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Abstract

In this article, it is shown that the Volterra integral equation of convolution type
if — H>® g= f has a continuous solution w when f,g are continuous functions on / f and ® denotes
a truncated convolution product. A similar result holds when f jr are entire functions of several
complex variables. Also simple proofs are given to show when t,g are entire, i®g is entire, and, if
l®g = 0, then f = Oorg = 0. Finally, the set of exponential polynomials and the set of all solutions
to linear partial differential equations are considered in relation to this convolution product.

Subject classification (Amer. Math. Soc. (MOS) 1970): 32A15, 35E99; 44A35; 45D05;
46E25.

1. Introduction

In this article, we consider the truncated convolution product

=r* r... r Kx-
Jo Jo Jo

where x, l^eR1, x = (x1,x2,...,xn) and f,g are continuous functions on real n
dimensional space K1. We show that for such functions, f®g is also continuous and
that the Volterra integral equation

(2) w-w®g=f

always has a continuous solution w. In addition, corresponding results are obtained
for entire functions of several complex variables.

The truncated convolution product as defined above for functions of a single
real variable and Titchmarch's convolution theorem for function on a half line
are widely known (see, for example, Erdelyi (1962)). This convolution product
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for continuous functions on R2 has been considered by Ditkin and Prudnikov
(1962). As well, Mikusinski and Ryll-Nardzewski (1953) (see also Mikusinski
(1961)) have shown that if S = {xeR": Xj^O forj= 1,2,...,«}, and if f,g are
continuous functions on S with f®g = 0 on S, then / = 0 or g = 0 on S. This fact
has been used by Gutterman (1969) in developing an operational calculus for
continuous function on S. Multidimensional Mikusihski-type operators are also
considered by Hughes and Struble (1973).

The integral equation (2) in the case of one real variable has been considered by
several writers, including Yoshida (1960), Bellman and Cooke (1963), Laird (1974a)
and also finds application in probability theory (see, for example, Feller (1966),
Chapter XI). For several real variables, integral equations of Volterra type have
been considered and we may refer, by way of example, to Parodi (1950), Walter
(1970) and Suryanarayana (1972) (for multidimensional Fredholm integral
equations: Petrovskii (1957)). Our multidimensional results differ from the results
in these references in that the integral equation (2) is simpler with a corresponding
ease of treatment.

With regard to complex variables, we set

= - Kz-
Jo Jo Jo

where z, feC", z = (z1,z2,. ••, zn) and/, g are entire functions on complex n dimen-
sional space C. In the case of one complex variable, it has been observed by
Dieudonne (1970), p. 282, Dickson (1973), Laird (1975) and Rubel (1977) that if
/ , g are entire, then so also is f<S>g- As well, simple proofs have been given by Laird
(1975) and Rubel (1977) to show that if f,g are entire, and if f®g = 0, then/ = 0 or
g = 0 with applications to operational calculus being developed by Rubel (1977).
Also, if f,g are entire functions on C, the existence of a unique entire solution to
the equation (2) has been shown by Laird (1975). The method of proof will be now
shown to extend to multidimensional Volterra integral equations of convolution
type.

For much of this article, it is convenient to take the real and the complex
variable cases together. Let C(R") (H(CJ) denote the set of all continuous complex
valued functions on R" (entire functions on C) endowed with the topology of
uniform convergence on all compact subsets of /?"(C"). For/,geC(/?l')(iJ(C"1)) and
k any positive integer, set

and

<*(/".*)= t 2~kmin(l,pk(f-g))

where

|jf2|,...,|jcB|} and x = (xl)x2,...,xn)eRa(Cn).
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Then pk is a seminorm and d is a metric for C(R") (H(C)) and each space is complete
in this metric (see Treves (1966), p. 469) for these and additional details in the case
of H(C")). Throughout, convergence in either space shall be referred to as locally
uniform convergence.

We shall have use for 'multi-indices'. For p = (pi,p2, • ••,/>„) (where pj is a non-
negative integer and x = {xux2, ...,*„)), set

pl=Pi'-P2}- •••/>»! and up{x) = x{'x'2'... xp
n".

From the definition (1) and elementary integration, we have

(3) ^ ® ^ = Up+q+l ,

where, p, q and p+q+1 are all multi-indices with

p+q+l = (/>! +qt + I,p2+<12+1, ...,pn+qn+1).

Clearly this formula holds for both complex and real variables.

2. Main results

The first two propositions extend results stated by Erdelyi (1962) for continuous
functions on a half line. Throughout this section, we let X denote either C(R")
or H(C) as defined above. Thus X is a complex vector space and also a complete
metric space.

PROPOSITION 1. (a) Iff,geX, thenf®geX.
(b) If {fm}, {gm} are sequences in X that converge, locally uniformly to f,g as

m-*co, then fm®gm-*f®g locally uniformly as m-*co.
(c) X(+, ®) is an algebra over C.

PROOF. For C(-R"), we may use the fact that any continuous function on R"
may be uniformly approximated on any compact subset of R" by polynomials
in n variables (extend the result given by Royden (1963), p. 151 from real-valued
continuous functions on R", say u, v to feC(R") by f=u+iv). From this, if
f,geC(R"), f,g may be approximated, locally uniformly by sequences of poly-
nomials, say {/„}, {gm}. By use of formula (3), fm®gm is a polynomial.

With/„-•/and gm->g locally uniformly, an application of elementary estimates to

on any compact subset shows that fm®gm->f<S)g locally uniformly, as m-*co.
Hence, when/,g are continuous, so also is/(g)g. As well, part (b) is established.
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For H(C"), the same proof suffices except we use the facts that any entire function
/ has a power series expansion on C , and, if a sequence of entire functions is
locally uniformly convergent, then the limit function is entire (Dieudonn6 (1960),
p. 229).

For part (c), we have noted that A" is a vector space over C. The remaining
details that establish C(JR") ( + , <g>) is an algebra over C (and so also a commutative
ring) are easily verified (see Ditkin and Prudnikov (1962) for n = 2) and shall be
omitted. When X = H(C), we may use the fact (Dieudonn6 (1960), p. 204) that when
/ i s any entire function defined on if, it may be extended to a unique entire function
defined on C" to conclude /f(C") ( + , <g>) is an algebra from C(/?") ( + , <g>) being an
algebra.

In the next proposition, when geX, we set g®1 = g and g®(p+1) = g®p®g for
P=l,2

PROPOSITION 2. Let f,geX,k,p be positive integers and M = pk(g). Then

(a) \f®g{x)\Zptf)Mr,and

(b) \ge>ip+1Kx)\^Mp+1\x1x2...xB\''/(p\)n^Mp+1 /t"7(p!)" when \\x^k.

PROOF. Both parts are based on the application of elementary estimates of the
absolute values of the integrals involved when ||x|| <£ . Initially we have

|/®«(*)|</>*(/)M\X lx2. . .xn\ for \\x\\ <k.

So part (a) follows. A simple inductive argument gives part (b).
From this, it is immediate that if geX, then g®"-*0 locally uniformly as p-*ao.

THEOREM 3. Let f,geX. Then there exists a unique solution w in X satisfying the
integral equation w—w®g = / .

PROOF. When/, ge X, on application of the bounds in Proposition 2(b) shows that
if

then {wp} is a Cauchy sequence in X. Since X is complete, {wp} has a limit, say w,
in X. Moreover, w satisfies w—w®g = / .

If q> is the difference of two solutions in X, then q> = q>®g. Thus

<p = q>®8 = (<P®g)®g = ••• =(p®g<l>p forp= 1 , 2 , . . . .

Since g®p-+0 as p-* oo, q> = 0.
Theorem 3 has an extension to
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THEOREM 4. Let fj,gJkeX for j,k = 1,2, ...,m. Then the system of equations

m

wj~ Z Sjk®wk=f}, j=l,2,...m

has a unique solution wt, w2, ••-, wmeX.

PROOF. The proof is omitted as it requires some detail that is inherent in the proofs
of Theorem 3 and in the case of C(R) (Laird (1974b), p. 416).

3. Other results

It is clear that C(R") (+ , <g>) has non-zero divisors of zero. However, for entire
functions, we have

THEOREM 5.Letf,ge H(C) andf®g = 0. Then f = 0 or g = 0.

PROOF. Using/? as a multi-index, for feH(C") and

/= fo/,«>!,
set

I
p=0

for { e C . Then T is a linear map from ^(C") to the ring [/(+, x) of formal
power series in n indeterminates. From (3), it is clear that T(f<g>g) = T(f) x T(g) when
f=up and g = uq. Hence this relation holds when/,g are polynomials and so when
f,g are entire functions. Moreover, if T(f) = 0, then/ = 0 and so Tis an isomorphism
between H(C")(+, ®) and a subring of U(+, x). Since f/has no non-zero divisors
of zero (Zariski and Samuel (1958), p. 35), from f®g = 0, we have T(J) = 0 or
T(g) = 0 and so / = 0 or g = 0.

The results so far represent positive extensions from one aspect of functions of
one variable to functions of several variables. Some other aspects that may be of
interest now follow.

The first concerns the equation w<g)g = f. In the case when/, g are entire functions
of a single variable, a necessary and sufficient condition for the existence of an
entire function may be readily found to be the existence of a non-negative integer p
such that Dpg(0) # 0 but D«/(0) = 0 for q = 0,1,2, ...,/> (Laird (1975)). For the
equation w<g>g = / in the case of several variables, it would appear that there are
no simple conditions on f,g that will guarantee the existence of an entire solution-
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The second aspect concerns exponential polynomials. Such a function in n
variables is a finite linear combination of terms

Mpexp(a-): 2_>zf z « ...z^"exp(alz1+a2z2 +...+anzH),

where Pi,p2, • ••>pn are non-negative integers and al,a2,...,aneC. If we let MQ
denote the set of all exponential polynomials in X, then MQ is a subalgebra of
X{+, ®) (the fact that MQ is closed under convolution being readily verified by
use of elementary calculus).

It is easy to show that if f,g are exponential polynomials in one variable and if w
satisfies w—w®g = f, then w is also an exponential polynomial (Laird (1974a)).
This is not the case for w when f,g are exponential polynomials of several variables
as seen by the following example. Let n = 2 and e(x, y) = 1 for all (x,y). Then the
equation w — w®e = e has solution

which is not an exponential polynomial.
Finally, we consider MC, the set of all solutions in Y to homogeneous linear

partial (ordinary when n = 1) differential equations with constant coefficients
where Y is either H(C) or the set of indefinitely differentiable functions in C(/?").
Let E denote the set of all linear differential operators in n variables with constant
coefficients so that MC = {feY:Pf=0 for some PeE and P # 0}. When n = 1,
MC = MQ and when n>\, MQ is a proper subset of MC. However, by the
Malgrange—Ehrenpreis theorem (see, for example, Treves (1966), p. 102), ilfeMC
with Pf = 0 where PeE and P / 0, then / is the locally uniform limit of a sequence
of exponential polynomials {/m} where Pfm = 0.

Clearly, MC is a complex vector space. However, for functions of several
variables, MC is not closed under convolution. For n = 2, let f(x,y) = 2xexp;t2

and g(x,y) = 2yexpy2. Then D2f = 0= D^ where Dt = d/dx and D2 = djdy.
Also f<g>g(x, y) = h(x, j)-exp;c2-expj>2 +1 where h(x,y) = exp(x2+y2). Suppose
now that heMC with SeE, 5 ^ 0 and Sh = 0. Then S(ph) = 0 where p is any
polynomial of two variables whence 5(<p) = 0 for all <p e Y. So S = 0 and a contra-
diction results. Hence h$MC and so f®g$MC although both/,geAfC.

The next theorem concerns equa '.ion (2) and gives a sufficient condition for its
solution to belong to MC. Here Ds is the partial derivative with respect to the
/th variable and the results quoted as given by Laird (1975), pp. 815-817.

THEOREM 6. Let fe MC, g e MQ and w satisfy w — w®g = /. Then w e MC.

PROOF. If g is an exponential polynomial in Y then there are n non-zero linear
differential operators L} = Lj(Dj) e E where each Ls only involves Dj and is such
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that Ljg = 0 for j = 1,2, ...,n. Moreover, {LXL% ...Ln)(w<g)g) = Tw for all we Y
where J e £ and T*L1L2...Ln. With /eAfC, choose Se£, S # 0 such that
S/=0. Then

...Ln~T)w = SCX^ ...Z,B)O-M>®g) = (L,L2 ...Ln)5/= 0

and so w e MC.
It appears at present to be an open problem whether f,geMC is sufficient to

ensure that w e MC when w—w®g = /.
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