «, so thaty,"y (x) = g(#I=Bm g, 4(x). With these
8« p(x), we also define a functiog, z(x), by

lee|—1B]
fap@ =D D" Y g gy (), (5.4)
r=0 a=yo>y1>...>yr=p

foranya, 8 € N* with 8 < «. Then by Proposition 4.2 we have

30" (x) = g« £, o (x) (5.5)
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if | = m andpB < «. Hence, the formula (5.2) follows from the following
proposition.

PROPOSITION 5.1 Define the rational functiong, s (x) (8 < «) by the formulas
(5.4) together with(5.3). Then they can be determined as

fupx) = (_1)|a\—|/3|q—(“"E'ﬁ‘)—(la\—lﬁl)lﬁlCa’ﬁ(x; 9) (5.6)
foranya, g with 8 < «.

For the proof of Proposition 5.1, notice that the functighg;(x) are defined
as the matrix elements of the inverse matrix of the lower unitriangular m@tex
(8a.5(x))q,p- Hence we have only to show the inverse matrix(ofis given by
G_l = (fa,ﬁ(x))a,ﬂ with

Fapx) = (_1)Ia\—I/Slq—(‘“‘E'ﬂ‘)—(la\—lﬁl)lﬁlCa’ﬂ(x; 9). (5.7)
Proposition 5.1 thus reduces to

LEMMAS.1. Foranya, 8 witha > 8, one has
Y fay(0)gyp(x) =0. (5.8)

azyzp

By the definition ofg, 4(x) and f, 4(x), we have
D Fay (0)8y5(x)

azyz2p
- Z (—1)lel= 171 = (5" ) =Aal=ly Dly 1=y I=1BDIBI 5
azyzp
XCaq,y(x;9)Cy p(x; q). (5.9)

Just as in the case of binomial coefficients, it is directly shown thaCpuKx; q)
satisfy the following identity
(qyi 7ﬂj+lx[ /xj)a,-—y,-

(qyj_yj—‘rlxi/xj)a,‘fyi

Cay (5 9)Cyp(x; ) = Cap(r;) ]|

iJ

= Cap(x;q) Co—pa—y(1/q°x; q), (5.10)
where ¥g¢%x = (1/¢%x1, ..., 1/¢* x,). Hence we obtain
7 Far®)gypx)
azy=p
= g~ (=IBDBIC, 4 (x; g)x
« Z (_1)Ia\flquf(‘“‘i'”)*(\alf\y\)(\y\flﬂl)Caiﬁ)aiy(l/qax; 9. (5.11)
azyz2p
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Settinge — B = A anda — y = u, the last summation can be rewritten in the form
3 (—Dhilg =g (D e, (1/g%x). (5.12)
0<pu<h

Hence Lemma 5.1 is reduced to proving that this formula becomes zero. It is in
fact a special case of the following analogue of 4heinomial theorem. (Replace
x by 1/¢%x and sets = ¢g~*! in (5.13) below, to see that (5.12) becomes zero.)

PROPOSITION 5.2 For any A € N”, one has
Z (—u)lu‘q(‘g‘)cx,u(x; q) = W), (5.13)
0<p<h

whereu is an indeterminate.
Proof. This ‘g-binomial theorem’ follows from an identity for Macdonaldjs

difference operatoD,(u; ¢, g) in N variablesz = (z1,...,zy) With N = |A|.
SinceD,(u; t, q).1 = (u)y, we have
1-—
Y Rl [ FIEE (), (5.14)
< ‘ 1—z/z
c{l,...N} keK:l¢K

For a multi-indexh. € N* with || = N, let us specialize (5.14) at= p, (x) with
the notation of (3.10). Note that, when we specializat p, (x), the indexing set
{1, ..., N} is divided inton blocks with cardinalityr,, ..., A,, respectively. Fur-
thermore, for a configuratiok of points in{1, ..., N}, the produc [, ., (1 —
qgzi/z1)/ (1 — zx/z;)) becomes zero unless the elementKoghould be packed to
the left in each block. Such configuratioksare parameterized by multi-indices
u < A such thatu| = |K| and thatu; denotes the number of points &f sitting

in theith block fori = 1, ..., n. For such &, one has

a—b+1

1—qz/ 1-— i/x;
[Mies - e

1 Zk/Zl
. <ii< < . 0< .
keK;l¢K 2=ps(x) 1<i, j<n pui<a<ii;0<b<py;

_ l—[ (@" X /X )
AL e,

(The indices are renamed by— (j, b),l — (i, a).) Hence we obtain (5.13).O

=C, . (x;q). (5.15)

This completes the proof of formula (5.1).

Remark5.1. In the case of one variable, Equation (5.13) reduces the ordinary
g-binomial theorem

1 . i
> (Dkg@ut {k } = (). (5.16)
q

k=0
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If we take the coefficient of* in formula (5.13), we obtain

n )\j (qli—ﬂj-i-lxl_/xj)w B |)\|
Z l_[ |: } 1_[ (q,ui*uj+lxi/xj)luj - k ) P (517)

unul=k j=1 L HJi 1g iz

fork =0,1,...,|A|. This gives a generalization of tlheChu—Vandermonde for-
mula. From (5.13), we also obtain another typgye€hu—Vandermonde formula
for our Cy g (x; q)

> q(la-‘rlu)vCa,M(X;Q)Cﬁ,v(XZQ):|:|a|:|18|i| . (5.18)
q

n<o,vS B, |l +Hvi=k

6. Determination of by” (x)
We have already proved that our raising operator
B, = Z bi ()T . (6.1)
lyl<m
of row type for Macdonald polynomials has an expression

Bu=Y_ b (x)pL" (x; Tyx), (6.2)

la|=m

with the g-difference operatorg™ (x; 7, ) of (5.1). In this section, we give ex-
plicit formulas forb(™ (x) for all & with || = m.

As we already remarked in Section 4, the coefficigff8(x) (ja| = m) are
determined by

ba(x) = W(x; pa(x) [ (@ xi/x)g (6.3)
1<i,j<n
where
1 n m
W(x;y) = Dy(Lit.g) [ ] JA+xiyp). (6.4)
Yi.--Yn i=1j=1

(See (4.25).) Recall that

S g™ T 1—gw/y

Y(x;y) =
Y1 Ym g A1 my keK,IgK 1=/
< [T TTA@+xivo [T +xim)
i=1 | kek 1¢K
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We specialize this formula at = p,(x) for eacha with |¢| = m, in the same
way as we did in the proof of Proposition 5.2. All the subsEtshat give rise to
nonzero summands after the specializatioa= p,(x) are parameterized by the
multi-indices 8 such thatg < « and|B| = K. With this parameterization, we
already showed that

1—
[T 2220 —cywa. (6.5)
kekdgk T+ e/ PN

Renaming the indices by — (j, b), we have

n

[Ti]]@+ o [Ja+xw

i=1 | kek I¢K

Bji—1 aj—1
= l_[ l_[(l—tq_bxi/xj)l_[(l—q_bxi/xj)

1<i.j<n b=0 b=p;
= l_[ (tq™ P i /x)p,(q ™ N /X ey, - (6.6)
1<i,j<n

Hence we have

W(x: ) = (~"g% Da Y (1)l (e, 5(x: g) x

B<La

X 1_[ (tqiﬂﬁlxi /%), (qia"drlxi /X )ejp;-
1<i,j<n
By (6.3), we finally obtain
b (x) = ¢Xi Dy Z(_l)‘“'*‘ﬂ‘q(‘g')Ca,,g(x;q) X

B

I1 (tq P42 /), (% /)y,

1<i,j<n (q* =i /X))o,

= ¢Z Dx 3 (1)1 (2)

B<a

l_[ (tg Pty /xj)p; (q ity /Xj)a;—p;
1<i j<n (qP=Pitxi /) 5, (%X /X Yo -,

for anya with || = m. This completes the proof of Theorem 1.2.
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Notes added

After finishing this work, Prof. C. Krattenthaller kindly gave us a comment that
formula (1.12) is a special case of tiyg Bailey summation theorem in SkJ) due

to R. A. Gustafson [1]. Dr. M. Schlosser also pointed out that (1.13) is precisely
Theorem 5.44 in S. C. Milne [7]. We are grateful for their comments. We also
remark that lowering operators of row type can be constructed by the method of
this paper. For each = 1, 2, .. ., we consider the following-difference operator

A, = Zm:m aé’")(x)glfé’") (x; T, ), With

l’00((141)()6; Tq,x) — Zq*(la\*lﬂl)(pg)"ﬁ)(x)’rqf?x’

B<La
where the coefficients!™ (x) are defined by

aém)(x) — (_1)mq2i (azi)x—a Z(—q_"tl_m)lﬁlq(lg‘)Coz,ﬁ(X; q) X

B<La

(tq P xi /x )8, (i /X))y -,
<1

——)
i j (@™ Xi /X)),

Then we have

AmJA(X; q, t) = LZTJ)L_(,")(X; q, t),

m
a;ﬂ — 1_[(1 _ t(A/)iqm_i)(l _ t(A/)i_n_lql_i),

i=1

for any A with A, < m, wherex — (m) = (Ap, Az, ...).
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