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Abstract

First, we extend the notion of stratified spaces to diffeology. Then we characterise the subspace of
stratified differential forms, or zero-perverse forms in the sense of Goresky–MacPherson, which can
be extended smoothly into differential forms on the whole space. For that we introduce an index which
outlines the behaviour of the perverse forms on the neighbourhood of the singular strata.
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1. Introduction

Stratified spaces were introduced in the founding papers of Mather [16], Thom [22]
and Whitney [23]. From a pure differential point of view, the standard definition of
stratified spaces is unsatisfactory. The simple juxtaposition of the topological structure
of the global space, with the relatively independent smooth structures of the strata that
constitute the space, is perturbing, especially when it comes to Cartan calculus on
stratified spaces, for which a global smooth structure is obviously needed.

As differential geometers we expect a unique smooth structure on the whole object
that captures at the same time its global smooth structure, even stratified, and the
individual structure of each stratum. Diffeology is a good candidate for such a
framework [10], because it can mix a global singular smooth structure with individual
characteristics of the strata. Since the Cartan calculus is well developed in diffeology,
it will apply straightforwardly on stratified spaces.

Diffeology has already been used to solve questions involving singularities and
smooth structures. Examples include dense foliations [4, 13] or orbifolds [12, 14]
and, combined with differential forms, to integrate general closed 1- and 2-forms with
any countable group of periods [10, Sections 8.29 and 8.42] or in symplectic reduction
with singular orbits [11]. The dual approach to the global smooth structure was also
used to investigate differential structures by Pflaum [17] and Śniatycki [20].
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320 S. Gürer and P. Iglesias-Zemmour [2]

As we shall see in Section 2, it is not difficult to adapt the ordinary definition of
stratified spaces to diffeology. It is basically a diffeological space, with a stratification
for the D-topology (Sections 2.1 and 2.3). That definition leaves a large degree of
freedom on the balance between the diffeology and the stratification, since there can
be more than one diffeology on a space that gives the same D-topology. That leads us to
single out a subcategory of diffeological spaces for which the stratification is defined
by its geometry, that is, by the action of its pseudo-group of local diffeomorphisms
(Section 2.4). In this case, the stratification is completely encrypted in the diffeology:
the strata are the connected components of the orbits of the pseudo-group of local
diffeomorphisms. That defines a subcategory of diffeology we can call stratified
diffeology. Manifolds with corners are simple examples of such stratified diffeology
(see [8]). We leave the study of this subcategory of geometric stratified spaces for a
later time.

We now return to the question of Cartan calculus on stratified spaces. Since
diffeological spaces have a well-defined De Rham complex, stratified diffeological
spaces inherit this complex immediately. In the literature on stratified spaces, there
already exists a notion of ‘stratified (differential) form’ as the form of (general)
perversity p, according to Goresky and MacPherson [5, 6], and defined precisely by
Brylinski [3] and reconsidered by Brasselet et al. [1]. The aim of these authors is to
establish a pairing between a complex of singular intersection chains and the complex
of stratified forms with perversity p. These complexes of perverse forms are also
involved in the computation of the equivariant intersection cohomology, originally by
Brylinski, but also by Brion [2].

A natural question is to compare these two classes of objects: differential forms
versus stratified forms, beginning with perversity 0. That is the case we treat in
this paper. Stratified forms are defined only on the regular part of a stratified space,
with some conditions on the neighbourhood of the strata, while differential forms are
defined on the whole space [10, Section 6.28]. The question is then to characterise the
stratified forms that are the restriction of differential forms.

For that purpose we introduce an index that counts the number of different
differential forms defined on each strata (precisely, on the universal coverings of the
strata) by a given stratified form (Section 3.1). We show that if the form has index 1
for any stratum, then the stratified form extends to a differential form for the diffeology
involved (Section 3.2).

Conversely, assuming that for any two points in the regular subspace there always
exists a smooth path connecting them that cuts the singular subspace into a finite
number of points, we show that the restriction of a 0-perverse differential form has
its index constant and equal to 1 for each stratum (Section 3.2). The condition we
introduce here seems to be not optimal, but it is natural on the most common stratified
spaces, for example on semi-algebraic sets.

2. Stratified spaces
In this section we recall the standard definition of stratified spaces, in the style of

Kloeckner’s survey [15]. Then we recall the notion of diffeology and the associated
smooth category, leading to a natural version of stratified spaces in diffeology.
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2.1. Basic stratified spaces. A stratification on a diffeological space X is a partition
S of X into strata,

X =
⋃
S∈S

S, with S , S′ ⇒ S ∩ S′ = ∅,

satisfying the boundary condition

S ∩ S̄′ , ∅⇒ S ⊂ S̄′,

where S̄′ represents the closure of S′ for the D-topology of X [10, Section 2.8].
The boundary condition can be formulated as follows: the closure of a stratum is a

union of strata. In the usual case, where strata are manifolds, the strata are organised
by dimension and define a filtration:

X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk = X.

The subsets of the filtration X j are the unions of all the strata with dimension less than
or equal to a given dimension, let us say n j. The subset X j −X j−1 is open in X j and its
components are the strata of dimension n j. The subset Xk − Xk−1 is called the regular
part of X and is denoted by Xreg. It is the union of the strata of maximal dimension.
The subset Xk−1 is called the singular part and is denoted by Xsing.

For all j > 0, the subset X′ = X j of the filtration is itself a stratified space with
regular part X′reg = X j − X j−1. The subset X0 is the union of the strata of minimal
dimension. It is a stratified space without singular part.

In the following we shall assume that:

• the space X is connected, Hausdorff and metrisable;
• the regular part is an open dense subset;
• equipped with the subset diffeology, the strata are locally closed manifolds;
• the number of strata is finite.

In a future work it could be possible to ease these conditions.

2.2. Diffeology and diffeological spaces. A diffeology on a set X is the choice of a
setD of parametrisations in X which satisfies the following axioms.

(1) Covering: D contains the constant parametrisations.
(2) Locality: Let P be a parametrisation in X. If for all r ∈ dom(P) there is an open

neighbourhood V of r such that P � V ∈ D, then P ∈ D.
(3) Smooth compatibility: For all P ∈ D, for all F ∈ C∞(V, dom(P)), where V is a

Euclidean domain, P ◦ F ∈ D.

We recall that a parametrisation is a map defined on an open subset of a Euclidean
space. A set X equipped with a diffeology is a diffeological space. The elements ofD
are called plots of the diffeological space.

Smooth maps. A map f : X→ X′ is said to be smooth if for any plot P in X, f ◦ P is
a plot in X′. If f is smooth, bijective and its inverse f −1 is smooth, then f is said to be
a diffeomorphism.
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Diffeological spaces and smooth maps constitute the category diffeology whose
isomorphisms are diffeomorphisms.

Subset diffeology and subspaces. Let A be a subset of a diffeological space X.
The plots in X which take their values in A are a diffeology called subset diffeology.
Equipped with this diffeology, A is said to be a subspace of X.

Local smooth maps. The finest topology on X such that the plots are continuous is
called the D-topology. A map f : A→ X′, where A is a subset of X, is said to be a local
smooth map if A is a D-open subset of X and f is smooth for the subset diffeology.
We denote by C∞loc(X,X′) the set of local smooth maps from X to X′.

Actually, f is local smooth if and only if, for all plots P in X, the composite
f ◦ P: P−1(A)→ X′ is a plot. That implies in particular that A is D-open, by definition
of the D-topology.

Local diffeomorphisms. We say that f : A→ X′ is a local diffeomorphism if f , as
well as its inverse f −1 : f (A)→ X, are local smooth injective maps. We denote by
Diffloc(X,X′) the set of local diffeomorphisms from X to X′.

Diffeological fibration. We say that a smooth projection π : T→ B between
diffeological spaces is a diffeological fibration, or T is a diffeological fibre bundle over
B, if for all plots P: U→ B, the pullback pr1 : P∗(T)→ U is locally trivial (see [9] and
[10, Sections 8.8 and 8.9]).

2.3. Locally fibred stratified spaces. Consider a diffeological space X equipped
with a stratification S. The stratification is locally fibred if there exists a tube system
{πS : TS→ S)}S∈S (see Figure 1) such that:

(1) TS is an open neighbourhood of S, called a tube over S;
(2) the map πS : TS→ S is a smooth retraction which is a diffeological fibration,

with fibres the stratified spaces;
(3) for all x ∈ TS ∩ TS′ ∩ π−1

S′ (TS), one has πS(πS′(x)) = πS(x).

The locally cone-like stratified spaces are in this category, as are essentially all kinds
of stratified spaces (following Siebenmann [19]). However, in diffeology, this wording
is ambiguous. Indeed, not all kinds of diffeological spaces that look like cones are
equivalent, even if they share the same D-topology, as the following example shows.
Consider the cone

C =

{
(x, y, z) ∈ R3

∣∣∣∣∣ z =

√
x2 + y2

}
.

We can equip C with the subset diffeology and also with the diffeology of the cone
over the circle S1, that is, the pushforward of the diffeology of the cylinder, by

π : S1 × [0,∞)→ C with π(u, t) = (tu, t).

Then the parametrisation defined on R by

γ : s 7→ e−1/s2

cos 1/s2

sin 1/s2

1

 if s , 0 and γ(0) = 0
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Figure 1. Tubes around strata.

is a plot for C embedded in R3 but not for the cone over the circle, because the
parametrisation s 7→ (cos 1/s2, sin 1/s2) does not converge for s = 0.

2.4. Formal and geometric stratifications. The general definition of a diffeological
space leaves some room between the topological and the smooth conditions. The same
partition of a space can be a stratification for different diffeologies, since different
diffeologies can have the same D-topology, as the following examples show.

Example 2.1. Consider the real line R, equipped with the standard diffeology. We
define the strata

S− = (−∞, 0), S0 = {0} and S+ = (0,+∞)

and the tube system

TS± = S± with πS± : x 7→ x and TS0 = R with πS0 : x 7→ 0.

One can check that this describes a locally fibred stratified space.

Example 2.2. Consider the positive right angle L in R2 made up of points (x, y) such
that (x, y ≥ 0) and (x = 0 or y = 0):

L = {(0, y) | y ≥ 0} ∪ {(x, 0) | x ≥ 0}.

We equip L with the subset diffeology of R2. Define the strata

S− = {(0, y) | y > 0}, S+ = {(x, 0) | x > 0} and S0 = {(0, 0)}

and the tube system

TS± = S± with πS± : (x, y) 7→ (x, y) and TS0 = L with πS0 : (x, y) 7→ (0, 0).

One can check that this describes a locally fibred stratified space.
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Let f : L→ R be the bijection defined by f (x, y) = x − y. Then equip R with the
pushforward of the diffeology of L by f . Denote it by RL. The map f sends the
stratification of L onto the stratification of R from Example 2.1. Obviously, the
diffeology of RL does not coincide with the standard diffeology, since it is strictly finer,
but it induces the same D-topology. We have then two identical smooth stratifications
on the same set, but equipped with different diffeologies.

The main difference between the two previous examples is the balance between
the stratification and the action of the pseudo-group of local diffeomorphisms. In
the second example the stratification is given by the action of the pseudo-group
of diffeomorphisms: the strata are the connected components of its orbits [7].
A contrario, in the first example the pseudo-group of local diffeomorphisms is
transitive and the stratification is transparent for the local diffeomorphisms—it has
no structural geometric frame. This suggests a specification for geometric stratified
spaces in diffeology.

Every diffeological space X admits a natural partitionS in connected components of
the orbits of the pseudo-group Diffloc(X) of local diffeomorphisms. These components
are called the Klein strata [10, Section 1.42]. We can single out the spaces X for which
this partition is a stratification or, more precisely, a local fibred stratification. We
shall talk in this case of geometric stratification, when the stratification is given by the
action of the pseudo-group of local diffeomorphisms, and of formal stratification in
the opposite case.

Diffeological spaces that admit a geometric stratification form naturally a
full subcategory in diffeology, which we call stratified diffeology. Obviously,
diffeomorphisms between diffeological spaces respect their natural stratifications.
Manifolds with corners are the first example of such geometric stratified diffeological
spaces [8].

3. Differential forms

In this section we give a necessary and sufficient condition for a stratified differential
form, defined on the regular part of some locally fibred stratified space X, to be the
restriction of a differential form in the sense of diffeology, defined on the whole space.

Stratified differential form. A stratified differential form on a stratified space is
any differential form with perversity 0, according to Goresky and MacPherson [5, 6]
and defined by Brylinski in [3]. The following definition makes this precise.

Definition 3.1. A stratified k-form on a locally fibred stratified space X is a differential
k-form α defined on the regular part Xreg ⊂ X such that, for every stratum S ∈ S, for
all points x ∈ TS ∩ Xreg and for all vectors ξ ∈ ker D(πS)x,

αx(ξ) = 0 and dαx(ξ) = 0, (♣)

where dαx(ξ) is the contraction of dαx with ξ (denoted equivalently by iξ(dαx) or
sometimes by ξ • dαx).
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The space of stratified differential k-forms α is denoted by Ωk
0̄
[X]. Note that α

belongs a priori to Ωk(Xreg).
Differential forms in diffeology. Differential forms in diffeology were introduced

by Souriau [21] and developed in [10].

Definition 3.2. A differential k-form α on a diffeological space X is a mapping that
associates with every plot P : U→ X a smooth k-form α(P) on U such that, for any
smooth parametrisation F in U,

α(P ◦ F) = F∗(α(P)).

3.1. Strata forms associated with a form of perversity 0. Let X be a diffeological
space equipped with a stratificationS and a tube system {πS : TS→ S}S∈S, as described
above. Let α ∈ Ωk

0̄
[X], S ∈ S and pr : S̃→ S be its universal covering. Consider the

restriction
πS � TS ∩ Xreg : TS ∩ Xreg → S.

This is a fibre bundle over S. Let F denote a fibre. With α, we associate a set AS of
differential k-forms on S̃, indexed by the connected components of F:

AS = {ᾱa}a∈π0(F), with ᾱa ∈ Ωk(S̃), (♥)

as described below.

Step 1. Let pr : S̃→ S be the universal covering of S. The strata are always assumed
to be connected. Let pr∗(TS ∩ Xreg) be the pullback of πS � TS ∩ Xreg by pr. That is,

pr∗(TS ∩ Xreg) = {(x̃, y) ∈ S̃ × TS ∩ Xreg | pr(x̃) = πS(y)}

(see Figure 2). Let pr1 : pr∗(TS ∩ Xreg)→ S̃ and pr2 : pr∗(TS ∩ Xreg)→ TS ∩ Xreg be
the first and second projections:

pr∗(TS ∩ Xreg) TS ∩ Xreg

S̃ S

pr2

pr1 πS

pr

The exact homotopy sequence of pr1 gives

π1(S̃) = {0} −→ π0(F) −→ π0(pr∗(TS ∩ Xreg)) −→ π0(S̃) = {S̃}.

Thus,
π0(F) ' π0(pr∗(TS ∩ Xreg)).

Now, since pr1 is a fibration with fibre F, each connected component a of F defines
a connected component of pr∗(TS ∩ Xreg) over S̃. The total space pr∗(TS ∩ Xreg) is
diffeomorphic to the sum of these connected components over S̃, that is,

pr∗(TS ∩ Xreg) =
∐

a∈π0(F)

{pr∗(TS ∩ Xreg)}a.
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Figure 2. Pullback of πS � TS ∩ Xreg by pr.

The restriction of pr1 to the component {pr∗(TS ∩ Xreg)}a is a fibre bundle with fibre
a ∈ π0(F).

Step 2. Consider the k-forms

α̃ = pr∗2(α) ∈ Ωk(pr∗(TS ∩ Xreg)) and α̃a = α̃ � {pr∗(TS ∩ Xreg)}a,

with a ∈ π0(F). The α̃a are restrictions of α̃ to the connected components of
pr∗(TS ∩ Xreg). The forms α̃a defined on {pr∗(TS ∩ Xreg)}a satisfy the condition
(♣) of perversity 0. Indeed, D(pr2) maps ker(D(pr1)) to ker(D(πS)). Now, since
{pr∗(TS ∩Xreg)}a is connected, the condition (♣) means exactly that α̃a is basic, that is,
there exists a k-form ᾱa on the covering S̃ such that

α̃a = pr∗1(ᾱa) and thenAS = {ᾱa}a∈π0(F).

In other words,
pr∗2(α) � {pr∗(TS ∩ Xreg)}a = pr∗1(ᾱa). (♠)

Theorem 3.3. Let X be a diffeological space equipped with a stratification S. There
exists a differential k-form αS on the stratum S such that α � TS = π∗S(αS) if and only
if ᾱa = ᾱb for all a, b ∈ π0(F). In this case, ᾱa = pr∗(αS) for all a ∈ π0(F).

Introducing the index of the form α ∈ Ω∗
0̄
[X] at the stratum S, as the number

νS(α) = card(AS),

we can paraphrase the theorem as follows: there exists a differential k-form αS on the
stratum S such that α � TS = π∗S(αS) if and only if νS(α) = 1.
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Proof of Theorem 3.3. Assume that there exists αS such that α � TS = π∗S(αS). Let

pr1,a = pr1 � {pr∗(TS ∩ Xreg)}a and pr2,a = pr2 � {pr∗(TS ∩ Xreg)
}
a.

Then πS ◦ pr2,a = pr ◦ pr1,a and pr∗2,a(α) = pr∗2,a(π∗S(αS)) = pr∗1,a(pr∗(αS)). But

pr∗2,a(α) = pr∗1,a(ᾱa),

so
pr∗1,a(ᾱa) = pr∗1,a(pr∗(αS)).

Since pr1,a is a fibration, ᾱa = pr∗(αS), that is, ᾱa = ᾱb for all a, b ∈ π0(F).
Conversely, assume that ᾱa = ᾱb for all a, b ∈ π0(F) and denote by ᾱ this differential

form on S̃. We want to prove that k∗(ᾱ) = ᾱ for all k ∈ π1(S). First, note that
pr(k(x̃)) = pr(x̃) and so π1(S) acts on pr∗(TS ∩ Xreg) by

for all k ∈ π1(S), k(x̃, y) = (k(x̃), y),

where k denotes indifferently the two actions of k. We need three facts and a lemma.

• The action of π1(S) on pr∗(TS ∩ Xreg) is free. Every element k in π1(S) acts by
diffeomorphism. In particular, the action exchanges the connected components.

• The two actions of π1(S) intertwine pr1, that is, pr1 ◦ k = k ◦ pr1.
• The projection pr2 is invariant by π1(S), that is, pr2 ◦ k = pr2.

Lemma 3.4. Suppose that k ∈ π1(S). If k sends the component relative to a ∈ π0(F) onto
the component relative to b, then ᾱa = k∗(ᾱb).

Proof. First of all, α̃ is invariant under the action of π1(S). Indeed, k∗(pr∗2(α)) = pr∗2(α),
that is, k∗(α̃) =α̃. Suppose that k maps the component relative to a onto the component
relative to b:

k : {pr∗(TS ∩ Xreg)}a → {pr∗(TS ∩ Xreg)}b.

Let ji : {pr∗(TS ∩ Xreg)}i → pr∗(TS ∩ Xreg) be the inclusion map of the ith component
for all i ∈ π0(F). Then k ◦ ja = jb ◦ k. Hence, (k ◦ ja)∗(α̃) = ( jb ◦ k)∗(α̃), that is,
j∗a(k∗(α̃)) = k∗( j∗b(α̃)). But k∗(α̃) = α̃, so j∗a(α̃) = k∗( j∗b(α̃)), that is, α̃a = k∗(α̃b), where
α̃i = α̃ � {pr∗(TS ∩ Xreg)}i. Since α̃i = pr∗1(ᾱi), it follows that pr∗1(ᾱa) = k∗(pr∗1(ᾱb)).
Now, k ◦ pr1 = pr1 ◦ k, so pr∗1(ᾱa) = pr∗1(k∗(ᾱb)). Since pr1 is a fibration, finally
ᾱa = k∗(ᾱb). �

As a corollary, if ᾱa = ᾱb (denoted by ᾱ), then ᾱ is invariant by π1(S). Hence,
ᾱ is basic with respect to the group π1(S) and there exists αS ∈ Ωk(S) such that
ᾱ = pr∗(αS). On the one hand, from the commutative diagram πS ◦ pr2 = pr ◦ pr1 and
so pr∗2(π∗S(αS)) = pr∗1(pr∗(αS)) = pr∗1(ᾱ). On the other hand, (♠) gives pr∗2,a(α) = pr∗1(ᾱa).
But ᾱa = ᾱb = ᾱ and so pr∗2(α) = pr∗1(ᾱ). Therefore, pr∗2(π∗S(αS)) = pr∗2(α) and, because
pr2 is a fibration, α � TS = π∗S(αS). This completes the proof. �
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3.2. Stratified differential forms as differential forms. Let X be a diffeological
space equipped with a locally fibred stratification, as described above. In terms of the
index function ν defined in Section 3.1, we have the following theorem.

Theorem 3.5. Let α ∈ Ωk
ō[X]. If νS(α) = 1 for all S ∈ S, then there exists a (unique)

differential form α ∈ Ωk(X) such that α = α � Xreg. Conversely, let α ∈ Ωk(X), with
α = α � Xreg ∈ Ωk

ō[X]. If for any two points in Xreg there is a smooth map joining them
that cuts Xsing into a finite number of points, then νS(α) = 1 for all S ∈ S.

Remark 3.6. The perversity condition applying on the entire tube around the strata is
clearly too strong. Indeed, in the case of the simple example treated in Section 2.4,
for 0-forms, that is, real functions, one gets only restrictions of constant functions.
That is clearly insufficient. Instead, we should get all the smooth functions locally
constant on the neighbourhood of the origin. We can obtain that result by weakening
the condition of perversity and considering the germs of the tubes around the strata.
That is, given a system of tubes, we should say that a form is 0-perverse if there exists a
subsystem of tubes, made of restrictions of the original system around each stratum, for
which the form is 0-perverse. With this condition the property of perversity becomes
semilocal, which is more appropriate. This has been adopted, for example, in [17,
page 23] and [18, page 83]. In the examples above, the stratified real functions are
then the restrictions of any smooth function locally constant on the neighbourhood of
the origin. Considering 1-forms, we would obtain differential forms that vanish locally
around the origin.

Note that the smooth functions for the diffeology are obviously all functions on R,
in the first case, and contain at least all the restrictions of any smooth function to L, in
the second case. We treated the general case of forms on corners in [8].

Proof of Theorem 3.5. Let α ∈ Ωk
ō[X], with νS(α) = 1 for all S ∈ S. Thanks to

Section 3.1, for all S ∈ S, there exists αS ∈ Ωk(S) such that α � TS ∩ Xreg = π∗S(αS).
Let S and S′ be two strata such that TS ∩ TS′ , ∅. On TS ∩ TS′ ∩Xreg, which is open,
π∗S(αS) = π∗S′(αS′) = α. Consider x ∈ TS ∩ TS′ but x < Xreg, that is, x ∈ Xsing. Then
x ∈ S′′ ∩ TS ∩ TS′, with S′′ ⊂ Xsing. Thus, S′′ ∩ TS , ∅, which implies in particular
that S ⊂ S̄′′ and πS ◦ πS′′ = πS on TS ∩ TS′′ ∩ π−1

S′′ (TS), by the definition of locally
fibred stratified spaces. Hence, (πS ◦ πS′′)∗(αS) = π∗S(αS), that is, π∗S′′(π

∗
S(αS)) = π∗S(αS).

On the regular part, TS ∩ TS′′ ∩ π−1
S′′ (TS) ∩ Xreg and π∗S(αS) = α = π∗S′′(αS′′). It follows

that, π∗S′′(π
∗
S(αS)) = π∗S′′(αS′′) on TS ∩ TS′′ ∩ π−1

S′′ (TS) ∩ Xreg, that is,

π∗S′′(π
∗
S(αS) − αS′′) � TS ∩ TS′′ ∩ π−1

S′′ (TS) ∩ Xreg = 0.

But πS′′ � TS ∩ TS′′ ∩ π−1
S′′ (TS) ∩ Xreg is a submersion on S′′ ∩ TS and so

αS′′ � S′′ ∩ TS = π∗S(αS).

Therefore, on TS′′ ∩ TS,

π∗S′′(αS′′) = π∗S′′(π
∗
S(αS)) = (πS ◦ πS′′)∗(αS) = π∗S(αS).

Moreover, π∗S′′(αS′′) = π∗S′(αS′) on TS′′ ∩ TS′. Note that TS′′ ∩ TS′ and TS′′ ∩ TS are
two open neighbourhoods of x. Hence, π∗S(αS) = π∗S′(αS′) on an open neighborhood
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of x, which belongs in this case to TS ∩ TS′ ∩ Xsing. Therefore, π∗S(αS) = π∗S′(αS′) on
TS ∩ TS′. Since differential forms on diffeological spaces are local [10, Section 6.36],
there exists a differential form α defined on X such that α � TS = π∗S(αS) for all S ∈ S
and, in particular, α = α � Xreg.

Now, let α = α � Xreg, with α ∈ Ωk(X). The pullback pr1 : pr∗(TS)→ S̃ is a locally
trivial fibre bundle. Let F be its fibre and F = Freg be the regular part. The differential
form pr∗2(α) is defined on the whole pullback pr∗(TS) and

pr∗2(α) = pr∗2(α) � pr∗(TS ∩ Xreg).
For each component a ∈ π0(F), according to (♠), pr∗2(α) � {TS ∩ Xreg}a = pr∗1(ᾱa), that
is, pr∗2(α) � {TS ∩ Xreg}a = pr∗1(ᾱa). Now, let y ∈ Fa and y′ ∈ Fb be two points in F
belonging to two different connected components. There exists a smooth path t 7→ yt
in F that connects y to y′ and which cuts the singular subset Fsing in a finite number of
points. The interval (0, 1) is then divided into a finite set of open intervals denoted by
Ia, where yt belongs to the component a ∈ π0(F), separated by points belonging to Fsing.
Let (r, y) 7→ (x̃r, y) be a local trivialisation of pr1 : pr∗(TS)→ S̃. Then (r, t) 7→ (x̃r, yt)
is a plot of pr∗(TS). On the open subset of (r, t) such that t ∈ Ia,

pr∗2(α)((r, t) 7→ (x̃r, yt))(r
t)

(
ui

εi

)k

i=1
= pr∗1(ᾱa)((r, t) 7→ (x̃r, yt))(r

t)

(
ui

εi

)k

i=1

= ᾱa(r 7→ x̃r)r(u1) . . . (uk),
where α is a k-form and the (ui, εi) are tangent vectors at (t, r). But, for each r and
u1 . . . uk, the map

t 7→ pr∗2(α)((r, t) 7→ (x̃r, yt))(r
t)

(
ui

εi

)k

i=1

is smooth but constant on each Ia for a ∈ π0(F) with value ᾱa(r 7→ x̃r)r(u1) . . . (uk).
Since F is connected and is the closure of F,

ᾱa(r 7→ x̃r)r(u1) . . . (uk) = ᾱb(r 7→ x̃r)r(u1) . . . (uk) for all r, u1 . . . uk. �
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[1] J.-P. Brasselet, G. Hector and M. Saralegi, ‘Théorème de De Rham pour les variétés stratifiées’,

Ann. Global Anal. Geom. 9(3) (1991), 211–243.
[2] M. Brion, ‘Equivariant intersection cohomology of semi-stable points’, Amer. J. Math. 118(3)

(1996), 595–610.
[3] J.-L. Brylinski, ‘Equivariant intersection cohomology’, Prépublication de l’IHES, 1986; in
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