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Abstract
We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index 1 is greater
than or equal to 1/2. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational
superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted
hypersurfaces of index 1.
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1. Introduction

Throughout the article, the ground field is assumed to be the complex number field C.

1.1. K-stability, birational superrigidity and a conjecture

The notion of K-stability was introduced by Tian [Tia97] as an attempt to characterize the existence of
Kähler–Einstein metrics (KE metrics, for short) on Fano manifolds. Later, K-stability was extended and
reformulated by Donaldson [Don02] in algebraic terms. The notion of K-stability emerged in the study
of KE metrics (see [Don02], [Tia97]), and it gives a characterization of the existence of a KE metric for
smooth Fano manifolds (see [CDS15], [Tia15]).

Birational (super)rigidity means the uniqueness of a Mori fiber space in the birational equivalence
class (see Definition 2.2), and this notion has its origin in the rationality problem of Fano varieties.
Specifically, it grew out of the study of birational self-maps of smooth quartic 3-folds by Iskovskikh and
Manin [IM71] (see [Puk13] and [Che05] for surveys).

K-stability and birational superrigidity have completely different origins, and we are unable to find a
similarity in their definitions. However, both of them are closely related to some mildness of singularities
of pluri-anticanonical divisors (or linear systems). For example, it is proved by Odaka and Sano [OS12]
(see also [Tia87]) that a Fano variety X of dimension n is K-stable if 𝛼(𝑋) > 𝑛/(𝑛 + 1). Here,

𝛼(𝑋) = sup{ 𝑐 ∈ Q>0 | (𝑋, 𝑐𝐷) is log canonical for any 𝐷 ∈ |−𝐾𝑋 |Q }

is called the alpha invariant of X and it measures singularities of pluri-anticanonical divisors. We refer
readers to [Fuj19b], [Li17], [FO18] and [BJ20] for criteria for K-stability in terms of beta and delta
invariants which are more or less related to singularities of pluri-anticanonical divisors. On the other
hand, it is known that a Fano variety of Picard number one is birationally superrigid if and only if the
pair (𝑋, 𝜆M) is canonical for any 𝜆 ∈ Q>0 and any movable linear system M such that 𝜆M ∼Q −𝐾𝑋

(see Theorem 2.4). With these relations in mind, one may expect a positive answer to the following.

Conjecture 1.1. A birationally superrigid Fano variety is K-stable.
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Actually, we expect stronger conjectures to hold (see Section 7.4 for discussions). The main aim of
this article is to verify Conjecture 1.1 for quasi-smooth Fano 3-fold weighted hypersurfaces.

1.2. Evidences for the conjecture

1.2.a. Smooth Fano manifolds
Smooth quartic 3-folds and double covers of P3 branched along a smooth hypersurface of degree 6 (or
equivalently smooth weighted hypersurfaces of degree 6 in P(1, 1, 1, 1, 3)) are the only smooth Fano 3-
fold that are birationally superrigid (see [IM71], [Isk80], [Che05]). K-stability (and hence the existence
of a KE metric) is proved for smooth quartic 3-folds ([Fuj19a, Corollary 1.4]) and for smooth weighted
hypersurfaces of degree 6 in P(1, 1, 1, 1, 3) ([CPW14, Corollary 3.4]).

We have evidences in arbitrary dimension 𝑛 ≥ 3. After the results established in low-dimensional
cases in [IM71], [Puk87] and [dFEM03], it is finally proved by de Fernex [dF13] that any smooth
hypersurface of degree 𝑛 + 1 in P𝑛+1 is birationally superrigid for 𝑛 ≥ 3. On the other hand, it is proved
by Fujita [Fuj19a] that any such hypersurface is K-stable (hence admits a KE metric). It is also proved
in [Zhu20b] that a smooth Fano complete intersection 𝑋 ⊂ P𝑛+𝑟 of Fano index 1, codimension r and
dimension 𝑛 ≥ 10𝑟 is birationally superrigid and K-stable.

1.2.b. Fano 3-fold weighted hypersurfaces
By a quasi-smooth Fano 3-fold weighted hypersurface, we mean a Fano 3-fold (with only termi-
nal singularities) embedded as a quasi-smooth hypersurface in a well-formed weighted projective
4-space P(𝑎0, . . . , 𝑎4) (see Section 2.2.b for quasi-smoothness and well-formedness). Let 𝑋 = 𝑋𝑑 ⊂
P(𝑎0, . . . , 𝑎4) be a quasi-smooth Fano 3-fold weighted hypersurface of degree d. Then the class group
Cl(𝑋) is isomorphic to Z and is generated by O𝑋 (1) (see, for example, [Oka19, Remark 4.2]). By
adjunction, we have O𝑋 (−𝐾𝑋 ) � O𝑋 (𝜄𝑋 ), where

𝜄𝑋 :=
4∑
𝑖=0

𝑎𝑖 − 𝑑 ∈ Z>0.

We call 𝜄𝑋 the Fano index (or simply index) of X.
By [IF00] and [CCC11], quasi-smooth Fano 3-fold weighted hypersurfaces of index 1 are classified

and they consist of 95 families. Among them, quartic 3-folds and weighted hypersurfaces of degree 6 in
P(1, 1, 1, 1, 3) are smooth and the remaining 93 families consist of singular Fano 3-folds (with terminal
quotient singularities). The descriptions of these 93 families are given in Table 7.

Theorem 1.2 [CP17], [CPR00]. Any quasi-smooth Fano 3-fold weighted hypersurface of index 1 is
birationally rigid.

Among the 95 families, any quasi-smooth member of each of specific 50 families is birationally
superrigid. The 50 families consist of 48 families in Table 7 which do not admit singularity with
‘quadratic involution (QI)’ or ‘elliptic involution (EI)’ in the fourth column plus the two families of
smooth Fano weighted hypersurfaces. For each of the remaining 45 families, a general quasi-smooth
member is strictly birationally rigid (meaning that it is not birationally superrigid) but some special
quasi-smooth members are birationally superrigid (see Section 2.3 for details).

Theorem 1.3 [Che09, Corollary 1.45]. A general quasi-smooth member of each of the 95 families is
K-stable and admits a KE metric.

The generality assumption is crucial in Theorem 1.3. In particular, it is highly likely that birationally
superrigid special members of each of the above mentioned 45 families are not treated in Theorem 1.3.
Note that openness of K-stability is known (see [Oda13], [Don15] and [BL22]), and this implies the
difficulty in determining which Fano varieties (in a given family) are K-stable. Although Theorems 1.2
and 1.3 give strong evidence for Conjecture 1.1, it is very important to consider special (quasi-smooth)
members for Conjecture 1.1.
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1.2.c. Conceptual evidences
Apart from evidences by concrete examples given in Sections 1.2.a and 1.2.b, we have conceptual results
supporting Conjecture 1.1.

The notion of slope stability for polarized varieties was introduced by Ross and Thomas (cf. [RT07]).
For a Fano variety X, slope stability of (𝑋,−𝐾𝑋 ) is a weaker version of K-stability.

Theorem 1.4 [OO13, Theorem 1.1]. Let X be a birationally superrigid Fano manifold of Fano index 1.
If |−𝐾𝑋 | is base point free, then (𝑋,−𝐾𝑋 ) is slope stable.

As it is explained in Section 1.1, K-stability of a Fano variety X of dimension n follows from the
inequality 𝛼(𝑋) > 𝑛/(𝑛 + 1). In practice, the computations of alpha invariants are very difficult and
hence it is not easy to prove the inequality 𝛼(𝑋) > 𝑛/(𝑛 + 1).
Remark 1.5. In fact, our results show that there exists a birationally superrigid Fano 3-fold X such that
𝛼(𝑋) < 3/4 (see Example 5.17).

Recently, Stibitz and Zhuang relaxed the assumption on the alpha invariants significantly under the
assumption of birational superrigidity and obtained the following.

Theorem 1.6 [SZ19, Theorem 1.2, Corollary 3.1]. Let X be a birationally superrigid Fano variety. If
𝛼(𝑋) ≥ 1/2, then X is K-stable.

Note that the assumption on the alpha invariant is 𝛼(𝑋) > 1/2 in [SZ19, Theorem 1.2], but the
equality is allowed by [SZ19, Corollary 3.1]. It is informed by C. Xu and Z. Zhuang that one can even
conclude the uniform K-stability of X in Theorem 1.6 under the same assumption. The notion of uniform
K-stability is originally introduced in [Der16b] and [BHJ17] (see also [Fuj19b] and [BJ20]) and it is
stronger than K-stability1. Moreover, it is very important to mention that uniform K-stability implies the
existence of a KE metric ([LTW19]). Combining these results, we have the following.

Theorem 1.7 [Xu21, Theorem 9.6], [SZ19], [LTW19]. Let X be a birationally superrigid Fano variety,
and assume that 𝛼(𝑋) ≥ 1/2. Then X is uniformly K-stable. In particular, X is K-stable and it admits a
KE metric.

1.3. Main results

We state main theorem of this article.

Theorem 1.8 (Main theorem). Let X be a quasi-smooth Fano 3-fold weighted hypersurface of index 1.
Then 𝛼(𝑋) ≥ 1/2.

The following is a direct consequence of Theorems 1.8 and 1.7.

Corollary 1.9. Any birationally superrigid quasi-smooth Fano 3-fold weighted hypersurface of index 1
is K-stable and admits a KE metric.

By [ACP20, Corollary 1.3], a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurface
necessarily has Fano index 1. Thus, we obtain the following.

Corollary 1.10. Conjecture 1.1 is true for quasi-smooth Fano 3-fold weighted hypersurfaces.

It is natural to consider a generalization of Conjecture 1.1 by relaxing the assumption of birational
superrigidity to birational rigidity (see Section 7.4) or to expect that the conclusion of Corollary 1.9 holds
without the assumption of birational superrigidity. We are unable to relax the assumption of birational
superrigidity to birational rigidity in Theorem 1.6 or 1.7, and thus we cannot conclude K-stability for
strictly birationally rigid members as a direct consequence of Theorem 1.8. By the arguments delivered
in this article, we are able to prove 𝛼(𝑋) > 3/4 for any quasi-smooth member X of suitable families.
As a consequence, we have the following (see Section 7.3 for details).

1Soon after this paper was completed, it wad proved in [LXZ22] that uniform K-stability is equivalent to K-stability.
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Theorem 1.11 (= Theorem 7.7). Let X be any quasi-smooth member of a family which is given ‘KE’ in
the right-most column of Table 7. Then X is K-stable and admits a KE metric.

We can also prove K-stability for any quasi-smooth member (which is not necessarily birationally
superrigid) of suitable families.

Theorem 1.12 (= Corollary 7.13). Let X be any quasi-smooth member of a family which is given ‘K’ or
‘KE’ in the right-most column of Table 7. Then X is K-stable.

We explain the organization of this article. In Section 2, we recall definitions and basic properties
of relevant notions such as birational (super)rigidity, log canonical thresholds, alpha invariants and
weighted projective varieties. In Section 3, we explain methods of computing log canonical thresholds
and alpha invariants. By applying these methods, we compute local alpha invariants 𝛼p (𝑋) for any point
p on a quasi-smooth Fano 3-fold weighted hypersurface X of index 1. In Sections 4 and 5, we compute
local alpha invariants at smooth and singular points, respectively. At this stage, Theorem 1.8 is proved
except for seven specific families. These exceptional families are families No. 2, 4, 5, 6, 8, 10 and 14,
and we need extra arguments to prove 𝛼(𝑋) ≥ 1/2, which will be done in Section 6. In Section 7, we
will consider and prove further results such as Theorems 1.11 and 1.12. We will also discuss related
problems that arise naturally through the experience of huge amount of computations. Finally, in Section
8, various information on the families of quasi-smooth Fano 3-fold weighted hypersurfaces of index 1
are summarized, and we also make it clear in Remark 8.1 what is left about K-stability for quasi-smooth
Fano 3-fold weighted hypersurfaces of index 1.

1.4. Relevant results in K-stability

Recently both theoretical and explicit studies of K-stability of Fano varieties have been developed
drastically. We refer readers to [Xu21] for up-to-date surveys. Following the suggestion from the referee,
we add Section 1.4 to explain some of them that are developed during the preparation or after the
completion of this article.

One of the most striking one is the equivalence of the notions of K-stability and uniform K-stability
for klt Fano varieties that is proved in [LXZ22]. It in particular follows that the K-stability implies the
existence of KE metric for klt Fano varieties. As a consequence, we are now able to conclude in Theorem
1.12 not only the K-stability of X but also the existence of a KE metric on X.

It should be mentioned that currently there are various methods in hand to check K-stability: The
most powerful methods at present are the induction method of Abban and Zhuang [AZ22] computing
(local) delta invariants or the moduli method of Liu et al. (see, e.g., [Liu22], [LX19]). These methods are
developed parallel to the preparation of this article, and we do not use them. As it is explained in Section
1.3, the proofs of the main results of this article rely on the computation of (local) alpha invariants.

This article aims the systematic study of singular Fano 3-folds. There are on-going work by Cheltsov
and collaborators on smooth Fano 3-folds. In the book [Ara+23], it is completely determined whether
the general member of each of the 105 irreducible families of smooth Fano 3-folds admits a KE metric
or not. Very recently, there have been a lot of works aiming to drop the generality assumption in the
above result and to classify K-(poly)stable smooth Fano 3-folds in each family completely (see [Liu23],
[CP22], [CFKO22], [CFKP23], [BL22], [Den22], [CDF22], [Mal23]).

2. Preliminaries

2.1. Basic definitions and properties

We refer readers’ to [KM98] for standard notions of birational geometry which are not explained in this
article.

Definition 2.1. By a Fano variety, we mean a normal projectiveQ-factorial variety with at most terminal
singularities whose anticanonical divisor is ample.
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For a variety X, we denote by Sm(𝑋) the smooth locus of X and Sing(𝑋) = 𝑋 \ Sm(𝑋) the singular
locus of X. For a subset Γ ⊂ 𝑋 , we define SingΓ (𝑋) := Sing(𝑋) ∩ Γ. Let X be a normal variety and D a
Weil divisor (class) on X. We denote by |𝐷 |Q the set of effective Q-divisors on X which are Q-linearly
equivalent to D. For a smooth point p ∈ 𝑋 , we define |Ip (𝐷) | to be the linear subspace of |𝐷 | consisting
of members of |𝐷 | passing through p.

2.1.a. Birational (super)rigidity of Fano varieties
Let X be a normal Q-factorial variety, D a Q-divisor on X and M a movable linear system on X. For
a prime divisor E over X, we define ord𝐸 (𝐷) to be the coefficient of E in 𝜑∗𝐷, where 𝜑 : 𝑌 → 𝑋 is a
birational morphism such that 𝐸 ⊂ 𝑌 , and we set 𝑚𝐸 (M) := ord𝐸 (𝑀), where M is a general member
of M. For a positive rational number 𝜆, we say that a pair (𝑋, 𝜆M) is canonical if

𝑎𝐸 (𝐾𝑋 ) ≥ 𝜆𝑚𝐸 (M)

for any exceptional prime divisor E over X.
Let X be a Fano variety of Picard number one. Note that we can view X (or more precisely the

structure morphism 𝑋 → SpecC) as a Mori fiber space.

Definition 2.2. We say that X is birationally rigid if the existence of a Mori fiber space 𝑌 → 𝑇 such that
Y is birational to X implies that Y is isomorphic to X (and 𝑇 = SpecC). We say that X is birationally
superrigid if X is birationally rigid and Bir(𝑋) = Aut(𝑋).
Definition 2.3. A closed subvariety Γ ⊂ 𝑋 is called a maximal center if there exists a movable linear
system M ∼Q −𝑛𝐾𝑋 and an exceptional prime divisor E over X such that 𝑚𝐸 (M) > 𝑛𝑎𝐸 (𝐾𝑋 ).
Theorem 2.4 [CS08, Theorem 1.26]. A Fano variety X of Picard number 1 is birationally superrigid if
and only if the pair (𝑋, 1

𝑛M) is canonical for any movable linear system M on X, where 𝑛 ∈ Q>0 is
such that M ∼Q −𝑛𝐾𝑋 , or equivalently if and only if there is no maximal center on X.

2.1.b. Log canonical thresholds and alpha invariants
Definition 2.5. Let (𝑋,Δ) be a pair, D an effective Q-divisor on X, and let p ∈ 𝑋 be a point. Assume
that (𝑋,Δ) has at most log canonical singularities. We define the log canonical threshold (abbreviated
as LCT) of (𝑋,Δ; 𝐷) at p and the log canonical threshold of (𝑋,Δ; 𝐷) to be the numbers

lctp (𝑋,Δ; 𝐷) = sup{ 𝑐 ∈ Q≥0 | (𝑋,Δ + 𝑐𝐷) is log canonical at p },
lct(𝑋,Δ; 𝐷) = sup{ 𝑐 ∈ Q≥0 | (𝑋,Δ + 𝑐𝐷) is log canonical },

respectively. We set lctp (𝑋; 𝐷) = lctp (𝑋, 0; 𝐷) and lctp (𝑋; 𝐷) = lct(𝑋,Δ; 𝐷) when Δ = 0. Assume that
|−𝐾𝑋 |Q ≠ ∅. Then we define the alpha invariant of X at p and the alpha invariant of X to be the numbers

𝛼p (𝑋) = inf{ lctp (𝑋, 𝐷) | 𝐷 ∈ |−𝐾𝑋 |Q },
𝛼(𝑋) = inf{ 𝛼p (𝑋) | p ∈ 𝑋 },

respectively.

The following fact is frequently used.

Remark 2.6. Let p be a point on X, and let 𝐷1, 𝐷2 be effective Q-divisors on X. If both (𝑋, 𝐷1) and
(𝑋, 𝐷2) are log canonical at p, then the pair

(𝑋, 𝜆𝐷1 + (1 − 𝜆)𝐷2)

is log canonical at p for any 𝜆 ∈ Q such that 0 ≤ 𝜆 ≤ 1. In particular, if 𝛼p (𝑋) < 𝑐 for some number
𝑐 > 0, then there exists an irreducible Q-divisor 𝐷 ∈ |−𝐾𝑋 |Q such that (𝑋, 𝑐𝐷) is not log canonical at
p. Here, a Q-divisor is irreducible if its support Supp(𝐷) is irreducible.
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2.1.c. Cyclic quotient singularities and orbifold multiplicities
Definition 2.7. Let 𝑟 > 0 and 𝑎1, . . . , 𝑎𝑛 be integers. Suppose that the cyclic group 𝝁𝑟 of rth roots of
unity in C acts on the affine n-space A𝑛 with affine coordinates 𝑥1, . . . , 𝑥𝑛 via

(𝑥1, . . . , 𝑥𝑛) ↦→ (𝜁𝑎1𝑥1, . . . , 𝜁𝑎𝑛𝑥𝑛),

where 𝜁 ∈ 𝝁𝑟 is a fixed primitive rth root of unity. We denote by 𝑜 ∈ A𝑛/𝝁𝑟 the image of the origin
𝑜 ∈ A𝑛 under the quotient morphism A𝑛 → A𝑛/𝝁𝑟 . A singularity p ∈ 𝑋 is a cyclic quotient singularity
of type 1

𝑟 (𝑎1, . . . , 𝑎𝑛) if p ∈ 𝑋 is analytically isomorphic to an analytic germ 𝑜 ∈ A𝑛/𝝁𝑟 . In this case, r
is called the index of the cyclic quotient singularity p ∈ 𝑋 .

Remark 2.8. Let p ∈ 𝑋 be an n-dimensional cyclic quotient singular point. Then we have a suitable
action of 𝝁𝑟 on A𝑛 such that there is an analytic isomorphism 𝑜 ∈ A𝑛/𝝁𝑟 � p ∈ 𝑋 of (analytic) germs.
In the following, the germ 𝑜 ∈ A𝑛 is often denoted by p̌ ∈ �̌� . By identifying p ∈ 𝑋 � 𝑜 ∈ A𝑛/𝝁𝑟 ,
the quotient morphism 𝑜 ∈ A𝑛 → 𝑜 ∈ A𝑛/𝝁𝑟 is denoted by 𝑞p : �̌� → 𝑋 and is called the quotient
morphism of p ∈ 𝑋 .

Note that, by convention, the case 𝑟 = 1 is allowed in the definition of cyclic quotient singularity. A
cyclic quotient singularity p ∈ 𝑋 of index 1 is nothing but a smooth point p ∈ 𝑋 and in that case the
quotient morphism 𝑞p : �̌� → 𝑋 is simply an isomorphism.

Definition 2.9. Let p ∈ 𝑋 be a cyclic quotient singularity, and let 𝑞p : �̌� → 𝑋 be its quotient morphism
with p̌ ∈ �̌� the preimage of p. For an effective Q-divisor D on X, we define

omultp(𝐷) := multp̌(𝑞∗
p𝐷)

and call it the orbifold multiplicity of D at p. By convention, we set omultp(𝐷) = multp (𝐷) when p ∈ 𝑋
is a smooth point.

2.1.d. Kawamata blowup
Let p ∈ 𝑉 be a three-dimensional terminal quotient singularity. Then it is of type 1

𝑟 (1, 𝑎, 𝑟 − 𝑎), where
r and a are coprime positive integers with 𝑟 > 𝑎 (see [MS84]). Let 𝜑 : 𝑊 → 𝑉 be the weighted blowup
of V at p with weight 1

𝑟 (1, 𝑎, 𝑟 − 𝑎). By [Kaw96], 𝜑 is the unique divisorial contraction centered at
p and we call 𝜑 the Kawamata blowup of V at p. If we denote by E the 𝜑-exceptional divisor, then
𝐸 � P(1, 𝑎, 𝑟 − 𝑎) and we have

𝐾𝑊 = 𝜑∗𝐾𝑉 + 1
𝑟

𝐸,

and

(𝐸3) = 𝑟2

𝑎(𝑟 − 𝑎) .

2.2. Weighted projective varieties

We recall basic definitions of various notions concerning weighted projective spaces and their subvari-
eties. We refer readers to [IF00] for details.

2.2.a. Weighted projective space
Let N be a positive integer. For positive integers 𝑎0, . . . , 𝑎𝑁 , let

𝑅(𝑎0, . . . , 𝑎𝑁 ) := C[𝑥0, . . . , 𝑥𝑁 ]
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be the graded ring whose grading is given by deg 𝑥𝑖 = 𝑎𝑖 . We define

P(𝑎0, . . . , 𝑎𝑁 ) := Proj 𝑅(𝑎0, . . . , 𝑎𝑁 )

and call it the weighted projective space with homogeneous coordinates 𝑥0, . . . , 𝑥𝑁 (of degree deg 𝑥𝑖 =
𝑎𝑖). We sometimes denote

P(𝑎0, . . . , 𝑎𝑁 )𝑥0 ,...,𝑥𝑁

in order to make it clear the homogeneous coordinates 𝑥0, . . . , 𝑥𝑁 . For 𝑖 = 0, . . . , 𝑁 , we denote by

p𝑥𝑖 = (0: · · · :1 : · · · :0) ∈ P(𝑎0, . . . , 𝑎𝑁 ) (2.1)

the coordinate point at which only the coordinate 𝑥𝑖 does not vanish. Let 𝑓 ∈ 𝑅 := 𝑅(𝑎0, . . . , 𝑎𝑁 ) =
C[𝑥0, . . . , 𝑥𝑁 ] be a polynomial. We say that f is quasi-homogeneous (resp. homogeneous) if it is
homogeneous with respect to the grading deg 𝑥𝑖 = 𝑎𝑖 (resp. deg 𝑥𝑖 = 1) for 𝑖 = 0, 1, . . . , 𝑁 . For a
polynomial 𝑓 ∈ C[𝑥0, . . . , 𝑥𝑁 ] and a monomial 𝑀 = 𝑥𝑚0

0 · · · 𝑥𝑚𝑁

𝑁 , we denote by

coeff 𝑓 (𝑀) ∈ C

the coefficient of M in f, and, by a slight abuse of notation, we write 𝑀 ∈ 𝑓 if coeff 𝑓 (𝑀) ≠ 0. For
quasi-homogeneous polynomials 𝑓1, . . . , 𝑓𝑘 ∈ 𝑅, we denote by

( 𝑓1 = · · · = 𝑓𝑘 = 0) ⊂ P(𝑎0, . . . , 𝑎𝑁 )

the closed subscheme defined by the quasi-homogeneous ideal ( 𝑓1, . . . , 𝑓𝑘 ) ⊂ 𝑅. Moreover, for a closed
subscheme 𝑋 ⊂ P(𝑎0, . . . , 𝑎𝑁 ) and quasi-homogeneous polynomials 𝑔1, . . . , 𝑔𝑙 ∈ 𝑅, we define

(𝑔1 = · · · = 𝑔𝑙 = 0)𝑋 := (𝑔1 = · · · = 𝑔𝑙 = 0) ∩ 𝑋,

which is a closed subscheme of X. For 𝑖 = 0, . . . , 𝑁 , we define

H𝑥𝑖 := (𝑥𝑖 = 0) ⊂ P(𝑎0, . . . , 𝑎𝑁 ),
U𝑥𝑖 := P(𝑎0, . . . , 𝑎𝑁 ) \H𝑥𝑖 . (2.2)

Remark 2.10. The weighted projective space P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) with homogeneous coordinates x, y, z, t,
w of degrees a, b, c, d, e, respectively, is sometimes denoted by

P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)𝑥,𝑦,𝑧,𝑡 ,𝑤

in order to emphasize the homogeneous coordinates. For a coordinate 𝑣 ∈ {𝑥, . . . , 𝑤}, the point
p𝑣 ∈ P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒), the quasi-hyperplane H𝑣 = (𝑣 = 0) ⊂ P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and the open set U𝑣 =
P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) \H𝑣 are similarly defined as in equations (2.1) and (2.2).

2.2.b. Well-formedness and quasi-smoothness
Definition 2.11. We say that a weighted projective space P(𝑎0, . . . , 𝑎𝑁 ) is well-formed if

gcd{𝑎0, . . . , �̂�𝑖 , . . . , 𝑎𝑁 } = 1

for any 𝑖 = 0, 1, . . . , 𝑁 .

Definition 2.12. Let P(𝑎0, . . . , 𝑎𝑁 ) be a weighted projective space such that gcd{𝑎0, . . . , 𝑎𝑁 } = 1. For
𝑗 = 0, 1, . . . , 𝑁 , we set
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𝑙 𝑗 := gcd{𝑎0, 𝑎1, . . . , �̂� 𝑗 , . . . , 𝑎𝑁 },
𝑚 𝑗 := 𝑙0𝑙1 · · · 𝑙 𝑗 · · · 𝑙𝑁 ,

𝑏 𝑗 :=
𝑎 𝑗

𝑚 𝑗
.

We then define

P(𝑎0, . . . , 𝑎𝑁 )wf := P(𝑏0, . . . , 𝑏𝑁 )

and call it the well-formed model of P(𝑎0, . . . , 𝑎𝑁 ).
Remark 2.13. Any weighted projective space is isomorphic to a well-formed one (see, e.g.,
[IF00, Lemma 5.7]). More precisely, for a weighted projective space P = P(𝑎0, . . . , 𝑎𝑁 ) with
gcd{𝑎0, . . . , 𝑎𝑁 } = 1, there exists an isomorphism

𝜙 : P(𝑎0, . . . , 𝑎𝑁 )𝑥0 ,...,𝑥𝑁 → Pwf = P(𝑏0, . . . , 𝑏𝑁 )𝑦0 ,...,𝑦𝑁

such that 𝜙∗H𝑦𝑖 = 𝑚𝑖H𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑁 , where H𝑥𝑖 = (𝑥𝑖 = 0) ⊂ P and H𝑦𝑖 = (𝑦𝑖 = 0) ⊂ Pwf.
In the following, we set P := P(𝑎0, . . . , 𝑎𝑁 ) and we denote by

Π : A𝑁+1 \ {𝑜} → P, (𝛼0, . . . , 𝛼𝑁 ) ↦→ (𝛼0 : · · · :𝛼𝑁 ),

the canonical projection. Let 𝑋 ⊂ P be a closed subscheme. We set 𝐶∗
𝑋 := Π−1 (𝑋) and call it the

punctured affine quasi-cone over X. The affine quasi-cone 𝐶𝑋 over X is the closure of 𝐶∗
𝑋 in A𝑁+1. We

set 𝜋 := Π |𝐶∗
𝑋

: 𝐶∗
𝑋 → 𝑋 .

Definition 2.14. We say that a closed subscheme 𝑋 ⊂ P is well-formed if P is well-formed and
codim𝑋 (𝑋 ∩ Sing(P)) ≥ 2.
Definition 2.15. Let 𝑋 ⊂ P be a closed subscheme as above. We define the quasi-smooth locus of X as

QSm(𝑋) := 𝜋(Sm(𝐶∗
𝑋 )) ⊂ 𝑋.

Let S be a subset of X. We say that X is quasi-smooth along S if 𝑆 ⊂ QSm(𝑋). We simply say that X is
quasi-smooth when 𝑋 = QSm(𝑋).

2.2.c. Orbifold charts
Let U𝑥𝑖 be the open subset of P = P(𝑎0, . . . , 𝑎𝑁 )𝑥0 ,...,𝑥𝑁 as in equation (2.2), where 𝑖 ∈ {0, 1, . . . , 𝑁}.
We call U𝑥𝑖 the standard affine open subset of P containing p𝑥𝑖 . We denote by Ŭ𝑥𝑖 the affine N-space
A𝑁 with affine coordinates 𝑥0, . . . , ̂̆𝑥𝑖 , . . . , 𝑥𝑁 . Consider the 𝝁𝑎𝑖 -action on Ŭ𝑖 defined by

𝑥 𝑗 ↦→ 𝜁𝑎 𝑗 𝑥 𝑗 , for 𝑗 = 0, . . . , 𝑖, . . . , 𝑁,

where 𝜁 ∈ 𝝁𝑎𝑖 is a primitive 𝑎𝑖th root of unity. Then the open set U𝑖 can be naturally identified with the
quotient Ŭ𝑥𝑖/𝝁𝑎𝑖 . In fact, this can be seen by the identification

𝑥 𝑗 =
𝑥 𝑗

𝑥
𝑎 𝑗/𝑎𝑖
𝑖

, for 𝑗 = 0, . . . , 𝑖, . . . , 𝑁.

The quotient morphism Ŭ𝑥𝑖 → Ŭ𝑥𝑖/𝝁𝑎𝑖 = U𝑥𝑖 is denoted by

𝜌𝑥𝑖 : Ŭ𝑥𝑖 → U𝑥𝑖

and is called the orbifold chart of P containing p𝑥𝑖 .
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Let 𝑋 ⊂ P be a subscheme. Usually, we denote by 𝑈𝑥𝑖 ⊂ 𝑋 the open set U𝑥𝑖 ∩ 𝑋 , and we call 𝑈𝑥𝑖 the
standard affine open subset of X containing p𝑥𝑖 . In this case, we set �̆�𝑥𝑖 = 𝜌−1

𝑥𝑖 (𝑈𝑥𝑖 ) ⊂ Ŭ𝑥𝑖 . By a slight
abuse of notation, the morphism 𝜌𝑥𝑖 |𝑈𝑖 : �̆�𝑥𝑖 → 𝑈𝑥𝑖 is also denote by

𝜌𝑥𝑖 : �̆�𝑥𝑖 → 𝑈𝑥𝑖

and is called the orbifold chart of X containing p𝑥𝑖 . When we are using the notation p = p𝑥𝑖 , the
morphism 𝜌𝑥𝑖 is sometimes denoted by 𝜌p. Note that �̆�𝑥𝑖 is not necessary smooth in general.

Suppose that 𝑋 ⊂ P is a closed subvariety containing the point p = p𝑥𝑖 . The preimage p̆ of p is the
origin of �̆�𝑥𝑖 ⊂ Ŭ𝑥𝑖 = A

𝑁 . It is straightforward to see that X is quasi-smooth at p if and only if �̆�𝑥𝑖 is
smooth at p̆. Suppose that X is quasi-smooth at p. A system of local coordinates of 𝑈𝑥𝑖 at p̆ is called a
system of local orbifold coordinates of X at p. In this case, p ∈ 𝑋 is a cyclic quotient singularity of index
𝑎𝑖 and 𝜌𝑥𝑖 : �̆�𝑥𝑖 → 𝑈𝑥𝑖 can be identified with (or analytically equivalent to) the quotient morphism 𝑞p

of p ∈ 𝑋 after shrinking 𝑈𝑥𝑖 and then �̆�𝑥𝑖 . Moreover, if X is quasi-smooth, then �̆�𝑖 is smooth for any i.

Remark 2.16. When we work with P = P(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)𝑥,𝑦,𝑧,𝑡 ,𝑤 and its closed subscheme 𝑋 ⊂ P, then
U𝑣 = A5

�̆�,..., ˆ̆𝑣,...,�̆�
, 𝜌𝑣 : Ŭ𝑣 → U𝑣 , �̆�𝑣 = 𝜌−1

𝑣 (𝑈𝑣 ) ⊂ U𝑣 and 𝜌𝑣 : �̆�𝑣 → 𝑈𝑣 are similarly defined.

2.2.d. Weighted hypersurfaces and quasi-tangent divisors
As in the previous subsections, we work with P = P(𝑎0, . . . , 𝑎𝑁 )𝑥0 ,...,𝑥𝑁 .

Definition 2.17. A quasi-linear polynomial (or a quasi-linear form) in variables 𝑥0, . . . , 𝑥𝑛+1 is a quasi-
homogeneous polynomial 𝑓 = 𝑓 (𝑥0, . . . , 𝑥𝑛+1) such that 𝑥𝑖 ∈ 𝑓 for some 𝑖 = 0, . . . , 𝑛 + 1.

Definition 2.18. We say that a subvariety 𝑆 ⊂ P is a quasi-linear subspace of P if it is a complete
intersection in P defined by quasi-linear equations of the form

ℓ1 + 𝑓1 = ℓ2 + 𝑓2 = · · · = ℓ𝑘 + 𝑓𝑘 = 0,

where ℓ1, ℓ2, . . . , ℓ𝑘 are linearly independent linear forms in variables 𝑥0, . . . , 𝑥𝑛+1 and 𝑓1, . . . , 𝑓𝑘 ∈
C[𝑥0, . . . , 𝑥𝑛+1] are quasi-homogeneous polynomials which are not quasi-linear. A quasi-linear subspace
of P of codimension 1 (resp. dimension 1) is called a quasi-hyperplane (resp. quasi-line) of P.

It is clear that a quasi-linear subspace of P is isomorphic to a weighted projective space. In particular,
a quasi-line is isomorphic to P1.

Let X be a hypersurface in P = P(𝑎0, . . . , 𝑎𝑁 ) defined by a quasi-homogeneous polynomial of degree
d. We often denote it as 𝑋 = 𝑋𝑑 ⊂ P(𝑎0, . . . , 𝑎𝑁 ). Suppose that X is quasi-smooth at a point p = p𝑥𝑖 .
Then the defining polynomial 𝐹 = 𝐹 (𝑥0, . . . , 𝑥𝑁 ) of X can be written as

𝐹 = 𝑥𝑚𝑖 𝑓 + 𝑥𝑚−1
𝑖 𝑔𝑚−1 + · · · + 𝑥𝑖𝑔1 + 𝑔0, (2.3)

where 𝑚 ≥ 0, 𝑓 = 𝑓 (𝑥0, . . . , 𝑥𝑁 ) is a quasi-homogeneous polynomial of degree 𝑑−𝑚𝑎𝑖 which is quasi-
linear and 𝑔𝑘 = 𝑔𝑘 (𝑥0, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ) is a quasi-homogeneous polynomial of degree 𝑑 − 𝑘𝑎𝑖 which
is not quasi-linear for 0 ≤ 𝑘 ≤ 𝑚 − 1. Note that the expression (2.3) is uniquely determined once the
homogeneous coordinates of P are fixed.

Definition 2.19. Under the notation and assumptions as above, we call f the quasi-tangent polynomial
of X at p and the divisor ( 𝑓 = 0)𝑋 on X is called the quasi-tangent divisor of X at p. When 𝑓 = 𝑥 𝑗 for
some j, then we also call 𝑥 𝑗 as the quasi-tangent coordinate of X at p.

Remark 2.20. Let 𝑋 = 𝑋7 ⊂ P(1, 1, 1, 2, 3)𝑥,𝑦,𝑧,𝑡 ,𝑤 be a weighted hypersurface of degree 7. Suppose
that its defining polynomial is of the form

𝐹 = 𝑡3𝑥 + 𝑡2𝑤 + 𝑡𝑔5 + 𝑔7,
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where 𝑔5, 𝑔7 ∈ C[𝑥, 𝑦, 𝑧, 𝑤] are quasi-homogeneous polynomials of degree 5, 7, respectively. In this
case X is quasi-smooth at p = p𝑡 . The quasi-tangent polynomial of X at p is 𝑡𝑥 + 𝑤. Note that x is not a
quasi-tangent coordinate of X at p because of the presence of 𝑡2𝑤 ∈ 𝐹.
Lemma 2.21. Let 𝑋 ⊂ P be a weighted hypersurface of degree d. Assume that X is quasi-smooth at a
point p = p𝑥𝑖 for some 𝑖 = 0, 1, . . . , 𝑁 , and let 𝑥 𝑗 be a homogeneous coordinate such that 𝑥 𝑗 ∈ 𝑓 , where
f is the quasi-tangent polynomial of X at p. Then, after a suitable choice of homogeneous coordinates
𝑥0, . . . , 𝑥𝑁 , the defining polynomial F of X can be written as

𝐹 = 𝑥𝑚𝑖 𝑥 𝑗 + 𝑥𝑚−1
𝑖 𝑔𝑚−1 + · · · + 𝑥𝑖𝑔1 + 𝑔0,

where 𝑔𝑘 = 𝑔𝑘 (𝑥0, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ) is a quasi-homogeneous polynomial of degree 𝑑 − 𝑘𝑎𝑖 which is not
quasi-linear.
Proof. We can write 𝐹 = 𝑥𝑚𝑖 𝑓 +𝑔, where 𝑚 ≥ 0, 𝑓 = 𝑓 (𝑥0, . . . , 𝑥𝑁 ) � 𝑥 𝑗 is the quasi-tangent polynomial
and g is a quasi-homogeneous polynomial of degree d which does not involve a monomial divisible by
𝑥𝑚𝑖 and which is contained in the ideal (𝑥0, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 )2. We write 𝑔 = 𝑥𝑒𝑗 ℎ𝑒 + · · · +𝑥 𝑗ℎ1 + ℎ0, where
𝑒 ≥ 0 and ℎ𝑘 is a quasi-homogeneous polynomial of degree 𝑑− 𝑘𝑎 𝑗 which does not involve the variables
𝑥 𝑗 . By rescaling 𝑥 𝑗 , we may assume 𝑓 = 𝑥 𝑗 − 𝑓 , where 𝑥 𝑗 ∉ 𝑓 , and we write 𝑓 = 𝑥𝑛𝑖 𝑓𝑛 + · · · + 𝑥𝑖 𝑓1 + 𝑓0,
where 𝑓𝑘 is a quasi-homogeneous polynomial of degree 𝑑−(𝑚+𝑘)𝑎𝑖 which does not involve the variable
𝑥𝑖 . We consider the coordinate change 𝑥 𝑗 ↦→ 𝑥 𝑗 + 𝑓 . Then the new defining polynomial can be written as

𝐹 = 𝑥𝑚𝑖 𝑥 𝑗 + (𝑥 𝑗 + 𝑥𝑛𝑖 𝑓𝑛 + · · · )𝑒ℎ𝑒 + · · · + (𝑥 𝑗 + 𝑥𝑛𝑖 𝑓𝑛 + · · · )ℎ1 + ℎ0

= (𝑥𝑛𝑒−𝑚𝑖 𝑓 𝑒𝑛 + · · · + 𝑥 𝑗 )𝑥𝑚𝑖 + · · ·

It follows that the new quasi-tangent polynomial is 𝑥𝑛𝑒−𝑚𝑖 𝑓 𝑒𝑛 + · · · + 𝑥 𝑗 . We claim that 𝑛𝑒 − 𝑚 < 𝑛. We
have 𝑑 = 𝑚𝑎𝑖 + 𝑎 𝑗 , 𝑑 = 𝑒𝑎 𝑗 + deg ℎ𝑒 ≥ 𝑒𝑎 𝑗 and 𝑎 𝑗 = 𝑛𝑎𝑖 + deg 𝑓𝑛 > 𝑛𝑎𝑖 , which implies 𝑛𝑒 − 𝑚 < 𝑛.
Thus, repeating the above coordinate change, we can drop the degree of the quasi-tangent coordinate
with respect to 𝑥𝑖 , and we may assume 𝐹 = 𝑥𝑚𝑖 𝑓 + 𝑥𝑚−1

𝑖 𝑔𝑚−1 + · · · + 𝑥𝑖𝑔 + 𝑔0, where 𝑓 � 𝑥 𝑗 and 𝑔𝑘
are quasi-homogeneous polynomials of degree 𝑎 𝑗 and 𝑑 − 𝑘𝑎𝑖 , respectively, which do not involve the
variable 𝑥𝑖 . Moreover, 𝑔𝑘 is not quasi-linear for 0 ≤ 𝑘 ≤ 𝑚 − 1. Finally, replacing 𝑥 𝑗 , we may assume
𝑓 = 𝑥 𝑗 and this completes the proof. �

Remark 2.22. Suppose that a weighted hypersurface 𝑋 ⊂ P is quasi-smooth at p = p𝑥𝑖 . Then
omultp (( 𝑓 = 0)𝑋 ) > 1 for the quasi-tangent polynomial f of X at p. Moreover, 𝑥 𝑗 is a quasi-tangent
coordinate of X at p if and only if omultp (𝐻𝑥 𝑗 ) > 1.

2.3. The 95 families

2.3.a. Definition of the families
As it is explained in Section 1.2.b, quasi-smooth Fano 3-fold weighted hypersurfaces of index 1 are
classified and they form 95 families. According to the classification, the minimum of the weights of an
ambient space is 1. Hence a family is determined by a quadruple (𝑎1, 𝑎2, 𝑎3, 𝑎4), which means that the
family corresponding to a quadruple (𝑎1, 𝑎2, 𝑎3, 𝑎4) is the family of weighted hypersurfaces of degree
𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 in P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4). The 95 families are numbered in the lexicographical order
on (𝑑, 𝑎1, 𝑎2, 𝑎3, 𝑎4), and each family is referred to as family No. i for i ∈ {1, 2, . . . , 95}. Families
No. 1 and 3 are the families consisting of quartic 3-folds and degree 6 hypersurfaces in P(1, 1, 1, 1, 3),
respectively, and for any smooth member of these two families, K-stability (and hence the existence of
KE metrics) is known.
Definition 2.23. We set

I := {1, 2, . . . , 95} \ {1, 3},

and, for i ∈ I, we denote by Fi the family consisting of the quasi-smooth members of family No. i.
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The main objects of this article is thus the members of Fi for i ∈ I.
We set

I1 := {2, 4, 5, 6, 8, 10, 14}.

The set I1 is characterized as follows: Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4, be a
member of a family Fi with i ∈ I. Then i ∈ I1 if and only if 𝑎2 = 1. The computations of alpha invariants
will be done in a relatively systematic way for families Fi with i ∈ I \ I1 (see Sections 4 and 5), while
the computations will be done separately for families Fi with i ∈ I1 (see Section 6).

We explain notation and conventions concerning the main objects of this article. Let 𝑋 = 𝑋𝑑 ⊂
P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4) =: P be a member of a family Fi with i ∈ I.

◦ Unless otherwise specified, we assume 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4.
◦ In many situations (especially when we treat a specific family), we denote by 𝑥, 𝑦, 𝑧, 𝑡, 𝑤 the homo-

geneous coordinates of P of degree, respectively, 1, 𝑎1, 𝑎2, 𝑎3, 𝑎4.
◦ We denote by F the polynomial defining X in P, which is quasi-homogeneous of degree 𝑑 = 𝑎1 + 𝑎2 +

𝑎3 + 𝑎4.
◦ We set 𝐴 = −𝐾𝑋 , which is the positive generator of of Cl(𝑋) � Z. Note that we have

(−𝐾𝑋 )3 = (𝐴3) = 𝑑

𝑎1𝑎2𝑎3𝑎4
=

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4
𝑎1𝑎2𝑎3𝑎4

.

2.3.b. Definitions of QI and EI centers and birational (super)rigidity
In this subsection, let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of a family Fi with i ∈ I, where 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4. We give definitions of QI and
EI centers, which are particular singular points on X and are important for understanding birational
(super)rigidity of X. For EI centers, we only give an ad hoc definition (see [CPR00, Section 4.10] and
[CP17, Section 4.2] for more detailed treatments).

Definition 2.24. Let p ∈ 𝑋 be a singular point. We say that p ∈ 𝑋 is an EI center if the upper script EI
is given in the fourth column of Table 7, or equivalently if i and p belong to one of the following.

◦ i = 7 and p is of type 1
2 (1, 1, 1).

◦ i ∈ {23, 40, 44, 61, 76} and p = p𝑡 .
◦ i ∈ {20, 36} and p = p𝑧 .

We say that p ∈ 𝑋 is a QI center if there are distinct j and k such that 𝑑 = 2𝑎𝑘 + 𝑎 𝑗 and the index of
the cyclic quotient singularity p ∈ 𝑋 coincides with 𝑎𝑘 .

We say that p ∈ 𝑋 is a birational involution (BI) center if it is either an EI center or a QI center.

Remark 2.25. Let X be a member of Fi with i ∈ I. Then the following are proved in [CP17].

1. No smooth point on X is a maximal center.
2. A singular point p ∈ 𝑋 is a maximal center only if either p is a BI center or X is a member of F23

and p = p𝑧 is of type 1
3 (1, 1, 2).

Note that a BI center p ∈ 𝑋 is not always a maximal center (see Section 5.3, especially Remark 5.10,
for the complete analysis for QI centers). Note also that the 1

3 (1, 1, 2) point p𝑧 on a member X of F23 is
not a maximal center if X is general. However, p𝑧 ∈ 𝑋 can be a maximal center and in that case there is
a birational involution of X (called an invisible involution) with center p𝑧 (see [CP17, Section 4.3]).

Definition 2.26. We define the subset IBSR ⊂ I as follows: i ∈ IBSR if and only if a member X of Fi does
not admit a BI center. We then define IBR = I \ IBSR.

Note that |IBSR | = 48 and |IBR | = 45. The following is a more precise version of Theorem 1.2.
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Theorem 2.27 [CP17]. Let X be a member of Fi with i ∈ I.

1. If i ∈ IBSR, then any member of Fi is birationally superrigid.
2. If i ∈ IBR, then any member of Fi is birationally rigid while its general member is not birationally

superrigid.

We emphasize that a family Fi, where i ∈ IBR, can contain (in fact does contain for most of i ∈ IBR)
birationally superrigid Fano 3-folds as special members.

2.3.c. Numerics on weights and degrees
Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of Fi. Throughout the subsection, we assume that i ∈ I \ I1 and that 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4.
We collect some elementary numerical results on weights 𝑎1, . . . , 𝑎4, the degree 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4
of the defining polynomial 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤) of X, and the anticanonical degree (𝐴3) of X which will
be repeatedly used in the rest of this article.

Lemma 2.28. One of the following happens.

1. 𝑑 = 2𝑎4.
2. 𝑑 = 3𝑎4.
3. 𝑑 = 2𝑎4 + 𝑎 𝑗 for some 𝑗 ∈ {1, 2, 3}.

Proof. We see that either 𝑤𝑛 ∈ 𝐹 for some 𝑛 ≥ 2 or 𝑥𝑛𝑣 ∈ 𝐹 for some 𝑛 ≥ 1 and 𝑣 ∈ {𝑥, 𝑦, 𝑧, 𝑡} by the
quasi-smoothness of X.

Suppose 𝑤𝑛 ∈ 𝐹 for some 𝑛 ≥ 2. Then we have

𝑑 = 𝑛𝑎4 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 < 4𝑎4.

Hence, 𝑛 = 2, 3 and we are in case (1) or (2). Suppose 𝑤𝑛𝑣 ∈ 𝐹 for some 𝑛 ≥ 1 and 𝑣 ∈ {𝑦, 𝑧, 𝑡}. Then
we have 𝑑 = 𝑛𝑎4 + 𝑎 𝑗 and moreover we have

𝑎4 + 𝑎 𝑗 < 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 < 3𝑎4 + 𝑎 𝑗 .

This shows 𝑛 = 2, that is, 𝑑 = 2𝑎4 + 𝑎 𝑗 .
If 𝑎1 = 1, then the proof is completed. It remains to show that the case 𝑑 = 2𝑎4 + 1 does not take

place assuming 𝑎1 ≥ 2. Suppose 𝑑 = 2𝑎4 + 1 and 𝑎1 ≥ 2. Then 𝑤2𝑥 ∈ 𝐹 and the singularity of p𝑤 ∈ 𝑋
is of type 1

𝑎4
(𝑎1, 𝑎2, 𝑎3). There exist distinct 𝑖, 𝑗 ∈ {1, 2, 3} such that 𝑎𝑖 + 𝑎 𝑗 is divisible by 𝑎4 since

p𝑤 ∈ 𝑋 is terminal. We have 𝑎𝑖 + 𝑎 𝑗 = 𝑎4 since 0 < 𝑎𝑖 + 𝑎 𝑗 < 2𝑎4. Let 𝑘 ∈ {1, 2, 3} be such that
{𝑖, 𝑗 , 𝑘} = {1, 2, 3}. Then

𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑎𝑘 + 2𝑎4.

Combining this with 𝑑 = 2𝑎4 + 1, we have 𝑎𝑘 = 1. This is a contradiction since 𝑎𝑘 ≥ 𝑎1 ≥ 2. �

Lemma 2.29.

1. We have i ∈ {9, 17} if and only if 𝑑 = 3𝑎4 and 𝑎1 = 1.
2. We have 𝑎1𝑎2𝑎3 (𝐴3) ≤ 3 and the equality holding if and only if 𝑑 = 3𝑎4.
3. If 𝑎1 < 𝑎2, then we have 𝑎1 (𝐴3) < 1.
4. If 1 < 𝑎1 < 𝑎2, then 𝑎1𝑎3 (𝐴3) ≤ 1.
5. If 𝑎1 < 𝑎2 and 𝑑 > 2𝑎4, then 𝑎1𝑎4 (𝐴3) ≤ 2.
6. If d is divisible by 𝑎4 and i ∉ {9, 17}, then 𝑎2𝑎3 (𝐴3) ≤ 2.
7. If d is not divisible by 𝑎4 and 𝑎1 ≥ 2, then 𝑎2𝑎4 (𝐴3) ≤ 2.
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Proof. We prove (1). The ‘only if’ part is obvious. Suppose 𝑑 = 3𝑎4 and 𝑎1 = 1. Then we have
2𝑎4 = 1 + 𝑎2 + 𝑎3. This implies 𝑎2 = 𝑎4 − 1 and 𝑎3 = 𝑎4 since 𝑎2 ≤ 𝑎3 ≤ 𝑎4. Then, by setting
𝑎 = 𝑎2 ≥ 2, X is a weighted hypersurface in P(1, 1, 𝑎, 𝑎 + 1, 𝑎 + 1) of degree 3(𝑎 + 1). Suppose p𝑧 ∉ 𝑋 .
Then some power of z is contained in F and this implies that 3(𝑎 + 1) is divisible by a. In particular, we
have 𝑎 = 3 and this case corresponds to i = 17. Suppose p𝑧 ∉ 𝑋 , then either 3(𝑎 + 1) ≡ 1(mod 𝑎) or
3(𝑎 + 1) ≡ 𝑎 + 1(mod 𝑎) by the quasi-smoothness of X. In both cases, we have 𝑎 = 2, ad hence i = 9.
Thus, (1) is proved.

The assertion (2) follows immediately since we have

𝑎1𝑎2𝑎3 (𝐴3) = 𝑑

𝑎4
≤ 3

and 𝑑 ≤ 3𝑎4 by Lemma 2.28.
We prove (3). Note that 2 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4. Note also that 𝑎4 > 𝑎2 because otherwise X has

nonisolated singularity along 𝐿𝑥𝑦 which is impossible. In particular, we have 𝑎1 + · · · + 𝑎4 < 4𝑎4 and
𝑎2𝑎3 ≥ 4 and we have

𝑎1 (𝐴3) = 𝑎1 (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)
𝑎1𝑎2𝑎3𝑎4

<
4

𝑎2𝑎3
≤ 1,

which proves (3).
We prove (4). We have 𝑎2 ≥ 3 since 𝑎2 > 𝑎1 > 1 and thus

𝑎1𝑎3 (𝐴3) = 𝑑

𝑎2𝑎4
≤ 3

𝑎2
≤ 1.

We prove (5). We have 𝑑 > 2𝑎4 by assumption. Then, by Lemma 2.28, we have 𝑑 = 2𝑎4 + 𝑎 𝑗 for
some 𝑗 ∈ {1, 2, 3, 4}, and combining this with 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4, we have

𝑎4 = 𝑎1 + 𝑎2 + 𝑎3 − 𝑎 𝑗 ≤ 𝑎2 + 𝑎3.

If 𝑎1 > 1, then we have 𝑎2, 𝑎3 ≥ 3 and thus

𝑎1𝑎4 (𝐴3) = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4
𝑎2𝑎3

<
3𝑎2 + 2𝑎3

𝑎2𝑎3
=

3
𝑎3

+ 2
𝑎2

≤ 5
3

.

Suppose 𝑎1 = 1. In this case 2 ≤ 𝑎2 ≤ 𝑎3. If 𝑎3 ≥ 3, then

𝑎4 (𝐴3) = 1 + 𝑎2 + 𝑎3 + 𝑎4
𝑎2𝑎3

≤ 1 + 2𝑎2 + 2𝑎3
𝑎2𝑎3

=
1

𝑎2𝑎3
+ 2

𝑎3
+ 2

𝑎2
≤ 11

6
.

Suppose 𝑎3 = 2, that is, 𝑎2 = 𝑎3 = 2. Then we have 𝑎4 = 3 and 𝑑 = 8 since 𝑑 = 5 + 𝑎4 > 2𝑎4 and 𝑎4 is
odd. In this case, we have 𝑎4 (𝐴3) = 2. This proves (5).

We prove (6). By Lemma 2.28 and (1), either 𝑑 = 2𝑎4 or 𝑑 = 3𝑎4 and 𝑎1 ≥ 2. If 𝑑 = 2𝑎4 (resp.
𝑑 = 3𝑎4 and 𝑎1 ≥ 2), then

𝑎2𝑎3 (𝐴3) = 2
𝑎1

≤ 2 (resp. 𝑎2𝑎3 (𝐴3) = 3
𝑎1

≤ 2).

This proves (6).
We prove (7). By Lemma 2.28, we have 𝑑 = 2𝑎4 + 𝑎 𝑗 for some 𝑗 ∈ {1, 2, 3}. Then we have

𝑎4 = 𝑎1 + 𝑎2 + 𝑎3 − 𝑎 𝑗 ≤ 𝑎2 + 𝑎3. If 𝑎1 ≥ 3, then

𝑎2𝑎4 (𝐴3) = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4
𝑎1𝑎3

≤ 𝑎1 + 4𝑎3
𝑎1𝑎3

=
1
𝑎3

+ 4
𝑎1

≤ 5
3

.
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We continue the proof assuming 𝑎1 = 2. If in addition 𝑎2 < 𝑎3, then

𝑎2𝑎4 (𝐴3) = 2 + 𝑎2 + 𝑎3 + 𝑎4
2𝑎3

≤ 2 + 2𝑎2 + 2𝑎3
2𝑎3

≤ 4𝑎3
2𝑎3

= 2.

We continue the proof assuming 𝑎1 = 2 and 𝑎2 = 𝑎3. In this case, by setting 𝑎 = 𝑎2 = 𝑎3 and 𝑏 = 𝑎4,
X is a weighted hypersurface of degree d in P(1, 2, 𝑎, 𝑎, 𝑏) and either 𝑑 = 2𝑏 + 2 or 𝑑 = 2𝑏 + 𝑎. If
𝑑 = 2𝑏+2, then 𝑏 = 2𝑎 but this is impossible since X has only terminal singularities. Hence, 𝑑 = 2𝑏+𝑎.
In this case 𝑏 = 𝑎 + 2 and 𝑑 = 3𝑎 + 4. By the quasi-smoothness of X, we see that 𝑑 = 3𝑎 + 4 is divisible
by a. This implies that 𝑎 ∈ {2, 4}. This is impossible since X has only terminal singularities. Therefore,
(7) is proved. �

2.3.d. How to compute alpha invariants?
Let X be a member of a family Fi with i ∈ I. For the proof of Theorem 1.8, it is necessary to show
𝛼p (𝑋) ≥ 1/2 for any point p ∈ 𝑋 . Let p ∈ 𝑋 be a point. We briefly explain the most typical method of
bounding 𝛼p (𝑋) from below, which goes as follows.

1. Choose and fix a divisor S on X which vanishes at p to a relatively large (orbifold) multiplicity
𝑚 = omultp(𝑆) > 0. In some cases, 𝑆 = 𝐻𝑥 (when p ∈ 𝐻𝑥), and in other cases, S is the quasi-tangent
divisor of X at p. Let a be the positive integer such that 𝑆 ∼ 𝑎𝐴.

2. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 1
𝑎 𝑆. Then 𝐷 · 𝑆 is an effective 1-cycle on X.

3. Find a Q-divisor 𝑇 ∈ |𝑒𝐴|Q for some 𝑒 ∈ Z>0 such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain
any component of 𝐷 · 𝑆. We will find such aQ-divisor T by considering p-isolating set or class which
will be explained in Section 3.1.c.

4. Let 𝑞 = 𝑞p be the quotient morphism of p ∈ 𝑋 and p̌ be the preimage of p via q. By the above
choices, Supp(𝑞∗𝐷)∩Supp(𝑞∗𝑆)∩Supp(𝑞∗𝑇) is a finite set of points including p̌, and hence the local
intersection number (𝑞∗𝐷 · 𝑞∗𝑆 · 𝑞∗𝑇)p̌ is defined (see Section 3.1.a). Then we have the inequalities

𝑚 omultp (𝐷) ≤ (𝑞∗
p𝐷 · 𝑞∗

p𝑆 · 𝑞∗
p𝑇)p̌ ≤ 𝑟 (𝐷 · 𝑆 · 𝑇) = 𝑟𝑎𝑒(𝐴3),

where r is the index of the cyclic quotient singularity p ∈ 𝑋 . Note that q is the identity morphism
and 𝑟 = 1 when p ∈ 𝑋 is a smooth point. By Lemma 3.2 which will be explained below, we have

lctp (𝑋; 𝐷) ≥ 𝑟𝑎𝑒(𝐴3)
𝑚

for any D as in (2).
5. As a conclusion, we have

𝛼p (𝑋) ≥ min
{
lctp (𝑋; 𝑆), 𝑟𝑎𝑒(𝐴3)

𝑚

}
.

6. It remains to bound lctp(𝑋; 𝑆) from below. This is easy when S is quasi-smooth at p because in that
case we have lctp(𝑋; 𝑆) = 1. The computation gets involved when S is the quasi-tangent divisor but
will be done by considering suitable weighted blowups which will be explained in Section 3.2.b.

We need to consider variants of the above explained method or other methods especially for points
in special positions. These will be explained in Section 3.
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3. Methods of computing log canonical thresholds

3.1. Auxiliary results

3.1.a. Some results on multiplicities and log canonicity
Let V be an n-dimensional variety. For effective Cartier divisors 𝐷1, . . . , 𝐷𝑛 on V and a point p ∈ 𝑉
which is an isolated component of Supp(𝐷1) ∩ · · · ∩ Supp(𝐷𝑛), the intersection multiplicity

𝑖(p, 𝐷1 · · · 𝐷𝑛;𝑉)

is defined (see [Ful98, Example 7.1.10]). Suppose that V is Q-factorial. Then this definition is naturally
generalized to effective Q-divisors 𝐷1, . . . , 𝐷𝑛 as follows:

𝑖(p, 𝐷1, · · · , 𝐷𝑛;𝑉) :=
1
𝑑𝑛

𝑖(p, 𝑑𝐷1, · · · , 𝑑𝐷𝑛;𝑉),

where d is a positive integer such that 𝑑𝐷𝑖 is a Cartier divisor for any i. In this paper, we set

(𝐷1 · · · 𝐷𝑛)p := 𝑖(p, 𝐷1 · · · 𝐷𝑛;𝑉)

and call it the local intersection number of 𝐷1, . . . , 𝐷𝑛 at p.

Remark 3.1. If p ∈ 𝑉 is a smooth point, 𝐷1, . . . , 𝐷𝑛 are effective divisors defined by 𝑓1, . . . , 𝑓𝑛 ∈ O𝑉 ,p
around p, and p is an isolated component of Supp(𝐷1) ∩ · · · ∩ Supp(𝐷𝑛), then

(𝐷1 · · · 𝐷𝑛)p = dimCO𝑉 ,𝑃/( 𝑓1, . . . , 𝑓𝑛).

If 𝑋 ⊂ P(𝑎0, . . . , 𝑎𝑁 ) is an n-dimensional subvariety which is quasi-smooth at p = p𝑥𝑖 ∈ 𝑉 ,
𝐷1 = (𝐺1 = 0)𝑋 , . . . , 𝐷𝑛 = (𝐺𝑛 = 0)𝑋 are effective Weil divisors such that p is an isolated component
of 𝐷1 ∩ · · · ∩ 𝐷𝑛, where 𝐺𝑖 = 𝐺𝑖 (𝑥0, . . . , 𝑥𝑁 ) is a quasi-homogeneous polynomial of degree 𝑑𝑖 , then

(𝐷1 · · · 𝐷𝑛)p =
1
𝑎𝑖

(𝜌∗𝐷1 · · · 𝜌∗𝐷𝑛)p̆ =
1
𝑎𝑖

dimCO�̆�p ,p̆/(𝑔1, . . . , 𝑔𝑛),

where 𝜌 = 𝜌p : �̆�p → 𝑈p := 𝑋 ∩ Up is the orbifold chart with p̆ ∈ �̆�p the preimage of p and
𝑔𝑖 = 𝐺 (𝑥0, . . . , 1, . . . , 𝑥𝑁 ) with 𝑥 𝑗 = 𝑥 𝑗/𝑥

𝑎 𝑗/𝑎𝑖
𝑖 for 𝑗 ≠ 𝑖.

We will frequently use the following property of local intersection numbers. Let 𝐷1, . . . , 𝐷𝑛 be
effective Q-divisors on X and p ∈ 𝑋 be a smooth point. If p is an isolated component of Supp(𝐷1) ∩
· · · ∩ Supp(𝐷𝑛), then

(𝐷1 · . . . · 𝐷𝑛)p ≥
𝑛∏
𝑖=1

multp (𝐷𝑖).

We refer readers to [Ful98, Corollary 12.4] for a proof. Although the following results are well-known
to experts, we include their proofs for readers’ convenience.

Lemma 3.2. Let p ∈ 𝑋 be either a germ of a smooth variety or a germ of a cyclic quotient singular
point, and let D be an effective Q-divisor on X. Then the inequality

1
omultp(𝐷) ≤ lctp (𝑋, 𝐷)

holds.
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Proof. Let 𝑞 = 𝑞p : �̌� → 𝑋 be the quotient morphism of p ∈ 𝑋 , which is étale in codimension 1, and
let p̌ ∈ �̌� be the preimage of p. By [Kol+92, 20.4 Corollary], we have lctp (𝑋; 𝐷) = lctp̌( �̌�; 𝑞∗𝐷). Note
that p̌ ∈ �̌� is smooth. Hence, by [Kol97, 8.10 Lemma], we have

1
omultp(𝐷) =

1
multp̌ (𝑞∗𝐷) ≤ lctp̌( �̌�; 𝑞∗𝐷),

and the proof is completed. �

Lemma 3.3 (2𝑛-inequality, cf. [Cor00, Corollary 3.5]). Let p ∈ 𝑋 be a germ of a smooth 3-fold, D an
effective Q-divisor on X, 𝑛 > 0 a rational number, and let 𝜑 : 𝑌 → 𝑋 be the blowup of X at p with
exceptional divisor E. If (𝑋, 1

𝑛𝐷) is not canonical at p, then there exists a line 𝐿 ⊂ 𝐸 � P2 with the
following property.
◦ For any prime divisor T on X such that T is smooth at p and that its proper transform 𝑇 contains L,

we have multp(𝐷 |𝑇 ) > 2𝑛.
Proof. We set 𝑚 = multp (𝐷). By [Cor00, Corollary 3.5], one of the following holds.
1. 𝑚 > 2𝑛.
2. There is a line 𝐿 ⊂ 𝐸 such that the pair(

𝑌,
(𝑚

𝑛
− 1

)
𝐸 + 1

𝑛
�̃�

)
is not log canonical at the generic point of L.

Note that in [Cor00, Corollary 3.5] the boundary is a movable linear system H, but the same argument
applies if we replace H by an effective Q-divisor D. We may assume 𝑚 ≤ 2𝑛 because otherwise
multp(𝐷 |𝑇 ) > 2𝑛 for any prime divisor T which is smooth at p and the assertion follows by choosing
any line on E. Thus, the option (2) takes place. Let T be a prime divisor on X such that T is smooth at p
and 𝑇 ⊃ 𝐿. We have

𝐾𝑌 +
(𝑚

𝑛
− 1

)
𝐸 + 1

𝑛
�̃� + 𝑇 = 𝜑∗

(
𝐾𝑋 + 1

𝑛
𝐷 + 𝑇

)
.

Note that 𝐸 |�̃� = 𝐿, and we can write �̃� |�̃� = 𝛼𝐿 + 𝐺, where 𝛼 ≥ 0 is a rational number and G is an
effective Q-divisor on 𝑇 . Thus, by restricting the above equation to 𝑇 , we have

𝐾�̃� +
(𝑚

𝑛
− 1 + 𝛼

)
𝐿 + 𝐺 = 𝜑∗

(
𝐾𝑇 + 1

𝑛
𝐷 |𝑇

)
,

and the pair (
𝑇,
(𝑚

𝑛
− 1 + 𝛼

)
𝐿 + 𝐺

)
is not log canonical at the generic point of L. This implies 𝑚

𝑛 − 1 + 𝛼 > 1, and we have

1
𝑛

multp (𝐷 |𝑇 ) =
(𝑚

𝑛
− 1 + 𝛼

)
+ 1 > 2.

Thus, multp (𝐷 |𝑇 ) > 2𝑛 and the proof is completed. �

Lemma 3.4. Let 𝐷 ∈ |OP2 (3) | be a divisor on P2 which is not a triple line. Then lct(P2; 𝐷) ≥ 1/2.
Proof. We have the following possibilities for D.
1. D is irreducible and reduced.
2. 𝐷 = 𝑄 + 𝐿, where Q is an irreducible conic and L is a line.
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3. 𝐷 = 𝐿1 + 2𝐿2, where 𝐿1, 𝐿2 are distinct lines.
4. 𝐷 = 𝐿1 + 𝐿2 + 𝐿3, where 𝐿1, 𝐿2, 𝐿3 are mutually distinct lines.

If we are in one of the cases (1), (2) and (3), then multp (𝐷) ≤ 2 for any point p ∈ 𝐷 and thus (P2, 1
2 𝐷)

is log canonical. If we are in case (3), then it is obvious that the pair (P2, 1
2 𝐷) = (P2, 1

2 𝐿1 + 𝐿2) is log
canonical. �

Lemma 3.5. Let X be a Fano 3-fold of Picard number one, and let p ∈ 𝑋 be a cyclic quotient terminal
singular point (which is not a smooth point). If p ∈ 𝑋 is not a maximal center, then there is at most one
irreducible Q-divisor 𝐷 ∈ |−𝐾𝑋 |Q such that (𝑋, 𝐷) is not canonical at p.

Proof. Suppose that there are two distinct irreducible Q-divisors 𝐷𝑖 ∼Q −𝐾𝑋 such that (𝑋, 𝐷𝑖) is not
canonical at p for 𝑖 = 1, 2. Let 𝑟 > 1 be the index of the singularity p ∈ 𝑋 , and let 𝜑 : 𝑌 → 𝑋 be
the Kawamata blowup at p with exceptional divisor E. By [Kaw96], we have ord𝐸 (𝐷𝑖) > 1/𝑟 . Take a
positive integer n such that 𝑛𝐷1, 𝑛𝐷2 are both integral and 𝑛𝐷1 ∼ 𝑛𝐷2. Then the pencil M ∼ −𝑛𝐾𝑋

generated by 𝑛𝐷1 and 𝑛𝐷2 is a movable linear system and we have ord𝐸 (M) ≥ 𝑛/𝑟 . It follows that the
pair (𝑋, 1

𝑛M) is not canonical at p. This is a contradiction since p ∈ 𝑋 is not a maximal center. �

Lemma 3.6. Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑏1, 𝑏2, 𝑏3, 𝑏4)𝑥,𝑦1 ,𝑦2 ,𝑦3 ,𝑦4

be a member of a family Fi with i ∈ I. Let 𝑖 ∈ {1, 2, 3, 4} be such that 𝑏𝑖 > 1 and p := p𝑦𝑖 ∈ 𝑋 . If 𝐻𝑥 is
the quasi-tangent divisor of X at p, then the pair (𝑋, 𝐻𝑥) is not canonical at p.

Proof. Note that the point p ∈ 𝑋 is of type 1
𝑏𝑖
(𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙), where {𝑖, 𝑗 , 𝑘, 𝑙} = {1, 2, 3, 4}, and it is a

terminal singularity. Let 𝜑 : 𝑌 → 𝑋 be the Kawamata blowup with exceptional divisor E. Since 𝐻𝑥 is
the quasi-tangent divisor of X at p, we have

ord𝐸 (𝐻𝑥) >
1
𝑏𝑖

.

Combining this with

𝐾𝑌 = 𝜑∗𝐾𝑋 + 1
𝑏𝑖

𝐸,

we see that the discrepancy of the pair (𝑋, 𝐻𝑥) along E is negative. This completes the proof. �

3.1.b. Some results on singularities of weighted hypersurfaces
Lemma 3.7. Let X be a quasi-smooth weighted hypersurface in P(𝑏0, . . . , 𝑏4). Assume that
P(𝑏0, . . . , 𝑏4) is well-formed and X has at most isolated singularities. Then any quasi-hyperplane
section on X is a normal surface.

Proof. Let 𝑥0, . . . , 𝑥4 be the homogeneous coordinates of P = P(𝑏0, . . . , 𝑏4) of degree 𝑏0, . . . , 𝑏4,
respectively. Let 𝐹 = 𝐹 (𝑥0, . . . , 𝑥4) be the defining polynomial of X, and let S be a quasi-hyperplane
section on X. After replacing homogeneous coordinates, we may assume 𝑆 = (𝑥4 = 0)𝑋 = (𝑥4 = 𝐹 =
0) ⊂ P. It is enough to show that the singular locus Sing(𝑆) of S is a finite set of points.

We write 𝐹 = 𝑥4𝐺 + �̄�, where 𝐺 = 𝐺 (𝑥0, . . . , 𝑥4) and �̄� = �̄� (𝑥0, . . . , 𝑥3) are quasi-homogeneous
polynomials. We set P̄ = P(𝑏0, . . . , 𝑏3). We claim that P̄ is well-formed. Suppose it is not. Then Sing(P)
contains a two-dimensional stratum. We have Sing(𝑋) = Sing(P) ∩ 𝑋 since a quasi-smooth weighted
hypersurface is well-formed ([IF00, Theorem 6.17]). It follows that Sing(𝑋) cannot be a finite set of
points. This is a contradiction, and the claim is proved. The surface S is identified with the hypersurface
(�̄� = 0) ⊂ P̄, and we have

Sing(𝑆) = (𝑆 \ QSm(𝑆)) ∪ (Sing(P̄) ∩ 𝑆).
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We claim that Sing(P̄) ∩ 𝑆 is a finite set of points. Suppose not. Then Sing(P̄) ∩ 𝑆 contains a curve
and so does Sing(P) ∩ 𝑆. In particular, Sing(𝑋) = Sing(P) ∩ 𝑋 contains a curve. This is impossible
since Sing(𝑋) is a finite set of points, and the claim is proved.

It remains to show that the closed subset Σ := 𝑆 \ QSm(𝑆) ⊂ P is a finite set of points. Let
Π : A5 \ {𝑜} → P be the natural quotient morphism. Then Σ = Π(Sing(𝐶∗

𝑆)), where 𝐶∗
𝑆 ⊂ A5 \ {𝑜} is

the punctured affine quasi-cone of S. We have Sing(𝐶𝑋 ) ∩ 𝐶𝑆 = Sing(𝐶𝑆) ∩ (𝐺 = 0). By the quasi-
smoothness of X, we have Sing(𝐶𝑋 ) = {𝑜} ⊂ A5. This implies Σ ∩ (𝐺 = 0) = ∅. Since (𝐺 = 0) is an
ample divisor on P, we see that Σ is a finite set of points. This completes the proof. �

Lemma 3.8. Let S be a weighted hypersurface in P(𝑏0, 𝑏1, 𝑏2, 𝑏3), and let 𝑇 ⊂ P(𝑏0, 𝑏1, 𝑏2, 𝑏3) be
a quasi-hyperplane. If the scheme-theoretic intersection 𝑆 ∩ 𝑇 is quasi-smooth at a point p, then S is
quasi-smooth at p.

Proof. Let 𝑥0, 𝑥1, 𝑥2, 𝑥3 be the homogeneous coordinates of P = P(𝑏0, 𝑏1, 𝑏2, 𝑏3) of degree
𝑏0, 𝑏1, 𝑏2, 𝑏3, respectively, and let 𝐹 = 𝐹 (𝑥0, 𝑥1, 𝑥2, 𝑥3) be the defining polynomial of S. We may
assume 𝑇 = 𝐻𝑥3 ⊂ P, and we write 𝐹 = 𝑥3𝐺 + �̄�, where 𝐺 = 𝐺 (𝑥0, 𝑥1, 𝑥2, 𝑥3) and �̄� = �̄� (𝑥0, 𝑥1, 𝑥2)
are quasi-homogeneous polynomials. Then 𝑆 ∩ 𝑇 is the closed subscheme in P(𝑏0, 𝑏1, 𝑏2, 𝑏3) defined
by 𝑥3 = �̄� = 0. By the quasi-smoothness of 𝑆 ∩ 𝑇 at p, there exists 𝑖 ∈ {0, 1, 2} such that

𝜕�̄�

𝜕𝑥𝑖
(p) ≠ 0.

It follows that

𝜕𝐹

𝜕𝑥𝑖
(p) = 𝜕�̄�

𝜕𝑥𝑖
(p) ≠ 0

since p ∈ 𝐻𝑥3 . Thus, S is quasi-smooth at p. �

Lemma 3.9. Let S be a normal weighted hypersurface in a well-formed weighted projective 3-space
P(𝑏0, . . . , 𝑏3) and 𝑇 ⊂ P(𝑏0, . . . , 𝑏3) a quasi-hyperplane such that 𝑇 ≠ 𝑆. Let Γ be an irreducible
component of 𝑆 ∩ 𝑇 , and we assume that

𝑇 |𝑆 = Γ + Δ ,

where Δ is an effective divisor on S such that Γ ⊄ Supp(Δ). If Γ is a smooth weighted complete
intersection curve and S is quasi-smooth at each point of Γ ∩ Supp(Δ), then S is quasi-smooth along Γ
and the pair (𝑆, Γ) is purely log terminal (plt) along Γ.

Proof. We setΞ = Γ∩Supp(Δ). By [IF00, Theorem 12.1], Γ is quasi-smooth. We have (𝑆∩𝑇)\Ξ = Γ\Ξ.
It follows that 𝑆∩𝑇 is quasi-smooth along Γ\Ξ. By Lemma 3.8, S is quasi-smooth along Γ\Ξ. Therefore,
S is quasi-smooth along Γ.

For 𝑖 = 0, 1, 2, 3, let 𝑆𝑖 = (𝑥𝑖 ≠ 0) ∩ 𝑆 be the standard open set of S and let 𝜌𝑖 : 𝑆𝑖 → 𝑆𝑖 be the
orbifold chart. Note that 𝜌𝑖 is a finite surjective morphism of degree 𝑏𝑖 which is étale in codimension
1. By the quasi-smoothness of S, the affine varieties 𝑆𝑖 and 𝜌∗

𝑖 (Γ ∩ 𝑆𝑖) are smooth. Hence, the pair
(𝑆𝑖 , 𝜌∗

𝑖 (Γ ∩ 𝑆𝑖)) is plt along 𝜌∗
𝑖 (Γ ∩ 𝑆𝑖). By [Kol+92, Corollary 20.4], the pair (𝑆𝑖 , Γ ∩ 𝑆𝑖) is plt along

Γ ∩ 𝑆𝑖 . This completes the proof. �

Remark 3.10. Let S, T and Γ be as in Lemma 3.9. We assume in addition that Γ is rational, that is,
Γ � P1. Let SingΓ (𝑆) = {p1, . . . , p𝑛} be the set of singular points of S along Γ, and let 𝑚𝑖 be the index
of the quotient singular point p𝑖 ∈ 𝑆. Then, since the pair (𝑆, Γ) is plt along Γ, we can apply [Kol+92,
Proposition 16.6] and we have

(𝐾𝑆 + Γ) |Γ = 𝐾Γ +
𝑛∑
𝑖=1

𝑚𝑖 − 1
𝑚𝑖

p𝑖 .
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Thus, we have

(Γ2)𝑆 = −(𝐾𝑆 · Γ)𝑆 − 2 +
𝑛∑
𝑖=1

𝑚𝑖 − 1
𝑚𝑖

.

3.1.c. Isolating set and class
We recall the definitions of isolating set and class which are introduced by Corti, Pukhlikov and Reid
[CPR00] as well as their basic properties.

Let V be a normal projective variety embedded in a weighted projective space P = P(𝑎0, . . . , 𝑎𝑁 )
with homogeneous coordinates 𝑥0, . . . , 𝑥𝑁 with deg 𝑥𝑖 = 𝑎𝑖 , and let A be a Weil divisor on V such that
O𝑉 (𝐴) � O𝑉 (1). We do not assume that 𝑎0 ≤ · · · ≤ 𝑎𝑁 .
Definition 3.11. Let p ∈ 𝑉 be a point. We say that a set {𝑔1, . . . , 𝑔𝑚} of quasi-homogeneous polynomials
𝑔1, . . . , 𝑔𝑚 ∈ C[𝑥0, . . . , 𝑥𝑁 ] isolates p or is a p-isolating set if p is an isolated component of the set

(𝑔1 = · · · = 𝑔𝑚 = 0) ∩𝑉.

Definition 3.12. Let p ∈ 𝑉 be a smooth point, and let L be a Weil divisor class on V. For positive integers
k and l, we define |I𝑘p (𝑙𝐿) | to be the linear subsystem of |𝑙𝐿 | consisting of divisors vanishing at p with
multiplicity at least k. We say that L isolates p or is a p-isolating class if p is an isolated component of
the base locus of |I𝑘p (𝑘𝐿) |.
Lemma 3.13 [CPR00, Lemma 5.6.4]. Let p ∈ 𝑉 be a smooth point. If {𝑔1, . . . , 𝑔𝑚} is a p-isolating
class, then 𝑙 𝐴 is a p-isolating class, where

𝑙 = max{ deg 𝑔𝑖 | 𝑖 = 1, 2, . . . , 𝑚 }.

Lemma 3.14. Let p ∈ 𝑉 be a point, 𝑍1, . . . , 𝑍𝑘 irreducible closed subsets of V such that dim 𝑍𝑖 > 0
for any i, and let 𝑔1, . . . , 𝑔𝑛 ∈ C[𝑥0, . . . , 𝑥𝑁 ] be quasi-homogeneous polynomials. Suppose that V is
quasi-smooth at p and that {𝑔1, . . . , 𝑔𝑛} isolates p. We set 𝐺𝑖 = (𝑔𝑖 = 0)𝑉 , and we set

𝜇 := min
{ omultp (𝐺𝑖)

deg 𝑔𝑖

���� 𝑖 = 1, . . . , 𝑛

}
.

Then there exists an effective Q-divisor 𝑇 ∼Q 𝐴 such that omultp(𝑇) ≥ 𝜇 and Supp(𝑇) does not contain
any 𝑍𝑖 .
Proof. Let d be the least common multiple of deg 𝑔1, . . . , deg 𝑔𝑛, and we set 𝑒𝑖 = 𝑑/deg 𝑔𝑖 . Consider
the linear system Λ ⊂ |𝑑𝐴| on V generated by 𝑔𝑒1

1 , . . . , 𝑔𝑒𝑛𝑛 . We see that p is an isolating component
of BsΛ since {𝑔1, . . . , 𝑔𝑛} isolates p. Hence, a general 𝐷 ∈ Λ does not contain any 𝑍𝑖 in its support.
Moreover, for any 𝐷 ∈ Λ, we have

omultp (𝐷) ≥ min{ 𝑒𝑖 omultp (𝐷𝑖) | 𝑖 = 1, . . . , 𝑛 } = 𝑑𝜇.

Thus, the assertion follows by setting 𝑇 = 1
𝑑 𝐷 ∼Q 𝐴 for a general 𝐷 ∈ Λ. �

Remark 3.15. Lemma 3.14 will be frequently applied in the following way: under the same notation
and assumptions as in Lemma 3.14, there exists an effective Q-divisor 𝑇 ∼Q 𝑒𝐴, where

𝑒 = max{ deg 𝑔𝑖 | 𝑖 = 1, . . . , 𝑛 }

such that omultp(𝑇) ≥ 1 and Supp(𝑇) does not contain any 𝑍𝑖 .
Lemma 3.16. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, . . . , 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤 be a member of a family Fi with i ∈ I, where we
assume that 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4, and let p ∈ 𝐻𝑥 \ 𝐿𝑥𝑦 . Then 𝑎1𝑎4 𝐴 isolates p. If 𝑤𝑘 appears in the
defining polynomial of X with nonzero coefficient, then 𝑎1𝑎3 𝐴 isolates p.
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Proof. We can write p = (0:1 :𝛼2 :𝛼3 :𝛼4) for some 𝛼2, 𝛼3, 𝛼4 ∈ C. Then it is easy to see that the set

{𝑥, 𝑧𝑎1 − 𝛼𝑎1
2 𝑦𝑎2 , 𝑡𝑎1 − 𝛼𝑎3

3 𝑦𝑎3 , 𝑤𝑎1 − 𝛼𝑎4
4 𝑦𝑎4 }

isolates p, and thus 𝑎1𝑎4 𝐴 isolates p.
Suppose that 𝑤𝑘 appears in the defining polynomial of X. Then the natural projection

P(1, 𝑎1, . . . , 𝑎4) � P(1, 𝑎1, 𝑎2, 𝑎3) restricts to a finite morphism 𝜋 : 𝑋 → P(1, 𝑎1, 𝑎2, 𝑎3). The com-
mon zero locus (in X) of the sections contained in the set

{𝑥, 𝑧𝑎1 − 𝛼𝑎1
2 𝑦𝑎2 , 𝑡𝑎1 − 𝛼𝑎3

3 𝑦𝑎3 }

coincides with the set 𝜋−1 (q), where q = (0 : 1 : 𝛼2 : 𝛼3) ∈ P(1, 𝑎1, 𝑎2, 𝑎3). It follows that the above set
isolates p since 𝜋−1 (q) is a finite set containing p. Thus, 𝑎1𝑎3 𝐴 isolates p. �

3.2. Methods

3.2.a. Computations by intersecting two divisors
We recall methods of computing log canonial thresholds (LCTs) and consider their generalizations for
some of them.
Lemma 3.17 (cf. [KOW18, Lemma 2.5]). Let X be a normal projective Q-factorial 3-fold with nef and
big anticanonical divisor, and let p ∈ 𝑋 be either a smooth point or a terminal quotient singular point
of index r (below we set 𝑟 = 1 when p ∈ 𝑋 is a smooth point). Suppose that there are prime divisors
𝑆 ∼Q −𝑎𝐾𝑋 and 𝑇 ∼Q −𝑏𝐾𝑋 with 𝑎, 𝑏 ∈ Q such that 𝑆 ∩ 𝑇 is irreducible and 𝑞∗𝑆 · 𝑞∗𝑇 = 𝑚Γ̌, where
𝑞 = 𝑞p : �̌� → 𝑈 is the quotient morphism of an analytic neighborhood p ∈ 𝑈 of p ∈ 𝑋 , p̌ is the preimage
of p via q, m is a positive integer and Γ̌ is an irreducible and reduced curve on �̌�. Then we have

𝛼p (𝑋) ≥ min

{
lctp (𝑋; 1

𝑎 𝑆), 𝑏

𝑚 multp̌ (Γ̌)
,

1
𝑟𝑎𝑏(−𝐾𝑋 )3

}
.

Proof. We set

𝑐 := min

{
lctp (𝑋; 1

𝑎 𝑆), 𝑏

𝑚 multp̌(Γ̌)
,

1
𝑟𝑎𝑏(−𝐾𝑋 )3

}
.

We will derive a contradiction assuming 𝛼p(𝑋) < 𝑐. By the assumption, there is an irreducibleQ-divisor
𝐷 ∈ |−𝐾𝑋 |Q such that (𝑋, 𝑐𝐷) is not log canonical at p. Then the pair (�̌�, 𝑐𝜌∗𝐷) is not log canonical
at p̌ and we have

multp̌ (𝑞∗𝐷) >
1
𝑐

. (3.1)

Since 𝑞∗𝑆 · 𝑞∗𝑇 = 𝑚Γ̌ and 𝑆 ∩ 𝑇 is irreducible, we have 𝑆 · 𝑇 = 𝑚Γ, where Γ is an irreducible and
reduced curve such that Γ̌ = 𝑞∗Γ. We have

(−𝐾𝑋 · Γ) = 1
𝑚
(−𝐾𝑋 · 𝑆 · 𝑇) = 𝑎𝑏(−𝐾𝑋 )3

𝑚
. (3.2)

This in particular implies

(𝑇 · Γ) = 𝑏(−𝐾𝑋 · Γ) = 𝑎𝑏2 (−𝐾𝑋 )3

𝑚
. (3.3)

We have Supp(𝐷) ≠ 𝑆 since lctp(𝑋; 𝑆) ≥ 𝑐, and thus 𝑞∗𝐷 · 𝑞∗𝑆 is an effective 1-cycle on �̌�. We
write 𝑞∗𝐷 · 𝑞∗𝑆 = 𝛾Γ̌ + Δ̌ , where 𝛾 ≥ 0 and Δ̌ is an effective 1-cycle on �̌� such that Γ̌ ⊄ Supp(Δ̌).
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Then 𝐷 · 𝑆 = 𝛾Γ + Δ + Ξ, where Δ = 1
𝑟 𝑞∗Δ̌ and Ξ is an effective 1-cycle such that Γ ⊄ Supp(Ξ). By

equation (3.2), we have

𝑎(−𝐾𝑋 )3 = (−𝐾𝑋 · 𝐷 · 𝑆) ≥ 𝛾(−𝐾𝑋 · Γ) = 𝑎𝑏(−𝐾𝑋 )3

𝑚
𝛾,

where the inequality holds since −𝐾𝑋 is nef. Note that (−𝐾𝑋 )3 > 0 since −𝐾𝑋 is nef and big. Hence,

𝛾 ≤ 𝑚

𝑏
. (3.4)

By equations (3.1) and (3.3), we have

𝑟

(
𝑎𝑏(−𝐾𝑋 )3 − 𝑎𝑏2 (−𝐾𝑋 )3

𝑚
𝛾

)
= 𝑟 (𝑇 · (𝐷 · 𝑆 − 𝛾Γ))

= 𝑟 (𝑇 · (Δ + Ξ)) ≥ 𝑟 (𝑇 · Δ)
≥ 𝑟 (𝑇 · Δ)p = (𝑞∗𝑇 · Δ̌)p̌
≥ multp̌ (Δ̌)

>
1
𝑐
− 𝛾 multp̌ (Γ̌),

where ( · )p and ( · )p̌ denote the local intersection numbers at p and p̌, respectively. It follows that(
multp̌(Γ̌) −

𝑟𝑎𝑏2 (−𝐾𝑋 )3

𝑚

)
𝛾 >

1
𝑐
− 𝑟𝑎𝑏(−𝐾𝑋 )3. (3.5)

We have multp̌ (Γ̌) − 𝑟𝑎𝑏2 (−𝐾𝑋 )3/𝑚 > 0 since 1/𝑐− 𝑟𝑎𝑏(−𝐾𝑋 )3 ≥ 0 by the definition of c. Combining
equations (3.4) and (3.5), we have

𝑐 >
𝑏

𝑚 multp̌ (Γ̌)
.

This contradicts the definition of c and the proof is completed. �

Lemma 3.17 is very useful in computing alpha invariants but works only when 𝑆 ∩ 𝑇 is irreducible.
We consider its generalization that can be applied when 𝑆 ∩ 𝑇 is reducible.
Definition 3.18. Let 𝑀 = (𝑎𝑖 𝑗 ) be an 𝑛 × 𝑛 matrix with entries in R, where 𝑛 ≥ 2. For a nonempty
subset 𝐼 ⊂ {1, 2, . . . , 𝑛}, we denote by 𝑀𝐼 the submatrix of M consisting of ith rows and columns for
𝑖 ∈ 𝐼. We say that M satisfies the condition (★) if the following are satisfied.
◦ (−1) |𝐼 | det 𝑀𝐼 ≥ 0 for any nonempty proper subset 𝐼 ⊂ {1, 2, . . . , 𝑛}.
◦ (−1)𝑛−1 det 𝑀 > 0.
◦ 𝑎𝑖 𝑗 > 0 for any 𝑖, 𝑗 with 𝑖 ≠ 𝑗 .

For 𝑣 = 𝑡 (𝑣1, . . . , 𝑣𝑛), 𝑤 = 𝑡 (𝑤1, . . . , 𝑤𝑛) ∈ R𝑛, the expression 𝑣 ≤ 𝑤 means 𝑣𝑖 ≤ 𝑤𝑖 for any i.
Lemma 3.19. Let 𝑀 = (𝑎𝑖 𝑗 ) be an 𝑛 × 𝑛 matrix with entries in R satisfying the condition (★), and let
𝑣, 𝑤 ∈ R𝑛. Then 𝑀𝑣 ≤ 𝑀𝑤 implies 𝑣 ≤ 𝑤.
Proof. It is enough to show that 𝑣 ≤ 0 assuming 𝑀𝑣 ≤ 0 for 𝑣 ∈ R𝑛. We prove this assertion by
induction on 𝑛 ≥ 2. The case 𝑛 = 2 is easily done, and we omit it.

Assume 𝑛 ≥ 3. Suppose that there is a diagonal entry 𝑎𝑘𝑘 such that 𝑎𝑘𝑘 = 0. Then we have
det 𝑀{𝑘,𝑙 } < 0 since 𝑎𝑘𝑙 , 𝑎𝑙𝑘 > 0. By the condition (★), this is impossible since 𝑛 ≥ 3.

In the following, we may assume that 𝑎𝑖𝑖 ≠ 0 for any i. By the condition (★), we have 𝑎𝑖𝑖 = det 𝑀{𝑖 } ≤
0 and hence 𝑎𝑖𝑖 < 0 for any i. Let 𝑀 ′ be the matrix obtained by adding the first row multiplied by the
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positive integer −𝑎𝑖1/𝑎11 to the ith row, for 𝑖 = 2, . . . , 𝑛. Then we obtain the inequality 𝑀 ′𝑣 ≤ 0 and we
can write

𝑀 ′ =
�����

𝑎11 𝑎12 · · · 𝑎1𝑛
0
0 N ′

0

�����,
where 𝑁 ′ is an (𝑛 − 1) × (𝑛 − 1) matrix. It is straightforward to check that N satisfies the condition
(★). Since 𝑁 ′𝑡 (𝑣2 . . . 𝑣𝑛) ≤ 0, we have 𝑣2, . . . , 𝑣𝑛 ≤ 0 by induction hypothesis. Next, let 𝑀 ′′ be the
matrix obtained by adding the nth row multiplied by the positive integer −𝑎𝑖𝑛/𝑎𝑛𝑛 to the ith row, for
𝑖 = 1, 2, . . . , 𝑛−1. Then we have 𝑀 ′′𝑣 ≤ 0 and, by repeating the similar argument as above, we conclude
𝑣1, . . . , 𝑣𝑛−1 ≤ 0 by induction. This completes the proof. �

Definition 3.20. Let S be a normal projective surface, and let Γ1, . . . , Γ𝑘 be irreducible and reduced
curves on S. Then the 𝑘 × 𝑘 matrix

𝑀 (Γ1, . . . , Γ𝑘 ) = ((Γ𝑖 · Γ 𝑗 )𝑆)1≤𝑖, 𝑗≤𝑘

is called the intersection matrix of curves Γ1, . . . , Γ𝑘 on S.
Lemma 3.21. Let X be a member of a family Fi with i ∈ I. Let 𝑆 ∈ |−𝑎𝐾𝑋 | be a normal surface on X,
𝑇 ∈ |−𝑏𝐾𝑋 | an effective divisor and p ∈ 𝑆 a point, where 𝑎, 𝑏 > 0. We set 𝑟 = 1 when p ∈ 𝑋 is a smooth
point, and otherwise we denote by r the index of the cyclic quotient singularity p ∈ 𝑋 . Suppose that

𝑇 |𝑆 = 𝑚1Γ1 + 𝑚2Γ2 + · · · + 𝑚𝑘Γ𝑘 ,

where Γ1, . . . , Γ𝑘 are distinct irreducible and reduced curves on S and 𝑚1, . . . , 𝑚𝑘 are positive integers,
and the following properties are satisfied.
◦ 𝑟𝑏 deg Γ1 ≤ 𝑚1.
◦ p ∈ Γ1 \ (∪𝑖≥2Γ𝑖), and 𝑆, Γ1 are both quasi-smooth at p.
◦ The intersection matrix 𝑀 (Γ1, . . . , Γ𝑘 ) satisfies the condition (★).
Then we have

𝛼p (𝑋) ≥ min
⎧⎪⎪⎨⎪⎪⎩𝑎,

𝑚1

𝑟𝑎𝑏(−𝐾𝑋 )3 + 𝑚2
1
𝑏 − 𝑟𝑚1 deg Γ1

⎫⎪⎪⎬⎪⎪⎭.

Proof. Let 𝐷 ∈ |−𝐾𝑋 |Q be an irreducible Q-divisor. If Supp(𝐷) = 𝑆, then 𝐷 = 1
𝑎 𝑆 and we have

lctp(𝑋, 𝐷) ≥ 𝑎 since S is quasi-smooth at p. We assume Supp(𝐷) ≠ 𝑆. It is enough to prove the
inequality

lctp (𝑋; 𝐷) ≥ 𝑚1

𝑟𝑎𝑏(−𝐾𝑋 )3 + 𝑚2
1
𝑏 − 𝑟𝑚1 deg Γ1

. (3.6)

We can write

𝐷 |𝑆 = 𝛾1Γ1 + · · · + 𝛾𝑘Γ𝑘 + Δ ,

where 𝛾1, . . . , 𝛾𝑘 ≥ 0 and Δ is an effective Q-divisor on S such that Γ𝑖 ⊄ Supp(Δ) for 𝑖 = 1, . . . , 𝑘 . We
set 𝜎𝑖 = (Γ2

𝑖 )𝑆 and 𝜒𝑖, 𝑗 = (Γ𝑖 · Γ 𝑗 )𝑆 . For 𝑖 = 1, . . . , 𝑘 , we have

𝑏 deg Γ𝑖 = (𝑇 |𝑆 · Γ𝑖)𝑆
= 𝑚1 𝜒1,𝑖 + · · · + 𝑚𝑖−1 𝜒𝑖−1,𝑖 + 𝑚𝑖𝜎𝑖 + 𝑚𝑖+1 𝜒𝑖+1,𝑖 + · · · + 𝑚𝑘 𝜒𝑘,𝑖 , (3.7)
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and

deg Γ𝑖 = (𝐷 |𝑆 · Γ𝑖)𝑆
≥ 𝛾1 𝜒1,𝑖 + · · · + 𝛾𝑖−1 𝜒𝑖−1 + 𝛾𝑖𝜎𝑖 + 𝛾𝑖+1 𝜒𝑖+1,𝑖 + · · · + 𝛾𝑘 𝜒𝑘,𝑖+1. (3.8)

We set 𝑀 = 𝑀 (Γ1, . . . , Γ𝑘 ). Combining inequalities (3.7) and (3.8), we have

𝑀
����
𝑏𝛾1

...
𝑏𝛾𝑘

���� ≤ 𝑀
����
𝑚1
...

𝑚𝑘

����.
By Lemma 3.19, this implies 𝛾𝑖 ≤ 𝑚𝑖/𝑏 for any i.

When p is a singular point, then we set 𝜌 = 𝜌p : �̆�p → 𝑈p, which is the orbifold chart of X containing
p. When p is a smooth point of X, then we set �̆� = 𝑈 = 𝑋 and 𝜌 : �̆� → 𝑈 is assumed to be the identity
morphism. Moreover, we set 𝑆 := 𝑞∗(𝑆 ∩𝑈) and 𝜌𝑆 = 𝜌 |�̆� : 𝑆 → 𝑆 ∩𝑈. We see that 𝑆 is smooth at the
preimage p̆ of p since S is quasi-smooth at p, and

𝜌∗𝐷 |�̆� = 𝛾1𝜌∗
𝑆Γ1 + · · · 𝛾𝑘 𝜌∗

𝑆Γ𝑘 + 𝜌∗
𝑆Δ .

This implies

multp̆ (𝜌∗
𝑆Δ) ≥ omultp (𝐷) − 𝛾1

since 𝜌∗
𝑆Γ𝑖 does not pass through p̆ for 𝑖 ≥ 2 and 𝜌∗

𝑆Γ1 is smooth at p̆ by the quasi-smoothness of Γ1 at
p. We have

𝑟 (𝑎𝑏(−𝐾𝑋 )3 − 𝑏𝛾1 deg Γ1) ≥ 𝑟 (𝑇 |𝑆 · (𝐷 |𝑆 − 𝛾1Γ1 − · · · − 𝛾𝑘Γ𝑘 ))𝑆
= 𝑟 (𝑇 |𝑆 · Δ)𝑆
≥ 𝑚1𝑟 (Γ1 · Δ)𝑆
≥ 𝑚1(𝜌∗

𝑆Γ1 · 𝜌∗
𝑆Δ)p̆

≥ 𝑚1 multp̆ (𝜌∗
𝑆Δ)

≥ 𝑚1(omultp (𝐷) − 𝛾1).

Since 𝑚1 − 𝑟𝑏 deg Γ1 ≥ 0 and 𝛾1 ≤ 𝑚1/𝑏, we have

omultp (𝐷) ≤ 1
𝑚1

(𝑟𝑎𝑏(−𝐾𝑋 )3 + (𝑚1 − 𝑟𝑏 deg Γ1)𝛾1)

≤ 1
𝑚1

(𝑟𝑎𝑏(−𝐾𝑋 )3 +
𝑚2

1
𝑏

− 𝑟𝑚1 deg Γ1).

. This implies equation (3.6), and the proof is completed. �

The following is a version of Lemma 3.21, which may be effective when S is singular at p.

Lemma 3.22. Let X be a normal projective Q-factorial 3-fold. Let 𝑆 ∼Q −𝑎𝐾𝑋 be a normal surface on
X, 𝑇 ∼Q −𝑏𝐾𝑋 an effective divisor and p ∈ 𝑆 a point, where 𝑎, 𝑏 are positive rational numbers. Suppose
that

𝑇 |𝑆 = 𝑚1Γ1 + 𝑚2Γ2 + · · · + 𝑚𝑘Γ𝑘 ,

where Γ1, . . . , Γ𝑘 are distinct irreducible and reduced curves on S and 𝑚1, . . . , 𝑚𝑘 are positive integers,
and the following properties are satisfied.
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◦ 𝑏 deg Γ1 ≤ multp(Γ1).
◦ p ∈ Γ1 \ (∪𝑖≥2Γ𝑖), and X is smooth at p.
◦ The intersection matrix 𝑀 (Γ1, . . . , Γ𝑘 ) satisfies the condition (★).

Then we have

𝛼p (𝑋) ≥ min
{

𝑎

multp (𝑆)
,

multp (𝑆)
𝑎𝑏(−𝐾𝑋 )3 + 𝑚1

𝑏 multp(Γ1) − 𝑚1 deg Γ1

}
.

Proof. Let 𝐷 ∈ |−𝐾𝑋 |Q be an irreducible Q-divisor. If Supp(𝐷) = 𝑆, then 𝐷 = 1
𝑎 𝑆 and we have

lctp(𝑋, 𝐷) ≥ 𝑎/multp (𝑆). We assume Supp(𝐷) ≠ 𝑆. It is enough to show that

lctp (𝑋; 𝐷) ≥
multp (𝑆)

𝑎𝑏(−𝐾𝑋 )3 + 𝑚1
𝑏 multp(Γ1) − 𝑚1 deg Γ1

. (3.9)

We write

𝐷 |𝑆 = 𝛾1Γ1 + · · · + 𝛾𝑘Γ𝑘 + Δ ,

where 𝛾1, . . . , 𝛾𝑘 ≥ 0 and Δ is an effective divisor on S such that Γ𝑖 ⊄ Supp(Δ) for 𝑖 = 1, . . . , 𝑘 . By the
same argument as in the proof of Lemma 3.21, we have 𝛾𝑖 ≤ 𝑚𝑖/𝑏 for any i. We consider the 1-cycle
𝐷 · 𝑆 = 𝛾1Γ1 + · · · + 𝛾𝑘Γ𝑘 on X, and we have

𝑎𝑏(−𝐾𝑋 )3 − 𝑏𝛾1 deg Γ1 ≥ (𝑇 · (𝐷 · 𝑆 − 𝛾1Γ1 − · · · − 𝛾𝑘Γ𝑘 ))𝑋
= (𝑇 · Δ)𝑋
≥ multp (Δ)
≥ (multp (𝑆)) (multp (𝐷)) − 𝛾1 multp(Γ1).

Since multp (Γ1) − 𝑏 deg Γ1 ≥ 0 and 𝛾1 ≤ 𝑚1/𝑏, we have

multp (𝐷) ≤ 1
multp (𝑆)

(𝑎𝑏(−𝐾𝑋 )3 + (multp(Γ1) − 𝑏 deg Γ1)𝛾1)

≤ 1
multp (𝑆)

(
𝑎𝑏(−𝐾𝑋 )3 + 𝑚1

𝑏
multp (Γ1) − 𝑚1 deg Γ1

)
.

. This implies equation (3.9), and the proof is completed. �

Lemma 3.23. Let X be a normal projective Q-factorial 3-fold. Let 𝑆 ∼Q −𝑎𝐾𝑋 be a normal surface on
X, 𝑇 ∼Q −𝑏𝐾𝑋 an effective divisor and p ∈ 𝑋 a point, where 𝑎, 𝑏 be positive rational numbers. Suppose
that

𝑇 |𝑆 = Γ1 + Γ2,

where Γ1, Γ2 are distinct irreducible and reduced curves on S, and the following properties are satisfied.

◦ deg Γ𝑖 ≤ 2/𝑏 for 𝑖 = 1, 2.
◦ p ∈ Γ1 ∩ Γ2 and all the X, S, Γ1 and Γ2 are smooth at p.
◦ The intersection matrix 𝑀 (Γ1, Γ2) satisfies the condition (★).

Then we have

𝛼p (𝑋) ≥ min
{
𝑎,

𝑏

2

}
.
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Proof. We have lctp (𝑋, 1
𝑎 𝑆) ≥ 𝑎 since S is smooth at p by assumption. Let 𝐷 ∈ |−𝐾𝑋 |Q be an irreducible

Q-divisor on X such that Supp(𝐷) ≠ 𝑆. It is enough to prove the inequality lctp (𝑋; 𝐷) ≥ 𝑏/2. We write

𝐷 |𝑆 = 𝛾1Γ1 + 𝛾2Γ2 + Δ ,

where 𝛾1, 𝛾2 ≥ 0 and Δ is an effective divisor on S with Γ1, Γ2 ⊄ Supp(Δ). By the proof of Lemma
3.21, we have 𝛾1, 𝛾2 ≤ 1/𝑏. We have

𝑎𝑏(−𝐾𝑋 )3 = (−𝐾𝑋 |𝑆 · 𝑇 |𝑆)𝑆 = deg Γ1 + deg Γ2. (3.10)

Since multp (𝑇 |𝑆) = 2 and multp (Δ) ≥ multp (𝐷) − 𝛾1 − 𝛾2, we have

𝑎𝑏(−𝐾𝑋 )3 − 𝑏𝛾1 deg Γ1 − 𝑏𝛾2 deg Γ2 = (𝑇 |𝑆 · (𝐷 |𝑆 − 𝛾1Γ1 − 𝛾2Γ2))𝑆
= (𝑇 |𝑆 · Δ)𝑆
≥ 2(multp (𝐷) − 𝛾1 − 𝛾2).

By equation (3.10), the assumption deg Γ1, deg Γ2 ≤ 2/𝑏 and 𝛾1, 𝛾2 ≤ 1/𝑏, we have

multp(𝐷) ≤ 1
2
(𝑎𝑏(−𝐾𝑋 )3 + (2 − 𝑏 deg Γ1)𝛾1 + (2 − 𝑏 deg Γ2)𝛾2)

≤ 2
𝑏

.

This shows lctp (𝑋; 𝐷) ≥ 𝑏/2 and thus 𝛼p(𝑋) ≥ min{𝑎, 𝑏/2}. �

3.2.b. Computations by weighted blowups
We explain methods of computing LCTs via suitable weighted blowups.

Let p ∈ 𝑋 be a germ of a smooth variety of dimension n with a system of local coordinates
{𝑥1, . . . , 𝑥𝑛} at p, and let D be an effective Q-divisor on X. Let 𝜑 : 𝑌 → 𝑋 be the weighted blowup at p
with weight wt(𝑥1, . . . , 𝑥𝑛) = (𝑐1, . . . , 𝑐𝑛), where 𝑐 = (𝑐1, . . . , 𝑐𝑛) is a tuple of positive integers such
that gcd{𝑐1, . . . , 𝑐𝑛} = 1. Let 𝐸 � P(𝑐) = P(𝑐1, . . . , 𝑐𝑛) be the exceptional divisor of 𝜑. Note that Y can
be singular along a divisor on E (see Remark 3.24 below) so that we cannot expect the usual adjunction
(𝐾𝑌 + 𝐸) |𝐸 = 𝐾𝐸 . In general, we need a correction term and we have

(𝐾𝑌 + 𝐸) |𝐸 = 𝐾𝐸 + Diff

where the correction term Diff is a Q-divisor on E which is called the different (see [Kol+92, Chapter
16]).

Remark 3.24. We give a concrete description of Diff. Let P(𝑐)wf be the well-formed model of P(𝑐),
and we identify E with P(𝑐)wf. For 𝑖 = 0, 1, . . . , 𝑛, let

𝐻wf
𝑖 = (𝑥𝑖 = 0) ⊂ 𝐸 � P(𝑐)wf

be the quasi-hyperplane of P(𝑐)wf
�̃�1 ,..., �̃�𝑛

, and we set 𝑚𝑖 = gcd{𝑐0, . . . , 𝑐𝑖 , . . . , 𝑐𝑛}. We see that Y is
singular at the generic point of 𝐻wf

𝑖 if and only if 𝑚𝑖 > 1, and if this is the case, then the singularity of
Y along 𝐻wf

𝑖 is a cyclic quotient singularity of index 𝑚𝑖 . It follows from [Kol+92, Proposition 16.6] that

Diff =
𝑛∑
𝑖=1

𝑚𝑖 − 1
𝑚𝑖

𝐻wf
𝑖

under the identification 𝐸 � P(𝑐)wf.
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Lemma 3.25. Let the notation and assumption as above. Then we have

lctp (𝑋; 𝐷) ≥ min
{

𝑐1 + · · · + 𝑐𝑛
ord𝐸 (𝐷) , lct(𝐸, Diff; �̃� |𝐸 )

}
, (3.11)

where �̃� is the proper transform of D. If in addition the inequality

𝑐1 + · · · + 𝑐𝑛
ord𝐸 (𝐷) ≤ lct(𝐸, Diff𝐸 ; �̃� |𝐸 ) (3.12)

holds, then we have

lctp (𝑋; 𝐷) = 𝑐1 + · · · + 𝑐𝑛
ord𝐸 (𝐷) . (3.13)

Proof. We set 𝑐 = 𝑐1 + · · · + 𝑐𝑛 and let 𝜆 be any rational number such that

0 < 𝜆 ≤ min
{

𝑐

ord𝐸 (𝐷) , lct(𝐸, Diff; �̃� |𝐸 )
}
.

We will show that the pair (𝑋, 𝜆𝐷) is log canonical at p, which will prove the inequality (3.11).
We assume that the pair (𝑋, 𝜆𝐷) is not log canonical at p. We have

𝐾𝑌 + 𝜆�̃� + (𝜆 ord𝐸 (𝐷) − 𝑐 + 1)𝐸 = 𝜑∗(𝐾𝑋 + 𝜆𝐷), (3.14)

and the pair (𝑌, 𝜆�̃�+ (𝜆 ord𝐸 (𝐷)−𝑐+1)𝐸) is not log canonical along E. Since 𝜆 ≤ 𝑐/ord𝐸 (𝐷), we have

𝜆 ord𝐸 (𝐷) − 𝑐 + 1 ≤ 1,

which implies that the pair (𝑌, 𝜆�̃� + 𝐸) is not log canonical along E. Thus, the pair (𝐸, Diff +𝜆�̃� |𝐸 )
is not log canonical. This is impossible since 𝜆 ≤ lct(𝐸, Diff; �̃� |𝐸 ). Therefore, the pair (𝑋, 𝜆𝐷) is log
canonical at p, and the inequality (3.11) is proved.

By considering the coefficient of E in equation (3.14), it is easy to see that

lctp(𝑋; 𝐷) ≤ 𝑐

ord𝐸 (𝐷) .

Under the assumption (3.12), this shows the equality (3.13). �

We consider Lemma 3.25 in more details in a concrete setting.

Definition 3.26. Let 𝑐 = (𝑐1, . . . , 𝑐𝑛) be an n-tuple of positive integers such that gcd{𝑐1, . . . , 𝑐𝑛} = 1,
and we set

𝑚𝑖 = gcd{𝑐1, . . . , 𝑐𝑖 , . . . , 𝑐𝑛}

for 𝑖 = 1, . . . , 𝑛. Let 𝑓 = 𝑓 (𝑥1, . . . , 𝑥𝑛) be a polynomial which is quasi-homogeneous with respect to
wt(𝑥1, . . . , 𝑥𝑛) = 𝑐.

If f is irreducible and 𝑓 ≠ 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛, then there exists an irreducible polynomial 𝑓 wf =
𝑓 wf (𝑥1, . . . , 𝑥𝑛) (in new variables 𝑥1, . . . , 𝑥𝑛) such that

𝑓 wf (𝑥𝑚1
1 , . . . , 𝑥𝑚𝑛

𝑛 ) = 𝑓 (𝑥1, . . . , 𝑥𝑛).

We call 𝑓 wf the well-formed model of f (with respect to the weight wt(𝑥1, . . . , 𝑥𝑛) = 𝑐).
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In general, we have a decomposition

𝑓 = 𝑥𝜆1
1 · · · 𝑥𝜆𝑛𝑛 𝑓

𝜇1
1 · · · 𝑓

𝜇𝑘
𝑘 ,

where 𝑘, 𝜆1, . . . , 𝜆𝑛, 𝜇1, . . . , 𝜇𝑘 are nonnegative integers and 𝑓1, . . . , 𝑓𝑘 are irreducible polynomials in
variables 𝑥1, . . . , 𝑥𝑛 which are quasi-homogeneous with respect to wt(𝑥1, . . . , 𝑥𝑛) = 𝑐 and which are
not 𝑥𝑖 for any i. We define

𝑓 wf := 𝑓 (𝑥1/𝑚1
1 , . . . , 𝑥1/𝑚𝑛

𝑛 ) = 𝑥𝜆1/𝑚1 · · · 𝑥𝜆𝑛/𝑚𝑛
𝑛 ( 𝑓 wf

1 )𝜇1 · · · ( 𝑓 wf
𝑘 )𝜇𝑘

and call it the well-formed model of f. Note that 𝑓 wf is in general not a polynomial since 𝜆𝑖/𝑚𝑖 need not
be an integer. In this case, the effective Q-divisor

Dwf
𝑓 :=

𝑛∑
𝑖=1

𝜆𝑖
𝑚𝑖

𝐻wf
𝑖 +

𝑘∑
𝑗=1

𝜇 𝑗 ( 𝑓 wf
𝑗 = 0)

on the well-formed model P(𝑐)wf
�̃�1 ,..., �̃�𝑛

of P(𝑐) is called the effective Q-divisor on P(𝑐)wf associated to
f, where 𝐻wf

𝑖 is the quasi-hyperplane on P(𝑐)wf defined by 𝑥𝑖 = 0.

Lemma 3.27. Let P(𝑏) := P(𝑏0, . . . , 𝑏𝑛+1)𝑥0 ,...,𝑥𝑛+1 be a well-formed weighted projective space, and
let 𝑋 ⊂ P(𝑏) be a normal weighted hypersurface with defining polynomial 𝐹 = 𝐹 (𝑥0, . . . , 𝑥𝑛+1). Let
𝑐 = (𝑐1, . . . , 𝑐𝑛) be a tuple of positive integers such that gcd{𝑐1, . . . , 𝑐𝑛} = 1. Assume that

𝐹 = 𝑥𝑒0𝑥𝑛+1 +
𝑒∑
𝑖=1

𝑥𝑒−𝑖0 𝑓𝑖 ,

where 𝑒 ∈ Z>0 and 𝑓𝑖 = 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) is a quasi-homogeneous polynomial of degree 𝑖𝑏0+𝑏𝑛+1. Let
𝐺 = 𝐺 (𝑥1, . . . 𝑥𝑛) be the lowest weight part of �̄� := 𝐹 (1, 𝑥1, . . . , 𝑥𝑛, 0) with respect to wt(𝑥1, . . . , 𝑥𝑛) = 𝑐
Then, for the point p = p𝑥0 = (1:0 : · · · :0) ∈ 𝑋 , we have

lctp (𝑋; 𝐻𝑥𝑛+1 ) ≥ min

{
𝑐1 + · · · + 𝑐𝑛

wt𝑐 (�̄�)
, lct(P(𝑐)wf , Diff;Dwf

𝐺 )
}

,

where wt𝑐 (�̄�), Diff and Dwf
𝐺 are as follows.

◦ wt𝑐 (�̄�) is the weight of �̄� with respect to wt(𝑥1, . . . , 𝑥𝑛) = 𝑐.
◦ Diff =

∑𝑛
𝑖=1

𝑚𝑖−1
𝑚𝑖

𝐻wf
𝑖 , where 𝐻wf

𝑖 = (𝑥𝑖 = 0) is the ith coordinate quasi-hyperplane of P(𝑐)wf
�̃�1 ,..., �̃�𝑛

and 𝑚𝑖 = gcd{𝑐1, . . . , 𝑐𝑖 , . . . , 𝑐𝑛} for 𝑖 = 1, . . . , 𝑛.
◦ Dwf

𝐺 is the effective Q-divisor on P(𝑐)wf associated to G.

If in addition the inequality

𝑐1 + · · · + 𝑐𝑛

wt(�̄�)
≤ lct(P(𝑐)wf , Diff;Dwf

𝐺 )

holds, then we have

lctp (𝑋; 𝐻𝑥𝑛+1 ) =
𝑐1 + · · · + 𝑐𝑛

wt(�̄�)
.

Proof. Let 𝜌p : �̆�p → 𝑈p ⊂ 𝑋 , where 𝑈p = 𝑈𝑥0 , be the orbifold chart containing p, and we set
𝜌 = 𝜌p, �̆� = �̆�p and 𝑈 = 𝑈p. We set 𝐻 = 𝐻𝑥𝑛+1 and �̆� = 𝜌∗𝐻. We have lctp(𝑋; 𝐻) = lctp̌ (�̌�; �̌�).
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The variety �̆� is the hypersurface in U𝑥0 = A
𝑛+1
�̆�1 ,..., �̆�𝑛+1

defined by the equation

𝐹 (1, 𝑥1, . . . , 𝑥𝑛+1) = 𝑥𝑛+1 +
𝑒∑
𝑖=1

𝑓𝑖 = 0, (3.15)

where 𝑓𝑖 = 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛+1), and p̆ corresponds to the origin. We see that {𝑥1, . . . , 𝑥𝑛} is a system of local
coordinates of �̆� at p̆. Let 𝜑 : 𝑌 → �̆� be the weighted blowup at p̆ with wt(𝑥1, . . . , 𝑥𝑛) = (𝑐1, . . . , 𝑐𝑛).
We can identify the 𝜑-exceptional divisor E with P(𝑐)�̆�1 ,..., �̆�𝑛 . Filtering off terms divisible by 𝑥𝑛+1 in
equation (3.15), we have

(−1 + · · · )𝑥𝑛+1 = 𝐹 (1, 𝑥1, . . . , 𝑥𝑛, 0)

on �̆�, where the omitted term in the left-hand side is a polynomial vanishing at p̆. Since �̆� is the divisor
on �̆� defined by 𝑥𝑛+1 = 0, we see that ord𝐸 (�̆�) = wt𝑐 (�̄�) and the divisor �̃� |𝐸 corresponds to the divisor
Dwf
𝐺 on 𝐸 � P(𝑐)wf, where �̃� is the proper transform of �̆� on Y. Therefore, the proof is completed by

Lemma 3.25 and Remark 3.24. �

Lemma 3.28. Let 𝑋 ⊂ P(𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑟)𝑥,𝑦1 ,𝑦2 ,𝑦3 ,𝑧 be a member of a family Fi with i ∈ I with defining
polynomial 𝐹 = 𝐹 (𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑧). Assume that F can be written as

𝐹 = 𝑧𝑘𝑥 + 𝑧𝑘−1 𝑓𝑟+𝑎 + 𝑧𝑘−2 𝑓2𝑟+𝑎 + · · · + 𝑓𝑘𝑟+𝑎,

where 𝑓𝑖 ∈ C[𝑥, 𝑦1, 𝑦2, 𝑦3] is a quasi-homogeneous polynomial of degree i, and we set

�̄� := 𝐹 (0, 𝑦1, 𝑦2, 𝑦2, 1) ∈ C[𝑦1, 𝑦2, 𝑦3] .

If either �̄� ∈ (𝑦1, 𝑦2, 𝑦3)2 \ (𝑦1, 𝑦2, 𝑦3)3 or �̄� ∈ (𝑦1, 𝑦2, 𝑦3)3 and the cubic part of �̄� is not a cube of a
linear form in 𝑦1, 𝑦2, 𝑦3, then for the point p := p𝑧 ∈ 𝑋 , we have

lctp(𝑋; 𝐻𝑥) ≥
1
2

.

If in addition 𝑎 = 1, 𝑟 > 1 and p ∈ 𝑋 is not a maximal center, then

𝛼p (𝑋) = min{1, lctp(𝑋; 𝐻𝑥)} ≥
1
2

.

Proof. Let 𝜌p : �̆�p → 𝑈p be the orbifold chart of X containing p. We see that Let �̆�p be the hypersurface
in Ŭp = A4

�̆�, �̆�1 , �̆�2 , �̆�3
defined by the equation

𝐹 (𝑥, �̆�1, �̆�2, �̆�3, 1) = 0.

We see that �̆�p is smooth and the morphism 𝜌p can be identified with the quotient morphism of the
singularity p ∈ 𝑋 over a suitable analytic neighborhood of p. We denote by p̆ ∈ �̆� the origin of Ŭp = A4

which is the preimage of p via 𝜌p. Filtering off terms divisible by x in 𝐹 (𝑥, 𝑦1, 𝑦2, 𝑦3, 1), we have

(−1 + · · · )𝑥 = 𝐹 (0, �̆�1, �̆�2, �̆�3, 1) = �̄� ( �̆�1, �̆�2, �̆�3) =: �̆�

on �̆�p. Note that we can choose {�̆�1, �̆�2, �̆�3} as a system of local coordinates of �̆�p at p̆. If �̄� ∈
(𝑦1, 𝑦2, 𝑦3)2 \ (𝑦1, 𝑦2, 𝑦3)3, then omultp (𝐻𝑥) = multp̆ (𝜌∗

p𝐻𝑥) = 2 and hence lctp (𝑋; 𝐻𝑥) ≥ 1/2.
Suppose that �̄� ∈ (𝑦1, 𝑦2, 𝑦3)3 and the cubic part of �̄� is not a cube of a linear form in 𝑦1, 𝑦2, 𝑦3.

Let 𝜑 : 𝑉 → �̆� be the blowup of �̆� at p̆ with exceptional divisor 𝐸 � P2. We set 𝐷 = 𝜌∗
p𝐻𝑥 . Since
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multp̆(𝐷) = 3, we have

𝐾𝑉 + 1
2

�̃� = 𝜑∗
(
𝐾�̌� + 1

2
𝐷

)
+ 1

2
𝐸,

where �̃� is the proper transform of D on V. The divisor �̃� |𝐸 on E is isomorphic to the hypersurface in
P2
�̆�1 , �̆�2 , �̆�3

defined by the cubic part of �̄� ( �̆�1, �̆�2, �̆�3), and the pair (𝐸, 1
2 �̃� |𝐸 ) is log canonical by Lemma

3.4. It then follows that the pair (𝑉, 1
2 �̃�) is log canonical along E. This shows that the pair (�̆�, 1

2 𝐷) is
log canonical at p̆, and hence lctp (𝑋; 𝐻𝑥) ≥ 1/2 as desired.

Suppose in addition that 𝑟 > 1 and p ∈ 𝑋 is not a maximal center. By Lemma 3.6, the pair (𝑋, 𝐻𝑥)
is not canonical at p = p𝑧 and thus we have 𝛼p (𝑋) = min{1, lctp; (𝑋; 𝐻𝑥)} by Lemma 3.5. This proves
the latter assertion. �

3.2.c. Computations by 2𝑛-inequality
Lemma 3.29. Let 𝑋 ⊂ P(𝑏1, 𝑏2, 𝑏3, 𝑐, 𝑟)𝑥1 ,𝑥2 ,𝑥3 ,𝑦,𝑧 be a member of a family Fi with i ∈ I with defining
polynomial 𝐹 = 𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑦, 𝑧), and suppose p := p𝑧 ∈ 𝑋 . We assume that 𝑏1 ≤ 𝑏2 ≤ 𝑏3 and that we
can choose y as a quasi-tangent coordinate of X at p. Then

𝛼p (𝑋) ≥
2

𝑟𝑏2𝑏3 (𝐴3)
.

In particular, if 𝑟𝑏2𝑏3(𝐴3) ≤ 4, then 𝛼p(𝑋) ≥ 1/2.

Proof. Let 𝜌p : �̆�p → 𝑈p be the orbifold chart of X containing p = p𝑧 . We set 𝜌 = 𝜌p, �̆� = �̆�p and
𝑈 = 𝑈p. We see that �̆� is the hypersurface in Ŭp = A4

�̆�1 , �̆�2 , �̆�3 , �̆�) defined by the equation

𝐹 (𝑥1, 𝑥2, 𝑥3, �̆�, 1) = 0.

We see that �̆� is smooth, and the morphism 𝜌 can be identified with the quotient morphism of p ∈ 𝑋
over a suitable analytic neighborhood of p. We denote by p̆ ∈ �̆� the origin which is the preimage of p
via 𝜌. By the assumption, we can choose 𝑥1, 𝑥2, 𝑥3 as a system of local coordinates of �̆� at p̆.

We set

𝜆 :=
2

𝑟𝑏2𝑏3(𝐴3)

and assume that 𝛼p (𝑋) < 𝜆. Then there exists an irreducible Q-divisor 𝐷 ∼Q 𝐴 such that the pair
(𝑋, 𝜆𝐷) is not log canonical at p. In particular, the pair (�̆�, 𝜆𝜌∗𝐷) is not log canonical at p̆. Let
𝜑 : 𝑉 → �̆� be the blowup of �̆� at p̆ with exceptional divisor 𝐸 � P2. By Lemma 3.3, there exists a
line 𝐿 ⊂ 𝐸 with the property that for any prime divisor T on �̆� such that T is smooth at p̆ and that its
proper transform 𝑇 contains L, we have multp̆ (𝐷 |𝑇 ) > 2/𝜆. By a slight abuse of notation, we have an
isomorphism 𝐸 � P2

�̆�1 , �̆�2 , �̆�3
. The line 𝐿 ⊂ 𝐸 is isomorphic to (𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 = 0) ⊂ P2, for some

𝛼1, 𝛼2, 𝛼3 ∈ C with (𝛼1, 𝛼2, 𝛼3) ≠ (0, 0, 0). We set

𝑇 := (𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 = 0) ⊂ �̆�.

Then 𝑇 is smooth at p̆ and its proper transform on V contains L. It follows that multp̆(𝜌∗𝐷 |�̆� ) > 2/𝜆. Set
𝑘 := max{ 𝑖 | 𝛼𝑖 ≠ 0 }. We have 𝑟𝑇 = 𝜌∗𝐺 for some effective Weil divisor 𝐺 ∼ 𝑟𝑏𝑘 𝐴. Let 𝑗 ∈ {1, 2, 3}
be such that

𝑏 𝑗 = max{ 𝑏𝑖 | 1 ≤ 𝑖 ≤ 3, 𝑖 ≠ 𝑘 }.
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Then, since {𝑥1, 𝑥2, 𝑥3} isolates p, we can take an effectiveQ-divisor 𝑆 ∼Q 𝐴 such that omultp(𝑆) ≥ 1/𝑏 𝑗

and 𝜌∗𝑆 does not contain any component of 𝜌∗𝐷 |�̆� . Hence, we have

𝑟𝑏𝑘 (𝐴3) = (𝐷 · 𝐺 · 𝑆) ≥ (𝜌∗𝐷 · 𝑇 · 𝜌∗𝑆)p̆ >
2

𝑏 𝑗𝜆
=

𝑟𝑏2𝑏3(𝐴3)
𝑏 𝑗

.

This is a contradiction since 𝑏 𝑗𝑏𝑘 ≤ 𝑏2𝑏3, and the proof is completed. �

3.2.d. Computations by NE
Let X be a quasi-smooth Fano 3-fold weighted hypersurface of index 1. Let p ∈ 𝑋 be a singular point,
and we denote by 𝜑 : 𝑌 → 𝑋 the Kawamata blowup at p. In [CP17], the assertion (−𝐾𝑌 )2 ∉ Int NE(𝑌 )
is verified in many cases, where NE(𝑌 ) is the cone of effective curves on Y. Thus, the following result
is very useful.

Lemma 3.30 [KOW18, Lemma 2.8]. Let p ∈ 𝑋 be a terminal quotient singular point and 𝜑 : 𝑌 → 𝑋
the Kawamata blowup at p. Suppose that (−𝐾𝑌 )2 ∉ Int NE(𝑌 ) and there exists a prime divisor S on X
such that 𝑆 ∼Q −𝑚𝐾𝑌 for some 𝑚 > 0, where 𝑆 is the proper transform of S on Y. Then 𝛼p (𝑋) ≥ 1.

4. Smooth points

The aim of this section is to prove the following.

Theorem 4.1. Let X be a member of a family Fi with i ∈ I \ I1. Then

𝛼p (𝑋) ≥
1
2

for any smooth point p ∈ 𝑋 .

We explain the organization of this section. Throughout the present section, let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of Fi with i ∈ I \ I1, where we assume 𝑎1 ≤ · · · ≤ 𝑎4. Note that 𝑎2 ≥ 2 since i ∉ I1.
Recall that we denote by 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤) the defining polynomial of X with deg 𝐹 = 𝑑, and we set
𝐴 := −𝐾𝑋 . We set

𝑈1 :=
⋃

𝑣 ∈{𝑥,𝑦,𝑧,𝑡 ,𝑤 },deg 𝑣=1
(𝑣 ≠ 0) ∩ 𝑋,

𝐿𝑥𝑦 := 𝐻𝑥 ∩ 𝐻𝑦 = (𝑥 = 𝑦 = 0) ∩ 𝑋.

Note that 𝑈1 is an open subset of X contained in Sm(𝑋), and 𝐿𝑥𝑦 is a one-dimensional closed subset
of X. The proof of the inequality 𝛼p (𝑋) ≥ 1/2 for p ∈ 𝑈1 will be done in Section 4.1. The proof for the
other smooth points will be done as follows.

◦ If 1 < 𝑎1 < 𝑎2, then Sm(𝑋) ⊂ 𝑈1 � (𝐻𝑥 \ 𝐿𝑥𝑦) � 𝐿𝑥𝑦 . In this case, the proof of 𝛼p (𝑋) ≥ 1/2 for
smooth point p of X contained in 𝐻𝑥 \ 𝐿𝑥𝑦 (resp. 𝐿𝑥𝑦) will be done in Section 4.2 (resp. Sections 4.3
and 4.4), respectively.

◦ If 1 = 𝑎1 < 𝑎2, then Sm(𝑋) ⊂ 𝑈1 � 𝐿𝑥𝑦 . In this case, the proof of 𝛼p (𝑋) ≥ 1/2 for smooth point p
of X contained in 𝐿𝑥𝑦 will be done in Sections 4.3 and 4.4.

◦ If 1 < 𝑎1 = 𝑎2, then Sm(𝑋) ⊂ 𝑈1 � 𝐻𝑥 . In this case, the proof of 𝛼p (𝑋) ≥ 1/2 for smooth point p of
X contained in 𝐻𝑥 will be done in Section 4.5.

Therefore, Theorem 4.7 will follow from Propositions 4.7, 4.8, 4.10, 4.11 and 4.19, which are the main
results of Sections 4.1, 4.2, 4.3, 4.4 and 4.5, respectively.
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4.1. Smooth points on 𝑈1 for families indexed by I \ I1

Lemma 4.2. We have

𝛼p (𝑋) ≥
1

𝑎2𝑎4 (𝐴3)

for any point p ∈ 𝑈1.

Proof. Let p ∈ 𝑈1 be a point. We may assume p = p𝑥 by a change of coordinates. Let 𝐷 ∈ |𝐴|Q be
an irreducible Q-divisor. The linear system |Ip (𝑎2 𝐴) | is movable, and let 𝑆 ∈ |Ip (𝑎2 𝐴) | be a general
member so that Supp(𝑆) ≠ Supp(𝐷). The set {𝑦, 𝑧, 𝑡, 𝑤} isolates p, and hence we can take a Q-divisor
𝑇 ∈ |𝑎4 𝐴|Q such that multp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective
1-cycle 𝐷 · 𝑆 (see Remark 3.15). Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 𝑎2𝑎4 (𝐴4).

This shows lctp (𝑋; 𝐷) ≥ 1/𝑎2𝑎4 (𝐴3), and the proof is completed. �

Lemma 4.3. Suppose that d is divisible by 𝑎4. Then

𝛼p (𝑋) ≥
1

𝑎2𝑎3 (𝐴3)

for any point p ∈ 𝑈1.

Proof. Let p ∈ 𝑈1 be a point. We may assume p = p𝑥 . We can choose coordinates so that 𝑤𝑑/𝑎4 ∈ 𝐹.
Indeed, if 𝑎4 > 𝑎3, then 𝑤𝑑/𝑎4 ∈ 𝐹 by the quasi-smoothness of X. If 𝑎4 = 𝑎3, then there is a monomial
of degree d consisting of 𝑡, 𝑤 by the quasi-smoothness of X and we can choose coordinates 𝑡, 𝑤 so that
𝑤𝑑/𝑎4 ∈ 𝐹. Under the above choice of coordinates, we see that {𝑦, 𝑧, 𝑡} isolates p.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor. Let S be a general member of the movable linear system
|Ip (𝑎2 𝐴) | so that Supp(𝑆) does not contain Supp(𝐷). We can take a Q-divisor 𝑇 ∈ |𝑎3 𝐴|Q such that
multp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝑆 since {𝑦, 𝑧, 𝑡}
isolates p. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 𝑎2𝑎3 (𝐴3).

This shows 𝛼p (𝐷) ≥ 1/𝑎2𝑎3 (𝐴3) and the proof is completed. �

Remark 4.4. The objects of Section 4 are members of families Fi for i ∈ I \ I1, and the inequality
𝑎2 ≥ 2 is assumed throughout the present section. It is, however, noted that in Lemmas 4.2 and 4.3, the
assumption 𝑎2 ≥ 2 is not required, and the statement holds for members of Fi for any i ∈ I.

Lemma 4.5. Suppose that d is not divisible by 𝑎4, and assume 𝑎1 = 1. Then

𝛼p(𝑋) ≥ min
{
lctp (𝑋; 𝑆p),

1
𝑎4 (𝐴3)

}
≥ 1

2

for any p ∈ 𝑈1, where 𝑆p is the unique member of |Ip (𝐴) |.

Proof. Let p ∈ 𝑈1 be a point. We may assume p = p𝑥 . Note that we have 𝑎2 > 1 and thus the linear
system |Ip (𝐴) | indeed consists of a unique member 𝑆p. In this case, 𝑆p = 𝐻𝑦 .

We first prove lctp (𝑋; 𝑆p) ≥ 1/2, that is, (𝑋, 1
2 𝐻𝑦) is log canonical at p. Assume to the contrary that

(𝑋, 1
2 𝐻𝑦) is not log canonical at p. Then multp (𝐻𝑦) ≥ 3. Suppose multp (𝐻𝑦) = 3. Then, by Lemma

3.4, the degree 3 part of 𝐹 (1, 0, 𝑧, 𝑡, 𝑤) with respect to deg(𝑧, 𝑡, 𝑤) = (1, 1, 1) is a cube of a linear form,
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that is, it can be written as (𝛼𝑧 + 𝛽𝑡 + 𝛾𝑤)3 for some 𝛼, 𝛽, 𝛾 ∈ C. By Lemma 2.28, we have 𝑑 < 3𝑎4
since d is not divisible by 𝑎4. From this, we deduce 𝛾 = 0. Then we can write

𝐹 = 𝑥𝑑−1𝑦 + 𝑥𝑑−3𝑎3 (𝛼𝑥𝑎3−𝑎2 𝑧 + 𝛽𝑡)3 + 𝑔 + 𝑦ℎ,

where 𝑔 = 𝑔(𝑥, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)4 ⊂ C[𝑥, 𝑧, 𝑡, 𝑤] and ℎ = ℎ(𝑥, 𝑦, 𝑧, 𝑡, 𝑤). By the inequality 𝑑 < 3𝑎4,
no monomial in g can be divisible by 𝑤3 so that 𝑔 ∈ (𝑧, 𝑡)2. But then X is not quasi-smooth along the
nonempty subset

(𝑦 = 𝑥𝑑−1 + ℎ = 𝑧 = 𝑡 = 0) ⊂ 𝑋.

This is impossible, and we have multp (𝐻𝑦) ≥ 4. By the same argument as above, we can write

𝐹 = 𝑥𝑑−1𝑦 + 𝑔 + 𝑦ℎ,

where 𝑔 ∈ (𝑧, 𝑡)2, which implies that X is not quasi-smooth. This is a contradiction and thus lctp (𝑋; 𝑆p) ≥
1/2.

Let 𝐷 ∈ |𝐴|Q be an irreducibleQ-divisor other than 𝑆p = 𝐻𝑦 . Note that 𝐷 ·𝐻𝑦 is an effective 1-cycle.
The set {𝑦, 𝑧, 𝑡, 𝑤} isolates p, and hence we can take a Q-divisor 𝑇 ∈ |𝑎4 𝐴|Q such that multp (𝑇) ≥ 1
and Supp(𝑇) does not contain any component of 𝐷 · 𝐻𝑦 . We have

multp (𝐷) ≤ (𝐷 · 𝐻𝑦 · 𝑇) ≤ 𝑎4 (𝐴3) ≤ 2,

where the last inequality follows from (5) of Lemma 2.29 since 𝑎1 = 1. Thus, lctp(𝑋; 𝐷) ≥ 1/𝑎4 (𝐴3) ≥
1/2, and the proof is completed. �

Lemma 4.6. Let X be a member of a family Fi with i ∈ {9, 17}. Then

𝛼p (𝑋) ≥
1
2

for any point p ∈ 𝑈1.

Proof. In this case,

𝑋 = 𝑋3𝑎+3 ⊂ P(1, 1, 𝑎, 𝑎 + 1, 𝑎 + 1)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where 𝑎 = 2, 3 if i = 9, 17, respectively. Let p ∈ 𝑈1 be a point. We may assume p = p𝑥 .
We show that (𝑋, 1

2 𝐻𝑦) is log canonical at p. Assume to the contrary that it is not. Then multp (𝐻𝑦) ≥ 3
and, by Lemma 3.4, we can write

𝐹 = 𝑥3𝑎+2𝑦 + 𝑥3 (𝛼𝑧𝑥 + 𝛽𝑡 + 𝛾𝑤)3 + 𝑔 + 𝑦ℎ,

where 𝑔 = 𝑔(𝑥, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)4 ⊂ C[𝑥, 𝑦, 𝑡, 𝑤] and ℎ = ℎ(𝑥, 𝑦, 𝑧, 𝑡, 𝑤). By degree reason, any
monomial in 𝑔 ∈ (𝑧, 𝑡, 𝑤)4 is divisible by 𝑧3. It follows that X is not quasi-smooth along the nonempty
subset

(𝑦 = 𝑥3𝑎+2 + ℎ = 𝑧 = 𝛽𝑡 + 𝛾𝑤 = 0) ⊂ 𝑋.

This is a contradiction, and the pair (𝑋, 1
2 𝐻𝑦) is log canonical at p.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑦 . The set {𝑦, 𝑧, 𝑡, 𝑤} clearly isolates p, and
hence we can take a Q-divisor 𝑇 ∈ |(𝑎 + 1)𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain
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any component of the effective 1-cycle 𝐷 · 𝐻𝑦 . Then we have

2 multp (𝐷) ≤ (𝐷 · 𝐻𝑦 · 𝑇)p ≤ (𝐷 · 𝐻𝑦 · 𝑇) =
3
𝑎
≤ 3

2

since multp (𝐻𝑦) ≥ 2. This shows lctp (𝑋, 𝐷) ≥ 4/3 and the proof is completed. �

Proposition 4.7. Let X be a member of a family Fi with i ∈ I \ I1. Then

𝛼p (𝑋) ≥ 1

for any point p ∈ 𝑈1.

Proof. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4) be a member of Fi with i ∈ I \ I1, where we assume
𝑎1 ≤ · · · ≤ 𝑎4.

◦ If d is not divisible by 𝑎4 and 𝑎1 ≥ 2, then 𝑎2𝑎4 (𝐴3) ≤ 2 and the assertion follows from Lemma 4.2.
◦ If d is not divisible by 𝑎4 and 𝑎1 = 1, then the assertion follows from Lemma 4.5.
◦ If d is divisible by 𝑎4 and i ∉ {9, 17}, then 𝑎2𝑎3 (𝐴3) ≤ 2 by Lemma 2.29 and the assertion follows

from Lemma 4.3.
◦ If i ∈ {9, 17}, then the assertion follows from Lemma 4.6.

This completes the proof. �

4.2. Smooth points on 𝐻𝑥 \ 𝐿𝑥𝑦 for families with 1 < 𝑎1 < 𝑎2

Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, . . . , 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of a family Fi with i ∈ I \ I1 satisfying 1 < 𝑎1 < 𝑎2 ≤ 𝑎3 ≤ 𝑎4. In this section, we set
�̄� = 𝐹 (0, 𝑦, 𝑧, 𝑡, 𝑤). Then 𝐻𝑥 is isomorphic to the weighted hypersurface in P(𝑎1, . . . , 𝑎4) defined by
�̄� = 0. We note that if a smooth point p ∈ 𝑋 contained in 𝐻𝑥 satisfies multp (𝐻𝑥) > 2, then p belongs
to the subset ⋂

𝑣1 ,𝑣2∈{𝑦,𝑧,𝑡 ,𝑤 }

(
𝜕2�̄�

𝜕𝑣1𝜕𝑣2
= 0

)
∩ 𝑋.

The following is the main result of this section.

Proposition 4.8. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, . . . , 𝑎4), 𝑎1 ≤ · · · ≤ 𝑎4, be a member of a family Fi with
i ∈ I \ I1 satisfying 1 < 𝑎1 < 𝑎2. Then

𝛼p (𝑋) ≥ 1

for any smooth point p of X contained in 𝐻𝑥 \ 𝐿𝑥𝑦 .

The rest of this section is entirely devoted to the proof of Proposition 4.8 which will be done by
division into several cases.

4.2.a. Case: 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4
We will prove Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4.

Let p ∈ 𝑋 be a smooth point contained in 𝐻𝑥 \ 𝐿𝑥𝑦 . We have multp (𝐻𝑥) ≤ 2 since 𝑤2 ∈ 𝐹, and
thus lctp (𝑋; 𝐻𝑥) ≥ 1/2. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X other than 𝐻𝑥 . By Lemma 3.16,
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𝑎1𝑎3 𝐴 isolates p, and hence we can take aQ-divisor 𝑇 ∈ |𝑎1𝑎3 𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇)
does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑥 . Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 𝑎1𝑎3 (𝐴3) ≤ 1,

where the last inequality follows from Lemma 2.29. This shows lctp(𝑋; 𝐷) ≥ 1 and the proof is
completed.

4.2.b. Case: 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4 + 𝑎1
We will prove Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4 + 𝑎1.

Let p ∈ 𝑋 be a smooth point contained in 𝐻𝑥 \ 𝐿𝑥𝑦 . We can write

𝐹 = 𝑤2𝑦 + 𝑤 𝑓 + 𝑔,

where 𝑓 , 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡] are quasi-homogeneous polynomials of degree 𝑑−𝑎4 and d, respectively. Since
𝜕2�̄�/𝜕𝑤2 = 𝑦 and y does not vanish at p ∈ 𝐻𝑥\𝐿𝑥𝑦 , we have multp (𝐻𝑥) ≤ 2 and thus lctp (𝑋; 𝐻𝑥) ≥ 1/2.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X other than 𝐻𝑥 . By Lemma 3.16, 𝑎1𝑎4 𝐴 isolates p,
and hence we can take a Q-divisor 𝑇 ∈ |𝑎1𝑎4 𝐴|Q such that multp(𝑇) ≥ 1 and Supp(𝑇) does not contain
any component of the effective 1-cycle 𝐷 · 𝐻𝑥 . Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 𝑎1𝑎4 (𝐴3) ≤ 2,

where the last inequality from Lemma 2.29. This shows lctp(𝑋; 𝐷) ≥ 1/2 and the proof is completed.

4.2.c. Case: 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4 + 𝑎2
We will prove Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4 + 𝑎2.

Let p ∈ 𝑋 be a smooth point contained in 𝐻𝑥 \ 𝐿𝑥𝑦 . We can write

𝐹 = 𝑤2𝑧 + 𝑤(𝑧 𝑓 + 𝑔) + ℎ,

where 𝑓 , ℎ ∈ C[𝑥, 𝑦, 𝑧, 𝑡] and 𝑔 ∈ C[𝑥, 𝑦, 𝑡] are quasi-homogeneous polynomials of degrees 𝑎4, 𝑎2 + 𝑎4
and d, respectively.

Claim 1. lctp (𝑋; 𝐻𝑥) ≥ 1/2.

Proof of Claim 1. We prove multp (𝐻𝑥) ≤ 2. Assume to the contrary that multp (𝐻𝑥) > 2. Since

𝜕2�̄�

𝜕𝑤2 = 𝑧,
𝜕2�̄�

𝜕𝑤𝜕𝑧
= 2𝑤 + 𝑓 ,

the point p is contained in 𝐻𝑥 ∩ 𝐻𝑧 ∩ (2𝑤 + 𝑓 = 0). Suppose in addition that p ∈ 𝐻𝑡 . Note that we have
𝑎4 = 𝑎1 + 𝑎3 since 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 and 𝑑 = 2𝑎4 + 𝑎2. We see that 𝑎1 does not divide 𝑎4 = 𝑎1 + 𝑎3
because otherwise gcd{𝑎1, 𝑎3, 𝑎4} > 1 and X has a nonisolated singularity which is clearly worse than
terminal, a contradiction. It follows that f does not contain a power of y, that is, 𝑓 (0, 𝑦, 0) = 0, and

p ∈ 𝐻𝑥 ∩ 𝐻𝑧 ∩ 𝐻𝑡 ∩ (2𝑤 + 𝑓 = 0) = 𝐻𝑥 ∩ 𝐻𝑧 ∩ 𝐻𝑡 ∩ 𝐻𝑤 = {p𝑦}.

This is impossible since p𝑦 is a singular point of X. Thus, p ∉ 𝐻𝑡 . Since 𝑎4 = 𝑎1+𝑎3, we may assume that
p ∈ 𝐻𝑤 after replacing w by 𝑤 − 𝜉𝑦𝑡 for some 𝜉 ∈ C. We can write p = (0:1 :0 :𝜆 :0) for some nonzero
𝜆 ∈ C. The set {𝑥, 𝑧, 𝑤, 𝑡𝑎1 − 𝜆𝑎1 𝑦𝑎3 } isolates p, and hence we can take a Q-divisor 𝑇 ∈ |𝑎1𝑎3 𝐴|Q such
that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of 𝐻𝑥 · 𝐻𝑧 . Then we have

multp (𝐻𝑥) ≤ (𝐻𝑥 · 𝐻𝑧 · 𝑇)p ≤ (𝐻𝑥 · 𝐻𝑧 · 𝑇) = 𝑎1𝑎2𝑎3 (𝐴3) < 3,
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where the last inequality follows from Lemma 2.29. This shows multp (𝐻𝑥) ≤ 2, and thus lctp(𝑋; 𝐻𝑥) ≥
1/2. �

Let 𝐷 ∈ |𝐴|Q be an irreducibleQ-divisor on X other than 𝐻𝑥 . By Lemma 3.16, 𝑎1𝑎4 𝐴 isolates p, and
hence we can take a Q-divisor 𝑇 ∈ |𝑎1𝑎4 𝐴|𝑚𝑏𝑄 such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain
any component of 𝐷 · 𝐻𝑥 . We have

multp(𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 𝑎1𝑎4 (𝐴3) < 2,

where the last inequality follows from Lemma 2.29. Thus, lctp (𝑋; 𝐷) > 1/2 and we conclude 𝛼p (𝑋) ≥
1/2.

4.2.d. Case: 1 < 𝑎1 < 𝑎2, 𝑑 = 2𝑎4 + 𝑎3 and 𝑎3 ≠ 𝑎4
The proof of Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 2𝑎4 + 𝑎3 is completely
parallel to the one given in Section 4.2.c. Indeed, the same proof applies after interchanging the role of
z and t (and hence 𝑎2 and 𝑎3). Thus, we omit the proof.

4.2.e. Case: 1 < 𝑎1 < 𝑎2 and 𝑑 = 3𝑎4
We will prove Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 3𝑎4.

Let p ∈ 𝑋 be a smooth point contained in 𝐻𝑥 \ 𝐿𝑥𝑦 . We first prove 𝛼p (𝑋) ≥ 1/2 assuming that the
inequality multp (𝐻𝑥) ≤ 2 holds. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X other than 𝐻𝑥 . By
Lemma 3.16, 𝑎1𝑎4 𝐴 isolates p, and hence we can take aQ-divisor 𝑇 ∈ |𝑎1𝑎4 𝐴|Q such that multp (𝑇) ≥ 1
and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑥 . Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 𝑎1𝑎4 (𝐴3) ≤ 2,

where the last inequality follows from Lemma 2.29. This shows multp(𝐷) ≤ 2, and we have lctp (𝑋; 𝐷) ≥
1/2.

Therefore, the proof of Proposition 4.8 under the assumption of 1 < 𝑎1 < 𝑎2 and 𝑑 = 3𝑎4 is reduced
to the following.

Claim 2. We have multp(𝐻𝑥) ≤ 2 for any smooth point p ∈ 𝑋 contained in 𝐻𝑥 \ 𝐿𝑥𝑦 .

The rest of this subsection is devoted to the proof of Claim 2, which will be done by considering
each family individually. The families satisfying 1 < 𝑎1 < 𝑎2 and 𝑑 = 3𝑎4 are families Fi, where

i ∈ {19, 27, 39, 49, 59, 66, 84}.

In the following, for a polynomial 𝑓 (𝑥, 𝑦, 𝑧, . . . ) in variables 𝑥, 𝑦, 𝑧, . . . , we set 𝑓 = 𝑓 (𝑦, 𝑧, . . . ) :=
𝑓 (0, 𝑦, 𝑧, . . . ). We first consider the family F27, which is the unique family satisfying 𝑑 = 3𝑎3 = 3𝑎4
We then consider the rest of the families which satisfy 𝑑 = 3𝑎4 > 3𝑎3.

4.2.e.1. The family F27
We can choose w and t so that

𝐹 = 𝑤2𝑡 + 𝑤𝑡2 + 𝑤𝑡𝑏5 + 𝑤𝑐10 + 𝑡𝑑10 + 𝑒15,

where 𝑏5, 𝑐10, 𝑑10, 𝑒15 ∈ C[𝑥, 𝑦, 𝑧] are quasi-homogeneous polynomials of indicated degrees. Let p ∈
𝐻𝑥 \ 𝐿𝑥𝑦 be a smooth point of X, and we assume multp (𝐻𝑥) > 2. Since

𝜕2�̄�

𝜕𝑤2 = 2𝑡,
𝜕2�̄�

𝜕𝑡2 = 2𝑤,
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we have p ∈ 𝐻𝑡 ∩ 𝐻𝑤 . Then we can write p = (0 :1 :𝜆 : 0 :0) for some nonzero 𝜆 ∈ C since p ∉ 𝐻𝑦 and
p ≠ p𝑦 . We can write 𝑒15 = 𝑧(𝑧2 − 𝜆2𝑦3) (𝑧2 − 𝜇𝑦3) for some 𝜇 ∈ C. We have

𝜕2�̄�

𝜕𝑧2 (p) = 2𝜆(7𝜆2 − 3𝜇) = 0,

𝜕2�̄�

𝜕𝑧𝜕𝑦
(p) = −3𝜆2(3𝜆2 + 𝜇) = 0,

which implies 𝜆 = 0. This is a contradiction, and Claim 2 is proved for the family F27.
We consider the rest of the families, which satisfies 𝑑 = 3𝑎4 > 3𝑎3. Replacing w if necessary, we

can write

𝐹 = 𝑤3 + 𝑤𝑔2𝑎4 + ℎ3𝑎4 ,

where 𝑔2𝑎4 , ℎ3𝑎4 ∈ C[𝑥, 𝑦, 𝑧, 𝑡] are quasi-homogeneous polynomials of degree 2𝑎4, 3𝑎4, respectively.
Let p ∈ 𝐻𝑥 \ 𝐿𝑥𝑦 be a smooth point of X, and we assume multp (𝐻𝑥) > 2. Since 𝜕2�̄�/𝜕𝑤2 = 6𝑤, we
have p ∈ 𝐻𝑤 so that p ∈ 𝐻𝑥 ∩ 𝐻𝑤 and p ∉ 𝐻𝑦 . In the following, we will derive a contradiction by
considering each family separately.

4.2.e.2. The family F19
Replacing 𝑡 ↦→ 𝑡−𝜉𝑧 for a suitable 𝜉 ∈ C, we may assume p ∈ 𝐻𝑡 . Since p ∈ 𝐻𝑥∩𝐻𝑡∩𝐻𝑤 , p ∉ 𝐻𝑦 and

p ≠ p𝑦 , we have p = (0:1 :𝜆 :0 :0) for a nonzero 𝜆 ∈ C. We can write ℎ̄12 = (𝑧2 − 𝜆2𝑦3) (𝑧2 − 𝜇𝑦3) + 𝑡𝑒9
for some 𝜇 ∈ C and 𝑒9 = 𝑒9 (𝑦, 𝑧, 𝑡). It is then straightforward to check that

𝜕2�̄�

𝜕𝑧2 (p) = 𝜕2�̄�

𝜕𝑧𝜕𝑦
(p) = 0

is impossible, and this is a contradiction.

4.2.e.3. The family F39
We have 𝑔2𝑎4 = 𝑔12, ℎ3𝑎4 = ℎ18, and we can write

𝑔12 (0, 𝑦, 𝑧, 𝑡) = 𝛼𝑡𝑧𝑦 + 𝜆𝑧3 + 𝜇𝑦3,

where 𝛼, 𝜆, 𝜇 ∈ C. By the quasi-smoothness of X, we have 𝜆 ≠ 0 and 𝜇 ≠ 0. We have

𝜕2�̄�

𝜕𝑤𝜕𝑡
= 𝛼𝑧𝑦,

𝜕2�̄�

𝜕𝑤𝜕𝑧
= 𝛼𝑡𝑦 + 3𝜆𝑧2,

𝜕2�̄�

𝜕𝑤𝜕𝑦
= 𝛼𝑡𝑧 + 3𝜇𝑦2.

Suppose that 𝛼 ≠ 0, then, since both 𝛼𝑧𝑦 and 𝛼𝑡𝑦 + 3𝜆𝑧2 vanish at p and y does not vanish at p, we have
p ∈ 𝐻𝑧 ∩ 𝐻𝑡 . It follows that p = p𝑦 . This is impossible since p𝑦 is a singular point of X. Thus, 𝛼 = 0.
Then both 3𝜆𝑧2 and 𝛼𝑡𝑧 + 3𝜇𝑦2 vanish at p, which implies that y vanishes at p. This is a contradiction.

4.2.e.4. The family F49
We have 𝑔2𝑎4 = 𝑔14, ℎ3𝑎4 = ℎ21, and we can write

ℎ24 (0, 𝑦, 𝑧, 𝑡) = 𝜆𝑡3𝑦 + 𝛼𝑡2𝑦3 + 𝛽𝑡𝑧3 + 𝛾𝑡𝑦5 + 𝛿𝑧3𝑦2 + 𝜀𝑦7,

where 𝜆, 𝛼, 𝛽, . . . , 𝜀 ∈ C. By the quasi-smoothness of X, we have 𝜆 ≠ 0, and by replacing t, we can
assume that 𝛼 = 0. Since p ∈ 𝐻𝑤 , p ∉ 𝐻𝑦 and

𝜕2�̄�

𝜕𝑡2 = 𝑤
𝜕2𝑔14(0, 𝑦, 𝑧, 𝑡)

𝜕𝑡2 + 6𝜆𝑡𝑦,

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


Forum of Mathematics, Sigma 39

we have p ∈ 𝐻𝑡 . Then p ∉ 𝐻𝑧 because otherwise p = p𝑦 is a singular point and this is impossible. We
have

𝜕2�̄�

𝜕𝑧𝜕𝑦
= 𝑤

𝜕𝑔14(0, 𝑦, 𝑧, 𝑡)
𝜕𝑧𝜕𝑦

+ 6𝛿𝑧2𝑦,

which implies 𝛿 = 0. Then, by the quasi-smoothness of X, we have 𝜀 ≠ 0. But the polynomial

𝜕2�̄�

𝜕𝑦2 = 𝑤
𝜕2𝑔14(0, 𝑦, 𝑧, 𝑡)

𝜕𝑦2 + 20𝛾𝑡𝑦3 + 42𝜀𝑦5

does not vanish at p. This is a contradiction.

4.2.e.5. The family F59
We have 𝑔2𝑎4 = 𝑔16, ℎ3𝑎4 = ℎ24, and we can write

ℎ24 (0, 𝑦, 𝑧, 𝑡) = 𝜆𝑡3𝑦 + 𝜇𝑧4 + 𝛼𝑧3𝑦2 + 𝛽𝑧2𝑦4 + 𝛾𝑧𝑦6 + 𝛿𝑦8,

where 𝜆, 𝜇, 𝛼, 𝛽, 𝛾, 𝛿 ∈ C. By the quasi-smoothness of X, we have 𝜆 ≠ 0 and 𝜇 ≠ 0. Since p ∉ 𝐻𝑦 , 𝜆 ≠ 0
and

𝜕2�̄�

𝜕𝑡2 = 𝑤
𝜕2𝑔16(0, 𝑦, 𝑧, 𝑡)

𝜕𝑡2 + 6𝜆𝑡𝑦,

we have p ∈ 𝐻𝑡 . This is a contradiction since p ∈ 𝐻𝑥 ∩ 𝐻𝑡 ∩ 𝐻𝑤 but 𝐻𝑥 ∩ 𝐻𝑡 ∩ 𝐻𝑤 consists of singular
points.

4.2.e.6. The family F66
We have ℎ3𝑎4 = ℎ27, and we can write

ℎ27 (0, 𝑦, 𝑧, 𝑡) = 𝜆𝑡3𝑧 + 𝜇𝑡𝑦4 + 𝛼𝑧2𝑦3,

where 𝛼, 𝜆, 𝜇 ∈ C. By the quasi-smoothness of X, we have 𝜆 ≠ 0 and 𝜇 ≠ 0. We have

𝜕2�̄�

𝜕𝑡𝜕𝑦
= 𝑤

𝜕2𝑔18 (0, 𝑦, 𝑧, 𝑡)
𝜕𝑡𝜕𝑦

+ 4𝜇𝑦3.

This is a contradiction since p ∈ 𝐻𝑤 , p ∉ 𝐻𝑦 and 𝜇 ≠ 0.

4.2.e.7. The family F84
We have

𝑔24(0, 𝑦, 𝑧, 𝑡) = 𝛼𝑡𝑧𝑦 + 𝜆𝑧3, ℎ36 (0, 𝑦, 𝑧, 𝑡) = 𝜇𝑡4 + 𝛽𝑧𝑦4,

where 𝛼, 𝛽, 𝜆, 𝜇 ∈ C. By the quasi-smoothness of X, we have 𝜆 ≠ 0 and 𝜇 ≠ 0. We have

𝜕2�̄�

𝜕𝑡2 = 𝑤
𝜕2𝑔24(0, 𝑦, 𝑧, 𝑡)

𝜕𝑡2 + 12𝜇𝑡2,

which implies p ∈ 𝐻𝑡 since p ∈ 𝐻𝑤 and 𝜇 ≠ 0. We have

𝜕2�̄�

𝜕𝑤𝜕𝑧
=

𝑔24 (0, 𝑦, 𝑧, 𝑡)
𝜕𝑧

= 𝛼𝑡𝑦 + 3𝜆𝑧2,

which implies p ∈ 𝐻𝑧 since p ∈ 𝐻𝑡 and 𝜆 ≠ 0. This shows p = p𝑦 , and this is a contradiction since p𝑦
is a singular point.
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Table 1. 𝐿𝑥𝑦: Irreducible and smooth case..

No. Equation No. Equation

11 𝑤2 + ℎ (𝑧, 𝑡) 55 𝑤2 + 𝑡3𝑧 + 𝑧8

15 𝑤2 + 𝑡4 + 𝑧6 57 𝑤2 + 𝑡4𝑧 + 𝑧6

16 𝑤2𝑧 + ℎ (𝑧, 𝑡) , 𝑡3 ∈ ℎ 66 𝑤3 + 𝑤𝑧3 + 𝑡3𝑧
17 𝑐 (𝑡 , 𝑤) + 𝑧4 68 𝑤2 + 𝑡4 + 𝑧7

19 𝑤3 + ℎ (𝑧, 𝑡) 70 𝑤2 + 𝑡3 + 𝑡 𝑧5

21 𝑤2 + ℎ (𝑧, 𝑡) 71 𝑤2 + 𝑡3𝑧 + 𝑧5

26 𝑤2𝑧 + 𝑧5 + 𝑡3 72 𝑤2 + 𝑡3 + 𝑧10

27 𝑐 (𝑡 , 𝑤) + 𝑧5 74 𝑤2𝑧 + 𝑡3 + 𝑡 𝑧5

34 𝑤2 + ℎ (𝑧, 𝑡) 75 𝑤2 + 𝑡5 + 𝑧6

35 𝑤2 + 𝑡3𝑧 + 𝑧6 76 𝑤2𝑡 + 𝑡3𝑧 + 𝑧5

36 𝑤2𝑧 + 𝑡3 + 𝑡 𝑧3 80 𝑤2 + 𝑡3𝑧 + 𝑡 𝑧6

41 𝑤2 + 𝑡4 + 𝑧5 84 𝑤3 + 𝑤𝑧3 + 𝑡4

45 𝑤2𝑧 + 𝑡4 + 𝑧5 86 𝑤2 + 𝑡4𝑧 + 𝑡 𝑧5

48 𝑤2𝑧 + 𝑡3 + 𝑧7 88 𝑤2 + 𝑡3 + 𝑧7

51 𝑤2 + 𝑡3𝑧 + 𝑡 𝑧4 90 𝑤2 + 𝑡3 + 𝑡 𝑧7

53 𝑤2 + 𝑡3 + 𝑧8 93 𝑤2 + 𝑡5 + 𝑡 𝑧5

54 𝑤2𝑧 + 𝑡3 + 𝑧4 95 𝑤2 + 𝑡3 + 𝑧11

Therefore, we derive a contradiction for all families and the proof of Claim 2 is completed.

4.3. Smooth points on 𝐿𝑥𝑦 for families with 𝑎1 < 𝑎2, Part 1

In this section and the next sections, we consider a member

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥,𝑦,,𝑡 ,𝑤

of a family Fi with i ∈ I \ I1 satisfying 𝑎1 < 𝑎2 ≤ 𝑎3 ≤ 𝑎4 and prove 𝛼p (𝑋) ≥ 1/2 for a smooth point p
of X contained in the one-dimensional scheme 𝐿𝑥𝑦 := (𝑥 = 𝑦 = 0) ∩ 𝑋 . We divide families indexed by
I \ I1 into two types:

◦ Families Fi such that 𝐿𝑥𝑦 := (𝑥 = 𝑦 = 0) ∩ 𝑋 is irreducible and reduced for any member X. These
families are treated in the current Section 4.3.

◦ Families Fi such that 𝐿𝑥𝑦 is either reducible or nonreduced for some member X (see equation (4.1)
for specific families). These families will be treated in Section 4.4.

The objects of this section are members X such that the one-dimensional scheme 𝐿𝑥𝑦 = (𝑥 = 𝑦 =
0) ∩ 𝑋 is irreducible and reduced.

Lemma 4.9. Let X be a member of a family Fi with i ∈ I which satisfies 𝑎1 < 𝑎2 and which is listed in
Table 1 (resp. Table 2). Then 𝐿𝑥𝑦 is an irreducible smooth curve (resp. irreducible and reduced curve
which is smooth along 𝐿𝑥𝑦 ∩ Sm(𝑋)).

Proof. Let F be the defining polynomial of X, and set 𝑑 = deg 𝐹. The scheme 𝐿𝑥𝑦 is isomorphic to
the hypersurface in P(𝑎2, 𝑎3, 𝑎4)𝑧,𝑡 ,𝑤 defined by the polynomial 𝑓 := 𝐹 (0, 0, 𝑧, 𝑡, 𝑤). We explain that f
can be transformed into the polynomial given in Tables 1 and 2 by a suitable change of homogeneous
coordinates.

Suppose i ∉ {11, 15, 16, 17, 21, 27, 34}. Then there are only a few monomials of degree d in variables
𝑧, 𝑡, 𝑤. We first simply express f as a linear combination of those monomials and then consider the
following coordinate change.

◦ Suppose 𝑑 = 2𝑎4. In this case, f is quadratic with respect to w and we eliminate the term of the form
𝑤𝑔(𝑧, 𝑡) by replacing w suitably. Then we may assume 𝑓 = 𝑤2 + ℎ(𝑧, 𝑡) for some quasi-homogeneous
polynomial ℎ = ℎ(𝑧, 𝑡) of degree d.
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Table 2. 𝐿𝑥𝑦: Irreducible and singular case..

No. Equation Sing. No. Equation Sing.

43 𝑡4 + 𝑧5 p𝑤 77 𝑤2 + 𝑡3𝑧 p𝑧

44 𝑤2𝑡 + 𝑧4 p𝑡 78 𝑤2 + 𝑡 𝑧5 p𝑡
46 𝑡3 + 𝑧7 p𝑤 79 𝑤2𝑧 + 𝑡3 p𝑧

47 𝑤2𝑧 + 𝑡3 p𝑧 81 𝑤2 + 𝑡4𝑧 p𝑧

56 𝑡3 + 𝑧8 p𝑤 82 𝑤2 + 𝑡3 p𝑧

59 𝑤3 + 𝑧4 p𝑡 83 𝑤2 + 𝑧9 p𝑡
61 𝑤2𝑡 + 𝑧5 p𝑡 85 𝑤2 + 𝑡3𝑧 p𝑧

62 𝑤2 + 𝑡3𝑧 p𝑧 87 𝑤2 + 𝑡5 p𝑧

65 𝑤2𝑧 + 𝑡3 p𝑧 89 𝑤2 + 𝑡3 p𝑧

67 𝑤2 + 𝑧7 p𝑡 91 𝑤2 + 𝑡3𝑧 p𝑧

69 𝑤2𝑧 + 𝑡4 p𝑧 92 𝑤2 + 𝑡3 p𝑧

73 𝑤2 + 𝑧5 p𝑡 94 𝑤2 + 𝑡3 p𝑧

◦ Suppose 𝑑 = 3𝑎4. In this case, f is cubic with respect to w and we eliminate the term of the form
𝑤2𝑔(𝑧, 𝑡) by replacing w suitably. Then we may assume 𝑓 = 𝑤3 + 𝑤ℎ1 (𝑧, 𝑡) + ℎ2 (𝑧, 𝑡) for some
quasi-homogeneous polynomials ℎ1 = ℎ1 (𝑧, 𝑡), ℎ = ℎ2 (𝑧, 𝑡) of degrees 𝑑 − 𝑎4 = 2𝑎4 and 𝑑 = 3𝑎4,
respectively.

After the above coordinate change, we observe that f is a linear combination of at most three distinct
monomials and it is possible to make those coefficients 1 by rescaling 𝑧, 𝑡, 𝑤. The resulting polynomial
is the one given in Tables 1 and 2. Once an explicit form of the defining polynomial is given, it is then
easy to show that 𝐿𝑥𝑦 is entirely smooth or is smooth along 𝐿𝑥𝑦 ∩ Sm(𝑋).

For i = {11, 15, 16, 17, 21, 27, 34}, the description of f is explained as follows.

◦ Suppose i = 11. In this case, 𝑓 = 𝑤2 + ℎ(𝑧, 𝑡), where h is a quintic form in 𝑧, 𝑡. The solutions of
the equation ℎ = 0 correspond to the five singular points of type 1

2 (1, 1, 1). Thus, h does not have a
multiple component and in particular 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 15. In this case, 𝑓 = 𝑤2 + 𝛼𝑡4 + 𝛽𝑡2𝑧3 + 𝛾𝑧6 for some 𝛼, 𝛽, 𝛾 ∈ C. We have 𝛼 ≠ 0 (resp.
𝛾 ≠ 0) because otherwise X cannot be quasi-smooth at p𝑡 (resp. p𝑧). Replacing t and rescaling z, we
may assume 𝛼 = 1, 𝛽 = 0 and 𝛾 = 1, and we obtain the desired form 𝑓 = 𝑤2 + 𝑡4 + 𝑧6. It is easy to
see that 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 16. In this case, 𝑓 = 𝑤2𝑧 + ℎ(𝑧, 𝑡), where ℎ = 𝛼𝑡3 + 𝛽𝑡2𝑧2 + 𝛾𝑡𝑧4 + 𝛿𝑧6 for some
𝛼, 𝛽, 𝛾, 𝛿 ∈ C. By the quasi-smoothness of X, we have 𝛼 ≠ 0. Moreover, the solutions of ℎ(𝑧, 𝑡) = 0
correspond to three singular points of type 1

2 (1, 1, 1). Thus, ℎ(𝑧, 𝑡) does not have a multiple component
and in particular 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 17. In this case, 𝑓 = 𝑐(𝑡, 𝑤) + 𝛼𝑧4, where 𝛼 ∈ C and 𝑐(𝑡, 𝑤) is a cubic form in 𝑡, 𝑤. By
the quasi-smoothness of X, we have 𝛼 ≠ 0 and we may assume 𝛼 = 1 by rescaling z. Moreover, the
solutions of 𝑐(𝑡, 𝑤) = 0 correspond to three singular points of type 1

4 (1, 1, 3). Thus, 𝑐(𝑡, 𝑤) does not
have a multiple component and in particular 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 21. In this case, 𝑓 = 𝑤2 + ℎ(𝑧, 𝑡), where ℎ = 𝛼𝑡3𝑧 + 𝛽𝑡2𝑧3 + 𝛾𝑡𝑧5 + 𝛿𝑧7 for some
𝛼, 𝛽, 𝛾, 𝛿 ∈ C. By the quasi-smoothness of X at p𝑡 , we have 𝑡3𝑧 ∈ 𝐹, that is, 𝛼 ≠ 0. Moreover, the
solutions of 𝛼𝑡3 + 𝛽𝑡2𝑧2 + 𝛾𝑡𝑧4 + 𝛿𝑧6 = 0 correspond to the three singular points of type 1

2 (1, 1, 1).
Thus, h does not have a multiple component and in particular 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 27. In this case, 𝑓 = 𝑐(𝑡, 𝑤) + 𝛼𝑧5, where 𝛼 ∈ C and 𝑐(𝑡, 𝑤) is a cubic form in 𝑡, 𝑤. By
the same arguments as in the case of i = 17, 𝑐(𝑡, 𝑤) does not have a multiple component and we may
assume 𝛼 = 1. Thus, 𝐿𝑥𝑦 is smooth.

◦ Suppose i = 34. In this case, 𝑓 = 𝑤2+ℎ(𝑧, 𝑡), where ℎ = 𝛼𝑡3+𝛽𝑡2𝑧3+𝛾𝑡𝑧6+𝛿𝑧9 for some 𝛼, 𝛽, 𝛾, 𝛿 ∈ C.
By the quasi-smoothness of X, we have 𝑡3 ∈ 𝐹, that is, 𝛼 ≠ 0. Moreover, the solutions of ℎ = 0
correspond to three singular points of type 1

2 (1, 1, 1). Thus, h does not have a multiple component
and in particular 𝐿𝑥𝑦 is smooth.

This completes the proof. �
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Proposition 4.10. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4 be a member of a family Fi
with i ∈ I \ I1 which satisfies 𝑎1 < 𝑎2 and which is listed in Tables 1 and 2. Then

𝛼p (𝑋) ≥ 1

for any smooth point p of X contained in 𝐿𝑥𝑦 .

Proof. Take a point p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋). Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎1 𝐴| be general members. By Lemma 4.9,
𝐿𝑥𝑦 is an irreducible and reduced curve, and we have 𝑆 · 𝑇 = 𝐿𝑥𝑦 . Note that 𝐿𝑥𝑦 is quasi-smooth at p,
and we have multp (𝐿𝑥𝑦) = 1. By Lemma 3.8, S is quasi-smooth at p. It follows that lctp (𝑋; 𝑆) = 1. By
Lemma 3.17, we have

𝛼p (𝑋) ≥ min
{
lctp (𝑋; 𝑆), 𝑎1

multp(𝐿𝑥𝑦)
,

1
𝑎1 (𝐴3)

}
= 1

since 1/𝑎1 (𝐴3) > 1 by Lemma 2.29. �

4.4. Smooth points on 𝐿𝑥𝑦 for families with 𝑎1 < 𝑎2, Part 2

In this section, we consider families Fi with i ∈ I \ I1 such that 𝐿𝑥𝑦 is either irreducible or reduced for
some member X. Specifically, these families consist of families Fi with

i ∈ {7, 9, 12, 13, 15, 20, 23, 24, 25, 29, 30, 31, 32,

33, 37, 38, 39, 40, 42, 49, 50, 52, 58, 60, 63, 64}, (4.1)

and the aim of this section is to prove the following.

Proposition 4.11. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4, be a member of a family Fi
with i ∈ I \ I1 which satisfies 𝑎1 < 𝑎2 and which is not listed in Tables 1 and 2. Then

𝛼p (𝑋) ≥
1
2

for any smooth point p of X contained in 𝐿𝑥𝑦 .

The proof of Proposition 4.11 will be completed in Section 4.4.b by considering each family separately
and by case-by-case arguments. Those arguments form several patterns, and we describe them in Section
4.4.a.

4.4.a. General arguments
In this subsection, let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎, 𝑏1, 𝑏2, 𝑏3)𝑥,𝑦,𝑧1 ,𝑧2 ,𝑧3

be a member of a family Fi with i ∈ I \ I1. Throughout this subsection, we assume that 𝑎 < 𝑏𝑖 for
𝑖 = 1, 2, 3. Note that we do not assume 𝑏1 ≤ 𝑏2 ≤ 𝑏3. As before, we denote by 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3)
the defining polynomial of X, and we set 𝐴 := −𝐾𝑋 .

The following very elementary lemma will be used several times.

Lemma 4.12. Let 𝑎, 𝑒1, 𝑒2, 𝑒3 be positive integers such that 𝑎 < 𝑒𝑖 for 𝑖 = 1, 2, 3 and gcd{𝑒1, 𝑒2, 𝑒3} = 1,
and let 𝜆 ≥ 1 be a number. Then the following inequalities hold.

1.
1 + 𝑒2 + 𝑒3

𝑒1𝑒2𝑒3
≤ 1

2
.

2.
𝑎 + 𝑒2 + 𝑒3

𝑒1𝑒2𝑒3
+ 𝜆

𝑎
≤ 1

2
+ 𝜆.

3. 𝑎(𝑎 + 𝑒2 + 𝑒3) < 𝑒1𝑒2𝑒3.
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Proof. In view of the assumption gcd{𝑒1, 𝑒2, 𝑒3} = 1, it is easy to see that

1 + 𝑒2 + 𝑒3
𝑒1𝑒2𝑒3

=
1

𝑒1𝑒2𝑒3
+ 1

𝑒1𝑒3
+ 1

𝑒1𝑒2

attains its maximum when (𝑒1, 𝑒2, 𝑒3) = (2, 2, 3), which implies (1).
It is also easy to see that

𝑎 + 𝑒2 + 𝑒3
𝑒1𝑒2𝑒3

+ 𝜆

𝑎
,

viewed as a function of a, attains its maximum when 𝑎 = 1 since 1 ≤ 𝑎 ≤
√

𝜆𝑒1𝑒2𝑒3. Combining this
with (1), the inequality (2) follows.

By the assumption, we have 𝑒1𝑒2 ≥ (𝑎 + 1)2. Hence, we have

𝑒1𝑒2𝑒3 − 𝑎(𝑎 + 𝑒2 + 𝑒3) = 𝑒3(𝑒1𝑒2 − 𝑎) − 𝑎2 − 𝑎𝑒2

≥ 𝑒3(𝑎2 + 𝑎 + 1) − 𝑎2 − 𝑎𝑒2

= 𝑎2 (𝑒3 − 1) + 𝑎(𝑒3 − 𝑒2) + 𝑒3

> 0.

This proves (3). �

Lemma 4.13. Suppose that 𝐿𝑥𝑦 := (𝑥 = 𝑦 = 0)𝑋 is an irreducible and reduced curve which is smooth
along 𝐿𝑥𝑦 ∩ Sm(𝑋). Then

𝛼p (𝑋) ≥ 1

for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎𝐴| be general members. Then we have 𝑆 ∩ 𝑇 = 𝐿𝑥𝑦 . Take any point
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋). By Lemma 3.8, S is smooth at p. It follows that multp(𝐿𝑥𝑦) = 1 and lctp(𝑋; 𝑆) = 1.
By Lemma 3.17, we have

𝛼p (𝑋) ≥ min
{
lctp (𝑋; 𝑆), 1

multp (𝐿𝑥𝑦)
,

1
𝑎(𝐴3)

}
= 1

since 1/𝑎(𝐴3) > 1 by Lemma 2.29. �

Lemma 4.14. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎𝐴| be general members. Suppose that the following assertions are
satisfied.

1. 𝑇 |𝑆 = Γ + Δ , where Γ = (𝑥 = 𝑦 = 𝑧1 = 0) is a quasi-line and Δ is an irreducible and reduced curve
which is quasi-smooth along Δ ∩ Sm(𝑋).

2. S is quasi-smooth along Γ ∩ Δ .
3. SingΓ (𝑋) = {p𝑧2 , p𝑧3 }.

Then

𝛼p (𝑋) ≥
1
2

for any point p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof. By assumptions (1), (2) and Lemma 3.9, S is quasi-smooth along Γ.

Claim 3. The intersection matrix 𝑀 = 𝑀 (Γ,Δ) satisfies the condition (★).
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Proof of Claim 3. By the assumption (3) and the quasi-smoothness of S, we see that SingΓ (𝑆) =
{p𝑧2 , p𝑧3 } and p𝑧𝑖 ∈ 𝑆 is a cyclic quotient singularity of index 𝑏𝑖 for 𝑖 = 2, 3. By Remark 3.10, we have

(Γ2)𝑆 = −2 + 𝑏2 − 1
𝑏2

+ 𝑏3 − 1
𝑏3

= −𝑏2 + 𝑏3
𝑏2𝑏3

< 0.

By taking the intersection number of 𝑇 |𝑆 = Γ + Δ and Γ, we have

(Γ · Δ)𝑆 = −(Γ2)𝑆 + (𝑇 · Γ) = 𝑎 + 𝑏2 + 𝑏3
𝑏2𝑏3

> 0.

Note that we have

(𝑇 · Δ) = (𝑇2 · 𝑆) − (𝑇 · Γ) = 𝑎2 (𝐴3) − 𝑎

𝑏2𝑏3
=

𝑎(𝑎 + 𝑏2 + 𝑏3)
𝑏1𝑏2𝑏3

,

and then by taking the intersection number of 𝑇 |𝑆 = Γ + Δ and Δ , we have

(Δ2)𝑆 = (𝑇 · Δ) − (Γ · Δ)𝑆 = − (𝑏1 − 𝑎) (𝑎 + 𝑏2 + 𝑏3)
𝑏1𝑏2𝑏3

< 0.

Finally, we have

det 𝑀 =
𝑏2 + 𝑏3
𝑏2𝑏3

· (𝑏1 − 𝑎) (𝑎 + 𝑏2 + 𝑏3)
𝑏1𝑏2𝑏3

− (𝑎 + 𝑏2 + 𝑏3)2

𝑏2
2𝑏2

3

= −𝑎(𝑎 + 𝑏2 + 𝑏3) (𝑏1 + 𝑏2 + 𝑏3)
𝑏1𝑏2

2𝑏2
3

< 0.

It follows that M satisfies the condition (★). �

Let p ∈ (Γ \ Δ) ∩ Sm(𝑋) be a point. By Lemma 3.7, S is a normal surface. It is easy to check that
𝑎 deg Γ = 𝑎/(𝑏2𝑏3) ≤ 1 and that X, S and Γ are smooth at p. Thus, we can apply Lemma 3.21 and we
conclude

𝛼p (𝑋) ≥ min

{
1,

1
𝑎(𝐴3) + 1

𝑎 − deg Γ

}
= min

{
1,

1
𝑎+𝑏2+𝑏3
𝑏1𝑏2𝑏3

+ 1
𝑎

}
≥ 2

3
,

where the last inequality follows from Lemma 4.12.
Let p ∈ (Δ \ Γ) ∩ Sm(𝑋) be a point. Note that Δ is smooth at p since it is quasi-smooth at p by the

assumption (1). We have

𝑎 degΔ = 𝑎

(
𝑎(𝐴3) − 1

𝑏2𝑏3

)
=

𝑎(𝑎 + 𝑏2 + 𝑏3)
𝑏1𝑏2𝑏3

< 1

by Lemma 4.12. Note that we have

𝑎(𝐴3) + 1
𝑎
− degΔ =

1
𝑎
+ 1

𝑏2𝑏3
≤ 1 + 1

4
=

5
4

since 1 ≤ 𝑎 < 𝑏𝑖 . Thus, we can apply Lemma 3.21 and conclude

𝛼p (𝑋) ≥ min

{
1,

1
𝑎(𝐴3) + 1

𝑎 − degΔ

}
≥ 4

5
.
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Finally, let p ∈ (Γ ∩ Δ) ∩ Sm(𝑋) be a point. Note that S is smooth at p by the assumption (2), and
we have

deg(Γ) = 1
𝑏2𝑏3

<
2
𝑎

, deg(Δ) = 𝑎 + 𝑏2 + 𝑏3
𝑏1𝑏2𝑏3

<
2
𝑎

,

where the former inequality is obvious and the latter follows from Lemma 4.12. Thus, we can apply
Lemma 3.23 and conclude that

𝛼p (𝑋) ≥ min
{
1,

𝑎

2

}
≥ 1

2
.

Therefore, the proof is completed. �

Remark 4.15. Let the notation and assumption as in Lemma 4.14. Assume in addition that 𝑎 ≥ 2 and
Γ ∩ Δ ⊂ Sing(𝑋). Then

𝛼p (𝑋) ≥
43
54

>
3
4

for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
Indeed, since Γ ∩ Δ ⊂ Sing(𝑋), we have

𝛼p (𝑋) ≥ min

{
1,

1
𝑎+𝑏2+𝑏3
𝑏1𝑏2𝑏3

+ 1
𝑎

,
4
5

}
by the proof of Lemma 4.14. Since 2 ≤ 𝑎 <

√
𝑏1𝑏2𝑏3 and 𝑎 < 𝑏𝑖 for 𝑖 = 1, 2, 3, we have

𝑎 + 𝑏2 + 𝑏3
𝑏1𝑏2𝑏3

+ 1
𝑎
≤ 3𝑎 + 1

(𝑎 + 1)3 + 1
𝑎
≤ 43

54
.

This proves the desired inequality.

Lemma 4.16. Suppose that 𝑏1, 𝑏2, 𝑏3 are mutually coprime and 𝑎 ∈ {1, 2}. Suppose in addition that F
can be written as

𝐹 = 𝑓1(𝑧1, 𝑧2)𝑥 + 𝑓2 (𝑧1, 𝑧2)𝑦 + 𝑧𝑚3 𝑧2 + 𝑔(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3),

where 𝑚 ∈ {2, 3} and 𝑓1, 𝑓2 ∈ C[𝑧1, 𝑧2], 𝑔 ∈ [𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3] are quasi-homogeneous polynomials
satisfying the following properties.

1. deg 𝐹 = 𝑏1𝑏2 + 𝑎.
2. g is contained in the ideal (𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑧3)2 ⊂ C[𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3].

Then

𝛼p (𝑋) ≥
1
2

for any point p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof. We have 𝑑 = 𝑚𝑏3 + 𝑏2 since 𝑧𝑚3 𝑧2 ∈ 𝐹, and combining this with 𝑑 = 𝑎 + 𝑏1 + 𝑏2 + 𝑏3, we have

𝑎 + 𝑏1 + 𝑏3 = 𝑚𝑏3. (4.2)

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


46 I-K. Kim, T. Okada and J. Won

Claim 4. We can assume

𝐹 =

{
𝑧𝑏1

2 𝑥 − 𝑧𝑏2
1 𝑦 + 𝑧𝑚3 𝑧2 + 𝑔, if 𝑎 = 1,

𝑧𝑘1 𝑧𝑙2𝑥 + (𝑧𝑏2
1 − 𝑧𝑏1

2 )𝑦 + 𝑧𝑚3 𝑧2 + 𝑔, if 𝑎 = 2
(4.3)

after replacing x and y suitably, where k and l are nonnegative integers.

Proof of Claim 4. Suppose 𝑎 = 1. Then, since deg 𝑓1 = deg 𝑓2 = 𝑏1𝑏2, we can write

𝑓1(𝑧1, 𝑧2)𝑥 + 𝑓2(𝑧1, 𝑧2)𝑦 = 𝑧𝑏1
2 ℓ1(𝑥, 𝑦) + 𝑧𝑏2

1 ℓ2(𝑥, 𝑦),

where ℓ1, ℓ2 are linear forms in 𝑥, 𝑦. We see that ℓ1, ℓ2 are linearly independent because otherwise we
can write ℓ2 = 𝛼ℓ1 for some nonzero 𝛼 ∈ C and X is not quasi-smooth along

(𝑥 = 𝑦 = 𝑤 = ℓ1 = 𝑧𝑏2
2 + 𝛼𝑧𝑏1

1 = 0) ⊂ 𝑋.

This is a contradiction. Thus, ℓ1, ℓ2 are linearly independent and we may assume ℓ1 = 𝑥 and ℓ2 = 𝑦, as
desired.

Suppose 𝑎 = 2. We have 𝑓2 = 𝛼𝑧𝑏2
1 + 𝛽𝑧𝑏1

2 for some 𝛼, 𝛽 ∈ C since deg 𝑓2 = 𝑏1𝑏2. By the quasi-
smooth of X at p𝑧 , p𝑡 , we have 𝛼, 𝛽 ≠ 0, and thus we may assume 𝛼 = 1, 𝛽 = −1 by rescaling 𝑧1, 𝑧2.
We see that the equation 𝑓1 (𝑧1, 𝑧2) = 𝑓2(𝑧1, 𝑧2) = 0 on variables 𝑧1, 𝑧2 has only trivial solution because
otherwise X is not quasi-smooth along the nonempty set

(𝑥 = 𝑦 = 𝑤 = 𝑓1(𝑧1, 𝑧2) = 𝑓2 (𝑧1, 𝑧2) = 0) ⊂ 𝑋,

which is impossible. This implies that 𝑓1 ≠ 0 as a polynomial, and there exists a monomial 𝑧𝑘1 𝑧𝑙2 of
degree 𝑏1𝑏2 + 1. Since 𝑏1 is coprime to 𝑏2, 𝑧𝑘1 𝑧𝑙2 is the unique monomial of degree 𝑏1𝑏2 + 1 in variables
𝑧1, 𝑧2. Thus, we have 𝑓2 = 𝛾𝑧𝑘1 𝑧𝑙2 for some nonzero 𝛾 ∈ C. Rescaling x, we may assume 𝛾 = 1, and the
claim is proved. �

We continue the proof of Lemma 4.16. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎𝐴| be general members. We have

𝑇 |𝑆 = Γ + 𝑚Δ ,

where

Γ = (𝑥 = 𝑦 = 𝑧2 = 0), Δ = (𝑥 = 𝑦 = 𝑧3 = 0)

since 𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑧𝑚3 𝑧2. We see that Γ and Δ are quasi-lines of degree 1/𝑏1𝑏3 and 1/𝑏1𝑏2,
respectively, and Γ ∩ Δ = {p𝑧1 } ⊂ Sing(𝑋). We see that S is quasi-smooth at p𝑧1 since 𝑧𝑏2

1 𝑦 ∈ 𝐹. By
Lemma 3.9, S is quasi-smooth along Γ and the pair (𝑆, Γ) is plt.

Claim 5. The intersection matrix 𝑀 = 𝑀 (Γ,Δ) satisfies the condition (★).

Proof of Claim 5. We see that d is not divisible by 𝑏1 or 𝑏3 since 𝑑 = 𝑏1𝑏2 + 𝑎 = 𝑚𝑏3 + 𝑏2, 𝑎 < 𝑏1 and
𝑏2 is coprime to 𝑏3. It follows that SingΓ (𝑆) = {p𝑧1 , p𝑧3 } and p𝑧𝑖 ∈ 𝑆 is a cyclic quotient singularity of
index 𝑏𝑖 for 𝑖 = 1, 3. By Remark 3.10, we have

(Γ2)𝑆 = −2 + 𝑏1 − 1
𝑏1

+ 𝑏3 − 1
𝑏3

= −𝑏1 + 𝑏3
𝑏1𝑏3

< 0.

By taking intersection number of 𝑇 |𝑆 = Γ + 𝑚Δ and Γ, we obtain

(Γ · Δ)𝑆 =
1
𝑚
(𝑎 deg Γ − (Γ2)𝑆) =

𝑎 + 𝑏1 + 𝑏3
𝑚𝑏1𝑏3

=
1
𝑏1

> 0.

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


Forum of Mathematics, Sigma 47

Similarly, by taking intersection number of 𝑇 |𝑆 and Δ , we obtain

(Δ2)𝑆 =
1
𝑚
(𝑎 degΔ − (Γ · Δ)𝑆) = − 𝑏2 − 𝑎

𝑚𝑏1𝑏2
< 0,

where the second equality follows from equation (4.2). Finally, we have

det 𝑀 =
𝑏1 + 𝑏3
𝑏1𝑏3

· 𝑏2 − 𝑎

𝑚𝑏1𝑏2
− 1

𝑏2
1
= −𝑎(𝑏1 + 𝑏2 + 𝑏3)

𝑏2
1𝑏2𝑏3

< 0,

where the second equality follows from equation (4.2). It follows that M satisfies the condition (★). �

Let p ∈ (Γ \ Δ) ∩ Sm(𝑋). We see that 𝑋, 𝑆 and Γ are smooth at p, and it is easy to see 𝑎 deg Γ =
𝑎/(𝑏1𝑏3) < 1. Hence, we can apply Lemma 3.21 and we have

𝛼p (𝑋) ≥ min

{
1,

1
𝑎(𝐴3) + 1

𝑎 − deg Γ

}
= min

{
1,

1
𝑎+𝑏1+𝑏3
𝑏1𝑏2𝑏3

+ 1
𝑎

}
≥ 2

3
,

where the last inequality follows from Lemma 4.12.
It remains to consider p ∈ (Δ \ Γ) ∩ Sm(𝑋) since Γ ∩ Δ = {p𝑧1 } ⊂ Sing(𝑋). We first consider the

case when 𝑎 = 2. In this case, 𝑆 = 𝐻𝑥 is quasi-smooth along Δ \ {q}, where q = (0 : 0 : 1 : 1 : 0) ∈
(Δ \ Γ) ∩ Sm(𝑋), and S has a double point at q. We have multp (Δ) = 1, and 𝑎 degΔ = 𝑎/(𝑏1𝑏2) < 1.
Thus, we can apply Lemma 3.22 and conclude

𝛼p (𝑋) ≥ min
{

2
multp (𝑆)

,
multp (𝑆)

2(𝐴3) + 𝑚
2 − 𝑚 degΔ

}
= min

{
2

multp (𝑆)
,

multp (𝑆)
1

𝑏1𝑏3
+ 𝑚

2

}
≥ min

{
1,

1
1
12 + 3

2

}
=

12
19

since 1/(𝑏1𝑏3) ≤ 1/12, 𝑚 ∈ {2, 3} and multp (𝑆) ∈ {1, 2}.
Suppose 𝑎 = 1. We set 𝑆′ = (𝑧3 = 0) ∩ 𝑋 ∈ |𝑏3 𝐴|. For 𝜆 ∈ C, we set 𝑇 ′

𝜆 = (𝑦 − 𝜆𝑥 = 0) ∩ 𝑋 ∈ |𝐴|.
We can write 𝑔(𝑥, 𝜆𝑥, 𝑧1, 𝑧2, 0) = 𝑥2ℎ𝜆 for some ℎ𝜆 = ℎ𝜆 (𝑥, 𝑧1, 𝑧2) since 𝑔 ∈ (𝑥, 𝑦, 𝑧3)2. In view of
equation (4.3), we have

𝐹 (𝑥, 𝜆𝑥, 𝑧1, 𝑧2, 0) = 𝑥𝜙𝜆 (𝑥, 𝑧1, 𝑧2),

where

𝜙𝜆(𝑥, 𝑧1, 𝑧2) = 𝑧𝑏2
1 − 𝜆𝑧𝑏1

2 + 𝑥ℎ𝜆.

The polynomial 𝜙𝜆 is irreducible for any nonzero 𝜆 ∈ C. We have

𝑇 ′
𝜆 |𝑆′ = Δ + Ξ𝜆,

where

Ξ𝜆 = (𝑦 − 𝜆𝑥 = 𝑧3 = 𝜙𝜆 = 0)
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is an irreducible and reduced curve. We have Δ ∩Ξ𝜆 = {q𝜆} ⊂ Sm(𝑋), where q𝜆 = (0:0 : 𝑏2
√

𝜆 :1 :0). It
is easy to see that 𝑆′ is quasi-smooth at q𝜆. Hence, 𝑆′ is quasi-smooth along Δ by Lemma 3.9.

Claim 6. The intersection matrix 𝑀 ′ = 𝑀 (Δ ,Ξ𝜆) satisfies the condition (★).

Proof of Claim 6. By Remark 3.10, we have

(Δ2)𝑆 = −𝑏3 − 1
𝑏1𝑏2

− 2 + 𝑏1 − 1
𝑏1

+ 𝑏2 − 1
𝑏2

= −𝑏1 + 𝑏2 + 𝑏3 − 1
𝑏1𝑏2

< 0.

By taking intersection number of 𝑇 ′
𝜆 |𝑆′ = Δ + Ξ𝜆 and Δ , we obtain

(Δ · Ξ𝜆)𝑆 =
𝑏1 + 𝑏2 + 𝑏3

𝑏1𝑏2
> 0.

By taking intersection number of 𝑇 ′
𝜆 |𝑆′ and Ξ𝜆, we obtain

(Ξ2
𝜆)𝑆 = 0.

It is then obvious that det 𝑀 ′ < 0 and the proof is completed. �

Now, we take any point p ∈ (Δ \Γ) ∩Sm(𝑋), and then we can choose a nonzero 𝜆 ∈ C so that p ≠ q𝜆.
By Lemma 3.8, 𝑆′ is smooth at p since 𝑆′∩𝑇 ′

𝜆 is smooth at p. It is easy to see that degΔ = 1/(𝑏1𝑏2) < 1.
Thus, we can apply Lemma 3.21 and conclude

𝛼p(𝑋) ≥ min
{
𝑏3,

1
𝑏3(𝐴3) + 1 − degΔ

}
= min

{
𝑏3,

1
2

}
=

1
2

,

where the first equality follows since

𝑏3 (𝐴3) + 1 − degΔ =
𝑑 − 1
𝑏1𝑏2

+ 1 = 2.

This completes the proof. �

Lemma 4.17. Suppose that 𝑏1, 𝑏2, 𝑏3 are mutually coprime and 𝑎 ∈ {1, 2, 3}. Suppose in addition that
F can be written as

𝐹 = 𝑧𝑚3 + 𝑧𝑒1
1 𝑦 − 𝑧𝑒2

2 𝑥 + 𝑔(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3),

where 𝑚 ≥ 2, 𝑒1, 𝑒2 are positive integers and 𝑔 ∈ C[𝑥, 𝑦, 𝑧1𝑧2, 𝑧3] is a homogeneous polynomial
satisfying the following properties.

1. If 𝑎 ≥ 2, then 𝑚 ≤ 2𝑎.
2. If 𝑎 = 1, then 𝑒1 ≤ 𝑏2.
3. g is a homogeneous polynomial contained in the ideal (𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑧3)2 ⊂ C[𝑥, 𝑦, 𝑧1, 𝑧2, 𝑧3].

Then

𝛼p (𝑋) ≥
1
2

for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof. We first consider the case where 𝑎 ≥ 2. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎𝐴| be general members. We have

𝑆 · 𝑇 = 𝑚Γ,
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where

Γ = (𝑥 = 𝑦 = 𝑧3 = 0)

is a quasi-line of degree 1/(𝑏1𝑏2). Let p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋). It is straightforward to check that S is smooth
at p, which implies lctp (𝑋; 1

𝑎 𝑆) = 𝑎. By Lemma 3.17, we have

𝛼p (𝑋) ≥ min
{
𝑎,

𝑎

𝑚
,

1
𝑎(𝐴3)

}
≥ 1

2

since 𝑎/𝑚 ≥ 1/2 and 1/(𝑎(𝐴3)) > 1 by the assumption (1) and Lemma 2.29, respectively.
In the following, we assume 𝑎 = 1. We set 𝑆′ = (𝑧3 = 0) ∩ 𝑋 ∈ |𝑏3 𝐴| and Γ = (𝑥 = 𝑦 = 𝑧3 = 0) ⊂ 𝑆′.

We have 𝐿𝑥𝑦 = Γ set-theoretically. For 𝜆 ∈ C, we set 𝑇 ′
𝜆 = (𝑦 − 𝜆𝑥 = 0) ∩ 𝑋 ∈ |𝑎𝐴|. We can write

𝑔(𝑥, 𝜆𝑥, 𝑧1, 𝑧2, 0) = 𝑥2ℎ𝜆 (𝑥, 𝑧1, 𝑧2),

where ℎ𝜆 is a quasi-homogeneous polynomial in variables 𝑥, 𝑧1, 𝑧2 since 𝑔 ∈ (𝑥, 𝑦, 𝑧3)2. We have

𝐹 (𝑥, 𝜆𝑥, 𝑧1, 𝑧2, 0) = 𝑥(𝜆𝑧𝑒1
1 − 𝑧𝑒2

2 + 𝑥ℎ𝜆).

Claim 7. The quasi-homogeneous polynomial

𝜙𝜆 := 𝜆𝑧𝑒1
1 − 𝑧𝑒2

2 + 𝑥ℎ𝜆 ∈ C[𝑥, 𝑧1, 𝑧2]

is irreducible for any 𝜆 ∈ C \ {0}.

Proof of Claim 7. We assume 𝜆 ≠ 0. If 𝜙𝜆 is a reducible polynomial, then we can write

𝜙𝜆 = −(𝑧𝑐2
2 + · · · + 𝛼𝑧𝑐1

1 + · · · ) (𝑧𝑒2−𝑐2
2 + · · · + 𝛽𝑧𝑒1−𝑐1

1 + · · · )

for some 𝑐1, 𝑐2 ∈ Z≥0 with 𝑐1 ≤ 𝑒1 and 0 < 𝑐2 < 𝑒2, and nonzero 𝛼, 𝛽 ∈ C such that 𝛼𝛽 = 𝜆. We have
𝑐2𝑏2 = 𝑐1𝑏1. Since 𝑏1 is coprime to 𝑏2, we see that 𝑐1 is divisible by 𝑏2. This implies 𝑐1 = 𝑒1 = 𝑏2
since 𝑐1 ≤ 𝑒1 ≤ 𝑏2. By the equality 𝑒2𝑏2 = 𝑒1𝑏1, we have 𝑐2 = 𝑒2 = 𝑏1. This is a contradiction since
𝑐2 < 𝑒2. Therefore, 𝜙𝜆 is irreducible for 𝜆 ≠ 0. �

We continue the proof of Lemma 4.17. By Claim 7, we have

𝑇 ′
𝜆 |𝑆′ = Γ + Δ𝜆,

where

Δ𝜆 = (𝑦 − 𝜆𝑥 = 𝑧3 = 𝜙𝜆 = 0)

is an irreducible and reduced curve for any 𝜆 ∈ C \ {0}. We have Γ ∩ Δ𝜆 = {q𝜆}, where

q𝜆 = (0:0 :1 : 𝑒2
√

𝜆 :0).

It is easy to check that 𝑆′ is quasi-smooth at q𝜆. By Lemma 3.9, 𝑆′ is quasi-smooth along Γ and the pair
(𝑆′, Γ) is plt.

Claim 8. The intersection matrix 𝑀 ′ = 𝑀 (Γ,Ξ′
𝜆) satisfies the condition (★).
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Proof of Claim 8. We see that SingΓ (𝑆′) = {p𝑧1 , p𝑧2 } and p𝑧𝑖 ∈ 𝑆′ is a cyclic quotient singular point of
index 𝑏𝑖 for 𝑖 = 1, 2. By the same computation as in Claim 6, we have

(Γ2)𝑆′ = −𝑏1 + 𝑏2 + 𝑏3 − 1
𝑏1𝑏2

< 0,

(Γ · Δ𝜆)𝑆′ =
𝑏1 + 𝑏2 + 𝑏3

𝑏1𝑏2
> 0,

(Δ2
𝜆)𝑆′ = 0.

It is then easy to see that det 𝑀 ′ < 0, which shows that 𝑀 ′ satisfies (★). �

Now, take a point p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋) = Γ ∩ Sm(𝑋). We choose and fix a general 𝜆 ∈ C so that Δ𝜆

is irreducible and q𝜆 ≠ p. Then p ∈ (Γ \ Ξ𝜆) ∩ Sm(𝑋). We see that X, 𝑆′ and Γ are smooth at p, and
deg Γ = 1/(𝑏1𝑏2) < 1. Thus, we can apply Lemma 3.21 and conclude

𝛼p (𝑋) ≥ min
{
𝑏3,

1
𝑏3 (𝐴3) + 1 − deg Γ

}
= min

{
𝑏3,

1
𝑒1
𝑏2

+ 1

}
≥ 1

2
,

where the last inequality follows from the assumption (2). This completes the proof. �

Lemma 4.18. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎𝐴| be general members. Suppose that

𝑆 · 𝑇 = 2Γ,

where Γ = (𝑥 = 𝑦 = 𝑧3 = 0). Then

𝛼p (𝑋) ≥ min
{
lctp (𝑋; 𝑆), 𝑎

2
,

1
𝑎(𝐴3)

}
≥ 1

2

for any point p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof. Let p ∈ 𝐿𝑥𝑦 ∩Sm(𝑋). We have multp(Γ) = 1, and the first inequality follows from Lemma 3.17.
We have multp(𝑆) ≤ multp(𝑆 · 𝑇) = 2, which implies lctp (𝑋; 𝑆) ≥ 1/2. Thus, the second inequality in
the statement follows since 1/(𝑎(𝐴3)) > 1 by Lemma 2.29. �

4.4.b. Proof of Proposition 4.11
This subsection is entirely devoted to the proof of Proposition 4.11.

Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑎1 ≤ · · · ≤ 𝑎4, be a member of a family Fi with i ∈ I\ I1 satisfying
𝑎1 < 𝑎2. Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎1 𝐴| are general members so that their scheme-theoretic intersection
𝑆 ∩ 𝑇 coincides with 𝐿𝑥𝑦 . Note that S is a normal surface by Lemma 3.7 and T is a quasi-hyperplane
section on X. We set

𝑓 := 𝐹 (0, 0, 𝑧, 𝑡, 𝑤)

so that 𝐿𝑥𝑦 is isomorphic to the hypersurface in P(𝑎2, 𝑎3, 𝑎4)𝑧,𝑡 ,𝑤 defined by 𝑓 = 0.

4.4.b.1. The family F7
We have

𝑓 = 𝑤2ℓ(𝑧, 𝑡) + ℎ(𝑧, 𝑡),

where ℓ, ℎ are linear and quadratic forms in 𝑧, 𝑡, respectively. By the quasi-smoothness of X, we have
ℓ(𝑧, 𝑡) ≠ 0, and ℎ(𝑧, 𝑡) does not have a multiple component.
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◦ Case (i): h is not divisible by ℓ. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13,
we have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): h is divisible by ℓ. Replacing z and t, we may assume ℓ(𝑧, 𝑡) = 𝑧. We can write ℎ = 𝑧𝑐(𝑧, 𝑡),
where 𝑐(𝑧, 𝑡) is a cubic form in 𝑧, 𝑡. Note that 𝑐(𝑧, 𝑡) is not divisible by z since ℎ(𝑧, 𝑡) = 𝑧𝑐(𝑧, 𝑡)
does not have a multiple component, and we can assume 𝑐(0, 𝑡) = −𝑡3 by rescaling t. In this case,
𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑐(𝑧, 𝑡) = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve since 𝑐(𝑧, 𝑡) does not have
a multiple component. We have Γ ∩ Δ = {q}, where q = (0 : 0 : 0 : 1 : 1) ∈ Sm(𝑋). We claim that S
is quasi-smooth (and hence smooth) at q. We have (𝜕𝐹/𝜕𝑧) (q) = (𝜕𝐹/𝜕𝑡) (q) = (𝜕𝐹/𝜕𝑤) (q) = 0.
Hence, at least one of (𝜕𝐹/𝜕𝑥) (q) and (𝜕𝐹/𝜕𝑦) (q) is nonzero by the quasi-smoothness of X. By
choosing x and y, we may assume that 𝑆 = 𝐻𝑥 and (𝜕𝐹/𝜕𝑦) (q) ≠ 0. It then follows that S is
quasi-smooth at q. Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, the assumptions of Lemma 4.14 are
satisfied and we have 𝛼p (𝑋) ≥ 1/2 for any 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.2. The family F9
We have

𝑓 = 𝑐(𝑡, 𝑤) + 𝑧3ℓ(𝑡, 𝑤),

where ℓ = ℓ(𝑡, 𝑤) and 𝑐 = 𝑐(𝑡, 𝑤) are linear and cubic forms in 𝑡, 𝑤, respectively. By the quasi-
smoothness of X, 𝑐(𝑡, 𝑤) does not have a multiple component.

◦ Case (i): ℓ(𝑡, 𝑤) ≠ 0 and 𝑐(𝑡, 𝑤) is not divisible by ℓ(𝑡, 𝑤). In this case, 𝑆 ·𝑇 = 𝐿𝑥𝑦 is irreducible and
smooth. By Lemma 4.13, we have 𝛼p(𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): ℓ(𝑡, 𝑤) ≠ 0 and 𝑐(𝑡, 𝑤) is divisible by ℓ(𝑡, 𝑤). We write 𝑐(𝑡, 𝑤) = ℓ(𝑡, 𝑤)𝑞(𝑡, 𝑤), where
𝑞(𝑡, 𝑤) is a quadratic form in 𝑡, 𝑤 which is not divisible by ℓ(𝑡, 𝑤). Replacing t and w, we may assume
ℓ = 𝑡, that is, 𝑓 = 𝑤(𝑞(𝑡, 𝑤) + 𝑧3). We may also assume 𝑞(0, 𝑤) = −𝑤2 since 𝑐(𝑡, 𝑤) does not have a
multiple component. In this case, 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑞 + 𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve since 𝑞(𝑡, 𝑤) is not a square
of a linear form. We have Γ ∩ Δ = {q}, where q = (0 : 0 : 1 : 0 : 1) ∈ Sm(𝑋). By the similar
argument as in Case (ii) of Section 4.4.b, we can conclude that S is quasi-smooth at q. Finally, we
have SingΓ (𝑋) = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p(𝑋) ≥ 1/2 for any 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): ℓ(𝑡, 𝑤) = 0. In this case, 𝑓 = ℓ1ℓ2ℓ3, where ℓ1, ℓ2, ℓ3 are linear forms in 𝑡, 𝑤 which are not
mutually proportional, and 𝑇 |𝑆 = Γ1 + Γ2 + Γ3, where Γ1, Γ2, Γ3 are as follows.

– For 𝑖 = 1, 2, 3, Γ𝑖 = (𝑥 = 𝑦 = ℓ𝑖 = 0) is a quasi-line and SingΓ𝑖 = {1 × 1
2 (1, 1), 1 × 1

3 (1, 2)}.
– Γ𝑖 ∩ Γ 𝑗 = {p𝑧} ⊂ Sing(𝑋) for 𝑖 ≠ 𝑗 . Moreover, S is quasi-smooth at p𝑧 since 𝑆 ∈ |𝐴| is general.

We can compute (Γ2
𝑖 )𝑆 = −5/6 by the method explained in Remark 3.10 and then we have (Γ𝑖 ·Γ 𝑗 )𝑆 =

1/2 for 𝑖 ≠ 𝑗 by considering (Γ𝑙 · 𝑇 |𝑆)𝑆 for 𝑙 = 1, 2, 3. Thus, the intersection matrix of Γ1, Γ2, Γ3 is
given by

((Γ𝑖 · Γ 𝑗 )𝑆) =
����
− 5

6
1
2

1
2

1
2 − 5

6
1
2

1
2

1
2 − 5

6

����
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and it satisfies the condition (★). By Lemma 3.21, we have

𝛼p (𝑋) ≥ min
{
1,

3
4

}
=

3
4

for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.3. The family F12
We have 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . Hence, rescaling w, we can write 𝑓 =

𝑤2𝑧 +𝛼𝑤𝑡2 +𝜆𝑤𝑧3 + 𝛽𝑡2𝑧2 + 𝜇𝑧5, where 𝛼, 𝛽, 𝜆, 𝜇 ∈ C. We can eliminate the monomial 𝑧5 by replacing
w and hence we assume 𝜇 = 0. Then, by the quasi-smoothness of X at p𝑧 , we have 𝜆 ≠ 0 and we may
assume 𝜆 = −1 by rescaling z. Thus, we can write

𝑓 = 𝑤2𝑧 + 𝛼𝑤𝑡2 − 𝑤𝑧3 + 𝛽𝑡2𝑧2.

◦ Case (i): 𝛼 ≠ 0 and 𝛽 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we
have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 ≠ 0 and either 𝛽 = 0 or 𝛽 = 𝛼. When 𝛽 = 𝛼, we replace 𝑤 ↦→ 𝑤 − 𝑧2 and 𝑧 ↦→ −𝑧. After
this replacement, we may assume 𝛽 = 0. Moreover, we may assume 𝛼 = 1 by rescaling t. Then we
have 𝑓 = 𝑤(𝑤𝑧 + 𝑡2 − 𝑧3) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤𝑧 + 𝑡2 − 𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve. We have Γ∩Δ = {q}, where
q = (0 : 0 : 1 : 1 : 0) ∈ Sm(𝑋). By a similar argument as in Case (ii) of Section 4.4.b, we conclude
that S is quasi-smooth at q. Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we have
𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 0 and 𝛽 ≠ 0. Rescaling t, we may assume 𝛽 = 1. Then we have 𝑓 = 𝑧(𝑤2 + 𝑤𝑧2 + 𝑡2𝑧)
and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑤𝑧2 + 𝑡2𝑧 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve. We have Γ ∩ Δ = {p𝑡 } ⊂
Sing(𝑋). By the similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth
at p𝑡 . Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iv): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑧𝑤(𝑤 + 𝑧2) and 𝑇 |𝑆 = Γ1 + Γ2 + Γ3, where Γ1, Γ2, Γ3 are as
follows.
– Γ1 = (𝑥 = 𝑦 = 𝑧 = 0) is a quasi-line of degree 1/12 and SingΓ1

(𝑆) = {1 × 1
3 (1, 3), 1 × 1

4 (1, 3)}.
– Γ2 = (𝑥 = 𝑦 = 𝑤 = 0) and Γ3 = (𝑥 = 𝑦 = 𝑤 + 𝑧2 = 0) are quasi-lines of degree 1/6 and

SingΓ𝑖 (𝑆) = {1 × 1
2 (1, 1), 1

3 (1, 2)} for 𝑖 = 2, 3.
– For 1 ≤ 𝑖 < 𝑗 ≤ 3, we have Γ𝑖 ∩ Γ 𝑗 = {p𝑡 } ⊂ Sing(𝑋). Moreover, S is quasi-smooth at p𝑡 since

𝑆 ∈ |𝐴| is general.
By the similar computation as in Case (iii) of Section 4.4.b, the intersection matrix of Γ1, Γ2, Γ3 is
given by

����
− 7

12
1
3

1
3

1
3 − 5

6
2
3

1
3

2
3 − 5

6

����
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and it satisfies the condition (★). By Lemma 3.21, we have

𝛼p (𝑋) ≥
{

3/4, if p ∈ Γ1 ∩ Sm(𝑋),
4/5, if p ∈ Γ𝑖 ∩ Sm(𝑋) for 𝑖 = 2, 3.

Thus, 𝛼p (𝑋) ≥ 3/4 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.4. The family F13
We have

𝑓 = 𝛼𝑤𝑡2 + 𝛽𝑤𝑧3 + 𝛾𝑡3𝑧 + 𝛿𝑡𝑧4,

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ C. Note that (𝛼, 𝛾) ≠ (0, 0) since X is quasi-smooth at p𝑡 .

◦ Case (i): 𝛼 ≠ 0, (𝛽, 𝛿) ≠ (0, 0) and (𝛼, 𝛾) is not proportional to (𝛽, 𝛿). In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦

is irreducible and is smooth outside p𝑤 ∈ Sing(𝑋). By Lemma 4.13, we have 𝛼p (𝑋) ≥ 1 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 ≠ 0, (𝛽, 𝛿) ≠ (0, 0) and (𝛼, 𝛾) is proportional to (𝛽, 𝛿). In this case, 𝑓 = (𝛼𝑤 + 𝛾𝑡𝑧) (𝑡2 +
𝜀𝑧3), where 𝜀 := 𝛽/𝛼 ∈ C is nonzero. Replacing w and z, we may assume 𝑓 = 𝑤(𝑡2 − 𝑧3) and
𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑡2 − 𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } =
Δ∩Sm(𝑋). We have Γ∩Δ = {q}, where q = (0:0 :1 :1 :0) ∈ Sm(𝑋). By a similar argument as in Case
(ii) of Section 4.4.b, we conclude that S is quasi-smooth at q. Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }.
Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 ≠ 0 and (𝛽, 𝛿) = (0, 0). In this case, 𝑓 = 𝑡2(𝛼𝑤 + 𝛾𝑡𝑧) and we may assume 𝑓 = 𝑡2𝑤 by
replacing w. We can write

𝐹 = 𝑓1(𝑧, 𝑤)𝑥 + 𝑓2(𝑧, 𝑤)𝑦 + 𝑡2𝑤 + 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑓1, 𝑓2 ∈ C[𝑧, 𝑤] and 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] are homogeneous polynomials such that 𝑔 ∈ (𝑥, 𝑦) ∩
(𝑥, 𝑦, 𝑡)2. By Lemma 4.16, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iv): 𝛼 = 0 and 𝛽 ≠ 0. Note that 𝛾 ≠ 0. In this case, 𝑓 = 𝑧(𝛽𝑤𝑧2 +𝛾𝑡3 + 𝛿𝑡𝑧3). Then 𝑇 |𝑆 = Γ+Δ ,
where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝛽𝑤𝑧2 + 𝛾𝑡3 + 𝛿𝑡𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } ⊃
Δ ∩ Sm(𝑋). We have Γ ∩ Δ = {p𝑤 } ⊂ Sing(𝑋). By a similar argument as in Case (ii) of Section
4.4.b, we conclude that S is quasi-smooth at p𝑤 . Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Then, by
Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (v): 𝛼 = 𝛽 = 0 and 𝛿 ≠ 0. Note that 𝛾 ≠ 0. In this case, 𝑓 = 𝑧𝑡 (𝛾𝑡2 + 𝛿𝑧3) and 𝑇 |𝑆 = Γ1 +Γ2 +Γ3,
where Γ1, Γ2, Γ3 are as follows.

– Γ1 = (𝑥 = 𝑦 = 𝑧 = 0) is a quasi-line of degree 1/15 and SingΓ1
(𝑆) = {1 × 1

3 (1, 2), 1 × 1
5 (2, 3)}.

– Γ2 = (𝑥 = 𝑦 = 𝑡 = 0) is a quasi-line of degree 1/10 and SingΓ2
(𝑆) = {1 × 1

2 (1, 1), 1 × 1
5 (2, 3)}.

– Γ3 = (𝑥 = 𝑦 = 𝛾𝑡2 + 𝛿𝑧3 = 0) is an irreducible smooth curve of degree 1/5.
– For 1 ≤ 𝑖 < 𝑗 ≤ 3, we have Γ𝑖 ∩ Γ 𝑗 = {p𝑤 } ⊂ Sing(𝑋). Moreover, S is quasi-smooth at p𝑤 .

We compute (Γ2
1 )𝑆 = −8/15 and (Γ2

2 )𝑆 = −15/19 by the method explained in Remark 3.10. We can
choose 𝑧, 𝑡 as orbifold coordinates of S at p𝑤 . It follows that Γ1, Γ2 intersect transversally at the point
over p𝑤 on the orbifold chart of S at p𝑤 , and we have (Γ1 · Γ2)𝑆 = 1/5. Then, by taking intersections
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with 𝑇 |𝑆 = Γ1 + Γ2 + Γ3 with Γ𝑖 for 𝑖 = 1, 2, 3, we see that the intersection matrix of Γ1, Γ2, Γ3
is given by

����
− 8

15
1
5

2
5

1
5 − 7

10
3
5

2
5

3
5 −1

����
and it satisfies the condition (★). By Lemma 3.21,

𝛼p (𝑋) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10/13, if p ∈ Γ1 ∩ Sm(𝑋),
15/19, if p ∈ Γ2 ∩ Sm(𝑋),
6/7, if p ∈ Γ3 ∩ Sm(𝑋).

Thus, we have 𝛼p (𝑋) ≥ 10/13 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
◦ Case (vi): 𝛼 = 𝛽 = 𝛿 = 0. In this case, 𝛾 ≠ 0 and we may assume that 𝑓 = 𝑡3𝑧 by rescaling z. We can

write

𝐹 = 𝑓1(𝑧, 𝑤)𝑥 + 𝑓2(𝑧, 𝑤)𝑦 + 𝑡3𝑧 + 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑓1, 𝑓2 ∈ C[𝑧, 𝑤] and 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] are homogeneous polynomials such that 𝑔 ∈ (𝑥, 𝑦) ∩
(𝑥, 𝑦, 𝑡)2. By Lemma 4.16, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.5. The family F15
We have 𝑤2 ∈ 𝑓 . Replacing w, we may assume that the coefficients of 𝑧6 and 𝑡4 are both 0. Then, by

the quasi-smoothness of X at p𝑧 , p𝑡 ∈ 𝑋 , we have 𝑡2𝑤, 𝑧3𝑤 ∈ 𝐹. Hence, by rescaling 𝑤, 𝑡 and z, we can
write

𝑓 = 𝑤2 + (𝑡2 − 𝑧3)𝑤 + 𝛼𝑡2𝑧3

for some 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. Replacing w and rescaling z, we may assume 𝑓 = 𝑤(𝑤 + 𝑡2 − 𝑧3) and 𝑇 |𝑆 = Γ + Δ ,
where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤 + 𝑡2 − 𝑧3 = 0).

We see that Γ and Δ are both quasi-lines. We have Γ ∩ Δ = {q}, where q = (0 :0 :1 :1 :0) ∈ Sm(𝑋).
By a similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth at q. Finally,
we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦∩Sm(𝑋).

4.4.b.6. The family F20
We have 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . Hence, we can write

𝑓 = 𝑤2𝑧 + 𝛼𝑤𝑡2 + 𝛽𝑡𝑧3,

where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0 and 𝛽 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we
have 𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
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◦ Case (ii): 𝛼 ≠ 0 and 𝛽 = 0. We have 𝑓 = 𝑤(𝑤𝑧 + 𝛼𝑡2) and thus 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤𝑧 + 𝛼𝑡2 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve. We have Γ ∩ Δ = {p𝑧} ⊂
Sing(𝑋). By a similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth
at p𝑧 . Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 0 and 𝛽 ≠ 0. We have 𝑓 = 𝑧(𝑤2 + 𝛽𝑡𝑧2) and thus 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝛽𝑡𝑧2 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } ⊃
Δ ∩ Sm(𝑋). We have Γ ∩ Δ = {p𝑡 }. By a similar argument as in Case (ii) of Section 4.4.b, we
conclude that S is quasi-smooth at p𝑡 . Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14,
we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iv): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑤2𝑧 and we can write

𝐹 = 𝑓1(𝑧, 𝑡)𝑥 + 𝑓2 (𝑧, 𝑡)𝑦 + 𝑤2𝑧 + 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑓1, 𝑓2 ∈ C[𝑧, 𝑡] and 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] are homogeneous polynomials such that 𝑔 ∈ (𝑥, 𝑦) ∩
(𝑥, 𝑦, 𝑤)2. By Lemma 4.16, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.7. The family F23
We have 𝑤2𝑡 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . Hence, we can write

𝑓 = 𝑤2𝑡 + 𝛼𝑤𝑧3 + 𝛽𝑡2𝑧2,

where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0 and 𝛽 ≠ 0. In this case, 𝑆 ·𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋).
By Lemma 4.13, we have 𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 ≠ 0 and 𝛽 = 0. We have 𝑓 = 𝑤(𝑤𝑡 + 𝛼𝑧3) and thus 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤𝑡 + 𝛼𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve. We have Γ ∩ Δ = {p𝑡 } ⊂
Sing(𝑋), and S is quasi-smooth at p𝑡 since 𝑡3𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }.
Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 0 and 𝛽 ≠ 0. We have 𝑓 = 𝑡 (𝑤2 + 𝛽𝑡𝑧2) and thus 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝛽𝑡𝑧2 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } ⊃
Δ∩Sm(𝑋). We have Γ∩Δ = {p𝑧}, and S is quasi-smooth at p𝑧 since 𝑧4𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we
have SingΓ (𝑋) = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p(𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iv): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑤2𝑡 and we can write

𝐹 = 𝑓1(𝑧, 𝑡)𝑥 + 𝑓2(𝑧, 𝑡) + 𝑤2𝑡 + 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑓1, 𝑓2 ∈ C[𝑧, 𝑡] and 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] are homogeneous polynomials such that 𝑔 ∈ (𝑥, 𝑦) ∩
(𝑥, 𝑦, 𝑤)2. By Lemma 4.16, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
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4.4.b.8. The family F24
We have 𝑡3 ∈ 𝐹 and, by rescaling t, we can write

𝑓 = 𝛼𝑤𝑧4 + 𝑡3 + 𝛽𝑡𝑧5,

where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑤 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0 and 𝛽 ≠ 0. By rescaling z, we may assume 𝑓 = 𝑡 (𝑡2 + 𝑧5). Then 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑡2 + 𝑧5 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } =
Δ ∩Sm(𝑋). We have Γ∩Δ = {p𝑤 }, and S is quasi-smooth at p𝑤 by a similar argument as in Case (ii)
of Section 4.4.b. Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2
for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑡3 and the defining polynomial F of X can be written as

𝐹 = 𝑤2ℓ1(𝑥, 𝑦) + 𝑡3 + 𝑧7ℓ2(𝑥, 𝑦) + 𝑤ℎ8 (𝑥, 𝑦, 𝑧, 𝑡) + ℎ15 (𝑥, 𝑦, 𝑧, 𝑡),

where ℎ8, ℎ15 ∈ C[𝑥, 𝑦, 𝑧, 𝑡] are homogeneous polynomials of degrees 8, 15, respectively, such that
𝑧4 ∉ ℎ8 and 𝑡3, 𝑧7𝑥, 𝑧7𝑦 ∉ ℎ15, and ℓ1, ℓ2 are linear forms in 𝑥, 𝑦. Note that ℎ8, ℎ15 ∈ (𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑡)2.
By the quasi-smoothness of X, we see that ℓ1 and ℓ2 are linearly independent. Replacing 𝑥, 𝑦, we can
assume that

𝐹 = 𝑤2𝑥 + 𝑡3 − 𝑧7𝑦 + 𝑔,

where ℎ = 𝑤ℎ8 + ℎ15 ∈ (𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑡)2. Thus, by Lemma 4.17, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.9. The family F25
We have 𝑧5 ∈ 𝐹 and, by rescaling z, we can write

𝑓 = 𝛼𝑤𝑡2 + 𝛽𝑡3𝑧 + 𝑧5,

where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑤 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. By the quasi-smoothness of X at p𝑡 , we have 𝛽 ≠ 0, and hence we may assume
𝛽 = 1. Then 𝑓 = 𝑧(𝑡3 + 𝑧5) and we have 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑡3 + 𝑧5 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } =
Δ ∩Sm(𝑋). We have Γ∩Δ = {p𝑤 }, and S is quasi-smooth at p𝑤 by a similar argument as in Case (ii)
of Section 4.4.b. Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2
for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.10. The family F29
We have 𝑤2 ∈ 𝐹 and, by rescaling w, we can write 𝑓 = 𝑤2+𝜆𝑤𝑧4+𝛼𝑡2𝑧3+𝜇𝑧8, where 𝛼, 𝜆, 𝜇 ∈ C. By

replacing w, we can eliminate the term 𝜇𝑧8, that is, we may assume 𝜇 = 0. Then, by the quasi-smoothness

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


Forum of Mathematics, Sigma 57

of X at p𝑧 , we have 𝑤𝑧4 ∈ 𝐹, that is, 𝜆 ≠ 0. Thus, we can write

𝑓 = 𝑤2 + 𝑤𝑧4 + 𝛼𝑡2𝑧3.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. Then we have 𝑓 = 𝑤(𝑤 + 𝑧4) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤 + 𝑧4).

We see that Γ and Δ are both quasi-lines. We have Γ ∩ Δ = {p𝑡 }, and S is quasi-smooth at p𝑡 by
a similar argument as in Case (ii) of Section 4.4.b. Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by
Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.11. The family F30
We have 𝑤2 ∈ 𝐹 and, by rescaling w, we can write 𝑓 = 𝑤2 + 𝜆𝑤𝑡2 + 𝜇𝑡4 + 𝛼𝑡𝑧4, where 𝛼, 𝜆, 𝜇 ∈ C.

We may assume 𝜇 = 0 by replacing w, and then we have 𝑤𝑡2 ∈ 𝐹 by the quasi-smoothness of X at p𝑡 .
Thus, we can write

𝑓 = 𝑤2 + 𝑤𝑡2 + 𝛼𝑡𝑧4.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. Then we have 𝑓 = 𝑤(𝑤 + 𝑡2) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤 + 𝑡2 = 0).

We see that Γ and Δ are both quasi-lines. We have Γ ∩ Δ = {p𝑧}, and S is quasi-smooth at p𝑧 by
a similar argument as in Case (ii) of Section 4.4.b. Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by
Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.12. The family F31
We have 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 , and we have 𝑧4 ∈ 𝐹. Rescaling w and z, we

can write

𝑓 = 𝑤2𝑧 + 𝛼𝑤𝑡2 − 𝑧4,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑧(𝑤2 − 𝑧3) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 − 𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } ⊃
Δ ∩ Sm(𝑋). We have Γ ∩ Δ = {p𝑡 } ⊂ Sing(𝑋), and S is quasi-smooth at p𝑡 by a similar argument as
in Case (ii) of Section 4.4.b. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.13. The family F32
We have 𝑡4 ∈ 𝐹, and we can write

𝑓 = 𝛼𝑤𝑧3 + 𝑡4 + 𝛽𝑡𝑧4,
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where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑤 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0 and 𝛽 ≠ 0. Rescaling z, we may assume 𝛽 = 1 and 𝑓 = 𝑡 (𝑡3 + 𝑧4). Then 𝑇 |𝑆 = Γ + Δ ,
where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑡3 + 𝑧4 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } =
Δ ∩Sm(𝑋). We have Γ∩Δ = {p𝑤 }, and S is quasi-smooth at p𝑤 since 𝑤2𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally,
we have SingΓ = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑡4. Since 𝑤𝑧3, 𝑡𝑧4 ∉ 𝐹, we have 𝑧5𝑥 ∈ 𝐹, and we can write

𝐹 = 𝑤2𝑦 + 𝑡4 + 𝑧5𝑥 + 𝑤ℎ9 (𝑥, 𝑦, 𝑧, 𝑡) + ℎ16 (𝑥, 𝑦, 𝑧, 𝑡),

where 𝑔𝑖 ∈ C[𝑥, 𝑦, 𝑧, 𝑡] is a homogeneous polynomial of degree i such that 𝑧3 ∉ ℎ9 and 𝑡4, 𝑡𝑧4, 𝑧5𝑥 ∉
ℎ16. Note that ℎ9, ℎ16 ∈ (𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑡)2. Thus, by Lemma 4.17, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.14. The family F33
We have 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 , and we can write

𝑓 = 𝑤2𝑧 + 𝛼𝑤𝑡2 + 𝛽𝑡𝑧4,

where 𝛼, 𝛽 ∈ C.

◦ Case (i): 𝛼 ≠ 0 and 𝛽 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we
have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 ≠ 0 and 𝛽 = 0. In this case, 𝑓 = 𝑤(𝑤𝑧 + 𝛼𝑧2) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤𝑧 + 𝛼𝑧2 = 0).

We see that Γ is a quasi-line and Δ is an irreducible quasi-smooth curve. We have Γ ∩ Δ = {p𝑧} ⊂
Sing(𝑋), and S is quasi-smooth at p𝑧 since 𝑧5𝑡 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }.
Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iii): 𝛼 = 0 and 𝛽 ≠ 0. In this case, 𝑓 = 𝑧(𝑤2 + 𝛽𝑡𝑧3) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝛽𝑡𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } ⊃
Δ ∩ Sm(𝑋). We have Γ ∩ Δ = {p𝑡 } ⊂ Sing(𝑋), and S is quasi-smooth at p𝑡 since 𝑡3𝑦 ∈ 𝐹 and
𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (iv): 𝛼 = 𝛽 = 0. In this case, 𝑓 = 𝑤2𝑧 and we can write

𝐹 = 𝑓1(𝑧, 𝑡)𝑥 + 𝑓2 (𝑧, 𝑡)𝑦 + 𝑤2𝑧 + 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑓1, 𝑓2 ∈𝑚 𝑏𝐶 [𝑧, 𝑡] and 𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] are homogeneous polynomials such that 𝑔 ∈
(𝑥, 𝑦) ∩ (𝑥, 𝑦, 𝑤)2. By Lemma 4.16, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
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4.4.b.15. The family F37
We have 𝑤2 ∈ 𝐹, and we can write 𝑓 = 𝑤2 +𝜆𝑤𝑧3 +𝛼𝑡3𝑧2 + 𝜇𝑧6, where 𝛼, 𝜆, 𝜇 ∈ C. Replacing w, we

may assume 𝜇 = 0. Then, by the quasi-smoothness of X at p𝑧 , we have 𝜆 ≠ 0. Rescaling z, we can write

𝑓 = 𝑤2 + 𝑤𝑧3 + 𝛼𝑡3𝑧2.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑤(𝑤 + 𝑧3) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤 + 𝑧3 = 0)

are both quasi-lines. We have Γ ∩ Δ = {p𝑡 }, and S is quasi-smooth at p𝑡 since 𝑡4𝑦 ∈ 𝐹 and
𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.16. The family F38
We have 𝑧6 ∈ 𝐹, and we can write

𝑓 = 𝛼𝑤𝑡2 + 𝛽𝑡3𝑧 + 𝑧6,

where 𝛼, 𝛽 ∈ C. Note that we have (𝛼, 𝛽) ≠ (0, 0) by the quasi-smoothness of X.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑤 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ 𝑋sm.

◦ Case (ii): 𝛼 = 0. Note that 𝛽 ≠ 0. In this case, 𝑓 = 𝑧(𝛽𝑡3 + 𝑧5) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝛽𝑡3 + 𝑧5 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑤 } =
Δ ∩ Sm(𝑋). We have Γ ∩ Δ = {p𝑤 } ⊂ Sing(𝑋), and S is quasi-smooth at p𝑤 since 𝑤2𝑦 ∈ 𝐹 and
𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any
p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.17. The family F39
We have 𝑤3 ∈ 𝐹 and 𝑤𝑧3 ∈ 𝐹 by the quasi-smoothness of X. Rescaling w and z, we can write

𝑓 = 𝑤3 + 𝑤𝑧3 + 𝛼𝑡2𝑧2,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑧(𝑤2 + 𝑧3) and we have 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑧3 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } =
Δ ∩Sm(𝑋). We have Γ∩Δ = {p𝑡 }, and S is quasi-smooth at p𝑡 since 𝑡3𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we
have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
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4.4.b.18. The family F40
We have 𝑤2𝑡 ∈ 𝐹 and 𝑡3𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 and p𝑡 . Rescaling w and z, we can

write

𝑓 = 𝑤2𝑡 + 𝛼𝑤𝑧3 + 𝑡3𝑧,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑡 (𝑤2 + 𝑡2𝑧) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑡2𝑧 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑧} ⊃
Δ∩Sm(𝑋). We have Γ∩Δ = {p𝑧}, and Sbis quasi-smooth at p𝑧 since 𝑧4𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we
have SingΓ (𝑋) = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p(𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.19. The family F42
We have 𝑤2 ∈ 𝐹, and we can write 𝑓 = 𝑤2 + 𝜆𝑤𝑡2 + 𝜇𝑡4 + 𝛼𝑡𝑧5, where 𝛼, 𝜆, 𝜇 ∈ C. Replacing w, we

may assume 𝜇 = 0. Then, by the quasi-smoothness of X at p𝑡 , we have 𝜆 ≠ 0. Rescaling t, we can write

𝑓 = 𝑤2 + 𝑤𝑡2 + 𝛼𝑡𝑧5.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑤(𝑤 + 𝑡2) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑤 = 0), Δ = (𝑥 = 𝑦 = 𝑤 + 𝑡2 = 0).

We see that Γ and Δ are both quasi-lines. We have Γ ∩ Δ = {p𝑧} ⊂ Sing(𝑋), and S is quasi-smooth
at p𝑧 since 𝑧6𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we have SingΓ (𝑋) = {p𝑧 , p𝑡 }. Thus, by Lemma 4.14, we
have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.20. The family F49
We have 𝑤3 ∈ 𝐹, and we can write

𝑓 = 𝑤3 + 𝛼𝑡𝑧3,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑤3 and, after replacing 𝑥, 𝑦 suitably, the defining polynomial F of
X can be written as

𝐹 = 𝑤3 + 𝑡3𝑦 − 𝑧3𝑥 + 𝑔21 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤),

where 𝑔21 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] is a homogeneous polynomial of degree 21 such that 𝑔 ∈ (𝑥, 𝑦)∩(𝑥, 𝑦, 𝑤)2.
By Lemma 4.17, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).
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4.4.b.21. The family F50
We have 𝑤2 ∈ 𝐹, and we can write

𝑓 = 𝑤2 + 𝛼𝑡𝑧5,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. We have 𝑆 · 𝑇 = 2Γ, where Γ = (𝑥 = 𝑦 = 𝑤 = 0). By Lemma 4.18, we have
𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.22. The family F52
We have 𝑤2 ∈ 𝐹, and we can write

𝑓 = 𝑤2 + 𝛼𝑡2𝑧3,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 ·𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside {p𝑧 , p𝑡 } ⊂ Sing(𝑋). By
Lemma 4.13, we have 𝛼p (𝑋) ≥ 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. We have 𝑆 · 𝑇 = 2Γ, where Γ = (𝑥 = 𝑦 = 𝑤 = 0). By Lemma 4.18, we have
𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.23. The family F58
We have 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . Also, we have 𝑧6 ∈ 𝐹. Rescaling w and z, we

can write

𝑓 = 𝑤2𝑧 + 𝛼𝑤𝑡2 + 𝑧6,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑧(𝑤2 + 𝑧5) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑧 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑧5 = 0).

We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑡 } ⊃
Δ ∩Sm(𝑋). We have Γ∩Δ = {p𝑡 }, and S is quasi-smooth at p𝑡 since 𝑡3𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we
have SingΓ (𝑋) = {p𝑡 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.24. The family F60
We have 𝑤2𝑡 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . Also, we have 𝑡4 ∈ 𝐹. Rescaling w and t, we

can write

𝑓 = 𝑤2𝑡 + 𝛼𝑤𝑧3 + 𝑡4,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and smooth. By Lemma 4.13, we have
𝛼p (𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. In this case, 𝑓 = 𝑡 (𝑤2 + 𝑡3) and 𝑇 |𝑆 = Γ + Δ , where

Γ = (𝑥 = 𝑦 = 𝑡 = 0), Δ = (𝑥 = 𝑦 = 𝑤2 + 𝑡3 = 0).
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We see that Γ is a quasi-line and Δ is an irreducible curve which is quasi-smooth along Δ \ {p𝑧} ⊃
Δ∩Sm(𝑋). We have Γ∩Δ = {p𝑧}, and S is quasi-smooth at p𝑧 since 𝑧4𝑦 ∈ 𝐹 and 𝑆 = 𝐻𝑥 . Finally, we
have SingΓ (𝑋) = {p𝑧 , p𝑤 }. Thus, by Lemma 4.14, we have 𝛼p(𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.25. The family F63
We have 𝑤2 ∈ 𝐹, and we can write

𝑓 = 𝑤2 + 𝛼𝑡𝑧6,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. We have 𝑆 · 𝑇 = 2Γ, where Γ = (𝑥 = 𝑦 = 𝑤 = 0). By Lemma 4.18, we have
𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.4.b.26. The family F64
We have 𝑤2 ∈ 𝐹, and we can write

𝑓 = 𝑤2 + 𝛼𝑡𝑧4,

where 𝛼 ∈ C.

◦ Case (i): 𝛼 ≠ 0. In this case, 𝑆 · 𝑇 = 𝐿𝑥𝑦 is irreducible and is smooth outside p𝑡 ∈ Sing(𝑋). By
Lemma 4.13, we have 𝛼p(𝑋) = 1 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

◦ Case (ii): 𝛼 = 0. We have 𝑆 · 𝑇 = 2Γ, where Γ = (𝑥 = 𝑦 = 𝑤 = 0). By Lemma 4.18, we have
𝛼p (𝑋) ≥ 1/2 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

4.5. Smooth points on 𝐻𝑥 for families with 1 < 𝑎1 = 𝑎2

The aim of this section is to prove the following.

Proposition 4.19. Let 𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, . . . , 𝑎4), 𝑎1 ≤ · · · ≤ 𝑎4, be a member of a family Fi with
i ∈ I \ I1 such that 1 < 𝑎1 = 𝑎2. Then

𝛼p (𝑋) ≥
1
2

for any smooth point p ∈ 𝑋 contained in 𝐻𝑥 .

Note that a family Fi with i ∈ I \ I1 satisfies the assumption of Proposition 4.19 if and only if

i ∈ {18, 22, 28}.

4.5.a. The family F18
This subsection is devoted to the proof of Proposition 4.19 for the family F18. Let 𝑋 = 𝑋12 ⊂
P(1, 2, 2, 3, 5) be a member of F18.

By the quasi-smoothness of X, We have 𝑡4 ∈ 𝐹 and we may assume coeff𝐹 (𝑡4) = 1 by rescaling t.
We have (𝑥 = 𝑦 = 𝑧 = 0) ∩ 𝑋 = {p𝑤 } ⊂ Sing(𝑋). Hence, we may assume p ∈ 𝐻𝑦 and p ∉ 𝐻𝑧 after
possibly replacing y and z, and we can write p = (0:0 :1 :𝜆 : 𝜇) for some 𝜆, 𝜇 ∈ C. We can write

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝛼𝑤2𝑧 + 𝛽𝑤𝑡𝑧2 + 𝑡4 + 𝛾𝑡2𝑧3 + 𝛿𝑧6,

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ C. We will derive a contradiction by assuming 𝛼p (𝑋) < 1/2. By the assumption,
there exists an irreducible Q-divisor 𝐷 ∈ |𝐴|Q such that lctp(𝑋; 𝐷) < 1/2.
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Suppose 𝜆 ≠ 0. Then, by replacing w by 𝜆𝑤 − 𝜇𝑧𝑡, we may assume p = (0 : 0 : 1 : 𝜆 : 0). Let S be a
general member of the pencil |Ip (2𝐴) | so that 1

2 𝑆 ≠ 𝐷. We can take a Q-divisor 𝑇 ∈ |5𝐴|Q such that
multp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝑆 since {𝑥, 𝑦, 𝑤}
isolates p. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 2 · 5 · (𝐴3) = 2,

which implies lctp(𝑋; 𝐷) ≥ 1/2. This is impossible, and we have 𝜆 = 0.
By rescaling w, we may assume p = (0 : 0 : 1 : 0 : 1). Suppose 𝛼 ≠ 0. Then we have 𝛿 = −𝛼 since

𝐹 (p) = 0. In this case, 𝐻𝑥 is smooth at p since (𝜕𝐹/𝜕𝑧) (p) = −5𝛼 ≠ 0. In particular, 𝐻𝑥 ≠ 𝐷. We can
take a Q-divisor 𝑇 ∈ |3𝐴|Q such that multp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the
effective 1-cycle 𝐷 · 𝐻𝑥 since {𝑥, 𝑦, 𝑡} isolates p. Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 3(𝐴3) = 3
5

,

which implies lctp (𝑋; 𝐷) ≥ 5/3. This is impossible, and we have 𝛼 = 0. Note that 𝛿 = 0 since 𝐹 (p) = 0,
and we have

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑡 (𝛽𝑤𝑧2 + 𝑡3 + 𝛾𝑡𝑧3).

We claim multp (𝐻𝑥) ≤ 2. We set 𝜁 := coeff𝐹 (𝑤2𝑦) and 𝜂 := coeff𝐹 (𝑧5𝑦). By the quasi-smoothness
of X, we see 𝜁, 𝜂 ≠ 0 since 𝑤2𝑦, 𝑧6 ∉ 𝐹. We have

𝜕𝐹

𝜕𝑦
(p) = 𝜁 + 𝜂,

𝜕𝐹

𝜕𝑡
(p) = 𝛽.

If either 𝜁 + 𝜂 ≠ 0 or 𝛽 ≠ 0, then we have multp(𝐻𝑥) = 1. If 𝜁 + 𝜂 = 𝛽 = 0, then we have multp(𝐻𝑥) = 2
since the term 𝜁 𝑦(𝑤2 − 𝑧5) appears in F. Thus, the claim is proved.

By the claim, we have lctp (𝑋; 𝐻𝑥) ≥ 1/2 and in particular 𝐷 ≠ 𝐻𝑥 . We can take a Q-divisor
𝑇 ∈ |10𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of 𝐷 · 𝐻𝑥 since
{𝑥, 𝑦, 𝑡, 𝑤2 − 𝑧5} isolates p. Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 10(𝐴3) = 2,

which implies lctp(𝑋; 𝐷) ≥ 1/2. This is a contradiction and the proof is completed.

4.5.b. The family F22
This subsection is devoted to the proof of Proposition 4.19 for the family F22. Let 𝑋 = 𝑋14 ⊂
P(1, 2, 2, 3, 7) be a member of F22.

By the quasi-smoothness of X, we have 𝑤2 ∈ 𝐹 and we may assume coeff𝐹 (𝑤2) = 1 by rescaling w.
We see that (𝑥 = 𝑦 = 𝑧 = 0) ∩ 𝑋 = {p𝑡 } ⊂ Sing(𝑋). Hence, we may assume p = (0:0 :1 :𝜆 : 𝜇) for some
𝜆, 𝜇 ∈ C after possibly replacing y and z. We can write

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑤2 + 𝛼𝑤𝑡𝑧2 + 𝛽𝑡4𝑧 + 𝛾𝑡2𝑧4 + 𝛿𝑧7,

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ C. We will derive a contradiction by assuming 𝛼p (𝑋) < 1/2. By the assumption,
there exists an irreducible Q-divisor 𝐷 ∈ |𝐴|Q such that lctp (𝑋; 𝐷) < 1/2. Let S be a general member
of the pencil |Ip (2𝐴) | so that 1

2 𝑆 ≠ 𝐷.
Suppose 𝜆 = 0. In this case, we can take a Q-divisor 𝑇 ∈ |3𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇)

does not contain any component of the effective 1-cycle 𝐷 · 𝑆 since {𝑥, 𝑦, 𝑡} isolates p. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 2 · 3 · (𝐴3) = 1,

which implies lctp(𝑋; 𝐷) ≥ 1. This is impossible, and we have 𝜆 ≠ 0.
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Replacing w by 𝜆𝑤 − 𝜇𝑡𝑧2, we may assume 𝜇 = 0, that is, p = (0 : 0 : 1 : 𝜆 : 0). We see that the set
{𝑥, 𝑦, 𝑡2 − 𝜆2𝑧3} isolates p. It follows that we can take a Q-divisor 𝑇 ∈ |6𝐴|Q such that multp(𝑇) ≥ 1
and Supp(𝑇) which does not contain any component of 𝐷 · 𝑆. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 2 · 6 · (𝐴3) = 2,

which implies 𝛼p (𝑋) ≥ 1/2. This is a contradiction, and the proof is completed.

4.5.c. The family F28
This subsection is devoted to the proof of Proposition 4.19 for the family F28. Let 𝑋 = 𝑋15 ⊂
P(1, 3, 3, 4, 5) be a member of F28.

By the quasi-smoothness of X, we have 𝑤3 ∈ 𝐹 and we may assume coeff𝐹 (𝑤3) = 1 by rescaling w.
We see that (𝑥 = 𝑦 = 𝑧 = 0) ∩ 𝑋 = {p𝑡 } ⊂ Sing(𝑋). Hence, we may assume p = (0:0 :1 :𝜆 : 𝜇) for some
𝜆, 𝜇 ∈ C after possibly replacing y and z. We can write

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑤3 + 𝛼𝑤𝑡𝑧2 + 𝛽𝑡3𝑧 + 𝛾𝑧5,

where 𝛼, 𝛽, 𝛾 ∈ C. We will derive a contradiction by assuming 𝛼p(𝑋) < 1/2. By the assumption, there
exists an irreducible Q-divisor 𝐷 ∈ |𝐴|Q such that lctp (𝑋; 𝐷) < 1/2. Let S be a general member of the
pencil |Ip (3𝐴) | so that Supp(𝑆) ≠ Supp(𝐷).

Suppose 𝜆 ≠ 0 and 𝜇 ≠ 0. In this case, the set {𝑥, 𝑦, 𝜇𝑡2 − 𝜆2𝑤𝑧} isolates p, and we can take a Q-
divisor 𝑇 ∈ |8𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective
1-cycle 𝐷 · 𝑆. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 3 · 8 · (𝐴3) = 2,

which implies lctp(𝑋; 𝐷) ≥ 1/2. This is impossible, and we have either 𝜆 = 0 or 𝜇 = 0.
Suppose 𝜆 = 0. In this case, we can take a Q-divisor 𝑇 ∈ |4𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇)

does not contain any component of the effective 1-cycle 𝐷 · 𝑆 since {𝑥, 𝑦, 𝑡} isolates p. Then we have

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 3 · 4 · (𝐴3) = 1,

which implies lctp (𝑋; 𝐷) ≥ 1. This is impossible. We have 𝜆 ≠ 0 and 𝜇 = 0. In this case, we may
assume 𝜆 = 1 by rescaling t, that is, we may assume p = (0:0 :1 :1 :0).

We claim multp (𝐻𝑥) ≤ 2. We set 𝜁 := coeff𝐹 (𝑡3𝑦) and 𝜂 := coeff𝐹 (𝑧4𝑦). We have 𝛽 + 𝛾 = 0 since
𝐹 (p) = 0. Then

𝜕𝐹

𝜕𝑧
(p) = 𝛽 + 5𝛾 = 4𝛾,

𝜕𝐹

𝜕𝑦
(p) = 𝜁 + 𝜂.

If either 𝛾 ≠ 0 or 𝜁 + 𝜂 ≠ 0, then we have multp(𝐻𝑥) = 1. It remains to consider the case where
𝛾 = 𝜁 + 𝜂 = 0. Note that we have 𝛽 = 0 since 𝛽 + 𝛾 = 0. By the quasi-smoothness of X at p𝑡 , we have
𝜁 ≠ 0. Then we see that multp (𝐻𝑥) = 2 since the term 𝜁 𝑦(𝑡3−𝑧4) appears in F. Thus, the claim is proved.

By the claim, we have lctp (𝑋; 𝐻𝑥) ≥ 1/2 and in particular 𝐷 ≠ 𝐻𝑥 . We can take a Q-divisor
𝑇 ∈ |12𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective
1-cycle 𝐷 · 𝐻𝑥 since {𝑥, 𝑦, 𝑤, 𝑡3 − 𝑧4} isolates p. Then we have

multp (𝐷) ≤ (𝐷 · 𝐻𝑥 · 𝑇)p ≤ (𝐷 · 𝐻𝑥 · 𝑇) = 12(𝐴3) = 1,

which implies 𝛼p (𝑋) ≥ 1. This is a contradiction and the proof is completed.
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5. Singular points

The aim of this section is to prove the following.

Theorem 5.1. Let X be a member of a family Fi with i ∈ I \ I1. Then

𝛼p (𝑋) ≥
1
2

for any singular point p ∈ 𝑋 .

Let X be a member of a family Fi with i ∈ I \ I1. Then the inequality 𝛼p (𝑋) ≥ 1/2 will follow from
Propositions 5.2, 5.3, 5.5 for singular points p ∈ 𝑋 which are not BI centers; from Proposition 5.6 for
EI centers; and from Propositions 5.15, 5.16 and 5.18 for QI centers. This will complete the proof of
Theorem 5.1.

5.1. Non-BI centers

Throughout the present section, let X be a member of a family Fi with i ∈ I.

5.1.a. Computation by NE(𝑌 )
Proposition 5.2. Let p ∈ 𝑋 be a singular point with subscript ♥ in the fifth column of Table 7, and let
𝜑 : 𝑌 → 𝑋 be the Kawamata blowup at p. Then (−𝐾𝑌 )2 ∉ Int NE(𝑌 ) and �̃� ∼ −𝐾𝑌 for the proper
transform of a general member 𝐷 ∈ |𝐴|. In particular, we have

𝛼p (𝑋) ≥ 1.

Proof. Let 𝑟 > 1 be the index of the quotient singular point p ∈ 𝑋 . For every instance, we have either
𝑎1 = 1 or 𝑑 − 1 is not divisible by r. This means that we can take x as a part of local orbifold coordinates
of X at p, and hence �̃� ∼ −𝐾𝑌 for a general 𝐷 ∈ |𝐴|. The point p is excluded as a maximal center by
either Lemma 3.2.2 or 3.2.4 of [CP17].

We set 𝑆 := �̃� ∼ −𝐾𝑌 , where 𝐷 ∈ |𝐴| is a general member. If p is excluded by [CP17, Lemma
3.2.2], then it follows from its proof that (−𝐾𝑌 )2 = (−𝐾𝑌 ) · 𝑆 ∉ Int NE(𝑌 ). If p is excluded by [CP17,
Lemma 3.2.4], then there exists a nef divisor T on Y such that (𝑇 · 𝑆 · −𝐾𝑌 ) ≤ 0, which implies
(−𝐾𝑌 )2 = (−𝐾𝑌 ) · 𝑆 ∉ Int NE(𝑌 ). The latter assertion follows from Lemma 3.30. �

5.1.b. Computation by 𝐿𝑥𝑦

Proposition 5.3. Let p ∈ 𝑋 be a singular point with the subscript ♦ or ♦′ in the fifth column of Table
7, and let 𝑞 = 𝑞p be the quotient morphism of p ∈ 𝑋 . We denote by r the index of the cyclic quotient
singularity p ∈ 𝑋 . Let 𝑆 ∈ |𝐴| and 𝑇 ∈ |𝑎1 𝐴| be general members. Then the following assertions hold.

1. The pair (𝑋, 𝑆) is log canonical at p.
2. The intersection 𝑆 ∩ 𝑇 is irreducible, and we have 𝑞∗𝑆 · 𝑞∗𝑇 = Γ̌, where Γ̌ is an irreducible and

reduced curve such that

0 < multp̌(Γ̌) ≤ 𝑎1.

3. We have

𝑟𝑎1 (𝐴3) ≤
{

1, if the subscript of p is ♦,
3
2 , if the subscript of p is ♦′.
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In particular,

𝛼p (𝑋) ≥
{

1, if the subscript of p is ♦,
3
2 , if the subscript of p is ♦′.

Proof. Let p ∈ 𝑋 be as in the statement. The assertion (3) can be checked individually, and it remains
to consider (1) and (2).

It is straightforward to check that X is a member of a family Fi which is listed in one of the Tables 1
and 2. It follows that 𝑆 ∩ 𝑇 = 𝐿𝑥𝑦 is irreducible. It is easy to check that we may assume p = p𝑣 for
some 𝑣 ∈ {𝑧, 𝑡, 𝑤} after replacing coordinates. Let 𝜌 = 𝜌𝑣 : �̆�𝑣 → 𝑈𝑣 be the orbifold chart. We set
Γ̆ = (𝑥 = �̆� = 0) ⊂ 𝑈𝑣 . We see that Γ̆ is an irreducible and reduced curve since so is 𝐿𝑥𝑦 , and that
𝜌∗𝑆 · 𝜌∗𝑇 = Γ̆. Note that q can be identified with 𝜌 over a suitable analytic neighborhood of p ∈ 𝑈𝑣 ,
and hence it is enough to prove the inequality multp̆(Γ̆) ≤ 𝑎1 for the proof of (2).

If X is listed in Table 1, then Γ̆ is irreducible and smooth by Lemma 4.9. In this case, S is quasi-smooth
at p and thus both (1) and (2) are clearly satisfied.

Suppose that X is listed in Table 2. Then X is a member of a family Fi, where

i ∈ {44, 47, 61, 62, 65, 69, 77, 79, 83, 85}.

If p is not the unique singular point of 𝐿𝑥𝑦 which is described in Table 2, then (1) and (2) follow
immediately. Suppose that p is the unique singular point of 𝐿𝑥𝑦 . Then we have i ∈ {44, 61, 83} and
p = p𝑡 . By the equation given in Table 2, we compute multp̆ (Γ̆) = 2. This shows (2) since 𝑎1 ≥ 2. We
see that 𝑟 = 𝑎3 does not divide 𝑑 − 1, which implies that S is quasi-smooth at p and hence (1) follows.
Therefore, (1), (2) and (3) are verified and the assertion on 𝛼p (𝑋) follows from Lemma 3.17. �

5.1.c. Computation by isolating class
Proposition 5.4. Let p ∈ 𝑋 be a singular point with subscript ♣ in the fifth column of Table 7 which
is also listed in Table 3. Then the set of coordinates given in the fifth column of Table 3 isolates p. In
particular, we have

𝛼p (𝑋) ≥ min{1, 𝑐} ≥ 1
2

,

where c is the number given in the seventh column of Table 3.

Proof. Let C be the set of homogeneous coordinates given in the fifth column of Table 3. It is straight-
forward to check that ⋂

𝑣 ∈C
(𝑣 = 0) ∩ 𝑋

is a finite set of points including p, which shows that C isolates p.
Let c be the number listed in the seventh column of Table 3, and assume that 𝛼p(𝑋) < min{1, 𝑐}.

Then there exists an irreducible Q-divisor 𝐷 ∼Q 𝐴 such that (𝑋, 𝑐𝐷) is not log canonical at p. In
particular, we have omultp(𝐷) > 1/𝑐. If 𝐻𝑥 (resp. |𝑛𝐴| for some 𝑛 > 0) is given in the fourth column of
Table 3, then we set 𝑆 := 𝐻𝑥 (resp. we define S to be a general member of |𝑛𝐴|). We set 𝑛 = 1 if 𝑆 = 𝐻𝑥

so that 𝑆 ∼ 𝑛𝐴 in any case. Let r be the index of the cyclic quotient singularity p ∈ 𝑋 . We claim that
Supp(𝐷) is not contained in S. This is clear when 𝑆 ∈ |𝑛𝐴| is a general member. Suppose that 𝑆 = 𝐻𝑥 .
Then we see that 𝑑 − 1 is not divisible by r, which implies that 𝑆 = 𝐻𝑥 is quasi-smooth at p. Hence,
(𝑋, 𝑆) is log canonical at p and we have 𝐷 ≠ 𝐻𝑥 as desired. By the claim, 𝐷 · 𝑆 is an effective 1-cycle
on X. Let e be the integer given in the sixth column of Table 3. Note that 𝑒 = max{ deg 𝑣 | 𝑣 ∈ C } and

𝑟𝑛𝑒max(𝐴3) = 1
𝑐

.
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Table 3. Isolating set..

No. Pt. Type S Isol. set 𝑒max c

10 p𝑡 1
3 (1, 1, 2) |𝐴 | {𝑥, 𝑦, 𝑧 } 1 1/2

23 p𝑦𝑡
1
2 (1, 1, 1) 𝐻𝑥 {𝑥, 𝑧, 𝑤 } 5 6/7

23 p𝑧
1
3 (1, 1, 2) 𝐻𝑥 {𝑥, 𝑦, 𝑡 , 𝑤 } 5 4/7

23 p𝑡 1
4 (1, 1, 3) 𝐻𝑥 {𝑥, 𝑦, 𝑧 } 3 5/7

29 p𝑧𝑤
1
2 (1, 1, 1) |𝐴 | {𝑥, 𝑦, 𝑡 } 5 1/2

29 p𝑡 1
5 (1, 2, 3) |𝐴 | {𝑥, 𝑦, 𝑧 } 2 1/2

31 p𝑧𝑤
1
2 (1, 1, 1) |𝐴 | {𝑥, 𝑦, 𝑡 } 5 3/4

33 p𝑧
1
3 (1, 1, 2) 𝐻𝑥 {𝑥, 𝑦, 𝑡 , 𝑤 } 7 10/17

37 p𝑧𝑤
1
3 (1, 1, 2) 𝐻𝑥 {𝑥, 𝑦, 𝑡 } 4 1

39 p𝑦𝑤
1
3 (1, 1, 2) 𝐻𝑥 {𝑥, 𝑧, 𝑡 } 5 1

39 p𝑧
1
4 (1, 1, 3) 𝐻𝑥 {𝑥, 𝑦, 𝑡 } 5 1

40 p𝑧
1
4 (1, 1, 3) 𝐻𝑥 {𝑥, 𝑦, 𝑡 , 𝑤 } 7 15/19

40 p𝑡 1
5 (1, 2, 3) 𝐻𝑥 {𝑥, 𝑦, 𝑧, 𝑤 } 4 1

50 p𝑡 1
7 (1, 3, 4) |𝐴 | {𝑥, 𝑦, 𝑧 } 3 1/2

61 p𝑦
1
4 (1, 1, 3) 𝐻𝑥 {𝑥, 𝑧, 𝑡 , 𝑤 } 9 7/5

63 p𝑡 1
8 (1, 3, 5) 𝐻𝑥 {𝑥, 𝑦, 𝑧 } 3 1

64 p𝑧
1
5 (1, 2, 3) |2𝐴 | {𝑥, 𝑦, 𝑡 } 6 1/2

66 p𝑦
1
5 (1, 1, 4) 𝐻𝑥 {𝑥, 𝑧, 𝑡 } 7 1

68 p𝑦
1
3 (1, 1, 2) |4𝐴 | {𝑥, 𝑧, 𝑡 } 7 1/2

80 p𝑦
1
3 (1, 1, 2) |4𝐴 | {𝑥, 𝑧, 𝑡 } 10 1/2

93 p𝑦
1
7 (1, 3, 4) |8𝐴 | {𝑥, 𝑧, 𝑡 } 10 1/2

95 p𝑦
1
5 (1, 2, 3) |6𝐴 | {𝑥, 𝑧, 𝑡 } 22 1/2

There exists an irreducible Q-divisor 𝑇 ∼Q 𝑒𝐴 such that multp(𝑇) ≥ 1 and Supp(𝑇) does not contain
any component of 𝐷 · 𝑆 since C isolates p. It follows that

1
𝑐

< omultp (𝐷) ≤ (𝑞∗
p𝐷 · 𝑞∗

p𝑆 · 𝑞∗
p𝑇)p̌ ≤ 𝑟 (𝐷 · 𝑆 · 𝑇) = 𝑟𝑛𝑒(𝐴3) = 1

𝑐
,

where 𝑞 = 𝑞p is the quotient morphism of p ∈ 𝑋 and p̌ is the preimage of p via q. This is a contradiction
and the inequality 𝛼p(𝑋) ≥ min{1, 𝑐} is proved. �

5.1.d. Remaining non-BI centers
Proposition 5.5. Let X be a member of a family Fi with i ∈ I, and let p ∈ 𝑋 be a singular point with
subscript ♠ in the fifth column of Table 7 which is also listed below.

◦ i = 12 and singular points of type 1
2 (1, 1, 1).

◦ i = 13 and the singular point of type 1
2 (1, 1, 1).

◦ i = 24 and the singular point of type 1
2 (1, 1, 1).

◦ i = 27 and the singular point of type 1
2 (1, 1, 1).

◦ i = 32 and the singular point of type 1
3 (1, 1, 2).

◦ i = 33 and the singular point of type 1
2 (1, 1, 1).

◦ i = 40 and the singular point of type 1
3 (1, 1, 2).

◦ i = 47 and the singular point of type 1
5 (1, 2, 3).

◦ i = 48 and the singular point of type 1
2 (1, 1, 1).

◦ i = 49 and the singular point of type 1
5 (1, 2, 3).

◦ i = 62 and the singular point of type 1
5 (1, 2, 3).

◦ i = 65 and the singular point of type 1
2 (1, 1, 1).

◦ i = 67 and the singular point of type 1
9 (1, 4, 5).

◦ i = 82 and the singular point of type 1
5 (1, 2, 3).

◦ i = 84 and the singular point of type 1
7 (1, 2, 5).
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Then we have

𝛼p (𝑋) ≥
1
2

.

The rest of this subsection is to prove Proposition 5.5 which will be separately for each family.

5.1.d.1. The family F12, points of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋10 ⊂ P(1, 1, 2, 3, 4) be a member of F12 and p a singular point of type 1
2 (1, 1, 1). We may

assume p = p𝑧 after replacing w. Then we have 𝑧3𝑤 ∈ 𝐹 by the quasi-smoothness of X at p. By Lemma
3.29, we have

𝛼p (𝑋) ≥
2

2 · 1 · 3 · (𝐴3)
=

4
5

,

and the proof is completed in this case.

5.1.d.2. The family F13, the singular point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋11 ⊂ P(1, 1, 2, 3, 5) be a member of F13 and p = p𝑧 the singular point of type 1
2 (1, 1, 1).

By Lemma 3.29, we have

𝛼p (𝑋) ≥
{

2
2·1·3· (𝐴3) =

10
11 , if 𝑧3𝑤 ∈ 𝐹,

2
2·1·5· (𝐴3) =

6
11 , if 𝑧3𝑤 ∉ 𝐹 and 𝑧4𝑡 ∈ 𝐹.

It remains to consider the case where 𝑧3𝑤, 𝑧4𝑡 ∉ 𝐹. Then, by choosing 𝑥, 𝑦 suitably, we can write

𝐹 = 𝑧5𝑥 + 𝑧4 𝑓3 + 𝑧3 𝑓5 + 𝑧2 𝑓7 + 𝑧 𝑓9 + 𝑓11,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓3 and 𝑤 ∉ 𝑓5.
We claim 𝑤2𝑦 ∈ 𝐹. Assume 𝑤2𝑦 ∉ 𝐹. Then, by the quasi-smoothness of X at p𝑤 , we have

𝑤2𝑥 ∈ 𝐹 and we may assume coeff𝐹 (𝑤2𝑥) = −1. We can write 𝐹 = (𝑧5 − 𝑤2)𝑥 + 𝑓 ′, where 𝑓 ′ =
𝑧4 𝑓3 + 𝑧3 𝑓5 + 𝑧2 𝑓7 + 𝑧 𝑓9 + 𝑓11 + 𝑤2𝑥. It is straightforward to check that 𝑓 ′ ∈ (𝑥, 𝑦, 𝑡)2 and thus X is not
quasi-smooth at the point (0:0 :1 :0 :1) ∈ 𝑋 , which is a contradiction. Thus, 𝑤2𝑦 ∈ 𝐹.

We see that �̄� := 𝐹 (0, 𝑦, 1, 𝑡, 𝑤) ∈ (𝑦, 𝑡, 𝑤)3 and the cubic part of �̄� is not a cube of a linear form
since 𝑤2𝑦 ∈ �̄� and 𝑤3 ∉ �̄�. Thus, we have 𝛼p (𝑋) ≥ 1/2 by Lemma 3.28.

5.1.d.3. The family F24, the point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋15 ⊂ P(1, 1, 2, 5, 7) be a member of F24 and p = p𝑧 the singular point of type 1
2 (1, 1, 1).

By Lemma 3.29, we have

𝛼p (𝑋) ≥
{

2
2·1·5· (𝐴3) =

14
15 , if 𝑧4𝑤 ∈ 𝐹,

2
2·1·7· (𝐴3) =

2
3 , if 𝑧4𝑤 ∉ 𝐹 and 𝑧5𝑡 ∈ 𝐹.

Suppose 𝑧4𝑤, 𝑧5𝑡 ∉ 𝐹. Then we can write

𝐹 = 𝑧7𝑥 + 𝑧6 𝑓3 + 𝑧5 𝑓5 + 𝑧4 𝑓7 + 𝑧3 𝑓9 + 𝑧2 𝑓11 + 𝑧 𝑓13 + 𝑓15,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓5 and 𝑤 ∉ 𝑓7.
We claim 𝑤2𝑦 ∈ 𝐹. Assume to the contrary 𝑤2𝑦 ∉ 𝐹. Then we can write 𝐹 = (𝑧7 + 𝑔)𝑥 + ℎ, where

𝑔 ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] and ℎ ∈ C[𝑦, 𝑧, 𝑡, 𝑤] are quasi-homogeneous polynomials such that ℎ ∈ (𝑦, 𝑡)2. But
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then X is not quasi-smooth along the nonempty subset

(𝑥 = 𝑦 = 𝑡 = 𝑧7 + 𝑔 = 0) ⊂ 𝑋.

This is a contradiction, and the claim is proved.
We see that �̄� := 𝐹 (0, 𝑦, 1, 𝑡, 𝑤) ∈ (𝑦, 𝑡, 𝑤)3, 𝑤2𝑦 ∈ �̄� and 𝑤3 ∉ �̄�. In particular, �̄� cannot be a cube

of a linear form and thus 𝛼p(𝑋) ≥ 1/2 by Lemma 3.28.

5.1.d.4. The family F27, the point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋15 ⊂ P(1, 2, 3, 5, 5) be a member of F27 and p = p𝑦 the singular point of type 1
2 (1, 1, 1).

If either 𝑦5𝑤 ∈ 𝐹 or 𝑦5𝑡 ∈ 𝐹, then we have

𝛼p (𝑋) ≥
2

2 · 3 · 5 · (𝐴3)
=

2
3

by Lemma 3.29.
Suppose 𝑦5𝑤, 𝑦5𝑡 ∉ 𝐹 and 𝑦6𝑧 ∈ 𝐹. Then we can write

𝐹 = 𝑦6𝑧 + 𝑦5 𝑓5 + 𝑦4 𝑓7 + 𝑦3 𝑓9 + 𝑦2 𝑓11 + 𝑦 𝑓13 + 𝑓15,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑤, 𝑡 ∉ 𝑓5. We see that
omultp (𝐻𝑧) = 3 and thus lctp (𝑋; 1

3 𝐻𝑧) ≥ 1. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 1
3 𝐻𝑧 .

Then we can take a Q-divisor 𝑇 ∈ |5𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any
component of 𝐷 · 𝐻𝑥 since {𝑥, 𝑧, 𝑡, 𝑤} isolates p. Since omultp(𝐻𝑧) = 3, we have

3 omultp (𝐷) ≤ 3(𝑞∗𝐷 · 𝑞∗𝐻𝑧 · 𝑞∗𝑇)p̌ ≤ 2(𝐷 · 𝐻𝑧 · 𝑇) = 3,

where 𝑞 = 𝑞p is the quotient morphism of p ∈ 𝑋 and p̌ is the preimage of p via q. This shows
lctp (𝑋; 𝐷) ≥ 1 and thus 𝛼p (𝑋) ≥ 1.

Suppose 𝑦5𝑤, 𝑦5𝑡, 𝑦6𝑧 ∉ 𝐹. Then we can write

𝐹 = 𝑦7𝑥 + 𝑦6 𝑓3 + 𝑦5 𝑓5 + 𝑦4 𝑓7 + 𝑦3 𝑓9 + 𝑦2 𝑓11 + 𝑦 𝑓13 + 𝑓15,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑧 ∉ 𝑓3 and 𝑤, 𝑡 ∉ 𝑓5. We
see that �̄� = 𝐹 (0, 1, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)3 and the cubic part of �̄� cannot be cube of a linear form since
𝐹 (0, 1, 0, 𝑡, 𝑤) = 𝐹 (0, 0, 0, 𝑡, 𝑤) is a product of three linearly independent linear forms in 𝑡, 𝑤 by the
quasi-smoothness of X. By Lemma 3.28, we have lctp (𝑋; 𝐻𝑥) ≥ 1/2.

5.1.d.5. The family F32, the point of type 1
3 (1, 1, 2)

Let 𝑋 = 𝑋16 ⊂ P(1, 2, 3, 4, 7) be a member of F32 and p = p𝑧 the singular point of type 1
3 (1, 1, 2).

By Lemma 3.29, we have

𝛼p (𝑋) ≥
{

2
3·2·4· (𝐴3) =

7
8 , if 𝑧3𝑤 ∈ 𝐹,

2
3·2·7· (𝐴3) =

1
2 , if 𝑧3𝑤 ∉ 𝐹 and 𝑧4𝑡 ∈ 𝐹.

Suppose 𝑧3𝑤, 𝑧4𝑡 ∉ 𝐹. Then 𝑧5𝑥 ∈ 𝐹 by the quasi-smoothness of X at p and we can write

𝐹 = 𝑧5𝑥 + 𝑧4 𝑓4 + 𝑧3 𝑓7 + 𝑧2 𝑓10 + 𝑧 𝑓13 + 𝑓16,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We have 𝑤2𝑦 ∈ 𝐹 by the
quasi-smoothness of X at p𝑤 . It follows that either �̄� = 𝐹 (0, 𝑦, 1, 𝑡, 𝑤) ∈ (𝑦, 𝑡, 𝑤)2 \ (𝑦, 𝑡, 𝑤)3 or
�̄� ∈ (𝑦, 𝑡, 𝑤)3 and the cubic part of �̄� is not a cube of a linear form since 𝑤3 ∉ �̄�. By Lemma 3.28, we
have 𝛼p (𝑋) ≥ 1/2.
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5.1.d.6. The family F33, the point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋17 ⊂ P(1, 2, 3, 5, 7) be a member of F33 and p = p𝑦 the singular point of type 1
2 (1, 1, 1).

Suppose that at least one of 𝑦5𝑤, 𝑦6𝑡 and 𝑦7𝑧 appear in F with nonzero coefficient. In this case, 𝐻𝑥

is quasi-smooth at p and we have lctp (𝑋; 𝐻𝑥) = 1. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than
𝐻𝑥 . We can take a Q-divisor 𝑇 ∈ |7𝐴|Q such that omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any
component of of the effective 1-cycle 𝐷 · 𝐻𝑥 since the set {𝑥, 𝑧, 𝑡, 𝑤} isolates p. It follows that

omultp (𝐷) ≤ (𝑞∗
p𝐷 · 𝑞∗

p𝐻𝑥 · 𝑞∗
p𝑇)p̌ ≤ 2(𝐷 · 𝐻𝑥 · 𝑇) =

17
15

.

Thus, lctp (𝑋; 𝐷) ≥ 15/17 and we have 𝛼p (𝑋) ≥ 15/17.
Suppose 𝑦5𝑤, 𝑦6𝑡, 𝑦7𝑧 ∉ 𝐹. Then 𝑦8𝑥 ∈ 𝐹 by the quasi-smoothness of X at p and we can write

𝐹 = 𝑦8𝑥 + 𝑦7 𝑓3 + 𝑦6 𝑓5 + 𝑦5 𝑓7 + 𝑦4 𝑓9 + 𝑦3 𝑓11 + 𝑦2 𝑓13 + 𝑦 𝑓15 + 𝑓17,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We see that �̄� :=
𝐹 (0, 1, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)3, 𝑤3 ∉ �̄� and 𝑤2𝑧 ∈ �̄�. It follows that �̄� ∈ (𝑧, 𝑡, 𝑤)3, and it cannot be a
cube of a linear form. By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2.

5.1.d.7. The family F40, the point of type 1
3 (1, 1, 2)

Let 𝑋 = 𝑋19 ⊂ P(1, 3, 4, 5, 7) be a member of F40 and p = p𝑦 the singular point of type 1
3 (1, 1, 2).

Suppose that either 𝑦4𝑤 ∈ 𝐹 or 𝑦5𝑧 ∈ 𝐹. In this case, lctp (𝑋; 𝐻𝑥) = 1 since 𝐻𝑥 is quasi-smooth at p.
Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑥 . We can take a Q-divisor 𝑇 ∈ |7𝐴|Q such that
omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of of the effective 1-cycle 𝐷 · 𝐻𝑥 since
the set {𝑥, 𝑧, 𝑡, 𝑤} isolates p. It follows that

omultp (𝐷) ≤ (𝑞∗
p𝐷 · 𝑞∗

p𝐻𝑥 · 𝑞∗
p𝑇)p̌ ≤ 3(𝐷 · 𝐻𝑥 · 𝑇) =

19
20

.

Thus, lctp (𝑋; 𝐷) ≥ 20/19 and we have 𝛼p (𝑋) ≥ 1.
Suppose 𝑦4𝑤, 𝑦5𝑧 ∉ 𝐹. Then 𝑦6𝑥 ∈ 𝐹 by the quasi-smoothness of X at p and we can write

𝐹 = 𝑦6𝑥 + 𝑦5 𝑓4 + 𝑦4 𝑓7 + 𝑦3 𝑓10 + 𝑦2 𝑓13 + 𝑦 𝑓16 + 𝑓19,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We set �̄� := 𝐹 (0, 1, 𝑧, 𝑡, 𝑤) ∈
(𝑧, 𝑡, 𝑤)3. It is easy to see that 𝑤3 ∉ �̄� and 𝑤2𝑧 ∈ �̄�. It follows that either �̄� ∈ (𝑧, 𝑡, 𝑤)2 or �̄� ∈ (𝑧, 𝑡, 𝑤)3,
and it cannot be a cube of a linear form. By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2.

5.1.d.8. The family F47, the point of type 1
5 (1, 2, 3)

Let 𝑋 = 𝑋21 ⊂ P(1, 1, 5, 7, 8) be a member of F47 and p = p𝑧 the singular point of type 1
5 (1, 2, 3).

We can write

𝐹 = 𝑧4𝑥 + 𝑧3 𝑓6 + 𝑧2 𝑓11 + 𝑧 𝑓16 + 𝑓21,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of X
at p𝑤 , we have 𝑤2 ∈ 𝑓16, which implies �̄� = 𝐹 (0, 𝑦, 1, 𝑡, 𝑤) ∈ (𝑦, 𝑡, 𝑤)2 \ (𝑦, 𝑡, 𝑤)3. Thus, by Lemma
3.28, we have 𝛼p (𝑋) ≥ 1/2.

5.1.d.9. The family F48, the point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋21 ⊂ P(1, 2, 3, 7, 9) be a member of F48 and p = p𝑦 the singular point of type 1
2 (1, 1, 1).

By Lemma 3.29, we have
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𝛼p (𝑋) ≥
{

2
2·3·7· (𝐴3) =

6
7 , if 𝑦6𝑤 ∈ 𝐹,

2
2·3·9· (𝐴3) =

2
3 , if 𝑦6𝑤 ∉ 𝐹 and 𝑦7𝑡 ∈ 𝐹.

Suppose 𝑦6𝑤, 𝑦7𝑡 ∉ 𝐹 and 𝑦9𝑧 ∈ 𝐹. We can write

𝐹 = 𝑦9𝑧 + 𝑦8 𝑓5 + 𝑦7 𝑓7 + 𝑦6 𝑓9 + · · · + 𝑓21,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓7 and 𝑤 ∉ 𝑓9. We
have omultp (𝐻𝑥) = 1 and thus lctp(𝑋; 𝐻𝑥) = 1. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X other
than 𝐻𝑥 . We can take a Q-divisor 𝑇 ∈ |9𝐴|Q with such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain
any component of 𝐷 · 𝐻𝑥 since {𝑥, 𝑧, 𝑡, 𝑤} isolates p. Then we have

omultp (𝐷) ≤ (𝑞∗𝐷 · 𝑞∗𝐻𝑥 · 𝑞∗𝑇)p̌ ≤ 2(𝐷 · 𝐻𝑥 · 𝑇) = 2 · 1 · 9 · (𝐴3) = 1,

where 𝑞 = 𝑞p is the quotient morphism of p ∈ 𝑋 and p̌ is the preimage of p via q. This shows
lctp (𝑋; 𝐷) ≥ 1 and thus 𝛼p (𝑋) ≥ 1.

Suppose 𝑦6𝑤, 𝑦7𝑡, 𝑦9𝑧 ∉ 𝐹. Then 𝑦10𝑥 ∈ 𝐹 and we can write

𝑦10𝑥 + 𝑦9 𝑓3 + 𝑦8 𝑓5 + 𝑦7 𝑓7 + 𝑦6 𝑓9 + · · · + 𝑓21,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑧 ∉ 𝑓3, 𝑡 ∉ 𝑓7 and 𝑤 ∉ 𝑓9.
We see that �̄� := 𝐹 (0, 1, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)3, and the cubic part of �̄� is not a cube of a linear form since
𝑤2𝑧 ∈ �̄� and 𝑤3 ∉ �̄�. Thus, by Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2.

5.1.d.10. The family F49, the point of type 1
5 (1, 2, 3)

Let 𝑋 = 𝑋21 ⊂ P(1, 3, 5, 6, 7) be a member of F49 and p = p𝑧 the singular point of type 1
5 (1, 2, 3). If

𝑧3𝑡 ∈ 𝐹, then

𝛼p (𝑋) ≥
2

5 · 3 · 7 · (𝐴3)
=

4
7

by Lemma 3.29.
Suppose 𝑧3𝑡 ∉ 𝐹. Then 𝑧4𝑥 ∈ 𝐹 and we can write

𝐹 = 𝑧4𝑥 + 𝑧3 𝑓6 + 𝑧2 𝑓11 + 𝑧 𝑓16 + 𝑓21,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓6. We have 𝑤3, 𝑡3𝑦 ∈
𝐹, and we may assume coeff𝐹 (𝑤3) = coeff𝐹 (𝑡3𝑦) = 1.

We claim lctp(𝑋; 𝐻𝑥) ≥ 1/2. If 𝑦2 ∈ 𝑓6, then omultp (𝐻𝑥) = 2 and thus lctp (𝑋; 𝐻𝑥) ≥ 1/2. We
assume 𝑦2 ∉ 𝑓6. Then we can write

𝐹 (0, 𝑦, 𝑧, 𝑡, 𝑤) = 𝑧(𝛼𝑤𝑡𝑦 + 𝛽𝑤𝑦3) + 𝑤3 + 𝑦(𝑡3 + 𝛾𝑡2𝑦2 + 𝛿𝑡𝑦4 + 𝜀𝑦6),

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜀 ∈ C. We set �̄� := 𝐹 (0, 𝑦, 1, 𝑡, 𝑤) ∈ C[𝑦, 𝑡, 𝑤].

◦ Suppose 𝛼 ≠ 0. Then �̄� ∈ (𝑦, 𝑡, 𝑤)3 and its cubic part is 𝛼𝑤𝑡𝑦 + 𝑤3. By Lemma 3.28, we have
lctp (𝑋; 𝐻𝑥) ≥ 1/2 in this case.

◦ Suppose 𝛼 = 0 and 𝛽 ≠ 0. Then the lowest weight part of �̄� with respect to wt(𝑦, 𝑡, 𝑤) = (6, 7, 9) is
𝛽𝑤𝑦3 + 𝑤3 + 𝑡3𝑦. By Lemma 3.27, we have

lctp (𝑋; 𝐻𝑥) ≥ min
{

22
27

, lct(P̃, Diff;D)
}
,
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where
– P̃ = P(2, 7, 9)�̃�,𝑡 ,�̃� = P(6, 7, 9)wf,
– Diff = 2

3 𝐻𝑡 with 𝐻𝑡 = (𝑡 = 0) ⊂ P̃, and
– D is the prime divisor (𝛽�̃��̃�3 + �̃�3 + 𝑡 �̃� = 0) on P̃.
We see that D is quasi-smooth and it intersects 𝐻𝑡 transversally. It follows that lct(P̃, Diff;D) = 1
and thus lctp(𝑋; 𝐻𝑥) ≥ 22/27.

◦ Suppose 𝛼 = 𝛽 = 0. Then the lowest weight part of �̄� with respect to wt(𝑦, 𝑧, 𝑡) = (3, 6, 7) is
𝑤3 + 𝑡3𝑦 + 𝛾𝑡2𝑦3 + 𝛿𝑡𝑦5 + 𝜀𝑦7. By Lemma 3.27, we have

lctp (𝑋; 𝐻𝑥) ≥ min
{

16
21

, lct(P̃, Diff;D)
}
,

where
– P̃ = P(1, 2, 9)�̃�,𝑡 ,�̃� = P(3, 6, 7)wf,
– Diff = 2

3 𝐻�̃� with 𝐻�̃� = (�̃� = 0) ⊂ P̃, and
– D is the prime divisor (�̃� + 𝑡3 �̃� + 𝛾𝑡2 �̃�3 + 𝛿𝑡 �̃�5 + 𝜀�̃�7 = 0) on P̃.
We see thatD is quasi-smooth. The solutions of the equation 𝑡3 �̃�+𝛾𝑡2 �̃�3+𝛿𝑡 �̃�5+𝜀�̃�7 = 0 corresponds to
the three points of type 1

3 (1, 1, 2) on X. In particular, the equation has three distinct solutions. It follows
that D intersects 𝐻�̃� transversally, and we have lct(P̃, Diff;D) = 1. Thus, lctp (𝑋; 𝐻𝑥) ≥ 16/21.

Thus, the claim is proved.
The point p is not a maximal center, and the pair (𝑋, 𝐻𝑥) is not canonical by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5.

5.1.d.11. The family F62, the point of 1
5 (1, 2, 3)

Let 𝑋 = 𝑋26 ⊂ P(1, 1, 5, 7, 13) be a member of F62 and p = p𝑧 the singular point of type 1
5 (1, 2, 3).

Replacing x and y, we can write

𝐹 = 𝑧5𝑥 + 𝑧4 𝑓6 + 𝑧3 𝑓11 + 𝑧2 𝑓16 + 𝑧 𝑓21 + 𝑓26,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We have omultp(𝐻𝑥) = 2
since 𝑤2 ∈ 𝐹. Hence, lctp (𝑋; 𝐻𝑥) ≥ 1/2. The point p is not a maximal center, and the pair (𝑋, 𝐻𝑥) is
not canonical at p by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5.

5.1.d.12. The family F65, the point of type 1
2 (1, 1, 1)

Let 𝑋 = 𝑋27 ⊂ P(1, 2, 5, 9, 11) be a member of F65 and p = p𝑦 the singular point of type 1
2 (1, 1, 1).

By Lemma 3.29, we have

𝛼p (𝑋) ≥
{

2
2·5·9· (𝐴3) =

22
27 , if 𝑦8𝑤 ∈ 𝐹,

2
2·5·11· (𝐴3) =

2
3 , if 𝑦8𝑤 ∉ 𝐹 and 𝑦9𝑡 ∈ 𝐹.

Suppose 𝑦8𝑤, 𝑦9𝑡 ∉ 𝐹 and 𝑦11𝑧 ∈ 𝐹. Then we can write

𝐹 = 𝑦11𝑧 + 𝑦10 𝑓7 + · · · + 𝑦 𝑓25 + 𝑓27,
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where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓9 and 𝑤 ∉ 𝑓11.
We have omultp (𝐻𝑥) = 1 and thus lctp(𝑋; 𝐻𝑥) = 1. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X
other than 𝐻𝑥 . We see that {𝑥, 𝑧, 𝑡, 𝑤} isolates p, hence we can take a Q-divisor 𝑇 ∈ |11𝐴|Q such that
omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of 𝐷 · 𝐻𝑥 . Then we have

omultp(𝐷) ≤ (𝑞∗
p𝐷 · 𝑞∗

p𝐻𝑥 · 𝑞∗
p𝑇)p̌ ≤ 2(𝐷 · 𝐻𝑥 · 𝑇) = 2 · 1 · 11 · (𝐴3) = 3

5
,

where 𝑞p is the quotient morphism of p ∈ 𝑋 and p̌ is the preimage of p via 𝑞p. This shows lctp (𝑋; 𝐷) ≥ 1
and thus 𝛼p (𝑋) ≥ 1.

Suppose that 𝑦8𝑤, 𝑦9𝑡, 𝑦11𝑧 ∉ 𝐹. Then 𝑦13𝑥 ∈ 𝐹 and we can write

𝐹 = 𝑦13𝑥 + 𝑦12 𝑓3 + · · · + 𝑦 𝑓25 + 𝑓27,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑧 ∉ 𝑓5, 𝑡 ∉ 𝑓9 and 𝑤 ∉ 𝑓11.
We see that �̄� := 𝐹 (0, 1, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)3, and the cubic part of �̄� is not a cube of a linear form since
𝑤2𝑧 ∈ �̄� and 𝑤3 ∉ �̄�. By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2.

5.1.d.13. The family F67, the point of 1
9 (1, 4, 5)

Let 𝑋 = 𝑋28 ⊂ P(1, 1, 4, 9, 14) be a member of F67 and p = p𝑡 the singular point of type 1
9 (1, 4, 5).

Replacing x and y, we can write

𝐹 = 𝑡3𝑥 + 𝑡2 𝑓10 + 𝑡 𝑓19 + 𝑓28,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑤) is a quasi-homogeneous polynomial of degree i. We have omultp (𝐻𝑥) = 2
since 𝑤2 ∈ 𝐹. Hence, lctp (𝑋; 𝐻𝑥) ≥ 1/2 by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5.

5.1.d.14. The family F82, the point of 1
5 (1, 2, 3)

Let 𝑋 = 𝑋36 ⊂ P(1, 1, 5, 12, 18) be a member of F82 and p = p𝑧 the singular point of type 1
5 (1, 2, 3).

Replacing x and y, we can write

𝐹 = 𝑧7𝑥 + 𝑧6 𝑓6 + 𝑧5 𝑓11 + · · · + 𝑓36,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We have omultp(𝐻𝑥) = 2
since 𝑤2 ∈ 𝐹. Hence, lctp (𝑋; 𝐻𝑥) ≥ 1/2 by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5.

5.1.d.15. The family F84, the point of type 1
7 (1, 2, 5)

Let 𝑋 = 𝑋36 ⊂ P(1, 7, 8, 9, 12) be a member of F84 and p = p𝑦 the singular point of type 1
7 (1, 2, 5).

By the quasi-smoothness of X, either 𝑦4𝑧 ∈ 𝐹 or 𝑦5𝑥 ∈ 𝐹. Moreover, we have 𝑤3, 𝑡4, 𝑧3𝑤 ∈ 𝐹 and we
assume coeff𝐹 (𝑤3) = coeff𝐹 (𝑡4) = coeff𝐹 (𝑧3𝑤) = 1 by rescaling 𝑧, 𝑡, 𝑤.

Suppose 𝑦4𝑧 ∈ 𝐹. Let 𝜌p : �̆�p → 𝑈p the orbifold chart of X containing p. Then we have 𝜌∗
p𝐻𝑥 ·𝜌∗

p𝐻𝑧 =
Γ̆, where

Γ̆ = (𝑥 = 𝑧 = �̆�3 + 𝑡4 = 0) ⊂ �̆�p
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is an irreducible and reduced curve with multp̆ (Γ̆) = 3. We see that (𝑋, 𝐻𝑥) is log canonical at p since
𝐻𝑥 is quasi-smooth at p. Thus, by Lemma 3.17, we have 𝛼p (𝑋) ≥ 1.

Suppose 𝑦4𝑧 ∉ 𝐹. Then 𝑦5𝑥 ∈ 𝐹 and we can write

𝐹 = 𝑦5𝑥 + 𝑦4 𝑓8 + 𝑦3 𝑓15 + 𝑦2 𝑓22 + 𝑦 𝑓29 + 𝑓36,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑧 ∉ 𝑓8. By setting
𝛼 := coeff𝐹 (𝑦𝑤𝑡𝑧), we have

�̄� := 𝐹 (0, 1, 𝑧, 𝑡, 𝑤) = 𝛼𝑤𝑡𝑧 + 𝑤3 + 𝑤𝑧3 + 𝑡4.

◦ If 𝛼 ≠ 0, then �̄� ∈ (𝑧, 𝑡, 𝑤)3 and the cubic part of �̄� is not a cube of a linear form. Hence,
lctp (𝑋; 𝐻𝑥) ≥ 1/2 by Lemma 3.28.

◦ If 𝛼 = 0, then the lowest weight part of �̄� with respect to wt(𝑧, 𝑡, 𝑤) = (8, 9, 12) is �̄� = 𝑤3 +𝑤𝑧3 + 𝑡4.
By Lemma 3.27, we have

lctp (𝑋; 𝐻𝑥) ≥ min
{

29
36

, lct(P̃, Diff;D)
}
,

where
– P̃ = P(2, 3, 1)�̃�,𝑡 ,�̃� = P(8, 9, 12)wf,
– Diff = 2

3 𝐻�̃� + 3
4 𝐻𝑡 with 𝐻�̃� = (𝑧 = 0) ⊂ P̃, 𝐻𝑡 = (𝑡 = 0) ⊂ P̃, and

– D is the prime divisor (�̃�3 + �̃�𝑧 + 𝑡 = 0) on P̃.
We see that D is quasi-smooth, D ∩ 𝐻�̃� ∩ 𝐻𝑡 = ∅ and any two of D, 𝐻�̃� , 𝐻𝑡 intersect transversally. It
follows that lct(P̃, Diff;D) = 1 and thus lctp (𝑋; 𝐻𝑥) ≥ 29/36.

Note that p ∈ 𝑋 is not a maximal center and the pair (𝑋, 𝐻𝑥) is not canonical at p by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5.

5.2. EI centers

Proposition 5.6. Let X be a member of a family Fi with i ∈ I and p ∈ 𝑋 an EI center. Then

𝛼p (𝑋) ≥
1
2

.

Proof. We have 𝛼p (𝑋) ≥ 1 by Proposition 5.3 for a member X of Fi and p ∈ 𝑋 , where

◦ i = 36 and p is of type 1
4 (1, 1, 3).

◦ i = 44 and p is of type 1
6 (1, 1, 5).

◦ i = 61 and p is of type 1
7 (1, 2, 5).

◦ i = 76 and p is of type 1
8 (1, 3, 5).

We have 𝛼p (𝑋) ≥ 1/2 by Proposition 5.4 for a member X of Fi and p ∈ 𝑋 , where

◦ i = 23 and p is of type 1
4 (1, 1, 3).

◦ i = 40 and p is of type 1
5 (1, 2, 3).

It remains to consider members of families F7 and F20, and singular points of types 1
2 (1, 1, 1) and

1
3 (1, 1, 2), respectively.
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Let 𝑋 = 𝑋8 ⊂ P(1, 1, 2, 2, 3) be a member of F7 and p a singular point of type 1
2 (1, 1, 1). Replacing

homogeneous coordinates, we may assume p = p𝑡 and we can write

𝐹 = 𝑡3𝑧 + 𝑡2 𝑓4 + 𝑡 𝑓6 + 𝑓8,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑤) is a quasi-homogeneous polynomial of degree i. Hence, by Lemma 3.29, we
have

𝛼p (𝑋) ≥
2

2 · 1 · 3 · (𝐴3)
=

1
2

.

Let 𝑋 = 𝑋13 ⊂ P(1, 1, 3, 4, 5) be a member of F20 and p = p𝑧 be the singular point of type 1
3 (1, 1, 2).

If 𝑧3𝑡 ∈ 𝐹, then we have

𝛼p (𝑋) ≥
2

3 · 1 · 5 · (𝐴3)
=

8
13

by Lemma 3.29. Suppose 𝑧3𝑡 ∉ 𝐹. Then we can write that

𝐹 = 𝑧4𝑥 + 𝑧3 𝑓4 + 𝑧2 𝑓7 + 𝑧 𝑓10 + 𝑓13,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓4. We have
omultp (𝐻𝑥) = 2 since 𝑤2𝑧 ∈ 𝐹 by the quasi-smoothness of X at p𝑤 . This shows lctp(𝑋; 𝐻𝑥) ≥ 1/2.
The point p is not a maximal singularity, and the pair (𝑋, 𝐻𝑥) is not canonical at p by Lemma 3.6. Thus,

𝛼p (𝑋) ≥ min{1, lctp (𝑋; 𝐻𝑥)} ≥
1
2

by Lemma 3.5. This completes the proof. �

5.3. Equations for QI centers

Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, . . . , 𝑎4)𝑥0 ,...,𝑥4 =: P

be a member of a family Fi with i ∈ I. We set 𝑎0 = 1 and let 𝐹 = 𝐹 (𝑥0, . . . , 𝑥4) be the defining
polynomial of X.

Definition 5.7. Let p ∈ 𝑋 be a QI center, and let 𝑗 , 𝑘 be such that 𝑗 ≠ 𝑘 , 𝑑 = 2𝑎𝑘 + 𝑎 𝑗 and the index
of p ∈ 𝑋 coincides with 𝑎𝑘 . Then we can choose coordinates so that p = p𝑥𝑘 . We say that p is an
exceptional QI center if 𝑥2

𝑘𝑥𝑙 ∉ 𝐹 for any 𝑙 ∈ {0, . . . , 4}.

Lemma 5.8. Let p ∈ 𝑋 be a nonexceptional QI center. Then we can choose homogeneous coordinates
𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 , 𝑥𝑘 of P, where {𝑖1, 𝑖2, 𝑖3, 𝑗 , 𝑘} = {0, 1, 2, 3, 4}, such that 𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3 < 𝑎𝑘 , p = p𝑥𝑘 and

𝐹 = 𝑥2
𝑘𝑥 𝑗 + 𝑥𝑘 𝑓 (𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ) + 𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ) (5.1)

for some quasi-homogeneous polynomials 𝑓 , 𝑔 ∈ C[𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ] of degree 𝑑 − 𝑎𝑘 , d, respectively.

Proof. Basically, this follows by looking at Table 7. See also [CPR00, Theorem 4.9]. �

Let p ∈ 𝑋 be a nonexceptional QI center, and we choose and fix homogeneous coordinates
𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 , 𝑥𝑘 of P as in Lemma 5.8.

Definition 5.9. We say that p is a degenerate QI center if 𝑓 (𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 0) = 0 as a polynomial, otherwise
we call p a nondegenerate QI center.
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Remark 5.10. It is proved in [CP17, Section 4.1] that a QI center p ∈ 𝑋 is a maximal center if and only
if it is nondegenerate.

Lemma 5.11. Let p be a degenerate QI center. Then we can choose homogeneous coordinates
𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 , 𝑥𝑘 of P such that 𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3 < 𝑎𝑘 , p = p𝑥𝑘 and

𝐹 = 𝑥2
𝑘𝑥 𝑗 + 𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ) (5.2)

for some quasi-homogeneous polynomial 𝑔 ∈ C[𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ] of degree d. Moreover, the hypersurface

(𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 0) = 0) ⊂ P(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3)𝑥𝑖1 ,𝑥𝑖2 ,𝑥𝑖3
is quasi-smooth.

Proof. We have 𝑓 = 𝑥 𝑗 𝑓 ′ for some 𝑓 ′ ∈ C[𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ] since p is degenerate. Filtering off terms
divisible by 𝑥 𝑗 in equation (5.1), we have

𝐹 = 𝑥 𝑗 (𝑥2
𝑘 + 𝑥𝑘 𝑓 ′) + 𝑔.

We can eliminate the term 𝑥𝑘𝑥 𝑗 𝑓 ′ by replacing 𝑥𝑘 ↦→ 𝑥𝑘 − 𝑓 ′/2. This shows the first assertion.
We choose and fix homogeneous coordinates so that F is of the form (5.2). We set �̄� = 𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 0).

Then we can write 𝑔 = �̄� + 𝑥 𝑗ℎ, where ℎ = ℎ(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 ). Suppose to the contrary that (�̄� = 0) ⊂
P(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3) is not quasi-smooth at a point (𝛼1 : 𝛼2 : 𝛼3). We choose and fix 𝛽 ∈ C such that
𝛽2 + ℎ(𝛼1, 𝛼2, 𝛼3, 0) = 0 and set

q := (𝛼1 :𝛼2 :𝛼3 :0 : 𝛽) ∈ P(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3 , 𝑎 𝑗 , 𝑎𝑘 ) = P.

It is easy to see that (𝜕𝐹/𝜕𝑣) (q) = 0 for any 𝑣 ∈ {𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 𝑥 𝑗 , 𝑥𝑘 }. This is impossible since X is
quasi-smooth. Therefore, (�̄� = 0) ⊂ P(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3) is quasi-smooth. �

Lemma 5.12. Let X be a member of a family Fi with i ∈ I \ {2, 8}. Suppose that X has a QI center. Then
one of the following holds.

1. X has a unique QI center. In this case, by a choice of homogeneous coordinates, we have

𝑋 = 𝑋2𝑟+𝑐 ⊂ P(1, 𝑎, 𝑏, 𝑐, 𝑟)𝑥,𝑠,𝑢,𝑣,𝑤 ,

where a is coprime to b, 𝑎 < 𝑏, 𝑎 + 𝑏 = 𝑟 , 𝑐 < 𝑟 , and the unique QI center is the point p = p𝑤 , which
is of type 1

𝑟 (1, 𝑎, 𝑏).
2. X has exactly three distinct QI centers. In this case, by a choice of homogeneous coordinates, we have

𝑋 = 𝑋3𝑟 ⊂ P(1, 𝑎, 𝑏, 𝑟, 𝑟)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where a is coprime to b, 𝑎 ≤ 𝑏 and 𝑎 + 𝑏 = 𝑟 . The three QI centers are the three points in
(𝑥 = 𝑦 = 𝑧 = 0) ∩ 𝑋 , and they are all of type 1

𝑟 (1, 𝑎, 𝑏).
3. X has exactly two distinct QI centers, and their singularity types are equal. In this case, by a choice

of homogeneous coordinates, we have

𝑋 = 𝑋4𝑟 ⊂ P(1, 𝑎, 𝑏, 𝑟, 2𝑟)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where a is coprime to b, 𝑎 ≤ 𝑏 and 𝑎+𝑏 = 𝑟 . The QI centers are the two points in (𝑥 = 𝑦 = 𝑧 = 0)∩𝑋 ,
and they are both of type 1

𝑟 (1, 𝑎, 𝑏).
4. X has exactly two distinct QI centers, and their singularity types are distinct. In this case, by a choice

of homogeneous coordinates, we have

𝑋 = 𝑋4𝑎+3𝑏 ⊂ P(1, 𝑎, 𝑏, 𝑟1, 𝑟2)𝑥,𝑢,𝑣,𝑡 ,𝑤 ,

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


Forum of Mathematics, Sigma 77

where a is coprime to b, 𝑎 + 𝑏 = 𝑟1 and 2𝑎 + 𝑏 = 𝑟2. The QI centers are p𝑡 and p𝑤 which are of types
1
𝑟1
(1, 𝑎, 𝑏) and 1

𝑟2
(1, 𝑎, 𝑎 + 𝑏), respectively.

Proof. Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥0 ,𝑥1 ,𝑥2 ,𝑥3 ,𝑥4

be a member of Fi withi ∈ I \ {2, 8}. We set 𝑎0 = 1 and assume 𝑎1 ≤ · · · ≤ 𝑎4. We assume that X has at
least one QI center.

Suppose 𝑑 = 3𝑎4. Let p ∈ 𝑋 be a QI center. Then, after replacing homogeneous coordinates, we may
assume p = p𝑥𝑖 and 𝑥2

𝑖 𝑥 𝑗 ∈ 𝐹 for some 𝑖 ∈ {0, 1, 2, 3, 4} and 𝑗 ∈ {0, 1, 2, 3, 4} \ {𝑖}. In particular, we
have 𝑑 = 3𝑎4 = 2𝑎𝑖 + 𝑎 𝑗 , which is possible if and only if 𝑎𝑖 = 𝑎 𝑗 = 𝑎4. Thus, we have 𝑎3 = 𝑎4 and we
may assume 𝑖 = 4, 𝑗 = 3. We see that p ∈ 𝑋 is of type 1

𝑎4
(1, 𝑎1, 𝑎2) and p ∈ 𝑋 is terminal. It follows

that 𝑎1 + 𝑎2 = 𝑎4 and 𝑎𝑙 is coprime to 𝑎4 for 𝑙 = 1, 2. By setting 𝑎 := 𝑎1, 𝑏 := 𝑎2 and 𝑟 := 𝑎3 = 𝑎4, this
case corresponds to (2). In the following, we assume 𝑑 < 3𝑎4.

Suppose 𝑑 = 2𝑎4. We have 𝑎4 = 𝑎1 + 𝑎2 + 𝑎3 since 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 2𝑎4. Let p ∈ 𝑋 be a QI
center. Then we may assume p = p𝑥𝑖 and 𝑥2

𝑖 𝑥 𝑗 ∈ 𝐹 for some 𝑖 ∈ {0, 1, 2, 3} and 𝑗 ∈ {0, 1, 2, 3, 4} \ {𝑖}.
In particular, we have 𝑑 = 2𝑎𝑖 + 𝑎 𝑗 , and hence

2𝑎𝑖 + 𝑎 𝑗 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 2(𝑎1 + 𝑎2 + 𝑎3),

which is only possible when 𝑗 = 4 and 𝑖 = 3. Hence, 𝑖 = 3, 𝑗 = 4, and we have 𝑎4 = 2𝑎3 since
𝑑 = 2𝑎3 + 𝑎4 = 2𝑎4. We see that p ∈ 𝑋 is of type 1

𝑎3
(1, 𝑎1, 𝑎2) and p ∈ 𝑋 is terminal. It follows that

𝑎3 = 𝑎1 + 𝑎2 and 𝑎𝑙 is coprime to 𝑎3 for 𝑙 = 1, 2. By setting 𝑎 := 𝑎1, 𝑏 := 𝑎2, 𝑟 := 𝑎3, this case
corresponds to (3).

Suppose 𝑑 = 2𝑎4 + 𝑎3. We have 𝑎4 = 𝑎1 + 𝑎2 since 𝑑 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4. We see that p4 ∈ 𝑋 is of
type 1

𝑎4
(1, 𝑎1, 𝑎2), and it is a QI center. It follows that 𝑎4 is coprime to 𝑎𝑙 for 𝑙 = 1, 2 since p4 ∈ 𝑋 is a

terminal singularity. If X admits a QI center other than p4, then we have 𝑑 = 2𝑎𝑖 +𝑎 𝑗 , where 𝑖 ∈ {1, 2, 3}
and 𝑗 ∈ {0, 1, 2, 3, 4} \ {𝑖} which is impossible. Thus, p4 ∈ 𝑋 is a unique QI center, and we are in case
(1) by setting 𝑎 := 𝑎1, 𝑏 := 𝑎2, 𝑐 := 𝑎3 and 𝑟 := 𝑎4. Note that we have 𝑎 < 𝑏 because otherwise we have
𝑎1 = 𝑎2 = 1 and 𝑎4 = 2 and X belongs to a family Fi with i ∈ {2, 8} which is impossible.

Suppose 𝑑 = 2𝑎4 + 𝑎2. Then 𝑎4 = 𝑎1 + 𝑎3. We see that p4 ∈ 𝑋 is of type 1
𝑎4
(1, 𝑎1, 𝑎3), and it is a

QI center. If p4 is a unique QI center, then we are in case (1) by setting 𝑎 := 𝑎1, 𝑏 := 𝑎3, 𝑐 := 𝑎2 and
𝑟 := 𝑎4. We assume that X admits a QI center p ∈ 𝑋 other than p4. We may assume p = p𝑖 after replacing
homogeneous coordinates, and we have 𝑑 = 2𝑎𝑖 + 𝑎 𝑗 for some 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {0, 1, 2, 3, 4} \ {𝑖}.
Then we have 𝑎 𝑗 = 𝑎4 and 𝑎𝑖 = 𝑎3. Thus, 𝑖 = 3, 𝑗 = 4 and we have 𝑎3 = 𝑎1 + 𝑎2. The singularity of
p = p𝑖 ∈ 𝑋 is of type 1

𝑎3
(1, 𝑎1, 𝑎2) and it is terminal. It follows that 𝑎1 is coprime to 𝑎2. Thus, we are in

case (4) by setting 𝑎 := 𝑎1, 𝑏 := 𝑎2, 𝑟1 := 𝑎3 and 𝑟2 = 𝑎4.
Suppose 𝑑 = 2𝑎4 + 𝑎1. Then, by interchanging the role of 𝑎1 and 𝑎2 in the previous arguments, we

conclude that this case corresponds to either (1) or (4). This completes the proof. �

Lemma 5.13. Let

𝑋 = 𝑋2𝑟+𝑐 ⊂ P(1, 𝑎, 𝑏, 𝑐, 𝑟)𝑥,𝑠,𝑢,𝑣,𝑤

be a member of a family Fi with i ∈ I \ {2, 8} with a unique QI center, where a is coprime to b, 𝑎 < 𝑏,
𝑟 = 𝑎 + 𝑏 and 𝑐 < 𝑟 . Then the following assertions hold.

1. If 𝑐 = 1, then X belongs to a family Fi with i ∈ {24, 46}.
2. If 2𝑟 + 𝑐 is not divisible by b, then 𝑏 = 𝑎 + 1, 𝑐 = 𝑎 + 2, 𝑟 = 2𝑎 + 1 and 𝑎 ∈ {2, 3, 4}.

Proof. This follows from Table 7. �
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Lemma 5.14. Let X be a member of a family Fi with i ∈ I \ I1 and let p ∈ 𝑋 be an exceptional QI center.
Then we are in Case (4) of Lemma 5.12 and p = p𝑡 . Moreover, we can write

𝐹 = 𝑡3𝑢 + 𝑡2 𝑓2𝑎+𝑏 + 𝑡 𝑓3𝑎+2𝑏 + 𝑓4𝑎+3𝑏 , (5.3)

where 𝑓𝑖 ∈ C[𝑥, 𝑢, 𝑣, 𝑤] is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓2𝑎+𝑏 .
Proof. We are in (1), (2), (3) and (4) of Lemma 5.12. Suppose that we are in (1). Then p = p𝑤 . Since
p ∈ 𝑋 is exceptional and X is quasi-smooth at p, we have 𝑤𝑚𝑞 ∈ 𝐹 for some 𝑚 ≥ 3 and a homogeneous
coordinate 𝑞 ∈ {𝑥, 𝑠, 𝑢, 𝑣}. This implies

2𝑟 + 𝑐 = 𝑑 = 𝑚𝑟 + deg 𝑞 ≥ 3𝑟 + 1,

which is impossible since 𝑐 < 𝑟 . By similar arguments we can show that (2) and (3) are both impossible.
It follows that we are in Case (4). In this case either p = p𝑡 or p = p𝑤 . The latter is impossible since

𝑑 = 4𝑎 + 3𝑏 < 3𝑟2. Hence, p = p𝑡 . We have 𝑡𝑚𝑞 ∈ 𝐹 for some integer 𝑚 ≥ 3 and a homogeneous
coordinate 𝑞 ∈ {𝑥, 𝑢, 𝑣, 𝑤}. It is easy to see that this is possible if and only if 𝑚 = 3 and deg 𝑞 = 𝑎.
Possibly replacing coordinates we may assume 𝑞 = 𝑢. Then it is straightforward to see that F can be
written as equation (5.3). �

5.4. QI centers: exceptional case

The aim of this section is to prove the following.
Proposition 5.15. Let X be a member of a family Fi with i ∈ I \ I1, and let p ∈ 𝑋 be an exceptional QI
center. Then

𝛼p (𝑋) ≥
1
2

.

Let X be a member of Fi with i ∈ I \ {2, 8} which admits an exceptional QI center, Then, by Lemma
5.14 and Table 7, we have

i ∈ {12, 13, 20, 25, 31, 33, 38, 58}.

The rest of this section is devoted to the proof of Proposition 5.15 which will be done by division into
cases. By Lemma 5.14, we can choose coordinates 𝑥, 𝑢, 𝑣, 𝑡, 𝑤 of P = P(1, 𝑎, 𝑏, 𝑟1, 𝑟2) as in Case (4) of
Lemma 5.12 with p = p𝑡 and the defining polynomial F is as in equation (5.3).

5.4.a. Case: 𝑎 ≥ 2 and 4𝑎 ≤ 3𝑏

This case corresponds to families F33 and F58. We have 𝑤2𝑣 ∈ 𝑓4𝑎+3𝑏 since X is quasi-smooth at p𝑤 .
Moreover, we see that no quadratic monomial in variables 𝑥, 𝑣, 𝑤 appear in 𝑓2𝑎+𝑏 , 𝑓3𝑎+2𝑏 , 𝑓4𝑎+3𝑏 . This
implies omultp (𝐻𝑢) = 3, and we have

𝛼p

(
𝑋;

1
𝑎

𝐻𝑢

)
≥ 𝑎

3
≥ 2

3
.

Let 𝐷 ∈ |𝐴|Q be an effective Q-divisor other than 1
𝑎𝐻𝑢 . We can take a Q-divisor 𝑇 ∈ |𝑟2 𝐴|Q such that

omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑢 since
{𝑥, 𝑢, 𝑣, 𝑤} isolates p. Let 𝑞 = 𝑞p be the quotient morphism of p ∈ 𝑋 , and let p̌ be the preimage of p via
q. Then we have

3 omultp (𝐷) ≤ (𝑞∗𝐷 · 𝑞∗𝐻𝑢 · 𝑞∗𝑇)p̌ ≤ 𝑟1 (𝐷 · 𝐻𝑢 · 𝑇) =
4𝑎 + 3𝑏

𝑏
≤ 6

since 4𝑎 ≤ 3𝑏. Thus, lctp (𝑋; 𝐷) ≥ 1/2 and the inequality 𝛼p (𝑋) ≥ 1/2 is proved.
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5.4.b. Case: 𝑎 = 1
This case corresponds to families F12, F20 and F31. We have either �̄� = 𝐹 (𝑥, 0, 𝑣, 1, 𝑤) ∈ (𝑥, 𝑣, 𝑤)2 \
(𝑥, 𝑣, 𝑤)3 or �̄� ∈ (𝑥, 𝑣, 𝑤) ∈ (𝑥, 𝑣, 𝑤)3, and its cubic part is not a cube of a linear form since 𝑤2𝑣 ∈ 𝐹
and 𝑤3 ∉ 𝐹. By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2 since 𝑎 = 1.

5.4.c. Case: X is a member of the family F13
Let

𝑋 = 𝑋11 ⊂ P(1, 1, 2, 3, 5)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F13 and p ∈ 𝑋 an exceptional QI center. Then we have

𝐹 = 𝑡3𝑧 + 𝑡2 𝑓5 + 𝑡 𝑓8 + 𝑓11,

where 𝑓𝑖 ∈ C[𝑥, 𝑦, 𝑧, 𝑤] is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓5, and p = p𝑡 . Let
𝑆, 𝑇 ∈ |𝐴| be general members. We have

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑡3𝑧 + 𝛼𝑡𝑧4 + 𝛽𝑤𝑧3 = 𝑧(𝑡3 + 𝛼𝑡𝑧3 + 𝛽𝑤𝑧2),

where 𝛼, 𝛽 ∈ C. We set Γ = (𝑥 = 𝑦 = 𝑧 = 0), which is a quasi-line of degree 1/15. If 𝛽 ≠ 0, then we set

Δ = (𝑥 = 𝑦 = 𝑡3 + 𝛼𝑡𝑧3 + 𝛽𝑤𝑧2 = 0),

which is clearly an irreducible and reduced curve of degree 3/10 and does not pass through p. Moreover,
we have

𝑇 |𝑆 = Γ + Δ .

Claim 9. If 𝛽 ≠ 0, then the intersection matrix 𝑀 (Γ,Δ) satisfies the condition (★).

Proof of Claim 9. We have Γ ∩ Δ = {p𝑤 }, and it is easy to see that S is quasi-smooth at p𝑤 since
𝑆 ∈ |𝐴| is general. By Lemma 3.9, S is quasi-smooth along Γ and we have SingΓ (𝑆) = {p𝑡 , p𝑤 }, where
p𝑡 , p𝑤 ∈ 𝑆 are of types 1

3 (1, 2), 1
5 (2, 3), respectively. By Remark 3.10, we have

(Γ2)𝑆 = −2 + 2
3
+ 4

5
= − 8

15
.

By taking intersection numbers of 𝑇 |𝑆 = Γ + Δ and Γ,Δ , we have

(Γ · Δ)𝑆 =
3
5

, (Δ2)𝑆 = − 3
10

.

Thus, 𝑀 (Γ,Δ) satisfies the condition (★). �

Suppose 𝛽 = 0 and 𝛼 ≠ 0. We set

Ξ = (𝑥 = 𝑦 = 𝑡 = 0), Θ = (𝑥 = 𝑦 = 𝑡2 + 𝛼𝑧3 = 0),

which are irreducible and reduced curves of degrees 1/10, 1/5, respectively, which do not pass through
p. We have

𝑇 |𝑆 = Γ + Ξ + Θ.
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Claim 10. If 𝛽 = 0 and 𝛼 ≠ 0, then the intersection matrix 𝑀 (Γ,Ξ,Θ) satisfies the condition (★).

Proof of Claim 10. We have (Γ2)𝑆 = −8/15 by the proof of Claim 9. We see thatΞ∩(Γ∪Θ) = {p𝑤 } and
S is quasi-smooth at p𝑤 . By Lemma 3.9, S is quasi-smooth along Ξ and we have SingΞ(𝑆) = {p𝑧 , p𝑤 },
where p𝑧 , p𝑤 ∈ 𝑆 are of types 1

2 (1, 1), 1
5 (2, 3), respectively. By Remark 3.10, we have

(Ξ2)𝑆 = −2 + 1
2
+ 4

5
= − 7

10
.

We compute the intersection number (Γ ·Ξ)𝑆 . We have Γ∩Ξ = {p𝑤 }, and the germ p𝑤 ∈ 𝑆 is analytically
isomorphic to 𝑜 ∈ A2

𝑧,𝑡/𝝁5, where the 𝝁5-action on A2
𝑧,𝑡 is given by

(𝑧, 𝑡) ↦→ (𝜁2𝑧, 𝜁3𝑡),

and 𝑜 is the image of the origin 𝑜 ∈ A2
𝑧,𝑡 . Under the isomorphism, Γ and Ξ corresponds to the quotient

of (𝑧 = 0) and (𝑡 = 0). It follows that

(Γ · Ξ)𝑆 = (Γ · Ξ)p𝑤 =
1
5

.

Then, by taking intersection numbers of 𝑇 |𝑆 = Γ + Ξ + Θ and Γ,Ξ,Θ, we have

(Γ · Θ)𝑆 =
2
5

, (Ξ · Θ)𝑆 =
3
5

, (Θ2)𝑆 = −4
5

.

Thus, 𝑀 (Γ,Ξ,Θ) satisfies the condition (★). �

Suppose 𝛽 = 𝛼 = 0. Then

𝑇 |𝑆 = Γ + 3Ξ,

where Ξ = (𝑥 = 𝑦 = 𝑡 = 0).

Claim 11. If 𝛽 = 𝛼 = 0, then the intersection matrix 𝑀 (Γ,Ξ) satisfies the condition (★).

Proof of Claim 11. We have (Γ2)𝑆 = −8/15 by the proof of Claim 9. By taking intersection numbers
of 𝑇 |𝑆 = Γ + 3Ξ and Γ,Ξ, we have

(Γ · Ξ)𝑆 =
1
5

, (Ξ2)𝑆 = − 1
30

.

Thus, 𝑀 (Γ,Ξ) satisfies the condition (★). �

By Claims 9, 10, 11 and Lemma 3.21, we have

𝛼p(𝑋) ≥ min
{
1,

1
3(𝐴3) + 1 − 3 deg Γ

}
=

10
19

.

5.4.d. Case: X is a member of the family F25
Let

𝑋 = 𝑋15 ⊂ P(1, 1, 3, 4, 7)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F25, and let p be an exceptional QI center. Then we have

𝐹 = 𝑡3𝑧 + 𝑡2 𝑓7 + 𝑡 𝑓11 + 𝑓15,
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where 𝑓𝑖 ∈ C[𝑥, 𝑦, 𝑧, 𝑤] is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓7, and we have
p = p𝑡 . By the quasi-smoothness we have 𝑧5 ∈ 𝑓15 and we may assume coeff 𝑓15 (𝑧5) = 1. Then we have

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑡3𝑧 + 𝑧5 = 𝑧(𝑡3 + 𝑧4).

Let 𝑆, 𝑇 ∈ |𝐴| be general members. Then we have

𝑇 |𝑆 = Γ + Δ ,

where Γ = (𝑥 = 𝑦 = 𝑧 = 0) is a quasi-line of degree 1/28 and Δ = (𝑥 = 𝑦 = 𝑡3 + 𝑧4) is an irreducible
and reduced curve of degree 1/7 that does not pass through p.

Claim 12. The intersection matrix 𝑀 (Γ,Δ) satisfies the condition (★).

Proof of Claim 12. We have Γ∩Δ = {p𝑤 } and S is quasi-smooth at p𝑤 . Hence, S is quasi-smooth along
Γ by Lemma 3.9, and we have SingΓ (𝑆) = {p𝑡 , p𝑤 }, where p𝑡 , p𝑤 ∈ 𝑆 are of types 1

4 (1, 3), 1
7 (3, 4),

respectively. By Remark 3.10, we have

(Γ2)𝑆 = −2 + 3
4
+ 6

7
= −11

28
.

By taking intersection numbers of 𝑇 |𝑆 = Γ + Δ and Γ,Δ , we have

(Γ · Δ)𝑆 =
3
7

, (Δ2)𝑆 = −2
7

.

It follows that 𝑀 (Γ,Δ) satisfies the condition (★). �

By Claim 12 and Lemma 3.21, we have

𝛼p(𝑋) ≥ min
{
1,

1
4(𝐴3) + 1 − 4 deg Γ

}
=

7
11

.

5.4.e. Case: X is a member of the family F38
Let

𝑋 = 𝑋18 ⊂ P(1, 2, 3, 5, 8)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F38 and p ∈ 𝑋 an exceptional QI center. Then we have

𝐹 = 𝑡3𝑧 + 𝑡2 𝑓8 + 𝑡 𝑓13 + 𝑓18,

where 𝑓𝑖 ∈ C[𝑥, 𝑦, 𝑧, 𝑤] is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓8, and p = p𝑡 . By
the quasi-smoothness of X, we have 𝑧6 ∈ 𝑓18 and we may assume coeff 𝑓18 (𝑧6) = 1. Then we have

𝐹 (0, 0, 𝑧, 𝑡, 𝑤) = 𝑡3𝑧 + 𝑧6 = 𝑧(𝑡3 + 𝑧5).

We set 𝑆 = 𝐻𝑥 and 𝑇 = 𝐻𝑦 . We have

𝑇 |𝑆 = Γ + Δ ,

where Γ = (𝑥 = 𝑦 = 𝑧 = 0) is a quasi-line of degree 1/40 and Δ = (𝑥 = 𝑦 = 𝑡3 + 𝑧5 = 0) is an irreducible
and reduced curve of degree 1/8 that does not pass through p.
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Claim 13. The intersection matrix 𝑀 (Γ,Δ) satisfies the condition (★).

Proof of Claim 13. By similar arguments as in the proof of Claim 12, we have

(Γ2)𝑆 = −2 + 4
5
+ 7

8
= −13

40
,

and

(Γ · Δ)𝑆 =
3
8

, (Δ2)𝑆 = −1
8

.

Thus, 𝑀 (Γ,Δ) satisfies the condition (★). �

By Claim 13 and Lemma 3.21, we have

𝛼p (𝑋) ≥ min

{
1,

1
5 · 2 · (𝐴3) + 1

2 − 5 deg Γ

}
=

8
9

.

This completes the proof of Proposition 5.15.

5.5. QI centers: degenerate case

The aim of this section is to prove the following, which gives the exact value of 𝛼p (𝑋) for a degenerate
QI center p ∈ 𝑋 .

Let

𝑋 = 𝑋𝑑 ⊂ P(𝑎0, 𝑎1, . . . , 𝑎4)𝑥0 ,𝑥1 ,𝑥2 ,𝑥3 ,𝑥4

be a member of a family Fi with i ∈ I, where 1 = 𝑎0 ≤ 𝑎1 ≤ · · · ≤ 𝑎4, and let p ∈ 𝑋 be a degenerate QI
center. We choose homogeneous coordinates as in Lemma 5.11.

Proposition 5.16. Let the notation as above, and let p = p𝑥𝑘 ∈ 𝑋 be a degenerate QI center. Then

𝛼p (𝑋) =
{

𝑎𝑘+1
2𝑎𝑘+1 , if 𝑎 𝑗 = 1,

1, otherwise.

In particular, we have 𝛼p (𝑋) > 1
2 .

Proof. Let 𝜑 : 𝑌 → 𝑋 be the Kawamata blowup at p with exceptional divisor E. Note that we can
choose 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 as a system of orbifold coordinates at p and 𝜑 is the weighted blowup with weight
wt(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3) = 1

𝑎𝑘
(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3 ). Filtering off terms divisible by 𝑥 𝑗 in equation (5.2), we have

𝑥 𝑗 (𝑥2
𝑘 + · · · ) = 𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 0) =: �̄�.

Since the polynomial 𝑥2
𝑘 + · · · does not vanish at p, the vanishing order of 𝑥 𝑗 along E coincides with

that of �̄�, which is clearly 𝑑/𝑎𝑘 . Hence, we have

𝐾𝑌 + 1
𝑎 𝑗

�̃�𝑥 𝑗 +
2
𝑎 𝑗

𝐸 = 𝜑∗
(
𝐾𝑋 + 1

𝑎 𝑗
𝐻𝑥 𝑗

)
, (5.4)

where �̃�𝑥 𝑗 is the proper transform of 𝐻𝑥 𝑗 on Y. In particular, (𝑋, 1
𝑎 𝑗

𝐻𝑥 𝑗 ) is not canonical at p. By Lemma
3.5, we have 𝛼p(𝑋) ≥ 1 if (𝑋, 1

𝑎 𝑗
𝐻𝑥 𝑗 ) is log canonical at p, and otherwise 𝛼p (𝑋) = lctp (𝑋; 1

𝑎 𝑗
𝐻𝑥 𝑗 ).
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Suppose 𝑎 𝑗 > 1. The pair (𝐸, 1
𝑎 𝑗

�̃�𝑥 𝑗 |𝐸 ) is log canonical since �̃�𝑥 𝑗 |𝐸 is isomorphic to

(𝑔(𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , 0) = 0) ⊂ P(𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3) � 𝐸,

which is quasi-smooth by Lemma 5.11. By the inversion of adjunction, the pair (𝑌, 1
𝑎 𝑗

�̃�𝑥 𝑗 + 𝐸) is log
canonical along E and so is the pair (𝑌, 1

𝑎 𝑗
�̃�𝑥 𝑗 + 2

𝑎 𝑗
𝐸) since 2/𝑎 𝑗 ≤ 1. By equation (5.4), the pair

(𝑋, 1
𝑎 𝑗

𝐻𝑥 𝑗 ) is log canonical at p. Thus, 𝛼p (𝑋) ≥ 1. The existence of the prime divisor 𝐻𝑥0 ∈ 𝐴 passing
through p shows 𝛼p (𝑋) ≤ 1, and we conclude 𝛼p (𝑋) = 1 in this case.

Suppose 𝑎 𝑗 = 1. We set

𝜃 =
𝑎𝑘 + 1

2𝑎𝑘 + 1

and prove lctp (𝑋; 1
𝑎 𝑗

𝐻𝑥 𝑗 ) = 𝜃. For a rational number 𝑐 ≥ 0, it is easy to see that the discrepancy of the
pair (𝑋, 𝑐

𝑎 𝑗
𝐻𝑥 𝑗 ) along E is

1
𝑎𝑘

− 𝑐𝑑

𝑎 𝑗𝑎𝑘

and it is at least −1 if and only if 𝑐 ≤ 𝜃. This shows lctp (𝑋; 1
𝑎 𝑗

𝐻𝑥 𝑗 ) ≤ 𝜃. Moreover, since

𝐾𝑌 + 𝜃

𝑎 𝑗
�̃�𝑥 𝑗 + 𝐸 = 𝜑∗

(
𝐾𝑋 + 𝜃

𝑎 𝑗
𝐻𝑥 𝑗

)
and the pair (𝑌, 𝜃

𝑎 𝑗
�̃�𝑥 𝑗 + 𝐸) is log canonical along E, the pair (𝑋, 𝜃

𝑎 𝑗
𝐻𝑥 𝑗 ) is log canonical at p. This

shows 𝛼p (𝑋) = 𝜃, and the proof is completed. �

Example 5.17. Let 𝑋 = 𝑋21 ⊂ P(1, 1, 3, 7, 10) be a member of the familyF46 and p = p𝑤 the 1
10 (1, 3, 7)

point, which is the center of a quadratic involution. Assume that p is degenerate, which is equivalent to
X being birationally superrigid. Then, by Proposition 5.16, we have

𝛼(𝑋) ≤ 𝛼p(𝑋) =
11
21

.

5.6. QI centers: nondegenerate case

The aim of this section is to prove the following.

Proposition 5.18. Let X be a member of a family Fi with i ∈ I \ {2, 5, 8} and p ∈ 𝑋 be a nondegenerate
QI center. Then

𝛼p (𝑋) ≥
1
2

.

The rest of this section is entirely devoted to the proof of Proposition 5.18, which will be done by
dividing into several cases.

5.6.a. Case: X has a unique QI center
By Lemma 5.12, we can choose homogeneous coordinates so that

𝑋 = 𝑋2𝑟+𝑐 ⊂ P(1, 𝑎, 𝑏, 𝑐, 𝑟)𝑥,𝑠,𝑢,𝑣,𝑤 ,
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where a is corprime to b, 𝑎 < 𝑏, 𝑟 = 𝑎 + 𝑏 and 𝑐 < 𝑟 . Let p ∈ 𝑋 be the QI center. Then p = p𝑤 and the
defining polynomial F of X can be written as

𝐹 = 𝑤2𝑣 + 𝑤 𝑓𝑟+𝑐 + 𝑓2𝑟+𝑐 ,

where 𝑓𝑟+𝑐 = 𝑓𝑟+𝑐 (𝑥, 𝑠, 𝑢) and 𝑓2𝑟+𝑐 = 𝑓2𝑟+𝑐 (𝑥, 𝑠, 𝑢, 𝑣) are quasi-homogeneous polynomials of the
indicated degree. We will show that lctp (𝑋; 1

𝑐𝐻𝑣 ) ≥ 1/2.

Claim 14. Suppose that 𝑐 ≥ 2 and 2𝑟 + 𝑐 is divisible by b. Then

lctp
(
𝑋;

1
𝑐

𝐻𝑣

)
≥ 1

2
.

Proof of Claim 14. We first show that p𝑢 ∉ 𝑋 unless X belongs to the family F7. Suppose p𝑢 ∈ 𝑋 . By
the quasi-smoothness of X at p𝑢 , we have 𝑑 = 𝑚𝑏 + 𝑒, where 𝑚 ∈ Z>0 and 𝑒 ∈ {1, 𝑎, 𝑐, 𝑟}. Since d is
divisible by b, we see that e is divisible by b. This is possible only when 𝑒 = 𝑐 since 𝑟 = 𝑎 + 𝑏 and a are
both coprime to b. Thus, we can write 𝑐 = 𝑘𝑏 for some 𝑘 ∈ Z>0. Take any point q ∈ (𝑥 = 𝑠 = 𝑤 = 0)∩𝑋 .
The singularity q ∈ 𝑋 is of type 1

𝑏 (1, 𝑎, 𝑟) = 1
𝑏 (1, 𝑎, 𝑎). It follows that 𝑎 = 1 and 𝑏 = 2 since q ∈ 𝑋 is

terminal. We have 𝑟 = 𝑎 + 𝑏 = 3 and 𝑐 = 2 since 𝑐 = 𝑘𝑏 = 2𝑘 < 𝑟 = 3. Thus, 𝑋 = 𝑋8 ⊂ P(1, 1, 2, 2, 3)
and this belongs to F7.

We first consider the case where p𝑢 ∉ 𝑋 . This means that 𝑢𝑚 ∈ 𝐹 for some 𝑚 ∈ Z>0. We have
omultp (𝐻𝑣 ) ≤ 𝑚 = (2𝑟 + 𝑐)/𝑏 and hence

lctp
(
𝑋;

1
𝑐

𝐻𝑣

)
≥ 𝑏𝑐

2𝑟 + 𝑐
.

It remains to prove the inequality 𝑏𝑐/(2𝑟 + 𝑐) ≥ 1/2, which is equivalent to (2𝑏 − 1)𝑐 ≥ 2𝑟 . We have

(2𝑏 − 1)𝑐 ≥ 2(2𝑏 − 1) = 2(𝑏 − 1) + 2𝑏 ≥ 2𝑎 + 2𝑏 = 2𝑟

since 𝑐 ≥ 2 and 𝑏 > 𝑎. This shows lctp(𝑋; 1
𝑐𝐻𝑣 ) ≥ 1/2.

We next consider the case where p𝑢 ∈ 𝑋 . In this case, X belongs to the family F7 and 𝑋 = 𝑋8 ⊂
P(1, 1, 2, 2, 3)𝑥,𝑠,𝑢,𝑣,𝑤 with defining polynomial

𝐹 = 𝑤2𝑣 + 𝑤 𝑓5 (𝑥, 𝑠, 𝑢) + 𝑓8(𝑥, 𝑠, 𝑢, 𝑣).

We have 𝑢4 ∉ 𝐹 since p𝑢 ∈ 𝑋 . We show that 𝑓5(𝑥, 𝑠, 𝑢) contains a monomial involving u. Suppose to the
contrary that 𝑓5 = 𝑓5 (𝑥, 𝑠) is a polynomial in variables x and s. We can write 𝑓8 = 𝑢3𝑔2 + 𝑢2𝑔4 + 𝑢𝑔6 +
𝑔8 + 𝑣ℎ6, where 𝑔𝑖 = 𝑔𝑖 (𝑥, 𝑠) and ℎ6 = ℎ6 (𝑥, 𝑠, 𝑢, 𝑣) are quasi-homogeneous polynomials of indicated
degree. Then we have 𝐹 = 𝑣(𝑤2 + ℎ6) + 𝑔, where 𝑔 = 𝑤 𝑓5 + 𝑢3𝑔2 + 𝑢2𝑔4 + 𝑢𝑔6 + 𝑔8 ∈ (𝑥, 𝑠)2, and we
see that X is not quasi-smooth at any point in the nonempty set

(𝑡 = 𝑤2 + ℎ6 = 𝑥 = 𝑠 = 0) ⊂ P(1, 1, 2, 2, 3).

This is a contradiction. It follows that there is a monomial involving u which appears in 𝑓5 with nonzero
coefficient. This implies omultp (𝐻𝑣 ) ≤ 4, and we have lctp (𝑋; 1

2 𝐻𝑣 ) ≥ 1/2 as desired. �

Claim 15. Suppose that 𝑐 ≥ 2 and 2𝑟 + 𝑐 is not divisible by b. Then

lctp
(
𝑋;

1
𝑐

𝐻𝑣

)
≥ 𝑐

5
≥ 4

5
.

Proof of Claim 15. By Lemma 5.13, we have

𝑋 = 𝑋5𝑎+4 ⊂ P(1, 𝑎, 𝑎 + 1, 𝑎 + 2, 2𝑎 + 1)𝑥,𝑠,𝑢,𝑣,𝑤
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with 𝑎 ∈ {2, 3, 4}. Moreover, p = p𝑤 and the defining polynomial of X can be written as

𝐹 = 𝑤2𝑣 + 𝑤 𝑓3𝑎+3 (𝑥, 𝑠, 𝑢) + 𝑓5𝑎+4(𝑥, 𝑠, 𝑢, 𝑣).

By the quasi-smoothness of X at p𝑧 , we have either 𝑢3 ∈ 𝑓3𝑎+3 or 𝑢4𝑠 ∈ 𝑓5𝑎+4. This implies omultp (𝐻𝑣 ) ≤
5, and we have

lctp
(
𝑋;

1
𝑐

𝐻𝑣

)
≥ 𝑐

5
=

𝑎 + 2
5

≥ 4
5

.

This proves the claim. �

It remains to consider the case where 𝑐 = 1. By Lemma 5.13, X belongs to a family Fi with
i ∈ {24, 46}.

Claim 16. Suppose X is a member of the family F24. Then lctp (𝑋; 𝐻𝑣 ) ≥ 1/2.

Proof of Claim 16. We have

𝑋 = 𝑋15 ⊂ P(1, 2, 5, 1, 7)𝑥,𝑠,𝑢,𝑣,𝑤

and p = p𝑤 is of type 1
7 (1, 2, 5). We can write

𝐹 = 𝑤2𝑣 + 𝑤 𝑓8(𝑥, 𝑠, 𝑢) + 𝑓15(𝑥, 𝑠, 𝑢, 𝑣),

where 𝑓8 = 𝑓8 (𝑥, 𝑠, 𝑢) ≠ 0 and 𝑓15 = 𝑓15(𝑥, 𝑠, 𝑢, 𝑣) are quasi-homogeneous polynomials of degrees 8
and 15, respectively. We have 𝑢3 ∈ 𝑓15, and we may assume coeff 𝑓15 (𝑢3) = 1. We set �̄� := 𝐹 (𝑥, 𝑠, 𝑢, 0, 1).
For a given 𝑐 = (𝑐1, 𝑐2, 𝑐3) ∈ (Z>0)3, we denote by 𝐺𝑐 ∈ C[𝑥, 𝑠, 𝑢] the lowest weight part of �̄� with
respect to the weight wt(𝑥, 𝑠, 𝑢) = 𝑐 and let

D𝑐 = Dwf
𝐺𝑐

be the effective Q-divisor on P(𝑐)wf associated to 𝐺𝑐 . By Lemma 3.27, we have

lctp (𝑋; 𝐻𝑣 ) ≥ min
{

𝑐1 + 𝑐2 + 𝑐3
deg 𝐺𝑐

, lct(P(𝑐)wf , Diff;D𝑐)
}
, (5.5)

where deg 𝐺𝑐 is the degree with respect to the weight wt(𝑥, 𝑠, 𝑢) = 𝑐.
Suppose 𝑢𝑠𝑥 ∈ 𝑓8. In this case, we may assume coeff 𝑓8 (𝑢𝑠𝑥) = 1 and we have 𝐺𝑐 = 𝑢𝑠𝑥 + 𝑢3 for

𝑐 = (1, 1, 1). In this case, P(𝑐)wf = P2, Diff = 0 and D𝑐 is the sum of a line and a conic intersection at
two distinct points. It is straightforward to check

lct(P(𝑐)wf , Diff;D𝑐) = lct(P2;D𝑐) = 1,

and we have lctp(𝑋; 𝐻𝑣 ) ≥ 1 in this case.
Suppose that 𝑢𝑠𝑥 ∉ 𝑓8 and 𝑠4 ∈ 𝑓8. In this case, we may assume coeff 𝑓8 (𝑠4) = 1 and coeff 𝑓15 (𝑢𝑠5) = 0

by replacing s and w. Hence, we have

𝐹 (0, 𝑠, 𝑢, 0, 1) = 𝑠4 + 𝑢3,

and thus lctp (𝑋; 𝐻𝑣 ) ≥ lctp (𝐻𝑥 , 𝐻𝑣 |𝐻𝑥 ) = 7/12, where the equality follows from [Kol97, 8.21 Propo-
sition] (or by Lemma 3.27 with wt(𝑠, 𝑢) = (3, 4)).

Suppose 𝑢𝑥3 ∈ 𝑓8. In this case, we may assume coeff 𝑓8 (𝑢𝑠𝑥) = 1 by rescaling x. We consider a
weight 𝑐 = (2, 𝑒, 3), where e is a sufficiently large integer which is coprime to 6. Then 𝐺𝑐 = 𝑢(𝑥3 + 𝑢2),
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P(𝑐)wf = P(2, 𝑒, 3), Diff = 0 and D𝑐 is the union of two quasi-smooth curves (𝑢 = 0) and (𝑥3 + 𝑢2 = 0).
We have

lct(P(𝑐)wf , Diff;D𝑐) = lct(P(2, 𝑒, 3);D𝑐) = lct(0:1:0) (P(2, 𝑒, 3);D𝑐) =
5
9

,

and thus lctp(𝑋; 𝐻𝑣 ) ≥ 5/9 in this case.
In the following, we assume 𝑢𝑠𝑥, 𝑠4, 𝑢𝑥3 ∉ 𝑓8. We can write

�̄� = (𝛼1𝑠3𝑥2 + 𝛼2𝑠2𝑥4 + 𝛼3𝑠𝑥6 + 𝛼4𝑥8) + (𝑢3 + 𝛽𝑢𝑠5 + 𝛾𝑠7𝑥 + 𝑔15),

where 𝛼1, . . . , 𝛼4, 𝛽, 𝛾 ∈ C and 𝑔15 = 𝑔15 (𝑥, 𝑠, 𝑢) ∌ 𝑢3 is a quasi-homogeneous polynomial of degree 15
which is contained in the ideal (𝑥, 𝑢)2 ⊂ C[𝑥, 𝑠, 𝑢]. Note that at least one of 𝛼, 𝛽, 𝛾, 𝛿 and 𝜀 is nonzero
since 𝑓8(𝑥, 𝑠, 𝑢) ≠ 0. Note also that 𝜆𝑢𝑠5 and 𝜇𝑠7𝑥 are the only terms in �̄� which is not contained in
(𝑥, 𝑢)2. It follows from the quasi-smoothness of X that (𝜆, 𝜇) ≠ (0, 0).

Suppose 𝛽 ≠ 0. Replacing u, we may assume 𝛽 = 1 and 𝛾 = 0. There exists 𝑗 ∈ {1, 2, 3, 4} such
that 𝛼 𝑗 ≠ 0 since 𝑓8 ≠ 0 as a polynomial, and thus we set 𝑖 = min{ 𝑗 | 𝛼 𝑗 ≠ 0 } ∈ {1, 2, 3, 4}. We may
assume 𝛼𝑖 = 1 by rescaling x. We set 𝑐 = (2𝑖 +7, 4𝑖, 10𝑖). We have 𝐺𝑐 = 𝑠4−𝑖𝑥2𝑖 +𝑢3 +𝑢𝑠5 for 1 ≤ 𝑖 ≤ 4.
Moreover, we see that

P(𝑐)wf =

{
P(2𝑖 + 7, 2, 5)�̃�,𝑠,�̃� , if 1 ≤ 𝑖 ≤ 3,

P(3, 2, 1)�̃�,𝑠,�̃� , if 𝑖 = 4,

and

(Diff,D𝑐) =
{
( 2𝑖−1

2𝑖 𝐻�̃� , 𝐷𝑖), if 1 ≤ 𝑖 ≤ 3,

( 7
8 𝐻�̃� + 4

5 𝐻𝑠 , 𝐷 ′), if 𝑖 = 4,

where

𝐷𝑖 = (𝑠4−𝑖𝑥 + �̃�3 + �̃�𝑠5 = 0), 𝐷 ′ = (𝑥 + �̃�3 + �̃�𝑠 = 0)

are prime divisors on P(𝑐)wf. We first consider the case where 1 ≤ 𝑖 ≤ 3. We see that 𝐻�̃� is quasi-smooth,
and 𝐷𝑖 is quasi-smooth outside {q}, where q = (1:0 :0) ∈ P(𝑐)wf. Moreover, they intersect at two points
(0 : 1 : 0) and (0 :−1 : 1) transversally. It follows that lct(P(𝑐)wf , Diff;D𝑐) = min{1, lctq (P(𝑐)wf ,D𝑐)}
since 𝐻�̃� does not pass through q. If 𝑖 = 3, then 𝐷3 is also quasi-smooth at q, which implies
lct(P(𝑐), Diff;D𝑐) = 1. If 𝑖 = 1, 2, then we have

lctq (P(𝑐)wf ,D𝑐) = lct(0,0) (A2
𝑠,�̃� , (𝑠4−𝑖 + �̃�3 + �̃�𝑠5 = 0))

= lct(0,0) (A2
𝑠,�̃� , (𝑠4−𝑖 + �̃�3 = 0))

=
3 + (4 − 𝑖)

3(4 − 𝑖) =
7 − 𝑖

3(4 − 𝑖)

since (𝑠4−𝑖 + �̃�3 + �̃�𝑠5 = 0) is analytically equivalent to (𝑠4−𝑖 + �̃�3 = 0). Thus, by Lemma 3.27, we have

lctp (𝑋; 𝐻𝑣 ) ≥ min
{
(2𝑖 + 7) + 4𝑖 + 10𝑖

30𝑖
, lct(P(𝑐)wf , Diff;D𝑐)

}
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3 , if 𝑖 = 1,
13
20 , if 𝑖 = 2,
11
18 , if 𝑖 = 3.
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Suppose 𝛽 = 0. In this case, we have 𝛾 ≠ 0. We set 𝑖 = min{ 𝑗 | 𝛼 𝑗 ≠ 0 } ∈ {1, 2, 3, 4}. We may
assume 𝛾 = 𝛼𝑖 = 1 by rescaling x and s appropriately. We set

𝑐 =

{
(3(𝑖 + 3), 3(2𝑖 − 1), 15𝑖 − 4), if 1 ≤ 𝑖 ≤ 3,

(3, 3, 8), if 𝑖 = 4.

We have 𝐺𝑐 = 𝑠4−𝑖𝑥2𝑖 + 𝑢3 + 𝑠7𝑥 for 1 ≤ 𝑖 ≤ 4. Moreover, we see that

P(𝑐)wf =

{
P(𝑖 + 3, 2𝑖 − 1, 15𝑖 − 4)�̃�,𝑠,�̃� , if 1 ≤ 𝑖 ≤ 3,

P(1, 1, 8)�̃�,𝑠,�̃� , if 𝑖 = 4,

and

Diff =
2
3

𝐻�̃� , D𝑐 = (𝑠4−𝑖𝑥2𝑖 + �̃� + 𝑠7𝑥 = 0).

We see that 𝐻�̃� and D𝑐 are both quasi-smooth. If 𝑖 = 3, 4, then 𝐻�̃� and D𝑐 intersect transversally and
thus we have lct(P(𝑐)wf , Diff;D𝑐) = 1. Suppose 𝑖 = 1, 2. Then 𝐻�̃� and D𝑐 intersect transversally except
at p�̃� = (1:0 :0) ∈ P(𝑐)wf, and we have

lct(P(𝑐)wf , Diff;D𝑐) = lctp�̃� (P(𝑐)wf , Diff;D𝑐)
= lct(A2

𝑠,�̃� , 2
3 (�̃� = 0); (𝑠4−𝑖 + �̃� + 𝑠7 = 0))

= lct(A2
𝑠,�̃� , 2

3 (�̃� = 0); (𝑠4−𝑖 + �̃� = 0))

=

{
2
3 , if 𝑖 = 1,

1, if 𝑖 = 2.

Thus, by Lemma 3.27, we have

lctp(𝑋; 𝐻𝑣 ) ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
3 , if 𝑖 = 1,
25
39 , if 𝑖 = 2,
74
123 , if 𝑖 = 3,
7
12 , if 𝑖 = 4.

This proves the claim. �

Claim 17. Suppose X is a member of the family F46. Then lctp (𝑋; 𝐻𝑣 ) ≥ 1/2.

Proof of Claim 17. We have

𝑋 = 𝑋21 ⊂ P(1, 3, 7, 1, 10)𝑥,𝑠,𝑢,𝑣,𝑤

and p = p𝑤 is of type 1
10 (1, 3, 7). We can write

𝐹 = 𝑤2𝑣 + 𝑤 𝑓11(𝑥, 𝑠, 𝑢) + 𝑓21(𝑥, 𝑠, 𝑢, 𝑣),

where 𝑓11 = 𝑓11(𝑥, 𝑠, 𝑢) ≠ 0 and 𝑓21 = 𝑓21(𝑥, 𝑠, 𝑢, 𝑣) are quasi-homogeneous polynomials of degree
11 and 21, respectively. We have 𝑢3, 𝑠7 ∈ 𝐹 by the quasi-smoothness of X, and we may assume
coeff𝐹 (𝑢3) = coeff𝐹 (𝑠7) = 1. We set �̄� = 𝐹 (𝑥, 𝑠, 𝑢, 0, 1), which can be written as

�̄� = (𝛼𝑢𝑠𝑥 + 𝛽𝑠3𝑥2 + 𝛾𝑢𝑥4 + 𝛿𝑠2𝑥5 + 𝜀𝑠𝑥8 + 𝜁𝑥11) + (𝑢3 + 𝑠7),
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Table 4. Family F46: Weights and LCT..

Case P(𝑐)wf Diff 𝐺wf
𝑐 𝜂 𝜃

(i) P(1, 1, 1) 0 �̃� (𝑠�̃� + �̃�2) 1 1
(ii) P(2, 1, 7) 2

3 𝐻�̃� 𝑠3 �̃�2 + �̃� + 𝑠7 2/3 2/3
(iii) P(1, 3, 1) 1

2 𝐻�̃� + 6
7 𝐻�̃� �̃� �̃�2 + �̃�3 + 𝑠 1 9/14

(iv) P(1, 1, 7) 2
3 𝐻�̃� 𝑠2 �̃�5 + �̃� + 𝑠7 5/6 13/21

(v) P(3, 1, 7) 3
4 𝐻�̃� + 2

3 𝐻�̃� 𝑠�̃�2 + �̃� + 𝑠7 1 7/12
(vi) P(1, 1, 1) 10

11 𝐻�̃� + 6
7 𝐻�̃� + 2

3 𝐻�̃� �̃� + �̃� + 𝑠 1 131/231

where 𝛼, 𝛽, . . . , 𝜁 ∈ C. We introduce various 3-tuples (𝑐 = (𝑐1, 𝑐2, 𝑐3) of positive integers according
to the following division into cases. We denote by 𝐺𝑐 the lowest weight part of �̄� with respect to
wt(𝑥, 𝑠, 𝑢) = 𝑐.

(i) 𝛼 ≠ 0. In this case, we may assume 𝛼 = 1. We set 𝑐 = (1, 1, 1). Then we have 𝐺𝑐 = 𝑢𝑠𝑥 + 𝑢3.
(ii) 𝛼 = 0 and 𝛽 ≠ 0. In this case, we may assume 𝛽 = 1. We set 𝑐 = (6, 3, 7). Then we have

𝐺𝑐 = 𝑠3𝑥2 + 𝑢3 + 𝑠7.
(iii) 𝛼 = 𝛽 = 0 and 𝛾 ≠ 0. In this case, we may assume 𝛾 = 1. We set 𝑐 = (7, 6, 14). Then we have

𝐺𝑐 = 𝑢𝑥4 + 𝑢3 + 𝑠7.
(iv) 𝛼 = 𝛽 = 𝛾 = 0 and 𝛿 ≠ 0. In this case, we may assume 𝛿 = 1. We set 𝑐 = (3, 3, 7). In this case, we

have 𝐺𝑐 = 𝑠2𝑥5 + 𝑢3 + 𝑠7.
(v) 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0 and 𝜀 ≠ 0. In this case, we may assume 𝜀 = 1. We set 𝑐 = (9, 12, 28). In this

case, we have 𝐺𝑐 = 𝑠𝑥8 + 𝑢3 + 𝑠7.
(vi) 𝛼 = 𝛽 = 𝛾 = 𝛿 = 𝜀 = 0. In this case, we may assume 𝛿 = 1. We set 𝑐 = (21, 33, 77). In this case,

we have 𝑥11 + 𝑢3 + 𝑠7.

The descriptions of P(𝑐)wf, Diff and 𝐺wf
𝑐 are given in Table 4, where we choose 𝑥, 𝑠, �̃� as homogeneous

coordinates of P(𝑐)wf.
We set D𝑐 = Dwf

𝐺𝑐
. We explain the computation of 𝜂 := lct(P(𝑐)wf , Diff;D𝑐) whose value is given in

the fifth column of Table 4. The computation 𝜂 = 1 is straightforward when we are in case (i) since D𝑐

is the union of of a line and a conic on P2 intersecting at two points. In the other cases, D𝑐 is the divisor
defined by 𝐺wf

𝑐 = 0 which is a quasi-line in P(𝑐)wf. If we are in one of the cases (iii), (v) and (vi), then
any two of the components of Diff +D𝑐 intersect transversally, which implies 𝜂 = 1. If we are in case
(ii) or (iv), then 𝐻�̃� and D𝑐 intersect transversally except at q = (1 : 0 : 0) ∈ P(𝑐)wf. We set 𝑒 = 3, 2 if
we are in case (ii), (iv), respectively. Then we have

lct(P(𝑐)wf , Diff;D𝑐) = lctq (P(𝑐)wf , Diff;D𝑐)
= lct(0,0) (A2

𝑠,�̃� , 2
3 (�̃� = 0); (𝑠𝑒 + �̃� + 𝑠7 = 0))

= lct(0,0) (A2
𝑠,�̃� , 2

3 (�̃� = 0); (𝑠𝑒 + �̃� = 0)).

This completes the explanations of the computations of 𝜂. We set

𝜃 =

{
𝑐1 + 𝑐2 + 𝑐3

deg𝑐 (𝐺wf
𝑐 )

, 𝜂

}
which is described in the sixth column of Table 4. By Lemma 3.27, we have lctp(𝑋; 𝐻𝑣 ) ≥ 𝜃 ≥ 1/2 and
the claim is proved. �

By Claims 14, 15, 16 and 17, we have lctp (𝑋; 1
𝑐𝐻𝑣 ) ≥ 1/2. Let 𝐷 ∈ |𝐴|Q be an irreducibleQ-divisor

other than 1
𝑐𝐻𝑣 . We set 𝜆 = (𝑟 + 𝑐)/(2𝑟 + 𝑐), and we will show that lctp(𝑋; 𝐷) ≥ 𝜆. Suppose not, that
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is, (𝑋, 𝜆𝐷) is not log canonical at p. Let 𝜑 : 𝑌 → 𝑋 be the Kawamata blowup of p ∈ 𝑋 . Then, for the
proper transforms �̃�𝑡 and �̃� of 𝐻𝑡 and D, respectively, we have

�̃�𝑡 ∼ 𝑐𝜑∗𝐴 − 𝑟 + 𝑐

𝑟
𝐸,

�̃� ∼Q 𝜑∗𝐴 − 𝑒

𝑟
𝐸,

where 𝑒 ∈ Q≥0. By [Kaw96], the discrepancy of the pair (𝑋, 𝜆𝐷) along E is negative, and thus we have
𝑒 > 1/𝜆. By [CPR00, Theorem 4.9], −𝐾𝑌 ∼Q 𝜑∗𝐴 − 1

𝑟 𝐸 is nef (more precisely, −𝑚𝐾𝑌 defines the
flopping contraction for a sufficiently divisible 𝑚 > 0). Hence, (−𝐾𝑌 · �̃�𝑡 · �̃�) ≥ 0 and we have

0 ≤ (−𝐾𝑌 · �̃�𝑡 · �̃�) = 𝑐(𝐴3) − 𝑒(𝑟 + 𝑐)
𝑟3 (𝐸3)

=
2𝑟 + 𝑐

𝑎𝑏𝑟
− 𝑒(𝑟 + 𝑐)

𝑎𝑏𝑟
<

2𝑟 + 𝑐

𝑎𝑏𝑟
− 𝑟 + 𝑐

𝜆𝑎𝑏𝑟
= 0.

This is a contradiction. Therefore, lctp (𝑋; 𝐷) ≥ 𝜆 and thus

𝛼p (𝑋) ≥ min
{
lctp

(
𝑋;

1
𝑐

𝐻𝑣

)
,

𝑟 + 𝑐

2𝑟 + 𝑐

}
≥ 1

2
.

This completes the proof of Proposition 5.18 when X has a unique QI center.

5.6.b. Case: X has exactly three distinct QI centers
By Lemma 5.12, we can choose homogeneous coordinates so that

𝑋 = 𝑋3𝑟 ⊂ P(1, 𝑎, 𝑏, 𝑟, 𝑟)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where a is coprime to b, 𝑎 ≤ 𝑏 and 𝑎 + 𝑏 = 𝑟 . Let p ∈ 𝑋 be a QI center. Then we may assume p = p𝑤
by replacing t and w suitably. Then the defining polynomial F of X can be written as

𝐹 = 𝑤2𝑡 + 𝑤 𝑓2𝑟 + 𝑓3𝑟 ,

where 𝑓2𝑟 (𝑥, 𝑦, 𝑧) and 𝑓3𝑟 (𝑥, 𝑦, 𝑧, 𝑡) are quasi-homogeneous polynomials of degrees 2𝑟 and 3𝑟 , respec-
tively. We have (𝐴3) = 3𝑟/𝑎𝑏𝑟2 = 3/𝑎𝑏𝑟 . By Lemma 3.29, we have

𝛼p (𝑋) ≥
2

𝑟𝑎𝑏(𝐴3)
=

2
3

,

and Proposition 5.18 is proved when X has exactly three distinct QI centers.

5.6.c. Case: X has exactly two distinct QI centers and their singularity types are equal
By Lemma 5.12, we can choose homogeneous coordinates so that

𝑋 = 𝑋4𝑟 ⊂ P(1, 𝑎, 𝑏, 𝑟, 2𝑟)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where a is coprime to b, 𝑎 ≤ 𝑏 and 𝑎 + 𝑏 = 𝑟 . Let p ∈ 𝑋 be a QI center. We may assume p = p𝑡 by
replacing w suitably. Then the defining polynomial F of X can be written as

𝐹 = 𝑡2𝑤 + 𝑡 𝑓3𝑟 + 𝑓4𝑟 ,
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where 𝑓3𝑟 (𝑥, 𝑦, 𝑧) and 𝑓4𝑟 (𝑥, 𝑦, 𝑧, 𝑤) are quasi-homogeneous polynomials of degrees 3𝑟 and 4𝑟 , respec-
tively. Note that (𝐴3) = 4𝑟/2𝑎𝑏𝑟2 = 2/𝑎𝑏𝑟 . By Lemma 3.29, we have

𝛼p (𝑋) ≥
2

𝑟𝑎𝑏(𝐴3)
= 1,

and Proposition 5.18 is proved in this case.

5.6.d. Case: X has exactly two distinct QI centers and their singularity types are distinct
By Lemma 5.12, we have

𝑋 = 𝑋4𝑎+3𝑏 ⊂ P(1, 𝑎, 𝑏, 𝑟1, 𝑟2)𝑥,𝑢,𝑣,𝑡 ,𝑤 ,

where a is coprime to b, 𝑟1 = 𝑎 + 𝑏 and 𝑟2 = 2𝑎 + 𝑏.
We first consider the QI center p = p𝑡 ∈ 𝑋 of type 1

𝑟1
(1, 𝑎, 𝑏). The defining polynomial F of X can

be written as

𝐹 = 𝑡2𝑤 + 𝑡 𝑓3𝑎+2𝑏 + 𝑓4𝑎+3𝑏 ,

where 𝑓3𝑎+2𝑏 = 𝑓3𝑎+2𝑏 (𝑥, 𝑢, 𝑣) and 𝑓4𝑎+3𝑏 = 𝑓4𝑎+3𝑏 (𝑥, 𝑢, 𝑣, 𝑤) are quasi-homogeneous polynomials of
the indicated degrees. Note that (𝐴3) = (4𝑎 + 3𝑏)/𝑎𝑏𝑟1𝑟2. By Lemma 5.12, we have

𝛼p (𝑋) ≥
2

𝑟1𝑎𝑏(𝐴3)
=

2𝑟2
4𝑎 + 3𝑏

=
4𝑎 + 2𝑏

4𝑎 + 3𝑏
>

2
3

.

We next consider the QI center p = p𝑤 ∈ 𝑋 of type 1
𝑟2
(1, 𝑎, 𝑎 + 𝑏). Then the defining polynomial F

of X can be written as

𝐹 = 𝑤2𝑣 + 𝑤 𝑓2𝑎+2𝑏 + 𝑓4𝑎+3𝑏 ,

where 𝑓2𝑎+2𝑏 = 𝑓2𝑎+2𝑏 (𝑥, 𝑢, 𝑡) and 𝑓4𝑎+3𝑏 = 𝑓4𝑎+3𝑏 (𝑥, 𝑢, 𝑣, 𝑡) are quasi-homogeneous polynomials of
the indicated degree.

Suppose 𝑡2𝑤 ∈ 𝐹, that is, 𝑡2 ∈ 𝑓2𝑎+2𝑏 . Then omultp (𝐻𝑣 ) = 2 and we have lctp (𝑋; 1
𝑏𝐻𝑣 ) ≥ 𝑏/2 ≥ 1/2.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 1
𝑏𝐻𝑣 . We see that the set {𝑥, 𝑢, 𝑣} isolates p since

𝑡2𝑤 ∈ 𝐹. In particular, a general member 𝑇 ∈ |𝑎𝐴| does not contain any component of the effective
1-cycle 𝐷 · 𝐻𝑧 . Then we have

2 omultp(𝐷) ≤ (𝜌∗
p𝐷 · 𝜌∗

p𝐻𝑣 · 𝜌∗
p𝑇)p̌ ≤ 𝑟2(𝐷 · 𝐻𝑣 · 𝑇)

= 𝑟2𝑏𝑎(𝐴3) = 4𝑎 + 3𝑏

𝑎 + 𝑏
.

This implies

lctp (𝑋; 𝐷) ≥ 2𝑎 + 2𝑏

4𝑎 + 3𝑏
>

1
2

.

Therefore, we have 𝛼p (𝑋) ≥ 1/2.
In the following, we consider the case where 𝑡2𝑤 ∉ 𝐹.

Claim 18. If 𝑏 ≥ 2, then lctp (𝑋; 1
𝑏𝐻𝑣 ) ≥ 1/2.

Proof of Claim 18. By the quasi-smoothness of X at p𝑡 , we have 𝑡3𝑢 ∈ 𝑓4𝑎+3𝑏 since 𝑡2𝑤 ∉ 𝐹 by
assumption. Hence, we have omultp(𝐻𝑣 ) ≤ 4 and this shows lctp (𝑋; 1

𝑏𝐻𝑣 ) ≥ 1/2. �

If 𝑏 = 1, then X is a member of a family Fi with i ∈ {13, 25}.
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Table 5. Family F13: weights and LCT..

Case P(𝑐)wf Diff 𝐺wf
𝑐 𝜂 𝜃

(i) P(𝑒, 3, 2) 0 �̃� (�̃�2 + 𝑡3) 5/9 5/9
(ii) P(7, 2, 3) 1

2 𝐻�̃� �̃� (�̃� �̃� + 𝑡3 + 𝜆𝑡�̃�3) 2/3 2/3
(iii) P(4, 1, 3) 2

3 𝐻�̃� + 1
2 𝐻𝑡 𝑡1/2 ( �̃� + 𝑡�̃� + 𝜆�̃�4) ≥ 5/9 ≥ 5/9

(iv) P(3, 2, 1) 3
4 𝐻�̃� + 2

3 𝐻�̃� �̃�1/3 ( �̃� + 𝑡3 + 𝜆𝑡�̃�) ≥ 7/12 ≥ 7/12
(v) P(11, 2, 3) 5

6 𝐻�̃� �̃� + 𝑡3�̃� + 𝜆𝑡�̃�4 ≥ 1/2 ≥ 1/2

Claim 19. If X is a member of the family F13, then lctp(𝑋; 𝐻𝑣 ) ≥ 1/2.

Proof of Claim 19. We have

𝐹 = 𝑤2𝑣 + 𝑤 𝑓6 (𝑥, 𝑢, 𝑣, 𝑡) + 𝑓11 (𝑥, 𝑢, 𝑣, 𝑡).

Note that 𝑓6 (𝑥, 𝑢, 0, 𝑡) ≠ 0 as a polynomial since p ∈ 𝑋 is nondegenerate. We set �̄� = 𝐹 (𝑥, 𝑢, 0, 𝑡, 1) ∈
C[𝑥, 𝑢, 𝑡]. We have 𝑡3𝑢 ∈ 𝐹, and we may assume coeff𝐹 (𝑡3𝑢) = 1. If 𝑡𝑢𝑥 ∈ 𝑓6, then the cubic part of �̄�
is not a cube of a linear form, and thus we have lctp (𝑋; 𝐻𝑣 ) ≥ 1/2 by Lemma 3.28. In the following,
we assume 𝑡𝑢𝑥 ∉ 𝑓6. Then we can write

�̄� = (𝛼𝑢3 + 𝛽𝑢2𝑥2 + 𝛾𝑡𝑥3 + 𝛿𝑢𝑥4 + 𝜀𝑥6) + (𝑡3𝑢 + 𝜆𝑡𝑢4 + 𝑥𝑔10),

where 𝛼, 𝛽, . . . , 𝜀, 𝜆 ∈ C and 𝑔10 = 𝑔10 (𝑥, 𝑢, 𝑡) is a quasi-homogeneous polynomial of degree 10. We
introduce 3-tuples 𝑐 = (𝑐1, 𝑐2, 𝑐3) of positive integers according to the following division into cases.
We denote by 𝐺𝑐 the lowest weight part of �̄� with respect to wt(𝑥, 𝑢, 𝑡) = 𝑐.

(i) 𝛼 ≠ 0. In this case, we may assume 𝛼 = 1. We choose and fix a sufficiently large integer e which is
coprime to 2 and 3, and we set 𝑐 = (𝑒, 3, 2). Then we have 𝐺𝑐 = 𝑢3 + 𝑡3𝑢.

(ii) 𝛼 = 0 and 𝛽 ≠ 0. In this case, we may assume 𝛽 = 1. We set 𝑐 = (7, 4, 6). Then we have
𝐺𝑐 = 𝑢2𝑥2 + 𝑡3𝑢 + 𝜆𝑡𝑢4.

(iii) 𝛼 = 𝛽 = 0 and 𝛾 ≠ 0. In this case, we may assume 𝛾 = 1. We set 𝑐 = (8, 6, 9). Then 𝐺𝑐 =
𝑡𝑥3 + 𝑡3𝑢 + 𝜆𝑡𝑢4.

(iv) 𝛼 = 𝛽 = 𝛾 = 0 and 𝛿 ≠ 0. In this case, we may assume 𝛿 = 1. We set 𝑐 = (9, 8, 12). Then
𝐺𝑐 = 𝑢𝑥4 + 𝑡3𝑢 + 𝜆𝑡𝑢4.

(v) 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0. In this case, we may assume 𝜀 = 1. We set 𝑐 = (11, 12, 18). Then we have
𝑥6 + 𝑡3𝑢 + 𝜆𝑡𝑢4.

The descriptions ofP(𝑐)wf, Diff and 𝐺wf
𝑐 are given in Table 5, where we choose 𝑥, �̃�, 𝑡 as homogeneous

coordinates of P(𝑐)wf.
We set D𝑐 = Dwf

𝐺𝑐
. We explain the computation of 𝜂 := lct(P(𝑐)wf , Diff;D𝑐) whose value (or lower

bound) is given in the fifth column of Table 5. �

Claim 20. If X is a member of the family F25, then lctp(𝑋; 𝐻𝑣 ) ≥ 1/2.

Proof of Claim 20. We have

𝐹 = 𝑤2𝑣 + 𝑤 𝑓8 (𝑥, 𝑢, 𝑣, 𝑡) + 𝑓15 (𝑥, 𝑢, 𝑣, 𝑡).

Note that 𝑓8 (𝑥, 𝑢, 0, 𝑡) ≠ 0 as a polynomial since p ∈ 𝑋 is nondegenerate. We set �̄� = 𝐹 (𝑥, 𝑢, 0, 𝑡, 1) ∈
C[𝑥, 𝑢, 𝑡]. We have 𝑡3𝑢, 𝑢5 ∈ 𝐹, and we may assume coeff𝐹 (𝑡3𝑢) = coeff𝐹 (𝑢5) = 1. If 𝑡𝑢𝑥 ∈ 𝑓8, then
the cubic part of �̄� is not a cube of a linear form and thus we have lctp(𝑋; 𝐻𝑣 ) ≥ 1/2 by Lemma 3.28.
In the following, we assume 𝑡𝑢𝑥 ∉ 𝑓8. Then we can write

�̄� = (𝛼𝑢2𝑥2 + 𝛽𝑡𝑥4 + 𝛾𝑢𝑥5 + 𝛿𝑥8) + (𝑡3𝑢 + 𝑢5 + 𝑥𝑔14),
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Table 6. Family F25: Weights and LCT..

Case P(𝑐)wf Diff 𝐺wf
𝑐 𝜂 𝜃

(i) P(3, 1, 4) 1
2 𝐻�̃� + 2

3 𝐻𝑡 �̃� (�̃� �̃� + 𝑡 + �̃�4) 1 23/30
(ii) P(11, 3, 4) 3

4 𝐻�̃� 𝑡 �̃� + 𝑡3�̃� + �̃�5 1 13/20
(iii) P(1, 1, 1) 4

5 𝐻�̃� + 3
4 𝐻�̃� + 2

3 𝐻𝑡 �̃�1/4 ( �̃� + 𝑡 + �̃�) 1 47/75
(iv) P(5, 1, 4) 7

8 𝐻�̃� + 3
4 𝐻𝑡 �̃� + 𝑡�̃� + �̃�5 1 71/120

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ C and 𝑔14 = 𝑔14 (𝑥, 𝑢, 𝑡) is a quasi-homogeneous polynomial of degree 14. We
introduce 3-tuples 𝑐 = (𝑐1, 𝑐2, 𝑐3) of positive integers according to the following division into cases.
We denote by 𝐺𝑐 the lowest weight part of �̄� with respect to wt(𝑥, 𝑢, 𝑡) = 𝑐.

(i) 𝛼 ≠ 0. In this case, we may assume 𝛼 = 1. We set 𝑐 = (9, 6, 8). Then we have 𝐺𝑐 = 𝑢2𝑥2 + 𝑡3𝑢 +𝑢5.
(ii) 𝛼 = 0 and 𝛽 ≠ 0. In this case, we may assume 𝛽 = 1. We set 𝑐 = (11, 12, 16). Then we have

𝐺𝑐 = 𝑡𝑥4 + 𝑡3𝑢 + 𝑢5.
(iii) 𝛼 = 𝛽 = 0 and 𝛾 ≠ 0. In this case, we may assume 𝛾 = 1. We set 𝑐 = (12, 15, 20). Then

𝐺𝑐 = 𝑢𝑥5 + 𝑡3𝑢 + 𝑢5.
(iv) 𝛼 = 𝛽 = 𝛾 = 0 and 𝛿 ≠ 0. In this case, we may assume 𝛿 = 1. We set 𝑐 = (15, 24, 32). Then

𝐺𝑐 = 𝑥8 + 𝑡3𝑢 + 𝑢5.

The descriptions ofP(𝑐)wf, Diff and 𝐺wf
𝑐 are given in Table 6, where we choose 𝑥, �̃�, 𝑡 as homogeneous

coordinates of P(𝑐)wf.
We set D𝑐 = Dwf

𝐺𝑐
. We explain the computation of 𝜂 := lct(P(𝑐)wf , Diff;D𝑐) whose value is given

in the fifth column of Table 6. Suppose that we are in case (ii) or (iv). Then D𝑐 is a prime divisor
which is quasi-smooth and intersects any component of Diff transversally. This shows 𝜂 = 1. Suppose
that we are in case (i). Then D𝑐 = 𝐻�̃� + Γ, where Γ = (�̃�𝑥 + 𝑡 + �̃�4 = 0) is a quasi-line. We see that
any two of 𝐻�̃� , 𝐻�̃� , 𝐻𝑡 , Γ intersect transversally, and thus 𝜂 = 1. Suppose that we are in case (iii). Then
D𝑐 = 1

4 𝐻�̃� + Γ, where Γ = (𝑥 + 𝑡�̃� + �̃�5 = 0) is a quasi-line. We see that any two of 𝐻�̃� , 𝐻�̃� , 𝐻𝑡 and Γ
intersect transversally, and thus 𝜂 = 1.

We set

𝜃 := min

{
𝑐1 + 𝑐2 + 𝑐3

wt𝑐 (�̄�)
, 𝜂

}
,

which is listed in the sixth column of Table 6. By Lemma 3.27, we have lctp (𝑋; 𝐻𝑣 ) ≥ 𝜃 ≥ 1/2 and the
claim is proved. �

By Claims 18, 19 and 20, we have lctp(𝑋; 1
𝑏𝐻𝑣 ) ≥ 1/2. Suppose 𝛼p (𝑋) < 1/2. Then there exists

an irreducible Q-divisor 𝐷 ∈ |𝐴|Q other than 1
𝑏𝐻𝑣 such that (𝑋, 1

2 𝐷) is not log canonical at p. Let
𝜑 : 𝑌 → 𝑋 be the Kawamata blowup at p with exceptional divisor E. We set 𝜆 = ord𝐸 (𝐷). Since the
pair (𝑋, 1

2 𝐷) is not canonical at p, the discrepancy of (𝑋, 1
2 𝐷) along E is negative, which implies

𝜆 >
2
𝑟2

.

By [CPR00, Theorem 4.9], the divisor −𝐾𝑌 ∼Q 𝜑∗𝐴 − 1
𝑟2

𝐸 is nef. We see that �̃� · �̃�𝑣 is an effective
1-cycle on Y, where �̃� and �̃�𝑣 are proper transforms of D and 𝐻𝑣 , respectively. It follows that
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0 ≤ (−𝐾𝑌 · �̃� · �̃�𝑣 ) = 𝑏(𝐴3) − (2𝑎 + 2𝑏)𝜆
𝑟2

2
(𝐸3)

=
(4𝑎 + 3𝑏) − (2𝑎 + 2𝑏)𝑟2𝜆

𝑎𝑟1𝑟2
< − 𝑏

𝑎𝑟1𝑟2
< 0.

This is a contradiction, and we have 𝛼p (𝑋) ≥ 1/2. Therefore, the proof of Proposition 5.18 is completed.

6. Families F2, F4, F5, F6, F8, F10 and F14

This section is devoted to the proof of the following theorem.

Theorem 6.1. Let X be a member of a family Fi with i ∈ I1. Then

𝛼(𝑋) ≥ 1
2

.

6.1. Families F6, F10 and F14

In this section, we prove Theorem 6.1 for families F6, F10 and F14 whose member is a weighted
hypersurface

𝑋 = 𝑋2(𝑎+2) ⊂ P(1, 1, 1, 𝑎, 𝑎 + 2)𝑥,𝑦,𝑧,𝑡 ,𝑤 ,

where 𝑎 = 2, 3, 4, respectively. Let X be a member of a family Fi with i ∈ {6, 10, 14}.
Let p ∈ 𝑋 be a smooth point. We may assume p = p𝑥 by a suitable choice of coordinates. By Lemma

4.3 (see also Remark 4.4), we have

𝛼p(𝑋) ≥
1

1 · 𝑎 · (𝐴3)
=

1
2

.

Let p ∈ 𝑋 be a singular point. If i = 14, then p ∈ 𝑋 is of type 1
2 (1, 1, 1) and we have 𝛼p (𝑋) ≥ 1 by

Proposition 5.2. If i = 6, 10, then p ∈ 𝑋 is of type 1
2 (1, 1, 1), 1

3 (1, 1, 2), respectively, and in both cases
we have 𝛼p (𝑋) ≥ 1/2 by Proposition 5.4. Thus, the proof of Theorem 6.1 for families F6, F10 and F14
is completed.

6.2. The family F2

This section is devoted to the proof Theorem 6.1 for the family F2. In the following, let

𝑋 = 𝑋5 ⊂ P(1, 1, 1, 1, 2)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F2 with defining polynomial 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤).

6.2.a. Smooth points
Let p ∈ 𝑋 be a smooth point. In this subsection, we will prove 𝛼p(𝑋) ≥ 1/2. We may assume p = p𝑥 by
a choice of coordinates. The proof will be done by division into cases.

6.2.a.1. Case: 𝑥3𝑤 ∈ 𝐹

In this case, we can write

𝐹 = 𝑥3𝑤 + 𝑥2 𝑓3 + 𝑥 𝑓4 + 𝑓5,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We have multp (𝐻𝑤 ) ≥ 3.
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Claim 21. lctp(𝑋; 1
2 𝐻𝑤 ) ≥ 1/2.

Proof of Claim 21. This is obvious when multp (𝐻𝑤 ) ≤ 4, hence we assume multp(𝐻𝑤 ) ≥ 5. Then we
can write

𝐹 = 𝑥3𝑤 + 𝑥2𝑤𝑎1 + 𝑥(𝛼𝑤2 + 𝑤𝑏2) + 𝑤2𝑐1 + 𝑤𝑑3 + 𝑒5,

where 𝛼 ∈ C and 𝑎1, 𝑏2, 𝑐1, 𝑑3, 𝑒5 ∈ C[𝑦, 𝑧, 𝑡] are quasi-homogeneous polynomials of indicated degrees.
We show that (𝑒5 = 0) ⊂ P(1, 1, 1)𝑦,𝑧,𝑡 is smooth. Indeed, if it has a singular point at (𝑦 : 𝑧 : 𝑡) = (𝜆 : 𝜇 :𝜈),
then, by setting 𝜃 ∈ C to be a solution of the equation

𝑥3 + 𝑥2𝑎1 (𝜆, 𝜇, 𝜈) + 𝑥𝑏2 (𝜆, 𝜇, 𝜈) + 𝑑3(𝜆, 𝜇, 𝜈) = 0,

we see that X is not quasi-smooth at the point (𝜃 : 𝜆 : 𝜇 : 𝜈 : 0) and this is a contradiction. The lowest
weight part of 𝐹 (1, 𝑦, 𝑧, 𝑡, 0) = 𝑒5 with respect to wt(𝑦, 𝑧, 𝑡) = (1, 1, 1) is 𝑒5 which defines a smooth
hypersurface in P2. By Lemma 3.27, we have lctp (𝑋, 𝐻𝑤 ) ≥ 3/5. Thus, lctp (𝑋; 1

2 𝐻𝑤 ) ≥ 6/5 in this
case and the claim is proved. �

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 1
2 𝐻𝑤 . We can take a Q-divisor 𝑇 ∈ |𝐴|Q such

that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑤 since
{𝑦, 𝑧, 𝑡} isolates p. It follows that

3 multp (𝐷) ≤ (𝐷 · 𝐻𝑤 · 𝑇)p ≤ (𝐷 · 𝐻𝑤 · 𝑇) = 5.

This shows lctp (𝑋; 𝐷) ≥ 3/5 and thus 𝛼p (𝑋) ≥ 1/2.

6.2.a.2. Case: 𝑥3𝑤 ∉ 𝐹

By a choice of coordinates, we can write

𝐹 = 𝑥4𝑡 + 𝑥3 𝑓2 + 𝑥2 𝑓3 + 𝑥 𝑓4 + 𝑓5,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓2.
Suppose 𝑤2 ∈ 𝑓4. In this case, multp (𝐻𝑡 ) = 2 and hence lctp (𝑋; 𝐻𝑡 ) ≥ 1/2. Let 𝐷 ∈ |𝐴|Q be an

irreducible Q-divisor other than 𝐻𝑡 . We can take a Q-divisor 𝑇 ∈ |𝐴|Q such that multp(𝑇) ≥ 1 and
Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑡 since {𝑦, 𝑧, 𝑡} isolates p so that

2 multp (𝐷) ≤ (𝐷 · 𝐻𝑡 · 𝑇)p ≤ (𝐷 · 𝐻𝑡 · 𝑇) =
5
2

.

This shows lctp (𝑋; 𝐷) ≥ 4/5 and thus 𝛼p (𝑋) ≥ 1/2 in this case.
Suppose 𝑤2 ∉ 𝑓4. We have Bs |Ip (𝐴) | = Γ, where Γ = (𝑦 = 𝑧 = 𝑡 = 0) ⊂ 𝑋 is a quasi-line. We

assume 𝛼p (𝑋) < 1/2. Then there exists an irreducible Q-divisor 𝐷 ∈ |𝐴|Q such that (𝑋, 1
2 𝐷) is not log

canonical at p. Let 𝑆 ∈ |Ip (𝐴) | be a general member so that 𝑆 ≠ Supp(𝐷). Then S is a normal surface by
Lemma 3.7 and it is quasi-smooth along Γ. Moreover, for another general 𝑇 ∈ |Ip (𝐴) |, the multiplicity
of 𝑇 |𝑆 along Γ is 1, that is, we can write

𝑇 |𝑆 = Γ + Δ ,

where Δ is an effective divisor on S such that Γ ⊄ Supp(Δ). We see that Γ is a quasi-line, S is quasi-
smooth at p𝑤 , Γ passes through the 1

2 (1, 1) point p𝑤 of S and (𝐾𝑆 · Γ) = 0. It follows that

(Γ2)𝑆 = −2 + 1
2
= −3

2
,
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by Remark 3.10. Hence,

(Δ · Γ)𝑆 = (𝑇 |𝑆 · Γ)𝑆 − (Γ2)𝑆 = 2.

The divisor 𝐷 |𝑆 on S is effective, and we write 1
2 𝐷 |𝑆 = 𝛾Γ+Ξ, where 𝛾 ≥ 0 and Ξ is an effective divisor

on S such that Γ ⊄ Supp(Ξ). Since Bs |Ip (𝐴) | = Γ and S is general, we may assume that Supp(Ξ) does
not contain any component of Supp(Δ). In particular, (Ξ · Δ)𝑆 ≥ 0. Note also that

(𝐷 |𝑆 · Δ)𝑆 = (𝑇 |𝑆 · Δ)𝑆 = ((𝐴3) − (𝑇 · Γ)𝑆) = 2.

It follows that

2 = (𝐷 |𝑆 · Δ)𝑆 ≥ 2𝛾(Γ · Δ)𝑆 = 4𝛾,

which implies 𝛾 ≤ 1
2 . We see that (𝑋, 1

2 𝐷 |𝑆) is not log canonical at p, and hence (𝑆, Γ + Ξ) =
(𝑆, 1

2 𝐷 |𝑆 + (1 − 𝛾)Γ) is not log canonical at p. By the inversion of adjunction, we have

1 ≥ 1
4
+ 3

2
𝛾 = (( 1

2
𝐷 |𝑆 − 𝛾Γ) · Γ)𝑆 = (Δ · Γ)𝑆 ≥ multp (Δ |Γ) > 1.

This is a contradiction and the inequality 𝛼p (𝑋) ≥ 1/2 is proved.

6.2.b. The singular point of type 1
2 (1, 1, 1)

Let p = p𝑤 be the singular point of type 1
2 (1, 1, 1). Note that the point p ∈ 𝑋 is a QI center.

6.2.b.1. Case: p is nondegenerate
By a choice of coordinates, we can write

𝐹 = 𝑤2𝑡 + 𝑤 𝑓3 (𝑥, 𝑦, 𝑧) + 𝑔5 (𝑥, 𝑦, 𝑧, 𝑡),

where 𝑓3, 𝑔5 are nonzero homogeneous polynomials such that 𝑓3 ≠ 0 as a polynomial. Let 𝜑 : 𝑌 → 𝑋
be the Kawamata blowup at p with exceptional divisor E.
Claim 22. lctp(𝑋, 𝐻𝑡 ) ≥ 1

2 .
Proof of Claim 22. The lowest weight part of 𝐹 (𝑥, 𝑦, 𝑧, 0, 1) with respect to wt(𝑥, 𝑦, 𝑧) = (1, 1, 1) is 𝑓3.
By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2 unless 𝑓3 is a cube of a linear form. Hence, it remains to prove
the claim assuming that 𝑓3 is a cube of a linear form. By a choice of coordinates, we may assume 𝑓3 = 𝑧3.
Let S be the divisor on X defined by 𝑥 − 𝜆𝑦 = 0 for a general 𝜆 ∈ C. By the quasi-smoothness of X, the
polynomial F cannot be contained in the ideal (𝑧, 𝑡) ⊂ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤]. This implies 𝑔5 (𝑥, 𝑦, 0, 0) ≠ 0,
and hence 𝑔5 (𝜆𝑦, 𝑦, 0, 0) ≠ 0. By eliminating x, the surface S is isomorphic to the hypersurface in
P(1, 1, 1, 2)𝑦,𝑧,𝑡 ,𝑤 defined by

𝐺 := 𝑤2𝑡 + 𝑤𝑧3 + 𝛼𝑦5 + 𝑧𝑎4 + 𝑡𝑏4 = 0,

where 𝑎4 = 𝑎4 (𝑦, 𝑧), 𝑏4 = 𝑏4(𝑦, 𝑧, 𝑡) are homogeneous polynomials of degree 4 and 𝛼 ≠ 0 is a constant.
The lowest weight part of 𝐺 (𝑥, 𝑧, 0, 1) with respect to wt(𝑦, 𝑧) = (3, 5) is 𝑧3 + 𝛼𝑦5 which defines a
smooth point of P(3, 5)𝑦,𝑧 . By Lemma 3.27, lctp(𝑆; 𝐻𝑡 |𝑆) ≥ 8/15, and hence lctp (𝑋; 𝐻𝑡 ) ≥ 8/15. Thus,
the claim is proved. �

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X other than 𝐻𝑡 . We can take 𝑇 ∈ |𝐴|Q such that
multp(𝑇) ≥ 1, and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑡 since
{𝑥, 𝑦, 𝑧, 𝑡} isolates p. Then

3 omultp (𝐷) < 2(𝐷 · 𝐻𝑡 · 𝑇) = 5

since omultp(𝐻𝑡 ) = 3. This shows lctp (𝑋; 𝐷) ≥ 3
5 and thus 𝛼p (𝑋) ≥ 1

2 .
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6.2.b.2. Case: p is degenerate
In this case, we have 𝛼p (𝑋) = 3/5 by Proposition 5.16. Therefore, the proof of Theorem 6.1 for the

family F2 is completed.

6.3. The family F4

This subsection is devoted to the proof of Theorem 6.1 for the family F4. In the following, let

𝑋 = 𝑋6 ⊂ P(1, 1, 1, 2, 2)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F4 with defining polynomial 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤).

6.3.a. Smooth points
Let p be a smooth point of X. We will prove 𝛼p (𝑋) ≥ 1/2. We may assume p = p𝑥 by a choice of
coordinates. The proof will be done by division into cases.

6.3.a.1. Case: Either 𝑥4𝑤 ∈ 𝐹 or 𝑥4𝑡 ∈ 𝐹

In this case, we have

𝛼p (𝑋) ≥
2

1 · 1 · 2 · (𝐴3)
=

2
3

by Lemma 3.29.

6.3.a.2. Case: 𝑥4𝑤, 𝑥4𝑡 ∉ 𝐹

We can write

𝐹 = 𝑥5𝑦 + 𝑥4 𝑓2 + 𝑥3 𝑓3 + 𝑥2 𝑓4 + 𝑥 𝑓5 + 𝑓6,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡, 𝑤 ∉ 𝑓2.
We claim lctp (𝑋; 𝐻𝑦) ≥ 1/2. This is obvious when multp(𝐻𝑦) ≤ 2 and hence we assume

multp(𝐻𝑦) ≥ 3. Then we can write

�̄� := 𝐹 (1, 0, 𝑧, 𝑡, 𝑤) =
6∑
𝑖=2

𝑓𝑖 (0, 𝑧, 𝑡, 𝑤) = 𝛼𝑧3 + 𝛽𝑡𝑧2 + 𝛾𝑤𝑧2 + 𝑐(𝑡, 𝑤) + ℎ,

where 𝑐(𝑡, 𝑤) = 𝑓6(0, 0, 𝑧, 𝑡) and ℎ = ℎ(𝑦, 𝑡, 𝑤) is in the ideal (𝑦, 𝑡, 𝑤)4. By the quasi-smoothness of X,
c cannot be a cube of a linear form. This implies that the cubic part of �̄� is not a cube of a linear form.
Thus, lctp (𝑋; 𝐻𝑦) ≥ 1/2 by Lemma 3.28 and the claim is proved.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑦 . We can take 𝑇 ∈ |2𝐴|Q such that
multp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑦 since
{𝑦, 𝑧, 𝑡, 𝑤} isolates p. Then we have

2 multp (𝐷) ≤ (𝐷 · 𝐻𝑦 · 𝑇) = 2(𝐴3) = 3

since multp (𝐻𝑦) ≥ 2. This implies lctp (𝑋; 𝐷) ≥ 2/3 and thus 𝛼p (𝑋) ≥ 1/2.

6.3.b. Singular points of type 1
2 (1, 1, 1)

Let p be a singular point of type 1
2 (1, 1, 1). Then we have 𝛼p (𝑋) ≥ 1/2 by Proposition 5.18 (actually

we have 𝛼p (𝑋) ≥ 2/3 by the argument in Section 5.6.b). Therefore, the proof of Theorem 6.1 for the
family F4 is completed.
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6.4. The family F5

This subsection is devoted to the proof Theorem 6.1 for the family F5. In the following, let

𝑋 = 𝑋7 ⊂ P(1, 1, 1, 2, 3)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of family F5 with defining polynomial 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤).

6.4.a. Smooth points
Let p be a smooth point of X. We will prove 𝛼p (𝑋) ≥ 1/2. The proof will be done by division into cases.

6.4.a.1. Case: p ∈ 𝑈𝑥 ∪𝑈𝑦 ∪𝑈𝑧

By a choice of coordinates 𝑥, 𝑦, 𝑧, we may assume p = p𝑥 . By Lemma 3.29, we have

𝛼p (𝑋) ≥
{

2
1·1·2· (𝐴3) =

6
7 , if 𝑥4𝑤 ∈ 𝐹,

2
1·1·3· (𝐴3) =

4
7 , if 𝑥4𝑤 ∉ 𝐹 and 𝑥5𝑡 ∈ 𝐹.

It remains to consider the case where 𝑥4𝑤, 𝑥5𝑡 ∉ 𝐹. In this case, we can write

𝐹 = 𝑥6𝑦 + 𝑥5 𝑓2 + 𝑥4 𝑓3 + 𝑥3 𝑓4 + 𝑥2 𝑓5 + 𝑥 𝑓6 + 𝑓7,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑡 ∉ 𝑓2 and 𝑤 ∉ 𝑓3.

Claim 23. lctp(𝑋; 𝐻𝑦) ≥ 1/2.

Proof of Claim 23. This is obvious when multp (𝐻𝑦) = 2, and we assume multp (𝐻𝑦) ≥ 3. It follows that
each monomial appearing in F is contained in (𝑦)∪(𝑧, 𝑡, 𝑤)3. A monomial of degree 𝑑 ∈ {2, 3, 4, 5, 6, 7}
in variables 𝑦, 𝑧, 𝑡, 𝑤 which is contained in (𝑦) ∪ (𝑧, 𝑡, 𝑤)3 is contained in (𝑦) ∪ (𝑧, 𝑡)2 except for the
monomial 𝑤2𝑧 of degree 7. Hence, we can write

𝐹 = 𝑥6𝑦 + 𝑦𝑔 + ℎ + 𝛼𝑤2𝑧,

where 𝑔 = 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤) ∈ C[𝑥, 𝑦, 𝑧, 𝑡, 𝑤] and ℎ = ℎ(𝑥, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡)2. If 𝛼 = 0, then X is not
quasi-smooth at any point of the nonempty set

(𝑦 = 𝑥6 + 𝑔 = 𝑧 = 𝑡 = 0) ⊂ P(1, 1, 1, 2, 3).

Thus, 𝑤2𝑧 ∈ 𝐹 and we see that �̄� = 𝐹 (1, 0, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡, 𝑤)3 and the cubic part of �̄� is not a cube of
a linear form since 𝑤2𝑧 ∈ �̄� and 𝑤3 ∉ �̄�. By Lemma 3.28, we have lctp (𝑋; 𝐻𝑦) ≥ 1/2, and the claim is
proved. �

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑦 . We can take a Q-divisor 𝑇 ∈ |3𝐴|Q such
that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑦 since
{𝑦, 𝑧, 𝑡, 𝑤} isolates p. Then

2 multp (𝐷) ≤ (𝐷 · 𝐻𝑦 · 𝑇)p ≤ (𝐷 · 𝐻𝑦 · 𝑇) = 3(𝐴3) = 7
2

since multp (𝐻𝑦) ≥ 2. This shows lctp (𝑋; 𝐷) ≥ 4/7 and thus 𝛼p (𝑋) ≥ 1/2.

6.4.a.2. Case p ∉ 𝑈𝑥 ∪𝑈𝑦 ∪𝑈𝑧

If 𝑤𝑡2 ∈ 𝐹, then 𝑋 \ (𝑈𝑥 ∪𝑈𝑦 ∪𝑈𝑧) consists of singular points. Hence, we have 𝑤𝑡2 ∉ 𝐹 in this case,
and p is contained in the quasi-line Γ := (𝑥 = 𝑦 = 𝑧 = 0) ⊂ 𝑋 . We will show 𝛼p (𝑋) ≥ 1. Assume to the
contrary that 𝛼p (𝑋) < 1. Then there exists an irreducible Q-divisor 𝐷 ∈ |𝐴|Q such that the pair (𝑋, 𝐷)
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is not log canonical at p. Let 𝑆 ∈ |𝐴| be a general member and write 𝐷 |𝑆 = 𝛾Γ + Δ , where 𝛾 ≥ 0 is a
rational number and Δ is an effective 1-cycle on S such that Γ ⊄ Supp(Δ).

Claim 24. (Γ2)𝑆 = −5/6 and 𝛾 ≤ 1.

Proof of Claim 24. We see that S has singular points of type 1
2 (1, 1) and 1

3 (1, 2) at p𝑡 and p𝑤 , respec-
tively, and smooth elsewhere since 𝑆 ∈ |𝐴| is general. Since Γ is a quasi-line on S passing through
p𝑡 , p𝑤 and 𝐾𝑆 = (𝐾𝑋 + 𝑆) |𝑆 ∼ 0 by adjunction, we have

(Γ2)𝑆 = −2 + 1
2
+ 2

3
= −5

6
.

We choose a general member 𝑇 ∈ |𝐴| which does not contain any component of Δ . This is possible
since Bs |𝐴| = Γ. We write 𝑇 |𝑆 = Γ +Ξ, where Ξ is an effective divisor on S such that Γ ⊄ Supp(Ξ). We
have

(𝐷 |𝑆 · Ξ)𝑆 = (𝐷 |𝑆 · (𝑇 |𝑆 − Γ))𝑆 =
7
6
− 1

6
= 1,

(Γ · Ξ)𝑆 = (Γ · (𝑇 |𝑆 − Γ))𝑆 =
1
6
+ 5

6
= 1.

Note that Ξ does not contain any component of Δ by our choice of T, and hence

1 = (𝐷 |𝑆 · Ξ)𝑆 = ((𝛾Γ + Δ) · Ξ)𝑆 ≥ 𝛾(Γ · Ξ)𝑆 = 𝛾,

as desired. �

The pair (𝑆, 𝐷 |𝑆) = (𝑆, 𝛾Γ + Δ) is not log canonical at p. Hence, the pair (𝑆, Γ + Δ) is not log
canonical at p since 𝛾 ≤ 1. By the inversion of adjunction, we have multp (Δ |Γ) > 1 and thus

1 < multp (Δ |Γ) ≤ (Δ · Γ)𝑆 = ((𝐷 |𝑆 − 𝛾Γ) · Γ)𝑆 =
1
6
+ 5

6
𝛾 ≤ 1.

This is a contradiction, and we have 𝛼p (𝑋) ≥ 1.

6.4.b. The singular point of type 1
2 (1, 1, 1)

Let p = p𝑡 be the singular point of type 1
2 (1, 1, 1).

6.4.b.1. Case: 𝑡2𝑤 ∈ 𝐹

In this case, we have

𝛼p (𝑋) ≥
2

2 · 1 · 1 · (𝐴3)
=

6
7

by Lemma 3.29.

6.4.b.2. Case: 𝑡2𝑤 ∉ 𝐹

Replacing 𝑥, 𝑦, 𝑧, we can write

𝐹 = 𝑡3𝑥 + 𝑡2 𝑓3 + 𝑡 𝑓5 + 𝑓7,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓3.
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Claim 25. If multp (𝐻𝑥) ≥ 3, then either 𝑤2𝑦 ∈ 𝐹 or 𝑤2𝑧 ∈ 𝐹.

Proof of Claim 25. Suppose 𝑤2𝑦, 𝑤2𝑧 ∉ 𝐹. Then ℎ := 𝐹 (0, 𝑦, 𝑧, 𝑡, 𝑤) is contained in the ideal (𝑦, 𝑧)2 ⊂
C[𝑦, 𝑧, 𝑡, 𝑤], and we can write 𝐹 = 𝑥𝑔 + ℎ, where 𝑔 = 𝑔(𝑥, 𝑦, 𝑧, 𝑡, 𝑤). We see that X is not quasi-smooth
at any point in the nonempty subset

(𝑥 = 𝑦 = 𝑧 = 𝑔 = 0) ⊂ P(1, 1, 1, 2, 3).

This is a contradiction, and the claim is proved. �

We set �̄� := 𝐹 (0, 𝑦, 𝑧, 1, 𝑤). By Claim 25, either �̄� ∈ (𝑦, 𝑧, 𝑤)2 \ (𝑦, 𝑧, 𝑤)3 or �̄� ∈ (𝑦, 𝑧, 𝑤)3 and the
cubic part of �̄� is not a cube of a linear form since 𝑤3 ∉ �̄�. By Lemma 3.28, we have 𝛼p (𝑋) ≥ 1/2
since p ∈ 𝑋 is not a maximal center.

6.4.c. Singular point of type 1
3 (1, 1, 2)

Let p = p𝑤 be the singular point of type 1
3 (1, 1, 2). We can write

𝐹 = 𝑤2𝑥 + 𝑤(𝛼𝑡2 + 𝑡𝑎2 (𝑦, 𝑧) + 𝑏4 (𝑦, 𝑧)) + 𝑓7(𝑥, 𝑦, 𝑧, 𝑡),

where 𝛼 ∈ C and 𝑎2 = 𝑎2 (𝑥, 𝑦), 𝑏4 = 𝑏4(𝑦, 𝑧), 𝑓7 = 𝑓7 (𝑥, 𝑦, 𝑧, 𝑡) are quasi-homogeneous polynomials
of degree 2, 4, 7, respectively. Let 𝑞 = 𝑞p be the quotient morphism of p ∈ 𝑋 and p̌ be the preimage of p.

6.4.c.1. Case: 𝛼 ≠ 0
We have multp (𝐻𝑥) = 2 and lctp(𝑋; 𝐻𝑥) ≥ 1/2. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other

than 𝐻𝑥 . We can take a Q-divisor 𝑇 ∈ |𝐴|Q such that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any
component of the effective 1-cycle 𝐷 · 𝐻𝑥 since {𝑥, 𝑦, 𝑧} isolates p. Then

2 omultp (𝐷) ≤ (𝑞∗𝐷 · 𝑞∗𝐻𝑥 · 𝑞∗𝑇)p̌ ≤ 3(𝐷 · 𝐻𝑥 · 𝑇) =
7
2

.

This shows lctp (𝑋; 𝐷) ≥ 4/7 and thus 𝛼p (𝑋) ≥ 1/2.

6.4.c.2. Case 𝛼 = 0 and 𝑎2 ≠ 0
The cubic part of 𝐹 (0, 𝑦, 𝑧, 𝑡, 1) is 𝑡𝑎2, and, by Lemma 3.28, we have lctp (𝑋; 𝐻𝑥) ≥ 1/2. Let 𝐷 ∼Q 𝐴

be an irreducible Q-divisor on X other than 𝐻𝑥 . Then we can take a general 𝑇 ∈ |Ip (2𝐴) | = |2𝐴| which
does not contain any component of 𝐷∩𝐻𝑥 since Bs |2𝐴| = p. We see that T is defined by 𝑡−𝑞(𝑥, 𝑦, 𝑧) = 0
on X, where 𝑞 ∈ C[𝑥, 𝑦, 𝑧] is a general quadratic form. Let 𝜌 = 𝜌p : �̆�p → 𝑈p be the orbifold chart of X
containing p and let p̆ be the preimage of p. It is then easy to see that the effective 1-cycle 𝜌∗𝐻𝑥 · 𝜌∗𝑇
on �̆�p has multiplicity 4 at p̆. Then we have

4 omultp (𝐷) ≤ (𝜌∗𝐷 · 𝜌∗𝐻𝑥 · 𝜌∗𝑇)p̆ ≤ 3(𝐷 · 𝐻𝑥 · 𝑇) = 7.

This shows lctp (𝑋; 𝐷) ≥ 4/7 and thus 𝛼p (𝑋) ≥ 4/7.

6.4.c.3. Case: 𝛼 = 𝑎2 = 0 and 𝑏4 ≠ 0
By similar arguments as in the proof of Claim 25, we see that either 𝑡3𝑦 ∈ 𝑓7 or 𝑡3𝑧 ∈ 𝑓7. We choose

z and t so that 𝑏4 (0, 𝑧) = 𝑧4 and coeff 𝑓7 (𝑡3𝑧) = 1. Then we have

𝐹 (0, 0, 𝑧, 𝑡, 1) = 𝑧4 + 𝑡3𝑧 + 𝛽𝑡2𝑧3 + 𝛾𝑡𝑧5 + 𝛿𝑧7,
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where 𝛽, 𝛾, 𝛿 ∈ C. The lowest weight part of 𝐹 (0, 0, 𝑧, 𝑡, 1) with respect to wt(𝑧, 𝑡) = (1, 1) is 𝑧4 + 𝑡3𝑧
which defines four distinct points of P1

𝑧,𝑡 . Hence, we have

lctp (𝑋; 𝐻𝑥) ≥ lctp (𝐻𝑦 ; 𝐻𝑥 |𝐻𝑦 ) ≥
1
2

by Lemma 3.27. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑥 . We can take a Q-divisor
𝑇 ∈ |2𝐴|Q such that omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective
1-cycle 𝐷 · 𝐻𝑥 since {𝑥, 𝑦, 𝑧, 𝑡} isolates p. Then

4 omultp(𝐷) ≤ (𝑞∗𝐷 · 𝑞∗𝐻𝑥 · 𝑞∗𝑇)p̌ ≤ 3(𝐷 · 𝐻𝑥 · 𝑇) = 7

since omultp(𝐻𝑥) = 4. This shows lctp (𝑋; 𝐷) ≥ 4/7 and thus 𝛼p (𝑋) ≥ 1/2.

6.4.c.4. Case: 𝛼 = 𝑎2 = 𝑏4 = 0
In this case, the point p ∈ 𝑋 is a degenerate QI center and we have 𝛼p (𝑋) = 4/7 by Proposition 5.16.

6.5. The family F8

This subsection is devoted to the proof of Theorem 6.1 for the family F8. In the following, let

𝑋 = 𝑋9 ⊂ P(1, 1, 1, 3, 4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of F8 with defining polynomial 𝐹 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤).

6.5.a. Smooth points
Let p ∈ 𝑋 be a smooth point. We will prove 𝛼p(𝑋) ≥ 1/2. We may assume p = p𝑥 . The proof will be
done by division into cases.

6.5.a.1. Case: 𝑥5𝑤 ∈ 𝐹

We can write

𝐹 = 𝑥5𝑤 + 𝑥4 𝑓5 + 𝑥3 𝑓6 + 𝑥2 𝑓7 + 𝑥 𝑓8 + 𝑓9,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i. We have multp (𝐻𝑤 ) = 3 since
𝑡3 ∈ 𝑓9. Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor on X. Let 𝑆 ∈ |Ip (𝐴) | be a general member so that
Supp(𝐷) ≠ 𝑆. Since {𝑦, 𝑧, 𝑤} isolates p, we can take a Q-divisor 𝑇 ∈ |𝐴|Q such that Supp(𝑇) does not
contain any component of the effective 1-cycle 𝐷 · 𝑆 and multp (𝑇) ≥ 3/4 (Note that T is one of 𝐻𝑦 , 𝐻𝑧

and 1
4 𝐻𝑤 ). Then we have

3
4

multp(𝐷) ≤ (𝐷 · 𝑆 · 𝑇)p ≤ (𝐷 · 𝑆 · 𝑇) = 3
4

.

This shows lctp (𝑋; 𝐷) ≥ 1 and thus 𝛼p (𝑋) ≥ 1.

6.5.a.2. Case: 𝑥5𝑤 ∉ 𝐹 and 𝑥6𝑡 ∈ 𝐹

We can write

𝐹 = 𝑥6𝑡 + 𝑥5 𝑓4 + 𝑥4 𝑓5 + 𝑥3 𝑓6 + 𝑥2 𝑓7 + 𝑥 𝑓8 + 𝑓9,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a quasi-homogeneous polynomial of degree i with 𝑤 ∉ 𝑓4. Let 𝑆, 𝑇 ∈ |Ip (𝐴) |
be general members. Note that S is smooth at p. The intersection 𝑆 ∩ 𝑇 is isomorphic to the subscheme
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in P(1𝑥 , 3𝑡 , 4𝑤 ) defined by the equation 𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 0, and we can write

𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 𝑥6𝑡 + 𝛼𝑥3𝑡2 + 𝛽𝑥2𝑤𝑡 + 𝛾𝑥𝑤2 + 𝑡3,

where 𝛼, 𝛽, 𝛾 ∈ C.

Claim 26. If 𝛾 ≠ 0, then 𝑆 · 𝑇 = Γ, where Γ is an irreducible and reduced curve of degree 3/4 that is
smooth at p.

Proof of Claim 26. Suppose 𝛾 ≠ 0. Then it is easy to see that the polynomial 𝐹 (𝑥, 0, 0, 𝑡, 𝑤) is irre-
ducible. Hence, the curve

Γ = (𝑦 = 𝑧 = 𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 0) ⊂ P(1, 1, 1, 3, 4).

is irreducible and reduced. It is also obvious that deg Γ = 3/4 and Γ is smooth at p. �

If 𝛾 ≠ 0, then we have 𝛼p (𝑋) ≥ 1 by Claim 26 and Lemma 3.17.
In the following, we consider the case where 𝛾 = 0. We set

Δ = (𝑦 = 𝑧 = 𝑡 = 0) ⊂ P(1, 1, 1, 3, 4),

which is a quasi-line of degree 1/4 passing through p. Note that Δ is smooth at p.

Claim 27. If 𝛾 = 0 and 𝛽 ≠ 0, then 𝑇 |𝑆 = Δ + Ξ, where Ξ is an irreducible and reduced curve which
does not pass through p. Moreover, the intersection matrix 𝑀 (Δ ,Ξ) satisfies the condition (★).

Proof of Claim 27. We have

𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 𝑡 (𝑥6 + 𝛼𝑥3𝑡 + 𝛽𝑥2𝑤 + 𝑡2),

and the polynomial 𝑥6 + 𝛼𝑥3𝑡 + 𝛽𝑥2𝑤 + 𝑡2 is irreducible since 𝛽 ≠ 0. It follows that 𝑇 |𝑆 = Δ + Ξ, where

Ξ = (𝑦 = 𝑧 = 𝑥6 + 𝛼𝑥3𝑡 + 𝛽𝑥2𝑤 + 𝑡2 = 0) ⊂ P(1, 1, 1, 3, 4)

is an irreducible and reduced curve of degree 1/2 that does not pass through p. We have Δ∩Ξ = {p𝑤 , q},
where q = (1 : 0 : 0 : 0 : −1/𝛽). It is easy to see that S is quasi-smooth at p𝑤 and q, hence S is quasi-
smooth along Δ by Lemma 3.9. We have SingΓ (𝑆) = {p𝑤 } and p𝑤 ∈ 𝑆 is of type 1

4 (1, 3). By Remark
3.10, we have

(Δ2)𝑆 = −2 + 3
4
= −5

4
.

By taking intersection number of 𝑇 |𝑆 = Δ + Ξ and Δ and then 𝑇 |𝑆 and Ξ, we have

(Δ · Ξ) = 3
2

, (Ξ2)𝑆 = −1.

It follows that the intersection matrix 𝑀 (Δ ,Ξ) satisfies the condition (★). �

Claim 28. If 𝛾 = 𝛽 = 0 and 𝛼 ≠ ±2, then 𝑇 |𝑆 = Δ +Θ1 +Θ2, where Θ1 and Θ2 are distinct quasi-lines
which does not pass through p. Moreover, the intersection matrix 𝑀 (Δ ,Θ1,Θ2) satisfies the condition
(★).

Proof of Claim 28. We have

𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 𝑡 (𝑥6 + 𝛼𝑥3𝑡 + 𝑡2) = 𝑡 (𝑡 − 𝜆𝑥3) (𝑡 − 𝜆−1𝑥3),
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where 𝜆 ≠ 0, 1 is a complex number such that 𝛼 = 𝜆 + 𝜆−1. Hence, we have

𝑇 |𝑆 = Δ + Θ1 + Θ2,

where

Ξ1 = (𝑦 = 𝑧 = 𝑡 − 𝜆𝑥3 = 0), Ξ2 = (𝑦 = 𝑧 = 𝑡 − 𝜆−1𝑥3 = 0)

are both quasi-lines of degree 1/4 that do not pass through p. We have Δ ∩ (Θ1 ∪ Θ2) = {p𝑤 }
and S is clearly quasi-smooth at p𝑤 . It follows that S is quasi-smooth along Γ by Lemma 3.9, and
SingΔ (𝑆) = {p𝑤 }, where p𝑤 ∈ 𝑆 is of type 1

4 (1, 3). Thus, we have

(Δ2)𝑆 = −5
4

.

By similar arguments, we see that S is quasi-smooth along Θ𝑖 and SingΘ(𝑆) = {p𝑤 } for 𝑖 = 1, 2, and
hence

(Θ2
𝑖 )𝑆 = −5

4
.

By taking intersection number of 𝑇 |𝑆 = Δ + Θ1 + Θ2 and Δ ,Θ1,Θ2, we conclude

(Δ · Θ1)𝑆 = (Δ · Θ2)𝑆 = (Θ1 · Θ2)𝑆 =
3
4

.

It is then straightforward to see that 𝑀 (Δ ,Θ1,Θ2) satisfies the condition (★). �

Claim 29. If 𝛾 = 𝛽 = 0 and 𝛼 = ±2, then 𝑇 |𝑆 = Δ + 2Θ, where Θ is an irreducible and reduced curve
which does not pass through p. Moreover, the intersection matrix 𝑀 (Δ ,Θ) satisfies the condition (★).

Proof of Claim 29. Without loss of generality, we may assume 𝛼 = −2. We have

𝐹 (𝑥, 0, 0, 𝑡, 𝑤) = 𝑡 (𝑡 − 𝑥3)2,

and hence

𝑇 |𝑆 = Δ + 2Θ,

where

Θ = (𝑦 = 𝑧 = 𝑡 − 𝑥3 = 0) ⊂ P(1, 1, 1, 3, 4)

is a quasi-line of degree 1/4 that does not pass through p. By the same arguments as in Claim 28, we have

(Δ2)𝑆 = −5
4

.

Then, by taking intersection number of 𝑇 |𝑆 = Δ + 2Θ and Δ ,Θ, we have

(Δ · Θ)𝑆 =
3
4

, (Θ2)𝑆 = −1
4

.

Thus, the matrix 𝑀 (Δ ,Θ) satisfies the condition (★). �
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By Claims 27, 28, 29 and Lemma 3.21, we conclude

𝛼p (𝑋) ≥ min
{
1,

1
(𝐴3) + 1 − degΔ

}
=

2
3

.

6.5.a.3. Case: 𝑥5𝑤, 𝑥6𝑡 ∉ 𝐹

Replacing y and z, we can write

𝐹 = 𝑥8𝑦 + 𝑥7 𝑓2 + 𝑥6 𝑓3 + 𝑥5 𝑓4 + 𝑥4 𝑓5 + 𝑥3 𝑓6 + 𝑥2 𝑓7 + 𝑥 𝑓8 + 𝑓9,

where 𝑓𝑖 = 𝑓𝑖 (𝑦, 𝑧, 𝑡, 𝑤) is a homogeneous polynomial of degree i with 𝑤 ∉ 𝑓4 and 𝑡 ∉ 𝑓3. Note that we
have 2 ≤ multp (𝐻𝑦) ≤ 3 since 𝑡3 ∈ 𝐹.

Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 𝐻𝑦 . We can take a Q-divisor 𝑇 ∈ |4𝐴|Q such
that multp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑦 since
{𝑦, 𝑧, 𝑡, 𝑤} isolates p. Then

2 multp(𝐷) ≤ (𝐷 · 𝐻𝑦 · 𝑇)p ≤ (𝐷 · 𝐻𝑦 · 𝑇) = 4(𝐴3) = 3.

This shows lctp (𝑋; 𝐷) ≥ 2/3 and thus it remains to show that lct(𝑋; 𝐻𝑦) ≥ 1/2.
Suppose that either multp(𝐻𝑦) = 2 or multp (𝐻𝑦) = 3, and the cubic part of �̄� := 𝐹 (1, 0, 𝑧, 𝑡, 𝑤) is a

cube of a linear form. Then lctp (𝑋; 𝐻𝑦) ≥ 1/2 by Lemma 3.28, and we are done.
In the following, we assume that multp (𝐻𝑦) = 3 and the cubic part of �̄� is a cube of a linear form.

Since 𝑡3 ∈ �̄� and 𝑤3 ∉ �̄�, we may assume that the cubic part of �̄� is 𝑡3 after replacing t.
We claim 𝑤2𝑧 ∈ 𝐹. We see that a monomial other than 𝑤2𝑧 which appears in �̄� with nonzero

coefficient is contained in the ideal (𝑧, 𝑡)2 ⊂ C[𝑧, 𝑡, 𝑤]. We can write 𝐹 = 𝑦𝐺 + 𝐹 (𝑥, 0, 𝑧, 𝑡, 𝑤) for
some homogeneous polynomial 𝐺 (𝑥, 𝑦, 𝑧, 𝑡, 𝑤). If 𝑤2𝑧 ∉ 𝐹, then 𝐹 (𝑥, 0, 𝑧, 𝑡, 𝑤) ∈ (𝑧, 𝑡)2 and X is not
quasi-smooth at any point contained in the nonempty set

(𝑦 = 𝑧 = 𝑡 = 𝐺 = 0) ⊂ P(1, 1, 1, 3, 4).

This is a contradiction and the claim is proved.
Then we may assume coeff𝐹 (𝑤2𝑧) = 1 and, by replacing t and w, we can write

�̄� = 𝛼4𝑧4 + 𝛼5𝑧5 + (𝛽𝑡𝑧3 + 𝛼6𝑧6) + (𝛾𝑤𝑧3 + 𝛿𝑡𝑧4 + 𝛼7𝑧7)+
+(𝜀𝑤𝑧4 + 𝜁𝑡2𝑧2 + 𝜂𝑡𝑧5 + 𝛼8𝑧8) + (𝑤2𝑧 + 𝑡3 + 𝜃𝑡2𝑧3 + 𝜆𝑡𝑧6 + 𝛼9𝑧9),

where 𝛼4, . . . , 𝛼9, 𝛽, 𝛾, . . . , 𝜆 ∈ C. The lowest weight part of �̄� with respect to wt(𝑧, 𝑡, 𝑤) = (6, 8, 9) is
𝐺 := 𝛼4𝑧4 + 𝑤2𝑧 + 𝑡3. We set P = P(6, 8, 9). Then Pwf = P(1, 4, 3)�̃�,𝑡 ,�̃� and, by Lemma 3.27, we have

lctp (𝑋; 𝐻𝑦) ≥ min
{

23
24

, lct(Pwf , Diff; Γ)
}
,

where

Diff =
2
3

𝐻wf
𝑡 + 1

2
𝐻wf
�̃� ,

Γ = Dwf
𝐺 = (𝛼4𝑧4 + �̃�𝑧 + 𝑡 = 0) ⊂ P(1, 4, 3),

are (Q-)divisors on Pwf with 𝐻wf
𝑡

= (𝑡 = 0) and 𝐻wf
�̃� = (�̃� = 0). It is easy to see that any pair of curves

𝐻wf
𝑡

, 𝐻wf
�̃� and Γ intersect transversally. If 𝛼4 ≠ 0, then 𝐻wf

𝑡
∩𝐻wf

�̃� ∩Γ = ∅, and thus lct(Pwf , Diff; Γ) = 1.
If 𝛼4 = 0, then 𝐻wf

𝑡
∩ 𝐻wf

�̃� ∩ Γ = {p�̃�}. In this case, by consider the the blowup at p�̃� , we can confirm
the equality lct(Pwf , Diff; Γ) = 5/6. Thus, we have lctp(𝑋; 𝐻𝑦) ≥ 5/6, and the proof is completed.
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6.5.b. The singular point of type 1
4 (1, 1, 3)

Let p = p𝑤 be the singular point of type 1
4 (1, 1, 3). We can write

𝐹 = 𝑤2𝑥 + 𝑤(𝑡𝑎2 (𝑦, 𝑧) + 𝑏5 (𝑦, 𝑧)) + 𝑓9(𝑥, 𝑦, 𝑧, 𝑡),

where 𝑎2 = 𝑎2 (𝑦, 𝑧), 𝑏5 = 𝑏5(𝑦, 𝑧) and 𝑓9 = 𝑓9(𝑥, 𝑦, 𝑧, 𝑡) are homogeneous polynomials of degrees 2, 5
and 9, respectively.

Suppose that 𝑎2 ≠ 0 as a polynomial. Then �̄� := 𝐹 (0, 𝑦, 𝑧, 𝑡, 1) ∈ (𝑦, 𝑧, 𝑡)3 and its cubic part
𝑡𝑎2 + 𝑡3 is not a cube of a linear form. It follows that lctp(𝑋; 𝐻𝑥) ≥ 2/3 by Lemma 3.28. Let 𝐷 ∈ |𝐴|Q
be an irreducible Q-divisor other than 𝐻𝑥 . Since the set {𝑥, 𝑦, 𝑧} isolates p, we can take a Q-divisor
𝑇 ∈ |𝐴|Q such that omultp(𝑇) ≥ 1 and Supp(𝑇) does not contain any component of 𝐷 · 𝐻𝑥 . We have
omultp (𝐻𝑥) = 3. It follows that

3 omultp (𝐷) ≤ (𝑞∗𝐷 · 𝑞∗𝐻𝑥 · 𝑞∗𝑇)p̌ ≤ 4(𝐷 · 𝐻𝑥 · 𝑇) = 3,

where 𝑞 = 𝑞p is the quotient morphism of p ∈ 𝑋 and p̌ is the preimage of p via q. This shows
lctp(𝑋; 𝐷) ≥ 1 and thus 𝛼p (𝑋) ≥ 1/2.

Finally, suppose that 𝑎2 = 0 and 𝑏5 ≠ 0. Replacing y and z, we may assume 𝑧5 ∈ 𝑏5 and coeff𝑏5 (𝑧5) = 1.
We may also assume that coeff 𝑓9 (𝑡3) = 1 by rescaling t. Then we have

𝐹 (0, 0, 𝑧, 𝑡, 1) = 𝑧5 + 𝑓9(0, 0, 𝑧, 𝑡).

The lowest weight part with respect to the weight wt(𝑧, 𝑡) = (3, 5) is 𝑧5 + 𝑡3 and thus

lctp (𝑋; 𝐻𝑥) ≥ lctp (𝐻𝑦 ; 𝐻𝑥 |𝐻𝑦 ) =
8
15

.

We have omultp (𝐻𝑥) = 3 and the set {𝑥, 𝑦, 𝑧} isolates p. Hence, by the same argument as in the the
case 𝑎2 ≠ 0, we have lctp (𝑋; 𝐷) ≥ 1 for any irreducible Q-divisor 𝐷 ∈ |𝐴|Q other than 𝐻𝑥 . Thus,
𝛼p (𝑋) ≥ 1/2.

Suppose that 𝑎2 = 𝑏5 = 0. Then we have 𝛼p (𝑋) = 5/9 by Proposition 5.16, and the proof is completed.

Remark 6.2. The singular point p ∈ 𝑋 of type 1
4 (1, 1, 3) is a QI center. When p is nondegenerate,

the above proof shows that lctp (𝑋; 𝐷) ≥ 1 for any irreducible Q-divisor 𝐷 ∈ |𝐴|Q other than 𝐻𝑥 and
lctp(𝑋; 𝐻𝑥) > 1/2.

7. Further results and discussion on related problems

7.1. Birationally superrigid Fano 3-folds of higher codimensions

We can embed a Fano 3-fold into a weighted projective space by choosing (minimal) generators of the
anticanonical graded ring. We consider embedded Fano 3-folds. We have satisfactory results on the
classification of Fano 3-folds of low codimensions ([IF00], [CCC11], [ABR02]), and the following are
known for their birational (super)rigidity.

◦ Fano 3-folds of codimension 2 are all weighted complete intersections and they consist of 85 families.
Among them, there are exactly 19 families whose members are birationally rigid ([Oka14], [AZ16]).

◦ Fano 3-folds of codimension 3 consist of 69 families of so-called Pfaffian Fano 3-folds and one family
of complete intersections of three quadrics in P6. Among them, there are exactly three families whose
members are birationally rigid ([AO18]).

◦ Constructions of many families of Fano 3-folds of codimension 4 has been known (see, e.g., [BKR12],
[CD18]), but their classification is not completed. There are at least two families of birationally
superrigid Fano 3-folds of codimension 4 ([Oka20a]).
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For birationally rigid Fano 3-folds of codimension 2 and 3, K-stability and existence of KE metrics
are known under some generality assumptions.

Theorem 7.1 [KOW18]. Let X be a general quasi-smooth Fano 3-folds of codimension 𝑐 ∈ {2, 3} which
is birationally rigid. We assume that X is a complete intersection of a quadric and cubic in P5 when
𝑐 = 2. Then 𝛼(𝑋) ≥ 1, X is K-stable and admits a KE metric.

Theorem 7.2 [Zhu20b, Theorem 1.3]. Let X be a smooth complete intersection of a quadric and cubic
in P5. Then X is K-stable and admits a KE metric.

Question 7.3. Can we conclude K-stability for any quasi-smooth Fano 3-fold of codimension 2 and 3
which is birationally (super)rigid? How about for Fano 3-folds of codimension 4 or higher?

7.2. Lower bound of alpha invariants

In the context of Theorem 1.6, the following is a very natural question to ask.

Question 7.4. Is it true that 𝛼(𝑋) ≥ 1/2 (or 𝛼(𝑋) > 1/2) for any birationally superrigid Fano variety?
If yes, can we find a lower bound better than 1/2?

The following example suggests that the number 1/2 is optimal (or the lower bound can be even
smaller).

Example 7.5. For an integer 𝑎 ≥ 2, let 𝑋𝑎 be a weighted hypersurfaces of degree 2𝑎 + 1 in P(1𝑎+2, 𝑎) =
ProjC[𝑥1, . . . , 𝑥𝑎+2, 𝑦], given by the equation

𝑦2𝑥1 + 𝑓 (𝑥1, . . . , 𝑥𝑎+2) = 0,

where f is a general homogeneous polynomial of degree 2𝑎 + 1. Then 𝑋𝑎 is a quasi-smooth Fano
weighted hypersurface of dimension 𝑎 + 1 and Picard number 1 with the unique singular point p of type

1
𝑎
(

𝑎+1︷���︸︸���︷
1, . . . , 1).

The singularity p ∈ 𝑋 is terminal. By the same argument as in the proof of Proposition 5.16, we obtain

𝛼(𝑋) ≤ 𝛼p (𝑋) = lctp (𝑋; 𝐻𝑥1 ) =
𝑎 + 1

2𝑎 + 1
.

When 𝑎 = 2, 𝑋𝑎 = 𝑋2 is a member of the family F2 and it is birationally superrigid. We expect that 𝑋𝑎

is birationally superrigid, although this is not proved at all when 𝑎 ≥ 3. If 𝑋𝑎 is birationally superrigid
for 𝑎 � 0, then it follows that there exists a sequence of birationally superrigid Fano varieties whose
alpha invariants are arbitrary close to (or less than) 1

2 .

Question 7.6. Let 𝑋𝑎 be as in Example 7.5. Is 𝑋𝑎 birationally superrigid for 𝑎 ≥ 3?

7.3. Existence of KE metrics

For a quasi-smooth Fano 3-fold weighted hypersurface of index 1 which is strictly birationally rigid, we
are unable to conclude the existence of a KE metric as a direct consequence of Theorem 1.8. However,
for a Fano variety X of dimension n with only quotient singularities, the implication

𝛼(𝑋) >
𝑛

𝑛 + 1
=⇒ existence of a KE metric on 𝑋

is proved in [DK01, Section 6]. The aim of this section is to prove the existence of KE metrics on
quasi-smooth members of suitable families.
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We set

I′KE = {42, 44, 45, 61, 69, 74, 76, 79} ⊂ IBR,

and

IKE = IBSR � I′KE.

Note that |IKE | = 56. For a family Fi with i ∈ I, the mark ‘KE’ is given in the right-most column of
Table 7 if and only if i ∈ IKE.

Theorem 7.7. For a member X of a family Fi with i ∈ I′KE, we have

𝛼(𝑋) >
3
4

.

In particular, any member of a family Fi with IKE admits a KE metric and is K-stable.

Proof. By Corollary 1.9 and the above arguments, it is enough to prove the first assertion. Let

𝑋 = 𝑋𝑑 ⊂ P(1, 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑥,𝑦,𝑧,𝑡 ,𝑤

be a member of a family Fi with i ∈ I′KE, where we assume 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4. Note that 1 < 𝑎1 < 𝑎2.

Claim 30. 𝛼p(𝑋) ≥ 1 for any p ∈ 𝑈1 ∩ Sm(𝑋).

Proof of Claim 30. Let p be a smooth point of X contained in 𝑈1.
Suppose i = 42. Then 𝑑 = 20 is divisible by 𝑎4 = 10 and 𝑎2𝑎3 (𝐴3) = 1. By Lemma 4.3, we have

𝛼p (𝑋) ≥ 1.
Suppose i ∈ {69, 74, 76, 79}. Then 𝑎2𝑎4 (𝐴3) ≤ 1. By Lemma 4.2, we have 𝛼p (𝑋) ≥ 1 in this case.
Suppose i ∈ {44, 45, 61}. Then 𝑎3𝑎4 (𝐴3) ≤ 2. We may assume p = p𝑥 . Then we have 𝛼p (𝑋) ≥

2/𝑎3𝑎4 (𝐴3) ≥ 1 by Lemma 3.29. This completes the proof. �

Claim 31. 𝛼p(𝑋) ≥ 1 for any p ∈ (𝐻𝑥 \ 𝐿𝑥𝑦) ∩ Sm(𝑋).

Proof of Claim 31. This follows immediately from Proposition 4.8. �

Claim 32. 𝛼p(𝑋) ≥ 43/54 > 3/4 for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋).

Proof of Claim 32. Let p be a smooth point of X contained in 𝐿𝑥𝑦 . Suppose that X is a member of one of
the families listed in Tables 1 or 2, that is, X is a member of a familyFi with i ∈ {44, 45, 61, 69, 74, 76, 79}.
Then the claim follows immediately from Proposition 4.10.

Suppose i = 42. Then, by the proof of Proposition 4.11 (see Section 4.4.b), either 𝛼p (𝑋) ≥ 1
for any p ∈ 𝐿𝑥𝑦 ∩ Sm(𝑋) or X satisfies the assumption of Lemma 4.14. In the latter case, we have
𝛼p (𝑋) ≥ 43/54 by Remark 4.15. This completes the proof. �

By Claims 30, 31 and 32, we have 𝛼p (𝑋) ≥ 3/4 for any smooth point p ∈ 𝑋 . It remains to consider
singular points.

Claim 33. 𝛼p(𝑋) > 3/4 for any p ∈ Sing(𝑋).

Proof of Claim 33. Let p ∈ 𝑋 be a singular point. If the subscript ♥ (resp. ♦) is given in Table 7, then
𝛼p (𝑋) ≥ 1 by Proposition 5.2 (resp. Proposition 5.3). It remains to consider the case where i = 42 and
p is of type 1

5 (1, 2, 3). In this case, we have 𝛼p (𝑋) ≥ 1 by the proof of Proposition 5.18 (see Section
5.6.c). �

This completes the proof of Theorem 7.7. �
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7.4. Birational rigidity and K-stability

7.4.a. Generalizations of the conjecture
Birational superrigidity is a very strong property. It is natural to relax the assumption of birational
superrigidity to birational rigidity in Conjecture 1.1, and we still expect a positive answer to the
following.

Conjecture 7.8 [KOW18, Conjecture 1.9]. A birationally rigid Fano variety is K-stable.

We explain the situation for smooth Fano 3-folds. There are exactly two families of smooth Fano
3-folds which is strictly birationally rigid: One is the family of complete intersections of a quadric and
cubic in P6 ([IP96]), and another is the family of double covers V of a smooth quadric Q of dimension 3
branched along a smooth surface degree 8 on Q ([Isk80]). Former Fano 3-folds are K-stable and admit
KE metrics ([Zhu20b]), and so are the latter Fano 3-folds (this follows from [Der16a] since Q is K-
semistable). More evidence is already provided by Theorems 1.2 and 7.1, and we will provide further
evidences in the next subsection (see Corollary 7.13).

It may be interesting to consider further generalization of Conjecture 7.8. According to systematic
studies of Fano 3-folds of codimension 2 [Oka14; Oka18; Oka20b], existence of many birationally
birigid Fano 3-folds are verified. Here, a Fano variety X of Picard number 1 is birationally birigid if
there exists a Fano variety 𝑋 ′ of Picard number 1 which is birational but not isomorphic to X, and up to
isomorphism {𝑋, 𝑋 ′} is all the Mori fiber space in the birational equivalence class of X. Extending the
birigidity, tririgidity and so on notion of solid Fano variety is introduced in [AO18]: A Fano variety of
Picard number 1 is solid if any Mori fiber space in the birational equivalence class is a Fano variety of
Picard number 1. Solid Fano varieties are expected to behave nicely in moduli ([Zhu20a]). Only some
evidence is known ([KOW19]) for the following question.

Question 7.9. Is it true that any solid Fano variety is K-stable?

7.4.b. On K-stability for 95 families
For strictly birationally rigid members of the 95 families, we are unable to conclude K-stability by
Theorem 1.8, except for those treated in Theorem 7.7. The aim of this subsection is to prove K-stability
for all the quasi-smooth members of suitable families indexed by IBR. This will be done by combining
the inequality 𝛼 ≥ 1/2 obtained by Theorem 1.8 and an additional information on local movable alpha
invariants which are introduced below.

Definition 7.10. Let X be a Fano variety of Picard number 1 and p ∈ 𝑋 a point. For a nonempty linear
system M on X, we define 𝜆M ∈ Q>0 to be the rational number such that M ∼Q −𝜆M𝐾𝑋 . For a
movable linear system M on X and a positive rational number 𝜇, we define the movable log canonical
threshold of (𝑋, 𝜇M) at p to be the number

lctmov
p (𝑋; 𝜇M) = sup{ 𝑐 ∈ Q≥0 | (𝑋, 𝑐𝜇M) is log canonical at p },

and then we define the movable alpha invariant of X at p as

𝛼mov
p (𝑋) = inf{ lctmov

p (𝑋, 𝜆−1
MM) | M is a movable linear system on 𝑋}.

Proposition 7.11 (cf. [SZ19, Corollary 3.1]). Let X be a quasi-smooth Fano 3-fold weighted hypersurface
of index 1. Assume that, for any maximal center p ∈ 𝑋 , we have

𝛼mov
p (𝑋) ≥ 1 and (𝛼mov

p (𝑋), 𝛼p (𝑋)) ≠ (1, 1/2).

Then X is K-stable.

Proof. By the main result of [CP17] (cf. Remark 2.25), we have 𝛼mov
q (𝑋) ≥ 1 for any point q ∈ 𝑋

which is not a maximal center. It follows that the pair (𝑋, 𝜆−1
MM) is log canonical for any movable

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.87


108 I-K. Kim, T. Okada and J. Won

linear system M on X. Combining this with the inequality 𝛼(𝑋) ≥ 1/2 obtained by Theorem 1.8, we
see that X is K-semistable by [SZ19, Theorem 1.2].

Suppose that X is not K-stable. Then, by [SZ19, Corollary 3.1], there exists a prime divisor E
over X, a movable linear system M ∼Q −𝑛𝐾𝑋 and an effective Q-divisor 𝐷 ∼Q −𝐾𝑋 such that E
is a log canonical place of (𝑋, 1

𝑛M) and (𝑋, 1
2 𝐷). Note that the center Γ of E on X is necessarily a

maximal center, and a maximal center on X is a BI center. Thus, Γ = p is a BI center, and this implies
(𝛼mov

p (𝑋), 𝛼p(𝑋)) = (1, 1/2). This is impossible by the assumption. Therefore, X is K-stable. �

We define

I′K = {6, 8, 15, 16, 17, 26, 27, 30, 36, 41, 47, 48, 54, 56, 60, 65, 68} ⊂ IBR.

Theorem 7.12. Let X be a member of a family Fi with i ∈ I′K. Then, for any BI center p ∈ 𝑋 , we have

𝛼mov
p (𝑋) ≥ 1 and 𝛼p (𝑋) >

1
2

. (7.1)

In particular, X is K-stable.

Proof. Let X be a member of Fi, where i ∈ I′K. We first show that the inequalities (7.12) are satisfied.
Suppose i ∈ {16, 17, 26, 27, 36, 47, 48, 54, 65}. Then the subscript ♦ is given in the fourth column of

Table 7 for any BI center on X. By Proposition 5.3, we have 𝛼p (𝑋) ≥ 1, and hence 𝛼mov
p (𝑋) ≥ 1, for

any BI center p ∈ 𝑋 .
Suppose i ∈ {6, 15, 30, 41, 68}. In this case, X admits two QI centers of equal singularity type and

does not admit any other BI center. By the proof of Proposition 5.18 (see Section 5.6.c), we have
𝛼p (𝑋) ≥ 1 for any QI center p ∈ 𝑋 . In particular, we have 𝛼mov

p (𝑋) ≥ 𝛼p (𝑋) ≥ 1.
Suppose i ∈ {8, 56, 60}. In this case, X admits a unique BI center and it is a QI center. The inequalities

(7.1) follow from Remark 6.2 and Propositions 7.14, 7.15. This completes the verifications for the
inequalities (7.1).

The K-stability of X follows from the inequalities (7.1), Theorem 1.8 and Proposition 7.11. �

We define

IK := I′K � IKE.

Note that |IK | = 73. Combining Theorems 7.7, 7.12 and Corollary 1.9, we obtain the K-stability of
arbitrary quasi-smooth member for families indexed by IK.

Corollary 7.13. Let X be a member of a family Fi with i ∈ IK. Then X is K-stable.

7.5. Further computations of alpha invariants

In this section, we compute local alpha invariants for a few families in order to give better lower bounds.
The results obtained in this section are used only in the proof of Theorem 7.12.

Proposition 7.14. Let X be a member of the family F56 and p = p𝑤 ∈ 𝑋 be the singular point of type
1
11 (1, 3, 8). Then

𝛼p (𝑋) ≥
2
3

and 𝛼mov
p (𝑋) ≥ 1.

Proof. We set p = p𝑤 . We can write the defining polynomial of X as

𝐹 = 𝑤2𝑦 + 𝑓13 + 𝑓24,
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where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑡) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of X,
we have 𝑡3 ∈ 𝐹. It is easy to see that 𝐹 (𝑥, 0, 𝑧, 𝑡, 1) ∈ (𝑥, 𝑧, 𝑡)3. It follows that omultp (𝐻𝑦) = 3, which
in particular implies lctp (𝑋; 1

2 𝐻𝑦) ≥ 2/3.
Let 𝐷 ∈ |𝐴|Q be an irreducible Q-divisor other than 1

2 𝐻𝑦 . We can take a Q-divisor 𝑇 ∈ |3𝐴|Q such
that omultp (𝑇) ≥ 1 and Supp(𝑇) does not contain any component of the effective 1-cycle 𝐷 · 𝐻𝑦 . We
have

3 omultp (𝐷) ≤ 11(𝐷 · 𝐻𝑦 · 𝑇) = 3.

This shows lctp (𝑋; 𝐷) ≥ 1. Therefore, 𝛼mov
p (𝑋) ≥ 1 and 𝛼p (𝑋) ≥ 2/3. �

Proposition 7.15. Let X be a member of the family F60, and let p = p𝑤 be the singular point of type
1
9 (1, 4, 5). Then

𝛼p (𝑋) = 1.

Proof. We set 𝑆 = 𝐻𝑥 ∼ 𝐴, 𝑇 = 𝐻𝑧 and Γ = 𝑆 ∩ 𝑇 = (𝑥 = 𝑧 = 0)𝑋 . Let 𝜌 = 𝜌p : �̆�p → 𝑈p be the
orbifold chart of p ∈ 𝑋 , and we set Γ̆ = (𝑥 = 𝑧 = 0) ⊂ �̆�p. We can write the defining polynomial
of X as

𝐹 = 𝑤2𝑡 + 𝑤 𝑓15 + 𝑓24,

where 𝑓𝑖 = 𝑓𝑖 (𝑥, 𝑦, 𝑧, 𝑡) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of
X, we have 𝑡4, 𝑦6 ∈ 𝐹, and we may assume coeff𝐹 (𝑡4) = coeff𝐹 (𝑦6) = 1 by rescaling y and t. We set
𝜆 = coeff𝐹 (𝑡2𝑦3) ∈ C. Then

Γ � (𝑤2𝑡 + 𝑡4 + 𝜆𝑡2𝑦3 + 𝑦6 = 0) ⊂ P(3, 10, 17)𝑦,𝑡 ,𝑤 ,

Γ̆ � (�̆�2𝑡 + 𝑡4 + 𝜆𝑡 2 �̆�3 + �̆�6 = 0) ⊂ A3
�̆�,𝑡 ,�̆�

.

It is easy to see that Γ is an irreducible and reduced curve, and multp̆ (Γ̆) = 1, where p̆ = 𝑜 ∈ A3 is the
preimage of p via 𝜌.

We see that 𝐻𝑥 is quasi-smooth at p, and hence lctp (𝑋; 𝐻𝑥) = 1. Therefore, we have 𝛼p (𝑋) ≥ 1 by
Lemma 3.17. �

8. The table

The list of the 93 families together with their basic information are summarized in Table 7, and we
explain the contents.

The first two columns indicate basic information of each family and the anticanonical degree (𝐴3) =
(−𝐾𝑋 )3 is indicated in the third column.

In the fourth column, the number and the singularities of X are described. The symbol 1
𝑟 [𝑎, 𝑟 − 𝑎]

stands for the cyclic quotient singularity of type 1
𝑟 (1, 𝑎, 𝑟 − 𝑎), where 1 ≤ 𝑎 ≤ 𝑟/2. Moreover, the

symbols 1
2 , 1

3 and 1
4 stand for singularities of types 1

2 (1, 1, 1), 1
3 (1, 1, 2) and 1

4 (1, 1, 3). The superscripts
QI and EI indicate that the corresponding singular point p is a QI center and EI center, respectively (see
Section 2.3.b for definitions). The meaning of the subscripts is explained as follows.

◦ The subscript ♥ indicates that 𝛼p (𝑋) ≥ 1 is proved by Proposition 5.2.
◦ The subscript ♦ (resp. ♦′) indicates that 𝛼p (𝑋) ≥ 1 (resp. 𝛼p (𝑋) ≥ 2/3) is proved by Proposition 5.3.
◦ The subscript ♣ indicates that 𝛼p (𝑋) ≥ 1/2 is proved by Proposition 5.4.
◦ The subscript ♠ indicates that 𝛼p (𝑋) ≥ 1/2 is proved by Proposition 5.5.

In Theorem 1.8, any birational superrigid member of each of the 95 families is proved. Apart from this
main result, we have results on the existence of KE metrics or K-stability for any quasi-smooth member
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Table 7. The 93 families..

No. 𝑋𝑑 ⊂ P(1, 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4) (𝐴3) Singular points

2 𝑋5 ⊂ P(1, 1, 1, 1, 2) 5
2

1
2

QI

4 𝑋6 ⊂ P(1, 1, 1, 2, 2) 3
2 3× 1

2
QI

5 𝑋7 ⊂ P(1, 1, 1, 2, 3) 7
6

1
2

QI
, 1

3
QI

6 𝑋8 ⊂ P(1, 1, 1, 2, 4) 1 2× 1
2

QI K

7 𝑋8 ⊂ P(1, 1, 2, 2, 3) 2
3 4× 1

2
EI
, 1

3
QI

8 𝑋9 ⊂ P(1, 1, 1, 3, 4) 3
4

1
4

QI K

9 𝑋9 ⊂ P(1, 1, 2, 3, 3) 1
2

1
2 ♥ , 3× 1

3
QI

10 𝑋10 ⊂ P(1, 1, 1, 3, 5) 2
3

1
3 ♣ KE

11 𝑋10 ⊂ P(1, 1, 2, 2, 5) 1
2 5× 1

2 ♥ KE

12 𝑋10 ⊂ P(1, 1, 2, 3, 4) 5
12 2× 1

2 ♠ ,
1
3

QI
, 1

4
QI

13 𝑋11 ⊂ P(1, 1, 2, 3, 5) 11
30

1
2 ♠ ,

1
3

QI
, 1

5 [2, 3]QI

14 𝑋12 ⊂ P(1, 1, 1, 4, 6) 1
2 2× 1

2 ♥ KE

15 𝑋12 ⊂ P(1, 1, 2, 3, 6) 1
3 2× 1

2 ♦ , 2× 1
3

QI
♦ K

16 𝑋12 ⊂ P(1, 1, 2, 4, 5) 3
10 3× 1

2 ♥ ,
1
5 [1, 4]QI

♦ K

17 𝑋12 ⊂ P(1, 1, 3, 4, 4) 1
4 3× 1

4
QI
♦ K

18 𝑋12 ⊂ P(1, 2, 2, 3, 5) 1
5 6× 1

2 ♥ ,
1
5 [2, 3]QI

19 𝑋12 ⊂ P(1, 2, 3, 3, 4) 1
6 3× 1

2 ♥ , 4× 1
3 ♥ KE

20 𝑋13 ⊂ P(1, 1, 3, 4, 5) 13
60

1
3

EI
, 1

4
QI
, 1

5 [1, 4]QI

21 𝑋14 ⊂ P(1, 1, 2, 4, 7) 1
4 3× 1

2 ♥ ,
1
4 ♦ KE

22 𝑋14 ⊂ P(1, 2, 2, 3, 7) 1
6 7× 1

2 ♥ ,
1
3 ♥ KE

23 𝑋14 ⊂ P(1, 2, 3, 4, 5) 7
60 3× 1

2 ♣ ,
1
3 ♣ ,

1
4

EI
♣ ,

1
5 [2, 3]QI

24 𝑋15 ⊂ P(1, 1, 2, 5, 7) 3
14

1
2 ♠ ,

1
7 [2, 5]QI

25 𝑋15 ⊂ P(1, 1, 3, 4, 7) 5
28

1
4

QI
, 1

7 [3, 4]QI

26 𝑋15 ⊂ P(1, 1, 3, 5, 6) 1
6 2× 1

3 ♥ ,
1
6 [1, 5]QI

♦ K

27 𝑋15 ⊂ P(1, 2, 3, 5, 5) 1
10

1
2 ♠ , 3× 1

5 [2, 3]QI
♦ K

28 𝑋15 ⊂ P(1, 3, 3, 4, 5) 1
12 5× 1

3 ♥ ,
1
4 ♥ KE

29 𝑋16 ⊂ P(1, 1, 2, 5, 8) 1
5 2× 1

2 ♣ ,
1
5 [2, 3]♣ KE

30 𝑋16 ⊂ P(1, 1, 3, 4, 8) 1
6

1
3 ♥ , 2× 1

4
QI K

31 𝑋16 ⊂ P(1, 1, 4, 5, 6) 2
15

1
2 ♣ ,

1
5 [1, 4]QI, 1

6 [1, 5]QI

32 𝑋16 ⊂ P(1, 2, 3, 4, 7) 2
21 4× 1

2 ♥ ,
1
3 ♠ ,

1
7 [3, 4]QI

33 𝑋17 ⊂ P(1, 2, 3, 5, 7) 17
210

1
2 ♠ ,

1
3 ♣ ,

1
5 [2, 3]QI , 1

7 [2, 5]QI

34 𝑋18 ⊂ P(1, 1, 2, 6, 9) 1
6 3× 1

2 ♥ ,
1
3 ♥ KE

35 𝑋18 ⊂ P(1, 1, 3, 5, 9) 2
15 2× 1

3 ♥ ,
1
5 [1, 4]♦ KE

36 𝑋18 ⊂ P(1, 1, 4, 6, 7) 3
28

1
2 ♥ ,

1
4

EI
♦ ,

1
7 [1, 6]QI

♦ K
37 𝑋18 ⊂ P(1, 2, 3, 4, 9) 1

12 4× 1
2 ♥ , 2× 1

3 ♣ ,
1
4 ♥ KE

38 𝑋18 ⊂ P(1, 2, 3, 5, 8) 3
40 2× 1

2 ♥ ,
1
5 [2, 5]QI, 1

8 [3, 5]QI

39 𝑋18 ⊂ P(1, 3, 4, 5, 6) 1
20

1
2 ♥ , 3× 1

3 ♣ ,
1
4 ♣ ,

1
5 [1, 4]♥ KE

40 𝑋19 ⊂ P(1, 3, 4, 5, 7) 19
420

1
3 ♠ ,

1
4 ♣ ,

1
5 [2, 3]EI

♣ , 1
7 [3, 4]QI

41 𝑋20 ⊂ P(1, 1, 4, 5, 10) 1
10

1
2 ♥ , 2× 1

5 [1, 4]QI
♦ K

42 𝑋20 ⊂ P(1, 2, 3, 5, 10) 1
15 2× 1

2 ♥ ,
1
3 ♥ , 2× 1

5 [2, 3]QI KE
43 𝑋20 ⊂ P(1, 2, 4, 5, 9) 1

18 5× 1
2 ♥ ,

1
9 [4, 5]QI

44 𝑋20 ⊂ P(1, 2, 5, 6, 7) 1
21 3× 1

2 ♥ ,
1
6 [1, 5]EI

♦ , 1
7 [2, 5]QI

♦ KE
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Table 7. (Continued)..

No. 𝑋𝑑 ⊂ P(1, 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4) (𝐴3) Singular points

45 𝑋20 ⊂ P(1, 3, 4, 5, 8) 1
24

1
3 ♥ , 2× 1

4 ♥ ,
1
8 [3, 5]QI

♦ KE
46 𝑋21 ⊂ P(1, 1, 3, 7, 10) 1

10
1
10 [3, 7]QI

47 𝑋21 ⊂ P(1, 1, 5, 7, 8) 3
40

1
5 [2, 3]♠, 1

8 [1, 7]QI
♦ K

48 𝑋21 ⊂ P(1, 2, 3, 7, 9) 1
18

1
2 ♠ , 2× 1

3 ♥ ,
1
9 [2, 7]QI

♦ K
49 𝑋21 ⊂ P(1, 3, 5, 6, 7) 1

30 3× 1
3 ♥ ,

1
5 [2, 3]♠, 1

6 [1, 5]♥ KE
50 𝑋22 ⊂ P(1, 1, 3, 7, 11) 2

21
1
3 ♥ ,

1
7 [3, 4]♣ KE

51 𝑋22 ⊂ P(1, 1, 4, 6, 11) 1
12

1
2 ♥ ,

1
4 ♥ ,

1
6 [1, 5]♦ KE

52 𝑋22 ⊂ P(1, 2, 4, 5, 11) 1
20 5× 1

2 ♥ ,
1
4 ♥ ,

1
5 [1, 4]♥ KE

53 𝑋24 ⊂ P(1, 1, 3, 8, 12) 1
12 2× 1

3 ♥ ,
1
4 ♥ KE

54 𝑋24 ⊂ P(1, 1, 6, 8, 9) 1
18

1
2 ♥ ,

1
3 ♥ ,

1
9 [1, 8]QI

♦ K
55 𝑋24 ⊂ P(1, 2, 3, 7, 12) 1

21 2× 1
2 ♥ , 2× 1

3 ♥ ,
1
7 [2, 5]♦ KE

56 𝑋24 ⊂ P(1, 2, 3, 8, 11) 1
22 3× 1

2 ♥ ,
1
11 [3, 8]QI K

57 𝑋24 ⊂ P(1, 3, 4, 5, 12) 1
30 2× 1

3 ♥ , 2× 1
4 ♥ ,

1
5 [2, 3]♥ KE

58 𝑋24 ⊂ P(1, 3, 4, 7, 10) 1
35

1
2 ♥ ,

1
7 [3, 4]QI, 1

10 [3, 7]QI

59 𝑋24 ⊂ P(1, 3, 6, 7, 8) 1
42

1
2 ♥ , 4× 1

3 ♥ ,
1
7 [1, 6]♥ KE

60 𝑋24 ⊂ P(1, 4, 5, 6, 9) 1
45 2× 1

2 ♥ ,
1
3 ♥ ,

1
5 [1, 4]♥ , 1

9 [4, 5]QI K

61 𝑋25 ⊂ P(1, 4, 5, 7, 9) 5
252

1
4 ♣ ,

1
7 [2, 5]EI

♦ , 1
9 [4, 5]♦ KE

62 𝑋26 ⊂ P(1, 1, 5, 7, 13) 2
35

1
5 [2, 3]♠, 1

7 [1, 6]♦ KE
63 𝑋26 ⊂ P(1, 2, 3, 8, 13) 1

24 3× 1
2 ♥ ,

1
3 ♥ ,

1
8 [3, 5]♣ KE

64 𝑋26 ⊂ P(1, 2, 5, 6, 13) 1
30 4× 1

2 ♥ ,
1
5 [2, 3]♣, 1

6 [1, 5]♥ KE

65 𝑋27 ⊂ P(1, 2, 5, 9, 11) 3
110

1
2 ♠ ,

1
5 [1, 4]♥ , 1

11 [2, 9]QI
♦ K

66 𝑋27 ⊂ P(1, 5, 6, 7, 9) 1
70

1
3 ♥ ,

1
5 [1, 4]♣, 1

6 [1, 5]♥, 1
7 [2, 5]♥ KE

67 𝑋28 ⊂ P(1, 1, 4, 9, 14) 1
18

1
2 ♥ ,

1
9 [4, 5]♠ KE

68 𝑋28 ⊂ P(1, 3, 4, 7, 14) 1
42

1
2 ♥ ,

1
3 ♣ , 2× 1

7 [3, 4]QI
♦ K

69 𝑋28 ⊂ P(1, 4, 6, 7, 11) 1
66 2× 1

2 ♥ ,
1
6 [1, 5]♥, 1

11 [4, 7]QI
♦ KE

70 𝑋30 ⊂ P(1, 1, 4, 10, 15) 1
20

1
2 ♥ ,

1
4 ♥ ,

1
5 [1, 4]♥ KE

71 𝑋30 ⊂ P(1, 1, 6, 8, 15) 1
24

1
2 ♥ ,

1
3 ♥ ,

1
8 [1, 7]♦ KE

72 𝑋30 ⊂ P(1, 2, 3, 10, 15) 1
30 3× 1

2 ♥ , 2× 1
3 ♥ ,

1
5 [2, 3]♥ KE

73 𝑋30 ⊂ P(1, 2, 6, 7, 15) 1
42 5× 1

2 ♥ ,
1
3 ♥ ,

1
7 [1, 6]♥ KE

74 𝑋30 ⊂ P(1, 3, 4, 10, 13) 1
52

1
2 ♥ ,

1
4 ♥ ,

1
13 [3, 10]QI

♦ KE
75 𝑋30 ⊂ P(1, 4, 5, 6, 15) 1

60 2× 1
2 ♥ ,

1
3 ♥ ,

1
4 ♥ , 2× 1

5 [1, 4]♥ KE

76 𝑋30 ⊂ P(1, 5, 6, 8, 11) 1
88

1
2 ♥ ,

1
8 [3, 5]EI

♦ , 1
11 [5, 6]QI

♦ KE
77 𝑋32 ⊂ P(1, 2, 5, 9, 16) 1

45 2× 1
2 ♥ ,

1
5 [1, 4]♥ , 1

9 [2, 7]♦ KE
78 𝑋32 ⊂ P(1, 4, 5, 7, 16) 1

70 2× 1
4 ♥ ,

1
5 [1, 4]♥ , 1

7 [2, 5]♥ KE

79 𝑋33 ⊂ P(1, 3, 5, 11, 14) 1
70

1
5 [1, 4]♥ , 1

14 [3, 11]QI
♦ KE

80 𝑋34 ⊂ P(1, 3, 4, 10, 17) 1
60

1
2 ♥ ,

1
3 ♣ ,

1
4 ♥ ,

1
10 [3, 7]♦ KE

81 𝑋34 ⊂ P(1, 4, 6, 7, 17) 1
84 2× 1

2 ♥ ,
1
4 ♥ ,

1
6 [1, 5]♥ , 1

7 [3, 4]♥ KE
82 𝑋36 ⊂ P(1, 1, 5, 12, 18) 1

30
1
5 [2, 3]♠, 1

6 [1, 5]♥ KE
83 𝑋36 ⊂ P(1, 3, 4, 11, 18) 1

66
1
2 ♥ , 2× 1

3 ♥ ,
1
11 [4, 7]♦ KE

84 𝑋36 ⊂ P(1, 7, 8, 9, 12) 1
168

1
3 ♥ ,

1
4 ♥ ,

1
7 [2, 5]♠, 1

8 [1, 7]♥ KE
85 𝑋38 ⊂ P(1, 3, 5, 11, 19) 2

165
1
3 ♥ ,

1
5 [1, 4]♥ , 1

11 [3, 8]♦ KE
86 𝑋38 ⊂ P(1, 5, 6, 8, 19) 1

120
1
2 ♥ ,

1
5 [1, 4]♥ , 1

6 [1, 5]♥ , 1
8 [3, 5]♥ KE

87 𝑋40 ⊂ P(1, 5, 7, 8, 20) 1
140

1
4 ♥ , 2× 1

5 [2, 3]♥ , 1
7 [1, 6]♥ KE

88 𝑋42 ⊂ P(1, 1, 6, 14, 21) 1
42

1
2 ♥ ,

1
3 ♥ ,

1
7 [1, 6]♥ KE
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Table 7. (Continued)..

No. 𝑋𝑑 ⊂ P(1, 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4) (𝐴3) Singular points

89 𝑋42 ⊂ P(1, 2, 5, 14, 21) 1
70 3× 1

2 ♥ ,
1
5 [1, 4]♥ , 1

7 [2, 5]♥ KE
90 𝑋42 ⊂ P(1, 3, 4, 14, 21) 1

84
1
2 ♥ , 2× 1

3 ♥ ,
1
4 ♥ ,

1
7 [3, 4]♥ KE

91 𝑋44 ⊂ P(1, 4, 5, 13, 22) 1
130

1
2 ♥ ,

1
5 [2, 3]♥, 1

13 [4, 9]♦ KE
92 𝑋48 ⊂ P(1, 3, 5, 16, 24) 1

120 2× 1
3 ♥ ,

1
5 [1, 4]♥ , 1

8 [3, 5]♥ KE
93 𝑋50 ⊂ P(1, 7, 8, 10, 25) 1

280
1
2 ♥ ,

1
5 [2, 3]♥ , 1

7 [3, 4]♣ , 1
8 [1, 7]♥ KE

94 𝑋54 ⊂ P(1, 4, 5, 18, 27) 1
180

1
2 ♥ ,

1
4 ♥ ,

1
5 [2, 3]♥, 1

9 [4, 5]♥ KE
95 𝑋66 ⊂ P(1, 5, 6, 22, 33) 1

330
1
2 ♥ ,

1
3 ♥ ,

1
5 [2, 3]♣ , 1

11 [5, 6]♥ KE

of suitable families. In the right-most column the mark ‘KE’ and ‘K’ are given and their meanings are
as follows.

◦ The mark ‘KE’ in the right-most column means that any quasi-smooth member admits a KE metric
and is K-stable (see Section 7.3).

◦ The mark ‘K’ in the right-most column means that any quasi-smooth member is K-stable (see Section
7.4.b).

Remark 8.1. We explain what is left about K-stability of quasi-smooth Fano 3-fold weighted hypersur-
faces of index 1.

As it is explained in Section 1.4, the result [LXZ22] obtained after this paper is written in particular
implies that the K-stability of a quasi-smooth Fano 3-fold weighted hypersurface is equivalent to the
existence of a KE metric. It follows that the meaning of the mark ‘KE’ and ‘K’ in the right-most column
of Table 7 are the same: It indicates that any quasi-smooth member is K-stable (and admits a KE metric).
All in all, we obtain the following results in this article:

◦ Any quasi-smooth member in a family Fi with a mark ‘K’ or ‘KE’ in the right-most column of Table
7 is K-stable.

◦ Any quasi-smooth and birationally superrigid member in a family Fi with a blank right-most column
in Table 7 is K-stable.

Therefore, it remains to determine K-stability for quasi-smooth members in a family Fi with a blank
right-most column that are not birationally superrigid.
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