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Abstract. Observations show that massive stars always form in clusters or associations, and that
the most massive stars form in the dense cores of large clusters. This suggests that accretion
processes in cluster cores may be responsible for the formation of stars. In addition, young
stellar clusters have been found to contain subclusters, so that star formation can be seen to be
a hierarchical process that involves clustering on a range of scales. In this paper, we propose a
fractal model of the parental molecular cloud, namely that of the Julia set given by f (z) = z2 +c,
where z and c are complex numbers and c = −0.745430+0.113008i, to explain this phenomenon
and the associated complex structures seen in star-forming regions.
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1. Introduction
Observations show that massive molecular clouds are sources of recent or ongoing star

formation, and that the most massive stars tend to form in the dense cores of large
clusters. Lower-mass clouds contain sites of low-mass stellar systems, as in Taurus and
Ophiuchus (Williams & McKee 1997). Many young stellar clusters have been found to
contain subclusters and, on the smallest scales, most stars are in multiple or binary
systems. Star formation can, therefore, be seen to be a hierarchical process that involves
clustering on a range of scales. A very good example of this type of clustering can be
seen in the Orion Nebula, where one such cluster is embedded in the Kleinmann–Low
infrared nebula and the other is in the Trapezium cluster.

Stars form in a hierarchy of clusters and subclusters in a molecular cloud, depending
on the amount of material available for star formation. This is borne out by the fact
that the mass of the most massive star present increases systematically with the mass of
the associated molecular cloud (Larson 1995). In addition, the mass of the most massive
star in a cluster is proportional to the total mass of stars and inversely proportional to
the number of stars in that cluster. Each level in a stellar hierarchy corresponds to a
fixed logarithmic interval in mass, with the number of stars in that hierarchy inversely
proportional to their mass.

Giant star–gas complexes (SGC), with sizes ranging from 170 to 700 pc, contain 90%
of star clusters with ages from 2 to 3×107 years, as well as molecular clouds with masses
from 105 to 106 M�. The larger ones contain 10 or more stellar groupings, with the
largest ones still having Hi cloud remnants. OB associations in SGCs are found to be
from 0.3 to 1.2 × 107 years old, with the older ones located towards the outer egdes. In
the inner regions of the SGCs are found OB associations with ages of less than 6.5× 106
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years, Hii regions, cloud clumps, clusters of early spectral types and young water masers.
An example is SCG 2, located in the Sagittarius arm (Sitnik 1990).

2. The initial mass function
In 1955, Salpeter showed that the number of stars, N , per unit logarithmic mass

interval in the solar neighbourhood followed the relation

dN

d log M
∝ M−1.35 , (2.1)

where M is the stellar mass (Salpeter 1955). This stellar initial mass function (IMF) was
later modified by Silk (1995), to include molecular clouds, into

dN(M)
dM

= AM−(1+γ ) , (2.2)

where dN(M) is the number of stars or cloud cores in the mass interval dM , γ = 1.5±0.3,
a range which includes the Salpeter IMF and A is a constant. Observational support for
the Salpeter IMF and its connection with its parental cloud has come from HST data
(Máız Apellániz 2001) and submillimetre observations (Clark et al. 2007).

3. The IMF and fractal molecular clouds
Old models of the IMF arising from molecular-cloud fragmentation, ambipolar diffu-

sion, stellar winds and collisions had to be abandoned because of insufficient evidence
(Chabrier 2003), leaving turbulence in the parental molecular cloud (Elmegreen & Scalo
2004) to be the only plausible explanation. In addition, a hierarchical stellar structure
is possible only from a fractal parental molecular cloud created from chaotic dynamics.
Evidence for the fractal structure of molecular clouds has been found by various authors
(e.g., Larson 1995; Elmegreen & Falgarone 1996; Kramer et al. 1998). It has been further
shown (Datta 2001, 2003, 2007) that fractal molecular-cloud structure is in the shape of
a Julia set given by

f(z) = z2 + c, (3.1)

where c = −0.745430 + 0.113008i, of average box dimension 1.67.

4. Relation between the IMF and fractal dimension
We now propose that there exists a connection between the box dimension of the

molecular cloud and the IMF (Equation 2.2) for molecular clouds. To make that connec-
tion, we look at the later stages of molecular-cloud evolution in the presence of strong
gravitational forces. At this stage, the cloud IMF is related to the core-mass function
(CMF; Goodwin et al. 2008) and our assumption of cloud cores to be spheres is reason-
able. In a large collection of such cores, as in a fractal, we can use the mean mass, Mc ,
to represent core masses in the range Mc ± dMc (law of large numbers). Replacing the
frequency by the number of cores, N(Mc), in the numerator of Equation (2.2) and taking
logarithms, we get

log N(Mc)/ log Mc = log A/ log Mc − γ. (4.1)
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We also know that the mass of the core is a function of the core radius, Rc , so substi-
tuting this we get

log N(Rc)
log 4/3πρR3

c
=

log A

log 4/3πρR3
c
− γ. (4.2)

Taking limits as Rc tends to zero and since 4/3πρ is a constant, we get

lim
R c →0

N(Rc)
log 1/Rc

= 3γ. (4.3)

From the definition of Kolmogorov (or Minkowski) dimension (Falconer 1997) given
by

D = lim
ε→0

sup
log N(ε)
log 1/ε

, (4.4)

where N(ε) is the minimum number of open balls of radius ε centred on points of a
nonempty compact subset of a metric space X covering the set and ‘sup’ is the supremum
(Datta 2003). Equation (4.4) is equivalent to the box dimension of the set or physical
object, as in our case. Comparing Equations (4.3) and (4.4), we get

D ≡ 3γ. (4.5)

Hence, the result.
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