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Abstract

Background.One of the challenges of psychiatry is the staging of patients, especially those with
severe mental disorders. Therefore, we aim to develop an empirical staging model for
schizophrenia.
Methods. Data were obtained from 212 stable outpatients with schizophrenia: demographic,
clinical, psychometric (PANSS, CAINS, CDSS, OSQ, CGI-S, PSP, MATRICS), inflammatory
peripheral blood markers (C-reactive protein, interleukins-1RA and 6, and platelet/lymphocyte
[PLR], neutrophil/lymphocyte [NLR], and monocyte/lymphocyte [MLR] ratios). We used
machine learning techniques to develop the model (genetic algorithms, support vector
machines) and applied a fitness function tomeasure themodel’s accuracy (% agreement between
patient classification of our model and the CGI-S).
Results. Our model includes 12 variables from 5 dimensions: 1) psychopathology: positive,
negative, depressive, general psychopathology symptoms; 2) clinical features: number of hos-
pitalizations; 3) cognition: processing speed, visual learning, social cognition; 4) biomarkers:
PLR, NLR, MLR; and 5) functioning: PSP total score. Accuracy was 62% (SD = 5.3), and
sensitivity values were appropriate for mild, moderate, and marked severity (from 0.62106 to
0.6728).
Discussion. We present a multidimensional, accessible, and easy-to-apply model that goes
beyond simply categorizing patients according to CGI-S score. It provides clinicians with a
multifaceted patient profile that facilitates the design of personalized intervention plans.

Introduction

Increasing schizophrenia research studies are providing important insights into some of its main
challenges, such as genetic, neurobiological, and neuroimaging biomarkers [1, 2]. However,
another significant challenge yet to be achieved is developing a staging model for this disorder.
Staging models allow us to integrate clinical information with biomarkers, comorbid conditions,
and other significant variables [3]. Thus, they offer a unitary framework for providing effective
interventions adapted to the stages of the disorder [4–6] and reducing heterogeneity in clinical
practice [5, 7].

The first stagingmodel for schizophrenia was proposed by Fava and Kellner in 1993 [8]. Since
then, different theoretical staging models have been proposed, ranging from the simplest, which
includes only psychotic psychopathology and functioning [8], to the most complex, which also
comprises affective symptoms, cognition, neuroimaging, and biological and endophenotypic
markers [9, 10]. In this regard, the recently developed models based solely on the Positive and
Negative Syndrome Scale (PANSS) deserve a separate mention [11–13]. Additionally, we have
noticed a growing interest in validating some of the proposed theoretical models [6] for the
purpose of establishing their validity and/or improving them [14–22]. However, despite these
above-mentioned efforts, practically all of these models have significant limitations [6]. Accord-
ing to the literature, most were theoretical proposals, only partially validated at best, and have
rarely been integrated into routine clinical practice.

In this context, our study aims to develop a staging model for schizophrenia that overcomes
the limitations of those already proposed, using machine-learning methodologies from infor-
mation on different dimensions relevant to this disorder.
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Methods

This is a naturalistic and cross-sectional study of patients with
schizophrenia in outpatient treatment. The study was developed
according to the ethical principles of the Declaration of Helsinki
and the Good Clinical Practice guidelines. The Clinical Research
Ethics Committee of Hospital Universitario Central de Asturias in
Oviedo also approved the study protocol (Ref. 36/2012, Ref.
25/2014). Before enrollment, written informed consent was
obtained from all subjects.

Participants

A total of 212 patients with stable schizophrenia were recruited.
Inclusion criteria were (1) outpatients with a confirmed diagnosis
of schizophrenia according to the International Classification of
Diseases 10th Edition (ICD-10) criteria in treatment at any of the
participating centers (La Eria and La Corredoria mental health
centers in Oviedo, Spain)]; (2) age > 17 years; and (3) written
informed consent to participate in the study.

Exclusion criteria were designed to be minimal to obtain a
representative and heterogeneous sample. Therefore, only patients
with an intellectual developmental disability or acquired brain
injury were excluded from the study.

Evaluations
Extensive evaluations were performed for all subjects where demo-
graphic and clinical data were collected, such as length of illness,
number of hospitalizations, and physical comorbidities. In add-
ition, we also included pragmatic variables, which are an indirect
measure of functionality, such as educational level, marital status,
employment status, and official disability status.

The assessment was developed by trained clinicians and also
included the Spanish versions of the following instruments:

Psychopathology. Positive and Negative Syndrome Scale
(PANSS) [23], Clinical Assessment Interview of Negative Symp-
toms (CAINS) [24], and Calgary Depression Scale for Schizophre-
nia (CDSS) [25]. The presence of sleep disturbances was also
assessed through the Oviedo sleep questionnaire (OSQ)
[26]. Although the OSQ comprises three subscales (subjective
satisfaction, insomnia, and hypersomnia), we used only the sub-
jective satisfaction subscale for this study. In addition, we included
the items that assessed sleep latency (OSQ3) and efficiency (OSQ6),
and the use of pharmacotherapy or other sleep remedies (OSQ11).

As for negative symptoms, the PANSS negative subscale
(PANSS-N) and Marder Negative Factor (PANSS-MNF) scores
were calculated. The PANSS-MNF includes the items of the
PANSS-N, except difficulty in abstract thinking and stereotyped
thinking, plus two items from the PANSS general psychopathology
subscale of the (PANSS-GP): motor retardation and active social
avoidance. In addition, due to the psychometric limitations of
existing instruments to evaluate negative symptoms [27], we used
the CAINS scale, which focuses on the patient’s subjective experi-
ence of the negative signs and symptoms instead of the patient’s
functioning. This scale comprises two subscales: motivation and
pleasure (MAP), which evaluates the severity of abulia and anhe-
donia, and emotional expression (EXP), which measures the sever-
ity of alogia and blunted affect. It provides scores for each subscale
and a total score obtained by combining the scores on the two
subscales, where higher scores reflect greater symptom severity.

Cognition.We used the measurement and treatment research to
improve cognition in schizophrenia consensus cognitive battery

(MATRICS-CCB) [28], which consists of 10 tests that are grouped
into seven cognitive domains: Processing Speed (TrailMaking Test:
Part A; Brief Assessment of Cognition in Schizophrenia: Symbol
Coding and Category Fluency Test: Animal Naming); Attention/
Vigilance (Continuous Performance Test: Identical Pairs); Work-
ing Memory (Wechsler Memory Scale Spatial Span-III, and Letter
Number Span Test); Visual Learning (Brief Visuospatial
Memory Test-Revised); Verbal Learning (Hopkins Verbal Learning
Test-Revised); Reasoning/Problem-Solving (Neuropsychological
Assessment Battery:Mazes); and Social Cognition (Mayer-Salovey-
Caruso Emotional Intelligence Test: Managing Emotions [D and H
sections]). First, the raw score was obtained for each of the subtests,

Table 1. Sociodemographic and clinical characteristics of the sample

Sociodemographic characteristics Mean (SD)

Age 40.30 (13.05)

Sex, males [n (%)] 135 (63.70)

Marital status [n (%)]

Never married 157 (74.10)

Marrieda 55 (25.9)

Educational level [n (%)]

Primary school 46 (21.70)

Secondary school 125 (59.50)

University 41 (19.30)

Work status [n (%)]

Working (full–/part–time) 31 (14.60)

Not workingb 152 (71.70)

Homemaker or student 29 (13.70)

Recognized disability, yes [n (%)] 80 (37.70)

Clinical characteristics Mean (SD)

Length of illness, years 11.97 (12.02)

Number of hospitalizations 1.62 (1.89)

Suicide attempts

Yes [n (%)] 34 (16.00)

No. of suicide attempts 1.71 (1.50)

Use of substances

Coffee (current) [n (%)] 122 (57.50)

No. of cups 2.68 (1.78)

Tobacco (current) [n (%)] 91 (42.90)

No. of cigarettes 17.88 (9.63)

Alcohol (current) [n (%)] 60 (28.30)

Cannabis (lifetime) [n (%)] 110 (51.90)

Metabolic Syndrome

Yes [n (%)] 70 (33.02)

No. of criteria 1.89 (1.40)

Physical disease (Yes) [n (%)] 145 (68.39)

Physical treatment (Yes) [n (%)] 62 (29.25)

Abbreviation: SD, standard deviation.
aMarried includes married, cohabiting, widowed, and divorced.
bNot working includes permanently disabled due to health conditions, temporarily disabled,
retired, and unemployed.
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where higher scores reflect better cognitive performance, except for
Trail Making Test A, where higher scores reflect greater impair-
ment. Secondly, we transformed the raw scores, according to age
and sex, into t-scores. Finally, we summed the t-scores from each
domain test and transformed them into the final score using the
tables provided by the MATRICS.

Real-world functioning. The personal and social performance
(PSP) scale [29] was employed, and its total score was used. We
chose this instrument due to the well-known difficulties associated
with the GAF [30, 31] and because it was available in several
languages.

Global severity. We used the score on the clinical global
impression-schizophrenia severity scale (CGI-S) [32] as the “best
current gold standard” to determine the performance of each of the
models generated by genetic algorithms. We decided to use this
scale because, as reported in previous studies [32–34], it demon-
strates high interrater reliability when raters are specifically trained
in the use of this instrument. Consistent with the inclusion criteria,
the percentage of people recruited with CGI-S scores of 1 (normal,
not ill), 2 (minimally ill), 6 (severely ill), or 7 (among the most
severely ill) was inadequate. Therefore, we regrouped these CGI-S
scores: 1 and 2 into the same dimension and 6 and 7 into the same
category.

Biological assessment. A physical examination of the patients
was also performed, in which height, weight, waist circumference,
heart rate, and blood pressure were recorded. In addition, blood
samples were collected to perform laboratory tests (hematology,
biochemistry, and hormones) after a confirmed overnight fast.
Additionally, the following blood biomarkers of inflammation were
obtained: C-reactive protein (CRP), interleukin (IL) 1RA and IL6,
and platelet/lymphocyte (PLR), neutrophil/lymphocyte (NLR), and
monocyte/lymphocyte (MLR) ratios (Table 2). In addition, we used
the NHANES criteria [35] to determine the presence of metabolic
syndrome.

Machine-learning Model
Genetic algorithms.

Genetic algorithms (GAs) are a methodology based on the
natural selection process and are suitable for solving optimization
problems. These algorithms simulate natural selection processes

Table 2. Psychometric, cognitive, functional, and laboratory results for the
total sample

Psychometric scores Mean (SD)

PANSS–positive 12.90 (5.10)

PANSS–negative 18.21 (5.59)

PANSS–marder negative factor 18.14 (6.12)

PANSS–general psychopathology 29.382 (7.44)

CAINS–MAP 20.81 (8.98)

CAINS–EXP 6.95 (4.56)

CDSS 3.17 (4.03)

CGI–S 4.18 (0.93)

OSQ–satisfaction 4.55 (1.64)

OSQ3 2.21 (1.21)

OSQ6 1.87 (1.28)

OSQ11 2.49 (1.79)

Cognition scores Mean (SD)

MATRICS–CCB subtest raw scores

TMT A 52.75 (35.09)

BACS 38.23 (14.30)

HVLT–R 21.92 (6.66)

WMSIII 14.13 (4.08)

LNS 12.36 (4.12)

NAB:MAZES 11.66 (8.02)

BVMT–R 16.88 (9.42)

CF 17.85 (5.95)

MSCEIT ME 88.95 (14.69)

CPT–IP 1.91 (0.83)

MATRICS–CCB domain scores

Speed of processing 32.68 (15.04)

Attention/vigilance 34.06 (11.19)

Working memory 38.70 (12.93)

Visual learning 36.46 (13.73)

Verbal learning 38.78 (10.31)

Reasoning/problem–solving 37.17 (9.46)

Social cognition 41.46 (16.36)

MATRICS–CS 259.34 (63.02)

Functioning scores Mean (SD)

PSP–Total 53.54 (17.67)

Laboratory results Mean (SD)

Hematology

RBCs (μl) 4.88 (0.48)

Hemoglobin (g/dl) 14.67 (1.54)

Platelets (μl) 229.67 (57.34)

PLR (μl) 198.78 (41.47)

NLR (μl) 1.96 (1.02)

MLR (μl) 0.26 (0.11)

Hormones

Continued

Table 2. Continued

Psychometric scores Mean (SD)

Insulin (μU/ml) 16.23 (12.60)

Inflammatory and oxidative biomarkers

CRP (ml/dl) 0.43 (0.66)

IL_1RA (pg/ml) 209.12 (142.85)

IL_6 (pg/ml) 1.40 (0.82)

Abbreviations: SD, standard deviation; PANSS, Positive and Negative Syndrome Scale; CAINS,
Clinical Assessment Interview for Negative Symptoms; EXP, expression subscale; MAP,
motivation and pleasure subscale; CDSS, Calgary Depression Scale for Schizophrenia; CGI-
S, clinical global impression-schizophrenia severity; PSP, personal and social performance;
OSQ, Oviedo sleep questionnaire; MATRICS-CCB, measurement and treatment research to
improve cognition in schizophrenia-consensus cognitive battery; TMTA, Trail Making Test A;
BACS, brief assessment of cognition in schizophrenia: symbol coding; HVLT-R, Hopkins Verbal
Learning Test-Revised; WMSIII, Wechsler Memory Scale Spatial Span-III; LNS, letter number
span; NAB:MAZES, neuropsychological assessment battery: mazes; BVMT-R, brief visuospatial
memory test revised; CF, category fluency; MSCEIT ME, Mayer-Salovey-Caruso emotional
intelligence test: managing emotions; CPT-IP, continuous performance test: identical pairs;
CS, composite score; PLR, platelet/lymphocyte ratio; NLR, neutrophil/lymphocyte ratio; MLR,
monocyte/lymphocyte ratio; CRP, C-reactive protein; IL, interleukin; RBCs, red blood cells.
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such as inheritance, mutation, crossover, and selection [36]. Every
genetic algorithm uses an initial population from which the algo-
rithm will start searching for optimum values. A fitness function is
applied to the initial population to assess how suitable each
initial population’s elements are as the solution to the problem
under study.

The solutions that are deemed to be the best, as determined by
the fitness function, will be chosen to transmit knowledge to the
following generation. This knowledge transmission is performed
with the help of the genetic operators’ mutation, crossover, and
elitism applied to create a new generation that achieves better values
when assessed with the fitness function.

Support-vector machines.
Support-vector machines (SVMs) are supervised learning

models for classification problems. Given a set of training data,
each marked with the category to which it belongs, an SVM model
can assign new examples in one category or another. Using the
kernel method, SVM can efficiently perform linear and nonlinear
classifications [37]. This implicitly assumes mapping its inputs into
high-dimensional feature spaces. The original SVM algorithm was
created by Vapnik and Chervonenkis [38]. Years later, Boser et al.
[39] suggested creating nonlinear classifiers by applying the kernel
method to maximum margin hyperplanes. Currently, the most
widely used implementation of this method is the one proposed
by Cortes and Vapnik [40].

The proposed algorithm.
The algorithm proposed for the variable selection made use of

GA and SVM. Their steps are presented as a flowchart in Figure 1.
The first step consists of initialization of the GA population. Each
population’s member is formed by a string of ‘0s’ and ‘1s’ with a
length of 61, which is the total number of possible input variables of
the model. The criteria for including/excluding data from the
analysis were the subject of our previous systematic review [6]
and the team discussion. Each ‘0’ means that the variable will not
be present in the model under study, and each ‘1’ means that the
variable will be employed for training the model.

To evaluate the performance of all the trained models, we used
the CGI-S patient classification as the “best current gold standard.”
We applied a fitness function to measure the model’s accuracy: the
percentage of concordance between the classification of patients
according to our model and the CGI-S.

To avoid the selected subsets influencing the model’s perform-
ance, a three-fold cross-validation was applied [41]. This means
that the data set was randomly divided into three parts, two of
which were employed for the model training and the other for the
validation. Three-fold cross-validation is a particularization of the
k-fold cross-validation methodology, also known as out-of-sample
testing, for k = 3. This methodology is frequently applied in
machine-learning studies to reduce bias, with good performance
[42], suggesting that it is beneficial in minimizing data-testing
uncertainties and overfitting issues [43].

Figure 1. Flowchart of the algorithm employed in this research. GA Genetic Algorithm.

Figure 2. Development of our model using Machine-Learning techniques. CGI-S Clinical Global Impression-Schizophrenia Severity.
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The three-fold cross-validation process was repeated 10,000
times for each model (see Figure 2). Therefore, the value of the
fitness function is the average of the model performance of all
models trained for each variable’s subset. The stop criterion
employed in this research was for the algorithm to stop after
100 cycles where none of the individuals in the population
improved the percentage of patients classified in the correct cat-
egory according to the CGI-S classification.

The population size for the GAwas 10,000. For themutation, the
value of 1% was chosen; for the crossover, it was 100%, and for
elitism, it was 5%. Please note that these values have shown good
performance in previous research studies by the authors [44,
45]. The classification version of SVMwas applied in this algorithm,
using the radial basis function kernel and a gammavalue equal to the
inverse of the number of input variables of the model. The tolerance
values of the models were 0.001 with an epsilon of 0.1, as those
values showed good performance in previous research [46, 47].

Results

Demographic and clinical characteristics

Themean age of our sample was 40.3 (SD = 13.1) years, 63.7% were
males, 74.1% were never married, and 37.7% received disability
benefits due to schizophrenia. The rest of the sociodemographic
characteristics are shown in Table 1.

The mean age at diagnosis was 28.3 (SD = 8.2) years, the mean
length of the disorder was 12.0 (SD = 12.0) years, and 16% had a
comorbid mental disorder. Regarding the use of substances, while
cannabis was the substance with the highest reported consumption
(51.9%), tobacco (43.4%) and alcohol (28.3%) were currently the
most used. On average, our sample’s mean severity level was 4.2
(SD = 0.9) (Table 2). The patients’ psychometric scores and

laboratory results are shown in Table 2. Concerning physical
health, 68.4% had at least one comorbid physical disease, and
70 (33.3%) patients had metabolic syndrome.

Development of the “PsiOvi Staging Model for Schizophrenia
(PsiOvi SMS)”

The best SVM model used the following 12 variables as input
variables: PANSS-Positive subscale, PANSS-MNF subscale,
PANSS-GP subscale, Calgary Depression Scale, number of hospi-
talizations, Trail Making Test – Part A, Brief Visuospatial Memory
Test-Revised, Mayer-Salovey-Caruso Emotional Intelligence Test:
Managing Emotions (D and H sections), PLR, NLR, MLR and total
PSP (Figure 3).

Concerning the performance of PsiOvi SMS, we found a per-
centage of concordance of 62% (SD = 5.3) between the CGI-S and
our model’s classifications. Its specificity and sensitivity (mean and
standard deviation) are shown in Table 3. As can be seen, in general,

Figure 3. Variables included in the staging model. PANSS Positive and Negative Syndrome Scale, PANSS-P Positive, PANSS-MNF Marder Negative Factor, PANSS-GP General
Psychopathology, CDSS Calgary Depression Scale for Schizophrenia, TMT A Trail Making Test A, BVMT-R Brief Visuospatial Memory Test Revised, MSCEIT Mayer-Salovey-Caruso Emotional
Intelligence Test: Managing Emotions, PLR Platelets/lymphocytes Ratio, MLR Monocytes/lymphocytes Ratio, NLR Neutrophils/lymphocytes Ratio; PSP-Total: Personal and Social
Performance Total score.

Table 3. Model specificity and sensitivity of patient classification according to
CGI-S category

Model
specificity

Model
sensitivity

CGI-S category Mean SD Mean SD

Stage 1 0.96692 0.01920 0.22331 0.30293

Stage 2 0.91212 0.03675 0.62106 0.13500

Stage 3 0.79897 0.06656 0.63647 0.07970

Stage 4 0.83270 0.05222 0.67284 0.09089

Stage 5 0.95384 0.02211 0.36334 0.32796

Abbreviations: SD, standard deviation; CGI-S, clinical global impression-schizophrenia
severity.
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the specificity values are quite high, but depending on the charac-
teristics of the model and the problem under study, the sensitivity
values seem to be of greater interest. In this regard, the sensitivity
values are satisfactory for patients classified as Mildly ill, Moder-
ately ill, and Markedly ill by the CGI-S (values ranging from
0.62106 to 0.6728). In contrast, they are moderate and low for the
minimally ill and severely ill groups, respectively.

Discussion

Our work provides clinicians with a staging model, PsiOvi SMS,
that is easily and directly transferable to daily clinical practice to
classify patients with schizophrenia according to the severity of
their disorder. This model is aligned with personalized medicine,
the prevailing trend in the 21st century across most medical spe-
cialties. In addition to classifying patients by severity, our model
provides clinicians with a comprehensive profile, including symp-
tomatology, cognition, functionality, and biological factors for each
patient. This will allow clinicians to design specific interventions
aimed at enhancing the strengths of each individual and reducing,
as much as possible, their deficits.

Although we used a large number of psychometric and bio-
logical assessments, our final model comprises only 12 easily
obtainable profilers. Profilers include positive, negative, depressive,
and general psychopathology symptoms, number of hospitaliza-
tions, processing speed, visual learning, social cognition, PLR,
MLR, NLR, and real-world functioning.

In the past few years, the use of machine-learning methodolo-
gies has become common in healthcare. These methodologies have
proved their interest in other fields of science and engineering
[48, 49]. They have also been adopted in the healthcare field, and
their performance has been tested in very different applications,
e.g., exploitation of electronic health record data [50], training and
validation of models able to prevent cardiovascular diseases [51],
and improvement of patient outcomes in dermatology [52].

The specialty of psychiatry is no stranger to such emergence of
new techniques. According to some authors, these methodologies
would promote a paradigm shift in the diagnosis, prognosis, moni-
toring, and treatment ofmental illnesses [53]. One of themost recent
research studies in this field is the one performed by Ramos-Lima
et al. [54], which investigated the viability of a predictive model to
support posttraumatic stress disorders (PTSDs). In that study, a
model with four stages suitable for PTSD staging was developed.

In the present research, we have developed a machine-learning-
based staging model for patients with schizophrenia. The proposed
model uses genetic algorithms and SVM for patient classification.
Although the sensitivity values can be considered adequate globally,
values for the CGI-S minimally ill and severely ill categories,
0.22331 and 0.36334, respectively, can be regarded as low.However,
it must be taken into account that, according to the inclusion
criteria, both categories are composed of a very small set of indi-
viduals, which makes the process of training and validating the
model more complex.

One of the benefits of this work is the neutrality and absence of
bias when generating the models. This is achieved thanks to the
three-fold cross-validation [55], and the 10,000-fold repetition of
each randomly selected subset of variables – the methodology used
in the development and validation process. Although this way of
working reduces specificity and sensitivity, not using this method-
ology can lead to severely inflated performance indicators [56]. Fur-
thermore, it means that certain machine-learning models may
appear to predict well when they do not if they have not been

overtrained [57]. Please note that this practice is sometimes hidden
in some research studies testing different machine-learning models
until one seems to predict well enough for the problem under study
[58, 59].

As stated in the Methods section, our model was trained against
the CGI-S patient classification. We may face criticism for our
decision to use the CGI-S, as it has been suggested that our
methodology is tautological and that the CGI-S is easier to use
and requires minimal administration time. First, we do recognize
that our model requires greater effort on the part of clinicians in
terms of patient assessment. They will need to become familiar with
the 12 profilers, which represent the patient’s scores on specific
instruments and the results of a complete blood count. Although
incorporating the model into routine clinical practice may seem
laborious, we firmly believe that this effort is justified. Schizophre-
nia is one of the most severe mental disorders associated with poor
prognosis and substantial variability in intervention outcomes.
Therefore, not performing fundamental assessments of core symp-
tomatology, cognition, functioning, and basic laboratory tests could
be considered negligent. Second, as noted in the Methods section,
with specific training, this instrument can be considered the “best
current gold standard” grading system. However, psychiatrists lack
it. Generally speaking, then, the CGI-S should be viewed as a “black
box,” as the dimensions of the disorder that clinicians take into
consideration and the scoring anchors used when assessing severity
are unknown [60, 61]. It is also important to highlight the concep-
tual change schizophrenia has undergone since the CGI-S scale was
developed. In these almost 50 years, schizophrenia has gone from
being considered an exclusively mental illness to a disease under-
lying chronic subclinical inflammation and presenting high rates of
somatic comorbidity, mainly endocrine-metabolic and cardiovas-
cular diseases [62]. In line with the results of Dunlop et al. [63], we
doubt that these changes are borne in mind by clinicians when
using the CGI-S. Finally, since it provides a single index rather than
a profile of a patient’s strengths and deficits, it does not help design
personalized intervention plans to enhance strengths and reduce
deficits as much as possible.

The 12 profilers included in PsiOvi SMS pertain to the following
five dimensions: psychopathology, clinical features, functioning, cog-
nition, and biomarkers. Although other authors have also proposed
these dimensions and primarily psychopathology [4, 11-13, 64], and
functioning [8, 9, 10, 16, 65, 66], most models do not provide
information on how to evaluate them.

Regarding the psychopathology dimension, our model includes
positive, negative, depressive, and general symptoms. It seems logical
that psychotic symptoms should be part of the model since they are
the disorder’s core symptoms. However, traditionally, the literature
has placed less importance on depressive symptoms. Specifically, in
the theoretical model of McGorry et al. [9], they were included only
in the premorbid and prodromal phases of the disorder. However,
recent studies have analyzed the impact of depressive symptoms on
the long-term evolution of the disorder, finding that depressive
symptoms play a significant role in functional remission and per-
sonal recovery [67, 68]. Our model also includes the number of
hospitalizations, which refers to relapses requiring hospitalization.
Itmakes sense to include this profile due to its demonstrated negative
impact on the disorder’s prognosis [69, 70].

In cognition, significant domains emerged: processing speed
and visual learning assessed with Trail Making Test – Part A and
Brief Visuospatial Memory Test-Revised, respectively. Different
cognitive dimensions have also been included in previous staging
models [4, 9, 10-13, 16, 18, 21, 64]. However, it is worth noting the
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findings of Lin et al. [71], who demonstrated that processing speed
and visual learning and memory tests were the best predictors of
global cognition in schizophrenia. Therefore, their results may
explain why processing speed and visual learning were the only
cognitive domains that emerged in our model. Thus, it might be
possible to obtain an approximation of the global cognitive function
of these patients only through the Trail Making Test – Part A and
Brief Visuospatial Memory Test-Revised tests. On the other hand,
we would point out that the model does not include pure dimen-
sions of cognition only, since social cognition has also emerged as a
significant variable. Although several authors mentioned social
deficits and impairment of social functioning [9, 64, 65], only
Hickie et al. [10] included social cognition in their staging model.
Social cognition consists of the fundamental ability to engage in
social interactions, such as recognizing other people’s feelings,
perceiving their intentions, and understanding social and cultural
norms [72, 73]. For this reason, development of social cognition is
crucial for appropriate psychosocial and work-related adjustment
of these patients [74, 75].

Another important finding is that PLR, MLR, and NLR have
emerged as profilers within PsiOvi SMS. Other authors had previ-
ously included biomarkers in their theoretical models [9, 10], but
they were not empirically validated. Specifically, Godín et al. [16],
whose objective was to empirically validate and improve the model
of McGorry et al. [9], found no association between CRP and the
severity stages of the model. Therefore, to the best of our know-
ledge, our model is the first to include specific empirically validated
biomarkers associated with the severity of the disorder. Further-
more, in keeping with the present results, a previous study byÖzdin
and Bökeb [76] found that NLR, PLR, and MLR increased signifi-
cantly in the relapse period. Additionally, MLR and PLR were
found to be significantly higher in the remission period of patients
with schizophrenia compared with the control group. Therefore,
these results support the possibility that PLR, MLR, and NLR could
be biomarkers of schizophrenia severity. Furthermore, although
our model did not include any somatic comorbidities, these would
be indirectly indicated by peripheral inflammation biomarkers,
underlying metabolic syndrome, and obesity.

Finally, functioning also emerged as a significant variable in our
staging model. Previous theoretical models also included this vari-
able; evenMcGorry et al. [9] andHickie et al. [10] proposed specific
psychometric ranges of the Global Assessment of Functioning
(GAF) scale [77]. However, we use the PSP to assess functioning
since its scores include objective indicators and do not overlap with
psychopathology [30, 31] as occurs with the GAF scale.

Strengths and limitations

From a methodological point of view, using the CGI-S to train and
obtain the best model might be viewed as the main limitation, and
even a tautology, of the study. We have explained our point of view
extensively and discussed this topic in the “Discussion” section.
Another significant limitation is the small sample size of each CGI-
S group, which may affect the generalization of our results. How-
ever, as stated before, we consider our sample a good fit with the
typical severity distribution found in outpatient clinical practice.
Thus, we would point out that the PsiOvi SMS is applicable only to
patients with schizophrenia in outpatient treatment, and the pro-
dromal and extremely severe phases are outside the scope of the
model. However, since people with schizophrenia will spend most
of their lives in outpatient treatment, as very severe acute phases are
rare and brief, our model can be used in virtually all patients.

Our study had several strengths. First, we developed an empir-
ical staging model to classify patients in a standardized manner,
based on psychometric and biological parameters, that is easily
translatable into clinical practice. The required biological param-
eters are available in almost all settings, easy to obtain, and inex-
pensive. A second strength is the transparency in the data and
selection criteria employed in the model development. Thus,
readers can check their strengths and limitations. A third strength
is that the raters were extensively trained in psychometric assess-
ments, including the CGI-S. This allowed us to correctly assess the
patient’s level of severity for training and obtaining an accurate
staging model. Its final strengths are its neutrality, absence of bias,
and reproducibility. Furthermore, in addition to the previously
mentioned clinical advantages, the “PsiOvi SMS” is associated with
a calculator (https://test2023.shinyapps.io/res_patient/) that auto-
matically generates the patient’s stage, whichmakes ourmodel truly
transferable to clinical practice.

Therefore, the next step after developing our model will be to
follow patients over time and evaluate the effectiveness of the
interventions implemented at each stage. This will allow us to verify
and propose interventions that are truly useful to improve patient
outcomes depending on the stage in which they are located, which
could represent progress in the standardization of clinical practice
and the implementation of personalized medicine.

Conclusion

To the best of our knowledge, ours is the first development of an
empirical multidimensional staging model for schizophrenia using
machine learning. Our model constitutes a unique, accessible,
inexpensive, and easy-to-apply tool to help doctors manage the
heterogeneity of schizophrenia, facilitate the transfer of informa-
tion between professionals, and implement personalized thera-
peutic interventions. Therefore, they should be aware of these
results, as they represent a further step towards implementing
patient-centered precision medicine.
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