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As a generalization of the mass–flux based classical stream tube, the concept of
momentum and energy transport tubes is discussed as a flow visualization tool. These
transport tubes have the property that no fluxes of momentum or energy exist over
their respective tube mantles. As an example application using data from large eddy
simulation, such tubes are visualized for the mean-flow structure of turbulent flow in
large wind farms, in fully developed wind-turbine-array boundary layers. The three-
dimensional organization of energy transport tubes changes considerably when turbine
spacings are varied, enabling the visualization of the path taken by the kinetic energy
flux that is ultimately available at any given turbine within the array.
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1. Introduction
The notion of a stream tube (Batchelor 1967; Fay 1994) as a tool for flow analysis

and visualization is particularly useful because it maintains constant volume or mass
flux across sections. A popular example of stream-tube-based dynamical analysis is
the actuator disc and ideal flow model of wind turbines, establishing the relationship
between power extraction and fluxes of kinetic energy at the stream tube inlet and
outlet (see Burton et al. 2001). The classical analysis is valid for steady and ideal flow.
However, in three-dimensional high-Reynolds-number turbulent flows, the transport
of mean momentum and mean-flow kinetic energy is often dominated by Reynolds
stresses. Then the averaged flux of mass being visualized by a stream tube is no
longer representative of the transport of other flow properties such as momentum or
energy. As a generalization of the classic stream tube, we consider the concept of
momentum and energy transport tubes, defined such that there is no average transport
of momentum or mean-flow total mechanical energy over their respective tube mantles.
These tubes enable us to visualize the trajectory of transported properties across the
flow. We illustrate the approach for the case of turbulent flow through large wind
farms, looking for an answer to the question: ‘Where does the kinetic energy come
from that is ultimately extracted by a given wind turbine’? To this end, we employ
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data obtained from large eddy simulations (LESs) of fully developed wind-turbine-
array boundary layers (following Calaf, Meneveau & Meyers 2010), with different
stream-wise and span-wise turbine spacings and wind-turbine arrangements.

In § 2 the concept of transport tubes for mean-flow momentum and mean-flow
mechanical energy is presented. Next, to illustrate the concept, some analytically
tractable laminar flow examples are provided in § 3. Subsequently, in § 4 we
demonstrate the use of these tubes for the interpretation of momentum and energy
fluxes in large wind farms. There, we first evaluate conventional averaged-flow stream
tubes that pass through a target wind-turbine disc and then investigate momentum
and energy transport tubes for various turbine spacings in the wind farm. Further
discussion is provided in § 5. Conclusions are presented in § 6.

2. Mass, momentum and energy tubes
We focus on incompressible viscous, statistically stationary turbulent flows with

constant density ρ. A classical streamline of a stationary mean-flow field is commonly
defined as a curve Γ parametrized by x(s) ∈ Γ (s ∈ R), for which x(s) × u = 0, with
u = [u1, u2, u3] the mean velocity vector in a particular frame of reference. A stream
tube is then constructed by selecting a closed curve C, which is nowhere tangent
to the velocity, and considering the bundle of all streamlines through that curve C
(Batchelor 1967). Consider a volume of stream tube Ω , bound by the tube mantle
M, and two cross-sections A1 and A2. The volume-integrated continuity equation leads
to
∫∫

A2
ρuini dx + ∫∫ A1

ρuini dx = 0, where n is the outward directed normal to the
stream-tube control volume. No mass flows through the tube mantle M since, by
construction, uini = 0 there.

To construct momentum or energy transport tubes, which have the property that
there is on average no exchange of momentum or energy through the corresponding
tube’s mantle, we consider the vector fields formed by the total flux of these quantities.
The total flux includes advective, turbulent and viscous fluxes. For the transport of
linear momentum, we consider a direction characterized by constant unit vector ζ and
components ζi (as an example, ζ could be any one of the Cartesian unit vectors i, j
or k). Hence, the ζ momentum is ρuiζi, and for statistically steady flow its transport
equation is given by

∂

∂xj
(ρFm,j)=− ∂p

∂xi
ζi + f iζi, (2.1)

where f i represents the body force, and

Fm,j = uj(uiζi)+
(
u′iu′j − 2νSij

)
ζi (2.2)

is the flux vector field of linear momentum (per unit mass) in the ζ direction (the
index ‘m’ refers to momentum), ν is the kinematic fluid viscosity (ν = µ/ρ with µ the
dynamic viscosity), and Sij = (∂ui/∂xj+ ∂uj/∂xi)/2 the mean rate-of-strain tensor. Also,
a linear-momentum-transporting velocity field um can be defined according to

um,j = uj + [u
′
iu
′
j − 2νSij]ζi

ukζk
. (2.3)

A similar notion of a diffusion velocity has been introduced in the context of
deterministic particle transport methods (Hermeline 1989), and later used in particle
vortex methods for viscous flows (Degond & Mustieles 1990; Grant & Marshall 2005).
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Momentum and energy transport tubes 337

Some similarity also exists with the notion of Favre averaging for compressible flow,
where a mass-transport velocity field is defined by dividing the mass flux by the
average density (Favre et al. 1976; Smits & Dussauge 2006).

Constructing a tube based on Fm (or um), we now find∫∫
A2

ρFm,jnj dx+
∫∫

A1

ρFm,jnj dx=−
∫∫∫

Ω

∂pζi

∂xi
dx +

∫∫∫
Ω

f iζi dx. (2.4)

No momentum is transported through the tube mantle, since by construction
Fm,ini = 0 there. As a result, on the tube’s cross-sections A1 and A2, the flux of
linear momentum is constant, except for integral effects of sources and sinks of
momentum, ζi∂p/∂xi, and f iζi in the tube. The pressure effects can also be written
in terms of the pressure at the inlet, outlet and mantle using −∫∫∫

Ω
∂(pζi)/∂xi dx =∫∫

A1
pζini dx + ∫∫ A2

pζini dx + ∫∫ Mpζini dx. We remark that a classical jet evolving at
constant pressure may be considered a stream-wise momentum transport tube, since
the momentum flux across its sections remains constant and no forces or momentum
fluxes act on its mantle even though a mass flux crosses the mantle; see § 3 for details,
where an elaboration of momentum and energy tubes (the latter is defined below) is
presented for some simple canonical laminar-flow cases. Note that the momentum-flux
vector and related tube geometry depend directly on the choice of the direction ζ
in which linear momentum is defined. The tube geometry also depends upon the
velocity of the reference frame. Like classic stream tubes, generalized transport tubes
are not Galilean invariant. For an illustration on wind-farm cases in § 4, we focus on
stream-wise momentum along the incident wind direction only.

Similarly we consider mean-flow energy-transport tubes, based on the transport
equation for mean-flow kinetic energy (ρK = ρuiui/2):

∂

∂xj
(ρFK,j)=−∂uip

∂xi
+ ρu′iu′j

∂ui

∂xj
− 2µSijSij + uif i, (2.5)

where

FK,j = Kuj + (u′iu′j − 2νSij)ui, (2.6)

is the total kinetic energy flux vector field per unit mass, and the kinetic energy
transport velocity is uK,j = FK,j/K. These vector fields may be used to construct
energy-transport tubes.

A difficulty for the interpretation of momentum and energy tubes is the fact that
the pressure gradient acts as a source term. This is less of an issue when the pressure
gradient is only due to an external pressure difference, such that the gradients only
relate to an external force, and power inserted in the system, respectively. However,
when local accelerations or decelerations have an impact on the local pressure (e.g.
near wind turbines; see below), the interpretation of these sources is less natural.
For the study of energy fluxes, this can be remedied by looking at mean-flow total
mechanical energy tubes. To this end, we decompose the mean pressure gradient as
∇p = ∇p∞ + ∇p̂ = −f∞ + ∇p̂, where f∞ may be an external driving force per unit
volume. Denoting the total mean-flow mechanical energy per unit mass as

E = uiui/2+ p̂/ρ, (2.7)

its transport equation reads

∂(ρFE,j)

∂xj
= ρu′iu′j

∂ui

∂xj
− 2µSijSij + ui(f i + fi,∞), (2.8)
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with the total mechanical energy transport vector field FE defined according to

FE,j = Euj + (u′iu′j − 2νSij)ui. (2.9)

Related to this, a transport-velocity field may also be defined as FE,j/E. Constructing a
tube based on FE,j, we now find∫∫

A2

ρFE,jnj dx+
∫∫

A1

ρFE,jnj dx=−
∫∫∫

Ω

(
2µSijSij − ρu′iu′j

∂ui

∂xj

)
dx

+
∫∫∫

Ω

ui(f i + fi,∞) dx. (2.10)

No mean total mechanical energy is transported through the tube mantle and the flux
across sections of the tube is constant, except for sources/sinks of mean-flow kinetic
energy by the distributed force (ui f i), by mean-flow viscous dissipation (sink) and
due to the production of turbulent kinetic energy −ρu′iu′j∂ui/∂xj (typically also a sink
of mean energy). For conservative force fields, one of course also has the option of
including it in the definition of E via its potential function. Examples of energy tubes
for some simple laminar-flow cases are briefly discussed in the next section.

Finally, in the particular case of ideal (inviscid) and steady laminar flow, we have
u′iu′j = 0 and 2νSij = 0. Hence, it is obvious that u = um = FK/K = FE/E, from which
it follows that stream tubes, momentum transport tubes and energy transport tubes
all collapse, as conventionally used in ideal-flow, stream-tube analysis. However, in
turbulent flows Reynolds stresses can affect momentum and energy fluxes considerably,
so that these different tubes may differ greatly. This is illustrated with applications
to flow in wind-farm boundary layers in § 4. Furthermore, we can remark that
transport tubes for other quantities such as vorticity, helicity, temperature or elements
of Reynolds stress may be derived accordingly.

3. Transport tubes for some simple laminar flows
To first illustrate the concept of momentum and energy tubes, they are briefly

elaborated on in the current section for a few simple canonical laminar-flow cases.

3.1. Couette flow
We first consider laminar Couette flow, with an along-boundary (horizontal) velocity
profile given by u(y) = y(U/h) and vertical velocity v = 0. Then the momentum
flux is given by the following two components: Fm,1 = uum = (yU/h)2 and Fm,2 =
uvm(y) = −ν(∂u/∂y) = −ν(U/h). Therefore, the slope of the tangent lines of this
vector field is given by dym/dx = Fm,2/Fm,1 = vm/um = −(νh/U)y−2

m = −Re−1 (ym/h)
−2

(where Re= Uh/ν). Integration yields momentum lines of the form

ym(x)

h
=
[

3
Re

x0 − x

h

]1/3

. (3.1)

Figure 1 shows the resulting shape of these lines for two values of x0/h = ±1
thus enclosing a two-dimensional momentum transport tube. We used Re = 10 and
the lengths shown are in units of h. The dot-dashed lines show regular streamlines.
The momentum transport lines can be interpreted as follows: the flux of x-direction
(horizontal) momentum flux that enters at x = −5 (A–B) is transferred through this
tube downwards towards the solid wall (ym = 0), where it is equalled by the viscous
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FIGURE 1. Couette flow: dot-dashed lines show sample streamlines, solid lines are
momentum lines, while dashed lines denote kinetic energy lines.

drag acting between x = −1 and x = 1. By definition there is no net momentum flux
of any type crossing the solid lines, and since the problem is steady and there are
no further forces acting (e.g. pressure), the entire momentum flux is absorbed at the
wall. Alternatively, one may regard (for example) the bottom horizontal (dot–dashed)
line as the top wall that is being dragged from left to right. Then the total drag force
acting on this top wall between x = −5 and x = −3 (segment A–C) is ‘transmitted’
via the momentum transport tube towards the bottom wall as indicated by the solid
lines. Near the wall, the transport velocity becomes vertical as more and more of
the momentum transport occurs through viscous diffusion, while the momentum being
transported vanishes. Owing to the latter effect, the magnitude of the vertical transport
velocity diverges to infinity, while the transport lines remain well-defined. We also
remark that at increasing Re (or increasing h away from the bottom wall), the transport
lines become more horizontal, as inertia in the horizontal direction dominates over
viscous diffusion. Close to the bottom wall, viscous diffusion dominates.

Next, we consider the kinetic energy transport flux, see (2.9). Similarly as with
momentum transport, one can show that the energy lines are given by

yE(x)

h
=
[

6
Re

x0 − x

h

]1/3

. (3.2)

The resulting lines, starting out at the same points as the streamlines and momentum
lines at x = −5 in figure 1 and shown using dashes, curve down towards the wall
more quickly than the momentum lines. The entire flux of kinetic energy that enters
the energy tube at x = −5 (segment A–B) is transported towards the wall while being
dissipated as heat inside the tube. Since no work is being done on the bottom wall, the
entire energy is dissipated inside the tube before reaching the bottom wall. Conversely,
there is work done by a moving top wall, e.g. along segment A–D, which is then
dissipated as heat inside the energy tube.

3.2. Poiseuille flow
Similarly, if we consider simple laminar Poiseuille flow of the form u(y) =
y(1 − y)Gh2/(2ν), with G = −(1/ρ) dp/dx and y non-dimensionalized with channel
total height h, we obtain Fm,1 = u (y)2 and Fm,2 = −(1 − 2y)Gh/(2ν). The momentum-
line slopes become dym/dx = − (8Reh)

−1(1 − 2y) [y2 (1− y)2]−1
, where Reh = Uh/ν

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.523


340 J. Meyers and C. Meneveau

0.5

x

1.0

y

0 0.5 0 0.5 1.0 0.5 1.0 1.5 2.0 2.5

(a) (b) (c)

FIGURE 2. Momentum lines for Poiseuille flow at three Reynolds numbers: (a) Reh = 0.1;
(b) Reh = 1; (c) Reh = 10.

and U = Gh2/(16ν) is the channel mean velocity. The slope depends upon the
Reynolds number, with steeper slopes corresponding to lower Reynolds number
(stronger diffusion transport) as expected. Integration yields momentum lines given
by y= ym(x) and passing through (x0, y0), according to

4 ln

(
y− 1

2

y0 − 1
2

)
+ (2y− 3)(2y+ 1) (1− 2y)2−(2y0 − 3)(2y0 + 1) (1− 2y0)

2

= 16
Reh

(x− x0). (3.3)

The results are shown in figure 2 for three Reynolds numbers. The interpretation is
that the momentum added in the bulk of the flow through the pressure gradient is
transported towards the sidewalls as shown in the figure. We note that kinetic energy
lines have the same shape but with twice the slope, and the work done by the pressure
gradient is dissipated entirely, before reaching the walls.

3.3. Laminar round jet and wake
The similarity solution for laminar round jet is given by the stream function ψ =
νxf (η), where η = r/x (White 2006). The axial velocity is u = (ν/r)f ′ and the radial
velocity is v = (ν/r)(ηf ′ − f ). The classical solution is f (η) = (cη)2 [1+ (cη/2)2]−1

where c is related to the jet momentum flux and Reynolds number. The shape of
the constant-ψ streamlines are visualized in figure 3 using dash-dotted lines. The
horizontal momentum lines can be obtained using Fm,x = u2 and Fm,r = uv − ν∂u/∂r =
(ν/r)2 f ′(ηf ′ − f + 1− ηf ′/f ′′). The slope of momentum lines is then given by

drm

dx
= Fm,r

Fm,x
= η + f ′ − ff ′ − ηf ′′

f ′2
= η, (3.4)

since f ′ − ff ′ − ηf ′′ = 0 for the round-jet similarity solution. As a result, the momentum
lines are straight lines (solid lines in figure 3). This is of course expected, since
momentum flux is constant in sections of cones bounded by a fixed η, a basic
requirement since

∫ η
0 f ′2 dη′ only depends upon η. The lines in figure 3 are helpful in

visualizing how momentum is being brought towards the outer entrained fluid.
The kinetic energy lines in the far field (using the boundary-layer approximation that

K = (1/2)u2 (v � u) are also lines but have twice the slope of the momentum lines
(for the same value of η). The ‘faster’ spreading does not mean that comparatively
more kinetic energy than momentum arrives at the entrained fluid, since part of the
kinetic energy is dissipated.
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FIGURE 3. Representative streamlines (dot-dashed) and momentum lines (solid) for laminar
round jet similarity solution.

The far-wake solution with horizontal velocity u = U0 − uc and centreline defect
velocity of uc = (C/x) exp(−η2) with η = r [U0/(4νx)]1/2 leads to a radial inflow
given by v = (ν/U0)

1/2 C x−3/2 η exp(−η2). The radial momentum flux is Fm,r =
uv − ν∂u/∂r ≈ U0v + ν∂uc/∂r in the far wake, which can be shown to lead to vm = 2v.
Similarly, the kinetic energy transport vertical velocity is given by vK = 3v. Hence,
momentum and kinetic energy are being transported into the wake from the outside
along steeper, but similar, influx ‘trajectories’. In the wake, mass, linear momentum
and kinetic energy are being replenished.

4. Transport of mass, momentum and energy in large wind farms
We now turn to the application of transport tubes for the visualization of momentum

and energy transport in the flow through wind-farm boundary layers.
With the increase in size of land-based and offshore wind farms the problem of

farm performance is becoming an important research topic (Emeis & Frandsen 1993;
Frandsen et al. 2009; Ivanell et al. 2009; Barthelmie et al. 2010; Cal et al. 2010; Lu &
Porté-Agel 2011; Meyers & Meneveau 2012). For very large systems, the notion of the
asymptotically large (infinite) wind farm becomes relevant (Emeis & Frandsen 1993;
Frandsen et al. 2006; Calaf et al. 2010). This limiting case can be conveniently studied
in numerical simulations using periodic boundary conditions in the horizontal direction,
as has been done in recent LES studies of wind farms (Calaf et al. 2010; Meyers &
Meneveau 2012).

For a lone-standing turbine, physical mechanisms related to power extraction are
reasonably well-described using a stationary stream-tube analysis, neglecting the
effects of viscosity and Reynolds stresses. Conservation of mass, the Bernoulli
equation and considering differences in upstream and downstream momentum fluxes
leads to concepts such as the Betz limit for wind-turbine power extraction, wind-
turbine momentum theory, etc. (Burton et al. 2001). In real wind farms, however,
wind-farm-induced turbulence levels are much higher, so that turbulent fluxes become
already as important as ideal terms in stream tubes that extend two-dimensionally
upstream and downstream of the turbines (Lebron, Castillo & Meneveau 2012). In
such situations, the energy extracted by the turbines is entrained mostly from the flow
above the farm by turbulence, as quantified by Reynolds stress-mediated fluxes (Calaf
et al. 2010; Cal et al. 2010). In order to help improve our understanding of the
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U

sxD

syD sxDsyD

(a) (b)

FIGURE 4. Aligned (a) and staggered (b) turbine arrangement patterns, and definitions of
stream-wise turbine spacing sx and span-wise turbine spacing sy (non-dimensionalized by
rotor diameter D). The mean flow (U) is in the x direction.

three-dimensional structure of these fluxes, in this section we investigate transport
tubes of mass, momentum and energy for eight different wind-turbine-array boundary
layers, with different turbine spacings and configurations.

Table 1 provides an overview of the different cases considered. Four cases use
an aligned arrangement pattern, while four other cases use a staggered pattern
(see figure 4 for a sketch). These cases comprise different stream-wise spacings
sxD and span-wise spacings syD between turbines (with D the rotor diameter), as
further detailed in table 1. All results are obtained using LES following the approach
discussed by Calaf et al. (2010) and Meyers & Meneveau (2010). The four aligned
cases are taken from Calaf et al. (2010); the staggered cases are added in the current
work, and are geometrically constructed by shifting every second span-wise row of
turbines of the respective aligned cases along the span-wise direction. As a result, the
stream-wise spacing between turbines doubles, while the span-wise spacing between
rows is divided by two (see figure 4).

The effect of wind turbines in the LES is represented using an actuator disc model
(ADM). We consider cases with and without wake rotation. Cases without wake
rotation do not include applied tangential forces at the turbine (ADM, i.e. cases
1–8 and 1F in table 1). In another case (ADMR, case 1R in table 1) we add
tangential forces following the formulation used by Meyers & Meneveau (2010). In
a recent detailed validation study by Wu & Porté-Agel (2011), it was demonstrated
that except for near-wake effects close to the turbines with x < 3D, the non-rotating
model (ADM) allows an accurate representation of the overall wake structures behind
turbines. The rotating case (ADMR), including tangential forces, further improves near-
wake behaviour (Wu & Porté-Agel 2011). Moreover, in the same study, the Reynolds
stresses were found to be accurately predicted by both formulations, thus allowing
an accurate representation of the interaction of the wind farms with the atmospheric
boundary layer. A snapshot of a typical LES velocity field using the ADM method is
provided in figure 5. Further details on the methodology and computational set-up may
be found in Calaf et al. (2010) and Meyers & Meneveau (2010), and are summarized
in appendix A, where the effects of LES resolution (case 1 versus case 1F) and wake
rotation (case 1 versus case 1R) are also documented and discussed.
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FIGURE 5. Snapshot of a stream-wise velocity field in the LES of a wind-turbine-
array boundary layer. The colour scale is stream-wise velocity in units of u∗ =
[−(H/ρ) dp∞/ dx]1/2.
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FIGURE 6. Mean stream-wise velocity field: (a) stream tube and (b) total mechanical
energy tube in a turbine row of a fully developed wind-turbine-array boundary layer flow
(corresponding to case 1 in table 1). The colour scale is stream-wise velocity in units of
u∗ = [−(H/ρ) dp∞/dx]1/2.

4.1. Results: mean-flow stream tubes

As a first step, we visualize classical stream tubes for case 1. To this end, the
three-dimensional velocity field is averaged in time to obtain a spatially periodic
mean-flow velocity field with period corresponding to the turbine spacing, i.e. 7.85D
in stream-wise and 5.23D in span-wise directions for case 1. Stream tubes are obtained
by constructing streamlines through 60 equally spaced seed points along a circle
that coincides with the target turbine disc. The streamlines are tangent to the mean-
velocity vector field obtained from LES (or later to the vector fields given by (2.2)
or (2.9)). During the procedure, we regularly add seed points whenever the curvature
of downstream or upstream cross-sections becomes too large, or streamlines are too
widely spaced along the tube mantle.

In figure 6(a) we show the mean stream-wise velocity field in an 8 × 1 turbine
row, together with the turbine–rotor stream tube through the downstream turbine, i.e.
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FIGURE 7. Upstream and downstream sections of stream tubes for wind farms with different
turbine spacings: (a) and (b) aligned cases 1 and 4; (c) and (d) staggered cases 5 and 8; see
table 1 for details. −−, Turbine rotor. —, Sections at different upstream and downstream
locations, with distances corresponding to x =±nsxD, and n= 2, 4, . . . , 10 (farthest sections,
at n = ±10, are labelled). In (c) and (d), the dotted line corresponds to the location of the
staggered row of turbines.

defined by the streamlines through the rotor disc of that turbine. Note that the velocity
field is periodic, but the stream tube is not. In figure 6(b) the energy tube is also
shown for case 1, illustrating large differences between both types of tubes. The
differences are due to the considerable transport across the stream tube associated with
turbulence (Reynolds stresses). Lebron et al. (2012) measured such fluxes through the
mantle of a stream tube using wind-tunnel data from a model wind farm, and found
that the turbulent fluxes were dominant. Further discussion of this case is continued
below, but first we present stream tubes for the other wind-farm cases introduced in
table 1. To this end, we display sections of rotor–disc stream tubes at upstream and
downstream rotor planes in figure 7(a–d) for a selected number of wind-farm cases.
We observe, again, that the stream tube continuously deforms further and further away
from the rotor disc, and that the tube centre does not remain at hub height. It is
appreciated from these periodic cuts (‘Poincaré sections’) that the average mass flux
through the turbine rotor plane is originating upstream from below the turbine level,
while downstream it is ejected above the turbine level. The main difference between
the aligned cases (figure 7a, b) and the staggered cases (figure 7c, d) is that the stream
tubes in the latter cases extend much less to the sides, as the sideways development of
these tubes is constrained by the neighbouring out-of-plane turbine rows. For sake of
brevity, stream tubes of other cases are not shown here, as they have features which
are very similar to the cases shown in figure 7.

Before turning to the main topic of momentum and energy transport tubes, first
we report further properties of the classical stream tubes by evaluating the area (S,
inversely proportional to the section-averaged mean velocity) of vertical cross-sections
of the tubes, as well as the axial fluxes crossing these sections as a function of
downstream distance. The evolution of S and the axial momentum flux are plotted for
cases 1 and 1R in figure 8(a,b). It is observed that the evolution of cross-sectional
surface and momentum flux along the tubes is quite similar for both cases, with and
without rotation. Overall, we find that the effects of wake rotation do not dominate
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FIGURE 8. (a, b) Evaluation of stream tubes in a wind-farm boundary layer with turbine
spacing sx = 7.85, and sy = 5.23 with case 1 (—) and case 1R (−−) (see table 1). (a) Surface
area along a turbine–rotor stream tube. (b) Flux of mean axial momentum through the stream
tube. (c) Geometrical centre of gravity of the stream tubes (all cases, see table 1), with closed
symbols for the aligned case and open symbols for the staggered case. �, case 1; �, case 5; ◦,
case 2; •, case 6; I, case 3; B, case 7; H, case 4; O, case 8; ×, case 1R.

transport of momentum or energy, and further discussion, comparing cases 1 and 1R,
is provided in appendix A.

In figure 8(a) the surface S is displayed as a function of the upstream and
downstream distance from the tube’s originating turbine disc. At x = 0, it is observed
that the slope of S is positive, associated with a reduction of the flow velocity by the
turbine disc thrust forces. Further downstream 0 < x/(sxD) < 1, the surface decreases
again, related to a speed-up of the flow (wake recovery). Also in upstream and
downstream turbine planes (−6 < x/(sxD) < 6), similar trends are observed: at the
turbine planes the area S increases (slow down of the flow), in between turbines it
decreases. It is further observed that the difference between maximum and minimum
S decreases farther from x = 0, as the intersection of the stream tube with the turbine
rotors at upstream and downstream planes decreases. Sufficiently far upstream (or
downstream), e.g. x/(sxD) 6 −6, the trends change. Now the tube area S shrinks at
turbine planes (with speed up of the flow) and grows in between (slow down). Here,
the tube is no longer intersecting the turbine rotor. Hence, the average flow speeds up
at the rotor, i.e. flow is partially driven around the rotor, and the flow slows down

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.523


Momentum and energy transport tubes 347

in between rotor planes, i.e. part of its momentum is transferred to the wake regions
behind the turbine rotors by Reynolds-stress interactions.

In figure 8(b) the flux of axial momentum through the stream tube is shown. Trends
observed can be explained using the same rationale as above, and are largely related
to the effective intersection between the stream tube and the turbine rotor disc regions.
We further observe that the maxima of fluxes of momentum through the tube increase
for −6 < x/(sxD) < 10. This is explained by the ascending trajectory of the stream
tube, and the increase of mean-flow background momentum which is available to
replenish momentum in the turbine wakes. Fluxes of energy through the stream tube,
look very similar to the evolution of momentum fluxes, and are not further shown
here.

From the analysis above and figure 8(a,b), it is appreciated that the flux of axial
momentum through conventional stream tubes is highly non-trivial, affected by the
upward motion of the tubes through the farm, together with Reynolds-stress exchanges
over the tube mantle. Trends for the other cases (not shown) are the same. For all
cases we find that through the mean velocity field, fluid volume (or mass) comes from
below the turbines and downstream is ejected above the turbines. This is illustrated
in figure 8(c), where the geometric centre of the stream tube vertical cross-sections is
presented for all cases. We also observe that the geometric centre for staggered cases
remains closer to the turbine centre. Note that the stream-wise turbine spacing sx in
the staggered cases is twice that of the aligned cases, so that this difference between
staggered and aligned effect would be even more pronounced when the stream-wise
distance is not normalized by sxD.

4.2. Results: momentum and energy tubes

We now turn to the determination of momentum and energy transport tubes as defined
in § 2. Since the molecular viscosity in the LES is set to zero, and the contribution of
the sub-grid eddy-viscosity compared with the resolved stresses is negligible (except
very close to the ground), we consider only the Reynolds stresses based on the
resolved velocity field in defining the transport velocities.

In figures 9 and 10 sections of transport tubes of axial momentum and mean-flow
mechanical energy, respectively, are shown for the various cases of table 1. These
transport tubes are considerably different from the conventional stream tubes shown
before. Neither momentum nor energy are conserved in the tubes, i.e. large sinks
exist when the tubes (partially) pass an upstream turbine–rotor disc, such that the total
tube cross-sectional area gradually shrinks until it reaches its originating turbine–rotor
plane. At the originating rotor a large part of the remaining momentum/energy is
removed, and due to effects of dissipation and further momentum/energy extraction
at downstream turbines, the tubes rapidly shrink to zero. The additional one or two
downstream tube sections that may be typically drawn before the tube disappears are
not very enlightening; and, therefore, only upstream sections are displayed for clarity.

Furthermore, the energy tubes in figure 10 illustrate that the flux of total mechanical
energy to the turbines in large wind-turbine-array boundary layers strongly depends on
the stream-wise and span-wise spacing of turbines. In particular, when the span-wise
spacing is large, energy is entrained from the sides, and only significantly further
upstream is it entrained from above the turbines (see figure 10d). In this case, the
large span-wise spacing allows for high-speed flow to enter in between the turbine
rows, where it further interacts sideways with the wake regions behind the turbines.
For turbine arrays with narrow span-wise spacing (e.g. figure 10c, and all staggered
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FIGURE 9. Upstream sections of axial-momentum transport tubes for wind farms with
different turbine spacings. Parts (a)–(h) correspond to cases 1–8, respectively, where (a)–(d)
are all aligned cases and (e)–(h) are staggered cases; see table 1 for details. −−, Turbine
rotor. —, Sections at different upstream locations, with upstream distances corresponding to
x = −nsxD and n = 2, 4, . . . , 20. In (e)–(h), the dotted line corresponds to the location of the
staggered row of turbines.

cases, figure 10e–h), it is observed that the energy is entrained directly from the flow
above and less from the sides.

By investigating the energy flux in the tube in figure 11 (here for case 1), it is
seen that the energy level remains largely constant between turbine planes (apart from
effects of production of turbulence, which appears to be significant only in regions
immediately downstream of the turbines and power inserted by the driving pressure
gradient), but drops significantly at the rotor disc locations as a result of the energy
extraction by the turbines. This is quite different from the behaviour of the stream
tubes shown in figure 8. We further find that results for cases 1 and 1R (not shown)
are essentially the same (cf. also appendix A).

Finally, in figure 12(a), the evolution of the energy-tube area is evaluated as
a function of upstream distance for the different wind-turbine arrays, while in
figure 12(b) the tube geometric centre is displayed. Some differences between aligned
and staggered cases are observed. In particular, the geometric centre of the tubes
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FIGURE 10. Upstream sections of mean-flow mechanical energy transport tubes for wind
farms with different turbine spacings. Parts (a)–(h) correspond to cases 1–8, respectively,
where (a)–(d) are all aligned cases and (e)–(h) are staggered cases; see table 1 for details.
−−, Turbine rotor. —, Sections at different upstream locations, with upstream distances
corresponding to x = −nsxD, and n = 2, 4, . . . , 20. In (e)–(h), the dotted line corresponds to
the location of the staggered row of turbines.

moves upward more appreciably for the staggered cases: owing to their narrower
span-wise spacing, there is less room for sideways expansion.

5. Discussion
The visualization of mechanical-energy tubes, as shown in figure 10, provides

an intuitive understanding about the region of the flow supplying the power that
ultimately is available at individual turbines. In this section, further features of the
energy tubes are discussed.

First, it is useful to recall that the tube section associated with upstream plane
x/(sxD) = −n (e.g. in figure 10) also corresponds to the section in the plane x = 0 of
a tube associated with a turbine at downstream distance x/(sxD) = n. This is a direct
consequence of the periodic nature of the flux vector field. Now, recall that changes
in energy flux along the tubes are only due to internal sources and sinks, i.e. the
power inserted by the driving force ∇p∞ (P∞), the power extracted by turbines (PT)
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FIGURE 11. Analysis of mean-flow mechanical energy tubes for case 1: —, flux of total
energy (normalized by target turbine value); −−, cumulative mean-flow dissipation by
production of turbulence PD(x); and −·, cumulative power P∞(x) inserted by the driving
force ∇p∞.
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FIGURE 12. (a) Evolution of the cross-section area of the energy tubes and (b) geometric
centre Zcg of the energy tubes with closed symbols representing the aligned case and open
symbols representing the staggered case: �, case 1; �, case 5; ◦, case 2; •, case 6; I, case 3;
B, case 7; H, case 4; O, case 8.

and the production of turbulence (PD). Hence, except for the relatively small difference
between PD and P∞ compared with PT , the sections in figure 10 (omitting the minus
signs in their numbering) may be roughly interpreted as containing the total flux of
mechanical energy in the current cross-section of the wind farm that will be extracted
away in the next n turbine rows.

Furthermore, considering the subsequent sections of energy tubes in figure 10, we
observe for all cases that the side and bottom boundaries of the sections asymptotically
converge for increasing n. This suggests that the total boundary layer region is divided
into a region covered by turbine tubes and a region which is not. We investigate this in
detail by seeding the cross-section of the boundary layer with a large number of points
and constructing the downstream flux lines over a large number of periodic cycles.
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FIGURE 13. (a) Domains of attraction of energy-flux lines through a cross-section of the
boundary layer for case 1. White domain: flux lines are attracted to the ground surface; grey
domain: flux lines pass through a turbine and are attracted to a line close to the turbine centre.
Full line: four different flux lines and their projected trajectory (starting from points marked
with �, ◦,M,♦, respectively). (b) Projected flux lines in a turbine plane, obtained from the
stream-wise averaged flux vector field 〈FE〉x (for case 1).

We first focus on case 1 in figure 13: 100 × 100 points are seeded on a Cartesian
grid covering a cross-section of the boundary layer. Subsequently flux lines are tracked
over a large number of cycles to determine their attractors. Making connections to
dynamical systems, we remark that the flow corresponding to the energy flux lines
is not conservative, and so unlike the velocity field which does not possess attractors
due to volume conservation, the energy flux lines can have attractors and repellers.
In figure 13(a), the white (uncoloured) area represents all points from which the flux
lines are attracted to the ground surface. The grey shaded area shows the points whose
energy flux lines will eventually pass through a wind-turbine disc. These flux lines
are all attracted to what is seen as a point in the current (Poincaré) cross-section. To
illustrate representative trajectories of flux lines from different areas, we selected four
points of which the flux lines (projected onto the turbine plane) are drawn. From this it
is seen that points from white areas are indeed attracted by the ground surface, while
points from the grey area end up in a flux line close to the turbine centre.

In figure 13(b), we show the energy flux lines from the two-dimensional vector
field obtained from steam-wise averaging the energy–flux vector field according to
〈FE〉x. This figure illustrates, in an integrated sense, how the energy flux lines are
attracted to different regions in the boundary layer. Note that the comparison with
figure 13(a) is qualitative only and not exact: the lines in figure 13(a) are obtained
through Lagrangian tracking. The effective flux field is changing in x over one period
due to the expansion of the flow close to the turbines: these effects are, however,
relatively small, such that a comparison remains insightful.

Basins of attraction for most other cases are similar to case 1. For instance, in
figure 14(a) the basins of attraction for case 3 are shown. As for case 1, a relatively
large part of the flow total energy is ‘attracted’ towards the turbine, while in between
turbine rows, a smaller area is attracted to the ground (but dissipated before reaching
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FIGURE 14. Domains (basins) of attraction of energy-flux lines through a cross-section of
the boundary layer. (a) Case 3. White domain: flux lines are attracted to the ground surface;
grey domain: flux lines pass through a turbine, and are attracted to a line close to the turbine
centre. (b) Case 4. White domain: flux lines are attracted to the ground surface; grey domains:
flux lines are attracted into a spiral, either on top left or top right of the turbine; light grey
domain: flux lines pass though turbine disc; dark grey: flux lines do not pass through turbine
disc. Full line: four different flux lines and their projected trajectory (starting from points
marked with �, ◦,M,♦, respectively).

it since no work is being performed at the bottom boundary). We find one case where
this picture differs significantly, i.e. case 4 with sx = 15.7 and sy = 10.5, which is
shown in figure 14(b). This is the case with the widest span-wise turbine spacing (and
together with case 8 has the highest average turbine spacing considered). Three distinct
domains are now observed: a domain where flux lines are attracted to the ground (in
white) and two grey domains where the flux lines are attracted along spirals to the
top left and top right of the turbine row. Finally, flux lines in the lighter grey domain
first pass through a turbine disc, where energy is extracted. Flux lines in the darker
grey domain do not pass through a turbine. The result in figure 14(b) is interesting,
as it suggests that the available driving power for this case is not maximally used for
wind-energy conversion. In large domains of the boundary layer (i.e. the white and
dark-grey domains), the driving power is balanced by dissipation through production
of turbulence and only in the light-grey area is driving power converted to useful
energy.

6. Conclusions
In the current work we explore the concept of momentum and energy transport

tubes to study the three-dimensional mean fluxes of these properties in turbulent flows.
These tubes are constructed based on transport vector fields, which include the effects
of Reynolds stresses and mean-flow viscous stresses. In particular, when transport
processes are dominated by Reynolds stresses and turbulence instead of mean-flow
convection, such transport tubes are an interesting means of visualizing where the
momentum or the energy in the flow originate and/or are transported to.
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As an illustrative application, we study stream-wise axial momentum and energy
tubes in fully developed wind-turbine array boundary layers. Analysing conventional
stream tubes, we find that on average, the mean flow volume (mass) passing through a
wind-turbine disc comes from below the turbine and is downstream ejected into layers
above the turbines. Based on the energy tubes, we find that the energy takes a different
path to reach the wind-turbine locations. Depending on the turbine arrangement, there
are two distinct paths and mechanisms taken by the energy as it reaches the turbines: a
sideways flux and a top-down flux. Sideways fluxes themselves are fed by a top-down
flux in regions outside the turbine wake area. For large span-wise turbine spacings,
sideways fluxes of energy dominate; for small span-wise spacings, only the top-down
mechanism is dominant.

Further investigating total mechanical energy tubes and flux paths, we find that they
define different basins of attraction in the boundary layer. In one part of the boundary
layer, energy flux lines are attracted to the ground surface, while around and above
turbines, flux lines are typically attracted to the turbine disc region. In some cases,
attracting points above the wind-turbine region were also observed. The relative size of
these domains of attraction depend on turbine spacing and arrangement pattern.

In closing, we point out that it also may be interesting to consider momentum and
energy flux lines and tubes in the case of laminar flows, where only the viscous fluxes
provide differences to regular velocity and streamlines (some simple examples were
provided in § 3). Moreover, there exists the possibility of fruitful analogies between
physical-space trajectories of the generalized transport vector field and trajectories
in the phase space of dissipative dynamical systems, similarly to how Hamiltonian
dynamical systems provide useful analogies for laminar-flow chaotic mixing (Aref
1984; Ottino 1994).
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Appendix A. Wind-farm simulations: governing equations and computational
set-up

This appendix provides additional details about the LESs. The methodology has
already been presented by Calaf et al. (2010). Moreover cases 1–4 (see table 1) in the
current work correspond with cases A3, K, J and G of Calaf et al. (2010), respectively.

The current work visualizes the interactions between an infinite wind farm and
a neutral boundary layer. We simulate rough-wall fully developed boundary layers
in a periodic domain, driven by a pressure gradient. We do not include Coriolis
forces. While these are present in the atmosphere at the larger scales of the flow, the
main rationale underlying this approach (see the discussion by Calaf et al. (2010))
is based on the classical hypothesis that inner-layer dynamics of a boundary layer
(y < 0.15H) are approximately independent of outer layer effects. We presume that
turbines (with height ≈100 m) are situated in the inner layer of the boundary layer,
which is relevant in practice for many atmospheric cases with boundary layer depths
above 1 km. This approach was used before by Calaf et al. (2010), where it allowed
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for the characterization of increased surface roughness induced by a wind farms and
the derivation of algebraic surface-roughness models. Later, wind-farm performance
obtained based on these surface-roughness models were shown to compare well with
observations in the Horns Rev and Nysted wind farms (Meyers & Meneveau 2012).

A.1. Large eddy simulations
We consider thermally neutral flow that is driven by an imposed pressure gradient.
LESs solve the filtered incompressible Navier–Stokes equations for neutral flows and
the continuity equation, i.e.

∂ ũi

∂xi
= 0 (A 1)

∂ ũi

∂t
+ ∂ ũiũj

∂xj
=− 1

ρ

∂ p̃

∂xi
+ ∂τij

∂xj
+ fi, (A 2)

where ũi is the resolved velocity field, p̃ the pressure, τij are the subgrid-scale
stresses and where the density ρ is assumed to remain constant. Furthermore, fi

represents forces introduced by the turbines on the flow (see the discussion below).
Since the Reynolds number in atmospheric boundary layers away from the bottom
boundary is very high, we neglect the resolved effects of viscous stresses in the
LESs. The deviatoric part of the subgrid-scale stresses is modelled here with the
conventional Smagorinsky (1963) model, with a constant coefficient Cs = 0.14 (the
trace of the subgrid-scale stresses τkk/3 is not modelled, but instead absorbed into
the pressure term, as is common practice in LES of incompressible flow). Near the
bottom surface, the Smagorinsky length scale λ (= Cs∆ far from the surface) is
damped using the classic wall damping function of Mason & Thomson (1992), i.e.
λ−n = [Cs∆]−n+ [κ(z+ z0,lo)]−n, where we take n = 3. Other works have also used
more advanced subgrid-scale models in LES of wind farms (e.g. the scale-dependent
Lagrangian model of Bou-Zeid, Meneveau & Parlange (2005) was used for several of
the simulations presented in Calaf et al. (2010)), but the differences in mean velocity
and Reynolds stress distributions were found small, especially in regions where the
transport tubes of interest in this study are mostly located.

In the stream-wise and span-wise directions, we use periodic boundary conditions.
The top boundary uses zero vertical velocity and zero shear stress condition. At the
bottom surface, we impose zero normal velocity and use a classic, imposed wall-stress
boundary condition. It relates the wall stress to the velocity at the first grid-point using
the standard log (Monin–Obukhov) similarity law (Moeng 1984):

τw1 =−
(

κ

ln(z/z0,lo)

)2(̂̃u2 + ̂̃v2)0.5̂̃u (A 3)

τw2 =−
(

κ

ln(z/z0,lo)

)2(̂̃u2 + ̂̃v2)0.5̂̃v, (A 4)

where the hat on ̂̃u and ̂̃v represents a local average obtained by filtering the LES
velocity field with filter width 4∆ (see Bou-Zeid et al. (2005) for more details about
such filtering).

The simulation code uses a pseudo-spectral discretization in the horizontal directions.
The nonlinear convective terms and the SGS stress are de-aliased using the 3/2
rule (Canuto et al. 1988). The message passing interface (MPI) is used to run the
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simulations in parallel mode and the FFTW library is employed for Fourier transforms
(Frigo & Johnson 2005). In the vertical direction, a fourth-order energy-conservative
finite-difference discretization is used (Verstappen & Veldman 2003). Time integration
is performed using a classical four-stage fourth-order Runge–Kutta scheme.

A.2. Turbine forces
For the wind-turbine forces, we use an actuator disc model. These type of turbine
representations were adopted in LES by Jimenez et al. (2007, 2008), Ivanell et al.
(2009) and Calaf et al. (2010) amongst others. Recently, they were thoroughly
validated against wind-tunnel data by Wu & Porté-Agel (2011). Details of the current
implementation are given in Meyers & Meneveau (2010). In this model, the thrust and
tangential forces in the turbine rotor disc per unit actuator-disc area are given by

Ft =−ρ 1
2

C′T 〈uT〉2d, (A 5)

Fθ(r)= 1
2

C′P 〈uT〉2d
〈u〉d
Ωr

(A 6)

with the subscript ‘d’ denoting an averaging over the turbine disc region and the
superscript ‘T’ denoting time filtering or averaging over a time scale of order T . Thus,
〈uT〉d is the disc averaged and time-filtered velocity (further discussed below). The
parameters C′T and C′P are modified thrust and power coefficients, defined based on
the turbine disc velocity instead of the undisturbed upstream velocity as conventionally
used. Their values are directly related to the aerodynamic lift and drag coefficients
of the turbine blades, the blade geometry, etc. (Meyers & Meneveau 2010). We
use values of C′T = 4/3 and for the rotating (ADMR) case C′P = 1 (for the non-
rotating case, the tangential forces are zero). For a lone-standing turbine, these values
would correspond to conventional thrust and power coefficients of CT = 0.75 and
CP ≈ 0.42(Meyers & Meneveau 2010). Finally, Ω is the turbine angular velocity and
0< r < D/2 the radial location on the turbine disc. For the ADMR case in the current
work (case 1R), we use ΩR/u∗ = 60, which roughly corresponds to a tip-speed ratio
of λ≈ 6.7 (based on the average boundary-layer velocity at turbine hub height).

To implement the forces fi in (A 2), the turbine forces Fi (with axial and tangential
components Ft and Fθ ) are first described in the turbine–rotor plane. In a second
step, these forces are filtered using a Gaussian convolution filter on locations which
correspond with the coordinates of the LES grid. We use a Gaussian filter, with filter
width ∆= 1.5h (and h is the grid spacing) to avoid Gibbs oscillations on the LES grid.
A similar smoothing approach was used for actuator-line representations in Sorensen
& Shen (2002). To evaluate the disc-averaged local velocity 〈ũ〉d needed for the
determination of the force Ft and Fθ , we employ the geometrical rotor footprint on the
LES grid as a weighting function for the averaging. Moreover, 〈uT〉d is obtained from
〈ũ〉d by using a one-sided exponential time filter, using a time window of Tu∗/H = 0.6.
Further details are found in Calaf et al. (2010) and Meyers & Meneveau (2010).

A.3. Effects of numerical discretization
All cases except case 1F are discretized using similar domain and grid sizes. For
the steam-wise and span-wise domain size we use Lx = 2πH and Ly = πH (with H
the boundary-layer depth and domain height) to allow for the large-scale turbulent
structures that typically emerge in the boundary layers to be represented properly. The
cell size in the simulations correspond to 1y≈1z≈ 0.016H, and 1x≈ 0.05H, except
for case 1F, where a finer mesh is used, with 1y ≈ 1z ≈ 0.01H and 1x ≈ 0.033H.
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FIGURE 15. (a) Upstream and downstream sections of stream tubes (at x = ±5sxD and
±10sxD) and (b) upstream sections of total mechanical energy tubes (at x = −nsxD with
n= 5, 10, 15, 20) for case 1 (—) and case 1F (−·); see table 1 for details.
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0

3(b)

FIGURE 16. Upstream and downstream sections of stream tubes for (a) non-rotating case
(case 1) and (b) rotating case (case 1R); see table 1 for details. −−, Turbine rotor. —,
Sections at x=±5sxD. −·, Sections at x=±10sxD.

The effect of refining the mesh on stream tubes and mechanical energy tubes is shown
in figure 15. We observe that the shape of the tubes remains relatively unaffected,
especially considering that the tube cross-sections shown correspond to very long
integration distances of the streamlines and energy lines and small differences in mean
velocity arising from the LES can accumulate while integrating the trajectories.

A.4. Effects of wake rotation
In figure 16 we examine effects of wake angular momentum introduced via tangential
forces on the evolution of the stream tubes, by comparing cases 1 and 1R. As
expected, the induced swirl is associated with a twist of the stream tubes in upstream
and downstream directions when compared with the symmetric non-rotating case.
Nevertheless, also in the rotating case, mass is ejected upwards downstream from
the turbines, while upstream it is entrained from below the turbines. Moreover, as
already briefly discussed in § 4.1, momentum fluxes and cross-sectional area along the
tube are not much influenced by wake rotation.

In figure 17 the momentum and total mechanical energy tubes are displayed for
case 1R. When comparing with the non-rotating cases, i.e. Figure 9(a) for momentum
and figure 10(a) for mean-flow mechanical energy, it is appreciated that the effect of
rotation appears less visible than for the conventional stream tubes (cf. figure 16). In
particular, the effect of rotation is quite small for energy tubes. This is not unexpected,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.523


Momentum and energy transport tubes 357

1
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0
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3(b)

FIGURE 17. Upstream sections of (a) axial momentum and (b) mean-flow mechanical energy
transport tubes for case 1R. −−, Turbine rotor. —, Sections at different upstream locations,
with upstream distances corresponding to x=−nsxD and n= 2, 4, . . . , 20.

as modern wind farms operate at relatively high tip-speed ratios, leading to low torque
(for a given amount of power) and low associated tangential forces, such that effects
on the Reynolds stresses, which are largely responsible for transport of energy, remain
small.
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