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Relaxation, dissipation, noise and fluctuations

2.1 A simple model of Brownian motion

In this chapter we shall continue the study of relaxation, dissipation, noise and
fluctuations by analyzing how they appear in simple models extracted from
classical physics. We shall also introduce some specific concepts, such as the
fluctuation–dissipation relation, which will be central to the development of our
subject matter.

Possibly the simplest manifestation of the relaxation process is the damping
of a pendulum swinging in open air. The simplest model of a pendulum is the
harmonic oscillator

ẍ + Ω2x = 0 (2.1)

At this level of description, it belongs to the realm of mechanics rather than
thermodynamics [LanLif69]; it obeys the conservation of phase space volume
theorem, it generates no entropy, and it does not relax. To see relaxation, we must
introduce damping. Let us proceed phenomenologically by adding a “damping
constant” γ to our oscillator equation (2.1), which becomes

ẍ + 2γẋ + Ω2x = 0 (2.2)

Later we will probe into the microscopic origin of dissipation.
Introduce an angle ϕ such that γ = Ω sinϕ and write Ω1 = Ω cosϕ. The solu-

tion to equation (2.2) is

x (t) = e−γt

{
x (0)

cos [Ω1t− ϕ]
cosϕ

+
p (0)
MΩ1

sin Ω1t

}
(2.3)

where M is the mass of the oscillator. Although this system does relax, it is a little
boring: the only possible equilibrium is at the bottom of the potential. But we
know that a classical pendulum at finite temperature has nonzero average kinetic
and potential energies, obeying the energy equipartition theorem. So something
is missing. Let us call ξ (t) the missing term, so that the system (2.2) becomes

ẍ + 2γẋ + Ω2x =
ξ (t)
M

(2.4)

A solution is in the form x = xh + xp, where xh is the homogeneous solution
[given by equation (2.3)], and xp is the particular solution

xp (t) =
∫ t

0

dt′ e−γ(t−t′) sin Ω1 (t− t′)
MΩ1

ξ (t′) (2.5)
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40 Relaxation, dissipation, noise and fluctuations

Let us consider the source ξ (t) as some kind of “noise” or stochastic forcing
term, and assume that the expectation value at any time is zero 〈ξ (t)〉 = 0, where
〈 〉 stands for the average over realizations of the noise. Then 〈xp〉 ≡ 0, so that
〈x〉 → 0 as t → ∞. As for

〈
x2
〉
, we know that xh will eventually die away, so for

long times
〈
x2 (t)

〉
∼
〈
x2
p (t)
〉
, given by

〈
x2
p (t)
〉
=

1
M2Ω2

1

∫ t

0

dt′dt′′ e−γ(2t−t′−t′′) sin Ω1 (t− t′) sin Ω1 (t− t′′) 〈ξ (t′) ξ (t′′)〉

(2.6)

To proceed we must say something about the noise correlator. If in our intu-
itive picture ξ (t) represents the stochastic bombardment of the ball of the pen-
dulum by its surrounding air molecules, then the simplest property is that the
noise is stationary and statistically independent at macroscopically distinguish-
able times, hence 〈ξ (t) ξ (t′)〉 = σ2δ (t− t′). Discarding exponentially decaying
and other small terms, we obtain

〈
x2 (t)

〉
∼ σ2/4M2Ω2γ. Comparing with the

equipartition theorem
〈
x2 (t)

〉
= kBT/MΩ2, where kB is Boltzmann’s constant,

this suggests that the system is equilibrating at a temperature given by the
Einstein relation [Ein05]

σ2 = 4γMkBT (2.7)

We have succeeded (our model successfully describes relaxation) where we
ought to have failed (we violated the time reversibility of the original model
equation (2.1)). Let us take our model apart, and try to understand the secret
of its working.

Observe that the system–environment interaction goes both ways: while the γ

term steadily dumps system energy into the environment, whereby the informa-
tion on initial conditions is lost, the noise term works in the opposite direction,
feeding the right amount of fluctuations into the system and compensating its
tendency to drop to the bottom of the potential. Neither alone would do the job,
as clearly shown by equation (2.7), which, when seen in this light, goes under
the name of a fluctuation–dissipation theorem [Nyq28, CalWel51].

In this view of the fluctuation–dissipation theorem, if we wish the system
to relax at a certain temperature T , we’d better throw in white noise with the
proper amplitude. But it could be that Nature does not care about relaxation,
and therefore that it does not need a fluctuation–dissipation theorem. Well, as
we know from everyday experience, it does, and there is a deeper reason for
equation (2.7). In the final analysis, the Einstein relation is an expression of the
unitarity of the dynamics of the system–environment complex. To understand
how this comes about, we shall backtrack a little, and offer a simple mechanical
model of how the environment works.

2.1.1 The linear oscillator model

The simplest possible mechanical model of the environment is to consider it as a
large set of linear harmonic oscillators with displacement qα, proper frequency ωα
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2.1 A simple model of Brownian motion 41

and mass mα coupled to the system through a time-dependent coupling constant
cα (t) (see below) [Rub60, Rub61, FoKaMa65]. This is a very poor model of an
environment; in a certain sense, it is no environment at all, as we may and will
easily integrate the full dynamics, so there is little to be gained in regarding the
qα as different or “irrelevant,” as the word “environment” may imply. In the real
world, environments are huge nonlinear systems, and the information dumped in
them is lost for all practical purposes as far as the observer is concerned. However,
this modest ansatz for an environment will be adequate for our purpose here,
which is why the above model actually works.

The full dynamics is given by

ẍ (t) + Ω2x (t) +
∑
α

cα (t)
M

qα (t) = 0

q̈α (t) + ω2
αqα (t) +

cα (t)
mα

x (t) = 0 (2.8)

The second set of equations is easily solved as qα (t) = qαp (t) + qαh (t), where

qαh (t) =
[
qα (0) +

cα (0)
mαω2

α

x (0)
]

cosωαt +
pα (0)
mαωα

sinωαt

qαp (t) =
−1

mαωα

∫ t

0

dt′ sinωα (t− t′) cα (t′)x (t′) − cα (0)
mαω2

α

x (0) cosωαt

= − cα (t)
mαω2

α

x (t) +
1

mαω2
α

∫ t

0

dt′ cosωα (t− t′)
d

dt′
(cαx) (2.9)

We have kept this level of detail just to show that the evolution of the environ-
ment is not indifferent to the way the interaction is switched on. The simplest
assumption is that the interaction is introduced adiabatically, but quickly set-
tles to a constant value. In this scheme, we have cα (0) = 0 but ċα = 0 at any
macroscopically positive time. Introducing this into the equation for the system,
we obtain

ẍ (t) +
∫ t

0

dt′ γ (t− t′) ẋ (t′) + Ω2
rx (t) =

ξ (t)
M

(2.10)

where

Ω2
r = Ω2 − 1

M

∑
α

c2α
mαω2

α

(2.11)

γ (t− t′) =
1
M

∑
α

c2α
mαω2

α

cosωα (t− t′) (2.12)

ξ (t) = −
∑
α

cαqαh (t) (2.13)

There are three differences between equations (2.10) and (2.4). First, the fre-
quency of the system has been renormalized. The second difference is that γ now
has a finite memory, reducing to the simple ohmic case γ (t− t′) = 4γδ (t− t′)
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42 Relaxation, dissipation, noise and fluctuations

only for a rather special (and unphysical) choice of the bath; this is unimpor-
tant for our present purpose. The real difference is that ξ (t) is not a stochastic
variable: it is a complex function of the bath’s initial conditions. For this reason,
equation (2.10) does not describe relaxation. It is simply the unitary dynamics
of the system–bath complex, written in a different set of variables. So, what is
missing?

Could it be that we forgot to record the actual initial conditions for the envi-
ronment? If so, we may consider that these initial conditions are taken at random.
To make it even simpler, we may assume that the initial conditions are taken
independently for each oscillator, and that they sample each classical orbit homo-
geneously. Under these conditions, we have, from the classical virial theorem

1
mα

〈pα (0) pα′ (0)〉 = mαω
2
α 〈qα (0) qα′ (0)〉 = δαα′ 〈εα〉 (2.14)

〈pα (0) qα′ (0)〉 = 0 (2.15)

where 〈εα〉 is the expectation value of the energy of the αth oscillator at t = 0.
Now ξ (t) is a bona fide stochastic variable, and

〈ξ (t) ξ (t′)〉 =
∑
α

c2α
mαω2

α

〈εα〉 cosωα (t− t′) (2.16)

If the bath itself is at equilibrium, then 〈εα〉 = kBT , and 〈ξ (t) ξ (t′)〉 =
MkBTγ (t− t′). This is Einstein’s relation for the non-ohmic case, reducing to
the case above in the ohmic limit.

Somewhere between equations (2.13) and (2.16) the environment oscillators
lose their role as dynamical variables. The “ordered” part of the system–
environment energy transfer is replaced by the γ term in equation (2.10), which
refers to the system alone (we say that the bath variables have been slaved
to the system); the “disordered” part is replaced by a generic stochastic force,
whose effect is to compensate the dissipation and thus to make a nontrivial
steady equilibrium possible. Time-reversal invariance becomes devoid of opera-
tional meaning, because the choice of a random initial condition for the bath
forfeits one’s ability to reverse the initial velocities of each oscillator in the bath.
This introduces an arrow of time in the macrodynamics.

Of course, the actual time development of ξ (t) as given in equation (2.13) looks
a lot like a realization of the stochastic process defined by equation (2.16) for any
finite period. But as time goes by, correlations build up between the system and
its environment which are not contained in the stochastic model. Because these
correlations are neglected, the stochastic model describes a nonunitary evolution;
therein lies the true reason for Boltzmann’s H-theorem – if all correlations were
kept, unitarity would be restored.

This basic framework for irreversibility will be the backdrop for our future
discussions. Of course, the Brownian motion paradigm which we discussed here
is an example of an autocratic system: the ball is the king, the relevant party,
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2.1 A simple model of Brownian motion 43

the center of attention, and the molecules in its environment are subservient,
slaved and “irrelevant.” Irreversibility also obtains in democratic systems, such
as a Boltzmann gas: all molecules are born equal and treated equally. However,
limitation of observational precision introduces coarse graining of a different
sort. In particular, we shall see below how irreversibility in the Boltzmann gas is
actually a consequence of the slaving of irrelevant, many-particle correlations to
the one-particle distribution function, which is of special interest as the coarsest
yet most accessible level of description.

2.1.2 Fluctuation–dissipation theorem

Let us discuss the fluctuation–dissipation theorem (FDT) in a still simple but
more general framework. This formulation of the FDT will be relevant when we
come to discuss fluctuations in the Boltzmann equation later on. This presenta-
tion follows closely that given by Landau and Lifshitz [LaLiPi80a].

The simplest setting for the FDT is a homogeneous system described by vari-
ables Xi. Equilibria are located at the maxima of a thermodynamic potential
S
(
Xi
)
. For an isolated system, S is the entropy, for an isothermal system,

S = −F/kBT, where F is the free energy, etc.
The thermodynamic forces are the components of the gradient of S, Li = −S,i

(a comma denotes a derivative). We chose coordinates so that thermodynamic
equilibrium lies at Xi = 0. Then Li also vanish at the origin, and for small devia-
tions, we get a linear relationship Li = CijX

j , where the matrix C is nonnegative.
For example, we could consider an isolated system made of a system proper

and an environment. Let us choose as coordinates the energy, volume and particle
number of the system Xi = (E, V,N). The function S is the total entropy, and
from the first law

dS =
(

1
Ts

− 1
Te

)
dE +

(
ps

Ts
− pe

Te

)
dV −

(
μs

Ts
− μe

Te

)
dN (2.17)

where T , p and μ stand for temperature, pressure and chemical potential, and
the subscripts “s” and “e” denote system and environment, respectively. The
coefficients in this differential form are (minus) the forces, and we see that they
indeed vanish at equilibrium. The matrix elements of C are the specific heat and
compressibility functions, etc. (for example, CEE = 1/T 2CV ), and the condition
of C being nonnegative engenders a set of thermodynamic inequalities such as
positivity of the specific heat.

We wish to motivate a dynamics for this system, under the basic requirement
that it should describe regression to equilibrium. This suggests writing Ẋi =
−ΓijLj , where Γ is nonnegative; then Ṡ = ΓijS,iS,j ≥ 0, and we obtain an H-
theorem of sorts. But this dynamics is too efficient, because we know that in
true equilibrium the system is not just sitting at X = 0, but fluctuating around
it. Following Einstein, we identify the probability of a fluctuation carrying the
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44 Relaxation, dissipation, noise and fluctuations

system from 0 to X as expS [X], whereby (in equilibrium)
〈
XiLj

〉
= δij . To

obtain these fluctuations, we must modify our ansatz to

Ẋi = −ΓijLj + Ξi. (2.18)

The first term describes the mean regression of the system towards a local entropy
maximum, Γij being the dissipative coefficient or function, and the second term
describes the random microscopic fluctuations induced by its interaction with
an environment. To simplify, let us assume that Ξi is a Gaussian white noise,
namely

〈
Ξi (t) Ξj (t′)

〉
= σijδ (t− t′), where the matrix σ is, of course, symmetric

and nonnegative. The FDT will allow us to relate the matrices σ and Γ.
In equilibrium, correlation functions are stationary. In particular

d

dt

〈
Xi (t)Xj (t)

〉
=
〈
Ẋi (t)Xj (t) + Xi (t) Ẋj (t)

〉
= 0 (2.19)

Therefore 〈
Ξi (t)Xj (t) + Xi (t) Ξj (t)

〉
= Γij + Γji (2.20)

If the noise is Gaussian, we have the Novikov identity [Nov65]〈
Xi (t) Ξj (t′)

〉
=
∫

dt′′
δXi (t)
δΞk (t′′)

〈
Ξk (t′′) Ξj (t′)

〉
(2.21)

which for our chosen autocorrelation becomes〈
Xi (t) Ξj (t′)

〉
= σkj δX

i (t)
δΞk (t′)

(2.22)

Since the dynamics is linear, we may write

Xi (t) = Xi
h (t) +

∫ t

dt′ Gi
k (t− t′) Ξk (t′) (2.23)

where the homogeneous solution Xi
h (t) is independent of the noise, and the

propagator G satisfies Gi
k (0) = δik. In the coincidence limit t′ = t we find

δXi (t)
δΞk (t)

=
∫ t

dt′ Gi
k (t− t′) δ (t− t′) =

1
2
δik (2.24)

From equations (2.20), (2.22) and (2.24), we get

σik = Γik + Γki (2.25)

which is the FDT in a simple classical formulation.
In the case of a one-dimensional system, the above argument can be simplified

even further because there is only one variable X, and Γ, C, σ are simply con-
stants. In equilibrium, we have

〈
X2
〉

= C−1. On the other hand, the late time
solution of the equations of motion reads

X (t) =
∫ t

du e−ΓC(t−u)Ξ (u) (2.26)

which implies
〈
X2
〉

= σ/2ΓC. Thus σ = 2Γ, in agreement with equation (2.25).
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2.2 The Fokker–Planck and Kramers–Moyal equations 45

As an example of this view of the FDT, let us return to the problem of the
dissipative pendulum. The system is described by two degrees of freedom x and
p = Mẋ. Since we are interested in the pendulum coming to equilibrium at a
given temperature, the relevant thermodynamic potential is S = −F/kBT . We
identify the free energy associated with a phase space point (x, p) as the work
necessary to bring the pendulum from rest to (x, p), in a reversible way and at
constant temperature. This work is, of course, the mechanical energy, so

S = − p2

2MkBT
− MΩ2x2

2kBT
(2.27)

The forces are then Lx = MΩ2x/kBT and Lp = p/MkBT . In these terms, Hamil-
ton’s equations become

ẋ =
p

M
= kBTLp; ṗ = −MΩ2x = −kBTLx (2.28)

This corresponds to an antisymmetric Γ matrix, and therefore the potential S is
conserved. We get no H-theorem, as expected.

In order to obtain regression to equilibrium, we must include dissipation. As is
stressed by Landau and Lifshitz, it makes no sense to modify the first of equation
(2.28), since this represents the definition of p rather than a true dynamical law.
Thus our only possibility is to modify the second equation

ṗ = −MΩ2x− 2γp = −kBT (Lx + 2MγLp) (2.29)

The new understanding is that this modification must be necessarily followed by
the inclusion of noise Ξi =

(
ξ̃, ξ
)

ẋ =
p

M
+ ξ̃; ṗ = −mω2x− 2γp + ξ (2.30)

and that we have no freedom in choosing the noise autocorrelation, as this is
given by the FDT. In our case, discarding the antisymmetric part of γij , we get
σxx = σxp = 0, σpp = 4γMkBT , which of course reproduces the result from the
last section.

2.2 The Fokker–Planck and Kramers–Moyal equations

Let us now consider a single variable X (t) evolving according to the Langevin
equation [Cha43, Kam81]

dX

dt
(t) + Γ (t)X (t) = Ξ (t) (2.31)

(that is, in comparison with equation (2.18), we now take the entropy as simply
S = (−1/2)X2, thus L = X, and allow Γ to depend on time), where Ξ is a
Gaussian colored noise

〈Ξ (t) Ξ (t′)〉 = s2 (t, t′) (2.32)
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46 Relaxation, dissipation, noise and fluctuations

Under the influence of noise the variable X will show a complicated behavior,
even if its initial value is accurately known. It becomes uninteresting to try and
follow the evolution of X in all its detail; just knowing the probability density
f (x, t) for actually finding X in a neighborhood of x at times t is enough.
Formally

f (x, t) = 〈δ (X (t) − x)〉 (2.33)

where the average is over realizations of the noise and also over all possible initial
conditions X (0). For simplicity, we assume the noise acts independently of the
initial condition.

The probability density f evolves according to the so-called Fokker–Planck
equation [Ris89, Gar90]. To derive this equation, observe that [SanMig89]

∂

∂t
f (x, t) =

〈
dX

dt
(t)

∂

∂X (t)
δ (X (t) − x)

〉

= − ∂

∂x

〈
dX

dt
(t) δ (X (t) − x)

〉

=
∂

∂x
[Γ (t)xf (x, t)] − ∂

∂x
〈Ξ (t) δ (X (t) − x)〉 (2.34)

To compute the last expectation value, we appeal to the Novikov identity
(2.21)

〈Ξ (t) δ (X (t) − x)〉 =
∫ t

0

dt′ s2 (t, t′)
〈

δ

δΞ (t′)
δ (X (t) − x)

〉

= − ∂

∂x
[σ (t) f (x, t)] (2.35)

where

σ (t) =
∫ t

0

dt′ s2 (t, t′)
δX (t)
δΞ (t′)

(2.36)

which in this simple case can be computed almost explicitly. The final result
takes the form of a continuity equation

∂

∂t
f (x, t) =

∂

∂x

{[
Γ (t)x +

∂

∂x
σ (t)

]
f (x, t)

}
(2.37)

One remarkable feature of this equation is that it is local in time, in spite
of the noise being colored. Moreover, it does not seem possible to reconstruct
s2 (t, t′) from σ (t) in general, unless some further hypothesis is added (for exam-
ple, that the noise is actually white). In this sense, the original Langevin descrip-
tion contains more information about the system than the Fokker–Planck one
[CaRoVe03].

Equation (2.31) may be generalized to nonlinear dynamics [BixZwa71, Zwa73]

dX

dt
(t) + Γ [X (t) , t] = ξ (t) (2.38)
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Repeating our earlier steps, we find

∂

∂t
f (x, t) =

∂

∂x
[Γ [x, t] f (x, t)] +

∂2

∂x2

∫ t

0

dt′ s2 (t, t′)
〈
δX (t)
δξ (t′)

δ (X (t) − x)
〉

(2.39)

where

∂

∂t

δX (t)
δξ (t′)

+
∂Γ [X (t) , t]

∂X (t)
δX (t)
δξ (t′)

= δ (t− t′) (2.40)

In general, this will be a complicated function of the base trajectory X (t) .
However, if the noise is white

s2 (t, t′) = σ2 (t) δ (t− t′) (2.41)

then the Fokker–Planck equation simplifies to

∂

∂t
f (x, t) =

∂

∂x

{[
Γ [x, t] +

σ2 (t)
2

∂

∂x

]
f (x, t)

}
(2.42)

An important particular case of the above is when the Langevin dynamics
follows from adding local dissipation and white noise to an otherwise Hamiltonian
system. We then have two variables X and P , with

dX

dt
=

∂H

∂P
(2.43)

dP

dt
= −∂H

∂X
− 2γP + ξ (2.44)

H =
P 2

2M
+ V (X) (2.45)

where H is the Hamiltonian (following Landau, we only add noise to the second
equation). Then

f (x, p, t) = 〈δ (X (t) − x) δ (P (t) − p)〉 (2.46)

and

∂

∂t
f (x, t) = −{H, f} +

∂

∂p

[(
2γp +

σ2 (t)
2

∂

∂p

)
f

]
(2.47)

where

{H, f} =
∂H

∂p

∂f

∂x
− ∂H

∂x

∂f

∂p
(2.48)

is the Poisson bracket. This is the so-called Kramers–Moyal equation [Kra40,
Moy49].

In the derivation of the Kramers–Moyal equation we have used the fact that
a change in the external force changes the acceleration, but neither the position
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nor the velocity, instantaneously, so

δX (t)
δξ (t)

= 0 (2.49)

The resulting Kramers–Moyal equation contains only second-order p-derivatives.
This is the so-called normal diffusion. For colored noise there are both normal
and anomalous diffusion (we shall see an example in Chapter 3).

For a thermodynamic system in contact with a heat bath any spontaneous
transformation decreases the free energy F = U − TS. For a system described
by the Kramers–Moyal equation, if both γ and σ2 are time-independent, there
is an analog to this statement. We replace the internal energy U by the average
value of the Hamiltonian, the entropy S by the Boltzmann HB function

HB = −kB

∫
dXdP f ln [f ] (2.50)

and the temperature T by σ2/4MγkB [cf. equation (2.7)]. Thus we obtain
Kramers’ nonequilibrium free energy [Kur98, Kur05]

FK =
∫

dXdP f

{
H +

σ2

4Mγ
ln [f ]

}
(2.51)

and an H-theorem of sorts

dFK

dt
= −2γ

M

∫
dXdP f

[
P +

σ2 (t)
4γf

∂f

∂P

]2
(2.52)

This also shows that there is only one stationary solution

feq ∝ e−(4γM/σ2)H (2.53)

so we are led to the identify σ2 = 4γMkBT , as expected.
If γ and σ2 go to zero, the Kramers–Moyal equation reduces to the Liouville

equation

∂

∂t
f (x, t) = −{H, f} (2.54)

In the opposite limit, it reduces to a Fokker–Planck equation. For very large
damping, we have

P ∼ 1
2γ

[−V ′ + ξ] (2.55)

dX

dt
= −V ′ (X)

2γM
+ Ξ ∼ −V ′′ (0)

2γM
X + Ξ (2.56)

where Ξ = ξ/2γM . This is the kind of dynamics we studied at the beginning
of this section. Since the kinetic energy is negligible compared to the poten-
tial energy, we have S = −V (X) /kBT, C = V ′′ (0) /kBT and Γ = kBT/2γM .
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The fluctuation–dissipation relation appropriate to the Fokker–Planck equation
〈Ξ (t) Ξ (t′)〉 = 2Γδ (t− t′) leads us back to 〈ξ (t) ξ (t′)〉 = 4γMkBTδ (t− t′).

2.3 The Boltzmann equation

We shall now examine the other major paradigm of irreversible behavior in clas-
sical physics, namely, Boltzmann’s theory of dilute gases [Bol64, ChaCow39,
LifPit81]. As we already mentioned, the Brownian motion paradigm we examined
in the last section corresponds to an autocratic system where an environment is
subservient to our system of interest. The Boltzmann model of a gas, on the other
hand, seems to be democratic in that it embraces all molecules on equal terms.
In this sense, the Boltzmann gas appears as a truly closed system. However, this
system will be shown to be an effectively open system in the space of correlation
functions. Specifically, our relevant system shall be the one-particle distribution
function, and its environment consists of the higher correlations. When seen in
this light, we shall see that irreversibility in the Boltzmann equation follows a
similar pattern as in the Brownian motion problem.

This view of the Boltzmann theory as describing an effectively open system
shows how nontrivial it may be to identify the right degrees of freedom to describe
a given system. We may say that the genius of Boltzmann has been to realize that,
while the characteristic time for the dynamics of individual molecules is the colli-
sion time, the characteristic time for the dynamics of the one-particle distribution
function is the relaxation time, which is much longer. Thus, the one-particle dis-
tribution function is the collective degrees of freedom in whose terms the dynam-
ics becomes slow and simple. The very first step in treating the nonequilibrium
dynamics of a system, i.e. identifying the right collective degrees of freedom in a
given situation, may turn out to be the most important, and at times the most
difficult, task.

Consider a gas of N identical molecules interacting through a binary central
potential V (r); we shall assume the forces are short range and the gas is dilute,
Na3/V � 1 where a is the range of the potential. We shall consider no external
forces. The Hamiltonian

H =
N∑
i=1

p2
i

2m
+

1
2

∑
i �=j

Vij ; Vij = V (|xi − xj |) (2.57)

(we assume no self-energies: Vii = 0) leads to the Hamilton equations

dxi

dt
=

∂H

∂pi
=

pi

m
;

dpi

dt
= −∂H

∂xi
= −

∑
i �=j

∂Vij

∂xi
(2.58)

Equivalently we may describe the state of the system through a 6N -dimensional
distribution function ρ = ρ ((x1,p1) , . . . , (xN ,pN ) , t) , which satisfies the
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Liouville equation

∂ρ

∂t
= −{H, ρ} (2.59)

where we introduced the Poisson bracket (generalizing (2.48))

{f, g} =
N∑
i=1

[
∂f

∂pi

∂g

∂xi
− ∂g

∂pi

∂f

∂xi

]
(2.60)

ρ integrates to 1 over the whole phase space. We shall assume that ρ is totally
symmetric, which in the quantum case yields Bose–Einstein statistics.

Given a (one-particle) phase space point (x,p), we may define the density at
that point

F (x,p) =
N∑
i=1

δ (xi − x) δ (pi − p) (2.61)

The one-particle distribution function f1 is the expectation value of the density

f1 (x,p) =
N∑
i=1

〈δ (xi − x) δ (pi − p)〉 (2.62)

〈δ (xi − x) δ (pi − p)〉

=
∫ ∏

j

d3xjd
3pj ρ ((x1,p1), . . . , (xN ,pN ) , t) δ (xi − x) δ (pi − p) (2.63)

which from symmetry becomes

〈δ (xi − x) δ (pi − p)〉 =
∫ N∏

j=2

d3xjd
3pj ρ((x,p), (x2,p2), . . . , (xN ,pN ), t)

(2.64)
and is independent of i. Therefore

f1 (x,p) = N

∫ N∏
j=2

d3xjd
3pj ρ((x,p), (x2,p2), . . . , (xN ,pN ), t) (2.65)

For later use, we shall introduce also the s-particle distribution function

fs ((x1,p1) , . . . , (xs,ps))

=
N !

(N − s)!

∫ N∏
j=s+1

d3xjd
3pj ρ((x1,p1), . . . , (xs,ps), (xs+1,ps+1) . . .) (2.66)

We obtain the dynamics of f1 integrating side by side in Liouville’s equation

∂f1

∂t
= −N

∫ N∏
j=2

d3xjd
3pj {H, ρ} (2.67)
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Developing the Poisson bracket, we observe that all terms involving derivatives
with respect to xj or pj , j �= 1, may be reduced to total derivatives and discarded
(under suitable boundary conditions at infinity). The only surviving terms yield

∂f1

∂t
(x1,p1) = −p1

m

∂f1

∂x1
+

∂

∂p1

∫
d3x2d

3p2

[
∂

∂x1
V (|x1 − x2|)

]
×f2((x1,p1), (x2,p2)) (2.68)

To obtain the dynamics for f1 we need the dynamics for f2. This is obtained
in an analogous way

∂f2

∂t
= −N (N − 1)

∫ N∏
j=3

d3xjd
3pj {H, ρ} (2.69)

Repeating the above argument, we get
∂f2

∂t
= −{H2, f2} +

∫
d3x3d

3p3 Kf3 (2.70)

where H2 is the two-particle Hamiltonian

H =
p2

1

2m
+

p2
2

2m
+ V (|x1 − x2|) (2.71)

The precise form of the kernel K in equation (2.70) is unimportant. What
matters is that, if the dynamics of f1 depends on f2, it will depend on f3, which
in turn depends on f4, etc. Thus we obtain an infinite hierarchy of equations,
commonly known as the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy.

We face a situation which is different from our oversimplified Brownian motion
model. In the linearly coupled harmonic oscillators problem the dynamics is so
simple that one is seriously tempted to just solve it, without ever mobilizing all
the Langevin equation machinery. In the BBGKY case, a solution of the infinite
hierarchy is close to impossible. So we need to find ways to reduce the problem to
a simpler one. Usually the first step in this simplification is to reduce the infinite
hierarchy to a finite system by just discarding an infinite set of distribution
functions. We shall call this brute force reduction a truncation of the hierarchy.

For example, we may argue that, since the integral over x2 is effectively reduced
to a sphere of radius a around x1, the collision term in equation (2.68) is smaller
than the first term by a factor Na3/V , which is � 1 by assumption. In turn,
the collision term in equation (2.70) will be smaller than the other terms in this
equation by about the same factor. For a dilute gas with short-range interactions,
we would be dealing with small corrections to ever smaller terms, and at some
point they may become negligible. For simplicity, we shall assume that we are
interested in a situation where the first nontrivial truncation works, namely, we
put K = 0 in equation (2.70).

We stress that this strategy is by no means guaranteed to work. If there were
long-range interactions (like Coulomb forces), something drastically different
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may be required, such as a Vlasov scheme where all far away particles are replaced
by an effective continuous charge distribution supporting an average potential.
This is another example of why finding the right collective degrees of freedom
may constitute the hardest part of the work, as we already mentioned.

2.3.1 Slaving of higher correlations in the Boltzmann equation

Our goal is to solve equation (2.70) for f2 (with K = 0) and to substitute the
solution in equation (2.68) for f1. At first sight it may look like these equations
are decoupled, but, as we shall see, they couple through the boundary conditions,
as the behavior of f2 for large separations will be determined by f1, through the
so-called molecular chaos hypothesis [AkhPel81].

Equation (2.70) expresses the conservation of probability as the particles move
along the classical orbits generated by the Hamiltonian H2. These trajectories
are easiest to study if we decompose the motion in center of mass and relative
variables

X =
1
2
(x1 + x2); u = x1 − x2 (2.72)

Introducing the conjugate momenta

P = p1 + p2; 2p = p1 − p2 (2.73)

we get the Hamiltonian

H2 =
P2

2M
+

p2

2μ
+ V (u); M = 2m, μ =

m

2
(2.74)

The center of mass motion represents a particle of mass M moving with uniform
speed, while the relative motion represents a particle of mass μ scattering off a
fixed center of force at the origin.

Let us observe that the integral in equation (2.68) is effectively restricted to
the range |x1 − x2| ∼ a, and so the center of mass variable changes little. Thus
we may ignore the dependence of f2 on X (on a more formal level, we are
computing the first term in a development of the collision integral in derivatives
with respect to X). Also an initial domain of initial conditions will move along the
classical orbits and be distorted. Since relative motion is very fast with respect
to macroscopic time-scales, we may assume that on the time-scales relevant to
our observations, the initial domain has been elongated and fills the classical
trajectory uniformly (this effect is known as phase diffusion, or the running men
effect: a line of runners with differential velocities will elongate and eventually
go uniformly round the track). Under the twin hypothesis of center of mass
independence and phase diffused relative motion, we get f2,t = f2,X = 0, and
the equation for f2 becomes

p
μ
· ∇uf2 − (∇uV ) · ∇pf2 = 0 (2.75)
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We may add a term

[∇x2V (|x1 − x2|)]∇p2f2 ((x1,p1), (x2,p2)) (2.76)

under the integral in equation (2.68), since it integrates to zero anyway. Now
observe that

∇x1V (|x1 − x2|) = −∇x2V (|x1 − x2|) = ∇uV (2.77)

∇p1f2 −∇p2f2 = ∇pf2 (2.78)

Changing variables from x2 to u, we get

∂f1

∂t
(x1,p1) = −p1

m
∇x1f1 +

∫
d3p2

∫
du

p
μ
∇uf2 (2.79)

For a given p, we may choose adapted cylindrical coordinates (u, b, ϕ). Then
this simplifies to

∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2

∫
2πbdb

|p|
μ

[f2(p1,p2, b, u = ∞)

−f2(p1,p2, b, u = −∞)] (2.80)

where by u = ±∞ we mean a relative coordinate which is large enough to take
the particles out of interaction range, but still small in macroscopic terms.

It is at this point that the crucial step is taken. At u = −∞, the two particles
have not yet interacted. Here we impose the molecular chaos condition, namely,
that there are no correlations among them initially, and thus

f2 (p1,p2, b, u = −∞) ∼ f1 (x1,p1) f1 (x1,p2) (2.81)

At u = ∞ the particles have interacted and are correlated. However, since f2

is constant along the trajectories, we have

f2 (p1,p2, b, u = ∞) = f2 (p′
1,p

′
2, b, u = −∞) ∼ f1 (x1,p′

1) f1 (x1,p′
2) (2.82)

where p′
1,p

′
2 are the momenta which evolve into p1,p2 after a collision with

impact parameter b. Equations (2.81) and (2.82) implement the slaving of the
two-particle correlation to the one-particle distribution. After this, no trace of
f2 is left, but only functionals of f1.

To make the content of these equations even clearer, let us write

f2 (p1,p2, b, u = ∞) =
∫

d3p3dp4 δ (p3 − p′
1) δ (p4 − p′

2) f1 (x1,p3) f1 (x1,p4)

(2.83)
and also the trivial identity

f2 (p1,p2, b, u = −∞)=
∫

d3p3dp4 δ (p3 − p′
1) δ (p4 − p′

2) f1 (x1,p1) f1 (x1,p2)

(2.84)
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The final result is
∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2d
3p3d

3p4 T (p1,p2,p3,p4)

×{f1 (p3) f1 (p4) − f1 (p1) f1 (p2)} (2.85)

where T is the transition probability

T =
∫

2πbdb
|p|
μ

δ (p3 − p′
1) δ (p4 − p′

2) (2.86)

T is zero unless p3,p4 do evolve into p1,p2 for some impact parameter. Equation
(2.85) is the Boltzmann equation, and it is dissipative. We observe that the
source of dissipation is the slaving of f2 to f1, similar in philosophy as in our
Brownian motion toy model. As in Brownian motion, in equilibrium there will
be density fluctuations. Thus equation (2.85) is incomplete: there must also be
a stochastic term, which is determined by the fluctuation–dissipation theorem.
We shall derive this term, but first let us consider the changes in equation (2.85)
brought by relativity and quantum statistics.

2.3.2 Corrections from quantum statistics

The Boltzmann equation has the structure of a balance equation where changes
in the particle number within a given cell in phase space are attributed (other
than transport along classical one-particle trajectories) either to gain or loss
processes. Gain obtains when one of two particles with momenta p3, p4 are
injected into the cell through a collision, and loss when a particle within the cell
is scattered off by collision with another particle of momentum p2. If the particles
obey quantum statistics, we must take into account the effect of stimulated
emission for Bose–Einstein (BE) statistics and Pauli blocking for Fermi–Dirac
(FD) statistics [Lib98]. The kinetic equation is then changed into

∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2d
3p3d

3p4 T I (2.87)

where T is a suitable transition probability, not necessarily identical to (2.86),
and

I = (1 ± f1) (1 ± f2) f3f4 − (1 ± f3) (1 ± f4) f1f2 (2.88)

Hereafter we drop the subindex 1 in f (we shall not consider higher correlation
functions) and use the shorthand fi = f (x,pi). The upper sign holds for BE,
and the lower sign for FD.

In equilibrium the collision integral must vanish, and therefore ln [f/(1 ± f)]
must be an additive constant of motion [Hua87]. If the gas is globally at rest,
we may discard a term proportional to p, which would conflict with rotational
invariance, to get

ln
f

1 ± f
= −β (ε− μ) (2.89)
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where ε is the one-particle energy, and β and μ are constants. Therefore

feq =
1

eβ(ε−μ) ∓ 1
(2.90)

where again the signs correspond to BE (upper) or FD (lower) statistics. We
recognize that β = 1/kBT , and μ is the chemical potential. From now on we
shall assume BE statistics.

The lesson from equation (2.90) is that to specify an equilibrium state we need
five numbers: the three components of the velocity of the rest frame, and the
temperature and chemical potential in that frame. In other words, equilibrium
states are astonishingly simpler than the generic states of the theory, which live
in a 6N -dimensional parameter space. This essential simplicity is the ultimate
reason why we can describe real physical systems so elegantly by thermodynamics
and statistical mechanics.

2.3.3 Relativistic kinetic theory

Let us now add the demands of relativity [Isr72, Isr88]. We consider our par-
ticles as living in a four-dimensional spacetime with coordinates xμ (x0 = ct,
xi = x, y, z), endowed with a metric tensor gμν , which in Minkowski space is just
ημν = diag (−1, 1, 1, 1) (we use Misner–Thorne–Wheeler conventions (MTW)
[MiThWh72]). The system is described by the one-particle distribution func-
tion f (xμ, pμ), where x is a position variable, and p is a momentum variable.
Momentum is assumed to lie on a mass shell p2 + M2 = 0 and have positive
energy p0 > 0.

We assume there is a conserved charge which allows us to define a meaningful
conserved particle number. Given a spatial element dΣμ = nμdΣ and a momen-
tum space element d4p, the number of particles with momentum p lying within
that phase space volume element is

dn = −4πf (x, p) θ
(
p0
)
δ
(
p2 + M2

)
pμnμ dΣ

d4p

(2π)4
√−g

(2.91)

where the normalization will be useful later on. In this formula, g = det gμν ; of
course, −g = 1 in Minkowski space, which we shall assume from now on. Observe
that this definition is covariant. The particle number density is defined as (minus)
the flux of the particle number current

Nμ (x) = 2
∫

Dp pμf (x, p) (2.92)

where we introduced the momentum space volume element

Dp = θ
(
p0
)
δ
(
p2 + M2

) d4p

(2π)3
√−g

(2.93)
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If we are only concerned with the particle number flux across equal time surfaces,
we may decompose the particle current into Nμ = (cρ,J), where ρ is the ordinary
density and J the ordinary particle flux.

The energy–momentum density is defined in terms of the energy–momentum
tensor

dPμ = −TμνdΣν ; Tμν = 2
∫

Dp pμpνf (x, p) (2.94)

T 00 = cE, where E is the ordinary energy density, T 0i = E are the energy flux,
T i0 = cP are the momentum density, and T ij are the components of the momen-
tum flux. Since Tμν is symmetric, we get P = E/c.

The dynamics of the distribution function is given by the Boltzmann equation

pμ1
∂

∂xμ
f = Icol (2.95)

Icol =
∫ [ 4∏

i=2

Dpi

] [
(2π)4 δ (p1 + p2 − p3 − p4)

]
T I (2.96)

where once again T is a suitable transition probability, not necessarily identical to
(2.86), and I is given in equation (2.88). We have made explicit the momentum
conservation delta function, and assume that the transition probability T is
symmetric under particle exchange and time reversal. These symmetry conditions
lead directly to the conservation laws for particle number and energy–momentum
Nμ

;μ = Tμν
;ν = 0, which hold for any distribution function. In equilibrium, we have

the stronger result I = 0, leading to

feq =
1

e−βμpμ−α − 1
, (2.97)

where βμ = μμ/kBT , uμ is the macroscopic four-velocity of the gas (u2 = −1)
and α = μ/kBT . The number of parameters which identify an equilibrium state
remains at five.

Besides the conserved currents Nμ and Tμν , we may define the entropy current

Sμ (x) =
∫

Dp pμ {[1 + f (p)] ln [1 + f (p)] − f (p) ln f (p)} (2.98)

Unlike the other currents, entropy is not conserved: Sμ
,μ ≥ 0 is the relativistic

H-theorem.
Consider a small deviation from the equilibrium distribution f = feq + δf cor-

responding to the same particle and energy fluxes∫
Dp pμδf (p) =

∫
Dp pμp0δf (p) = 0 (2.99)

The variation in entropy becomes

δS0 = −1
2

∫
Dp p0 (δf)2

[1 + feq (p)] feq (p)
(2.100)

showing that entropy is indeed a maximum at equilibrium.
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In the classical theory, the distribution function is concentrated on the pos-
itive frequency mass shell. Therefore, it is convenient to label momenta just
by their spatial components p, the temporal component being necessarily ωp =√
M2 + p2 > 0. In the same way, it is simplest to regard the distribution function

as a function of the three momentum p alone, according to the rule

f (3) (x,p) = f [x, (ωp,p)] (2.101)

where f represents the distribution function as a function on four-dimensional
momentum space, and f (3) its restriction to the three-dimensional mass shell.
With this understood, we shall henceforth drop the superscript, using the same
symbol f for both functions, since only the distribution function on mass shell
enters into our discussion. The variation of the total entropy now reads

δS = −1
2

∫
d3x
∫

d3p

(2π)3
(δf)2

[1 + feq (p)] feq (p)
(2.102)

This formula shall be relevant to our discussion of fluctuations in the Boltzmann
equation.

2.3.4 Fluctuations in the Boltzmann equation

We have seen that the Boltzmann equation has a dissipative character: by virtue
of the H-theorem, any initial condition is eventually transformed into the equi-
librium solution. On the other hand, we have seen that there is a well-defined
entropy decrease associated with fluctuations in the distribution function. If we
believe in Einstein’s formula for the probability of a fluctuation, we must con-
clude that in equilibrium the number of particles in a phase space cell must not
have a definite value, but rather be a Gaussian stochastic variable with mean
deviation

〈δf (x,p) δf (x′,p′)〉 ∼ (2π)3 δ (x − x′) δ (p − p′) feq [1 + feq] (2.103)

It is not hard to derive this result. The formula for the equilibrium distribution
function is equivalent to considering the gas in a grand canonical ensemble, and
therefore there must be number fluctuations〈

(δN)2
〉

= β
∂ 〈N〉
∂μ

=
∫

d3x
d3p

(2π)3
feq [1 + feq] (2.104)

On the other hand

N =
∫

d3x
d3p

(2π)3
f (2.105)

so 〈
(δN)2

〉
=
∫

d3x
d3p

(2π)3
d3x′ d

3p′

(2π)3
〈δf (x,p) δf (x′,p′)〉 (2.106)
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taking us back to equation (2.103). This means that if at t = 0 we actually mea-
sure the number of particles f0 in each phase space cell, we will rarely obtain
those given by feq (although we will get numbers that will remain statistically
close to it). However, if we adopt f0 as the initial condition and solve the Boltz-
mann equation, after a long enough time the solution converges to feq in each
and every cell. To obtain these occupation numbers from an actual measurement
would be highly unlikely for a system in equilibrium under a grand canonical
distribution.

This outrage against Gibbsian common sense means that the Boltzmann equa-
tion is not telling the whole story. There is another term besides the collision
integral, which sustains the right amount of deviations from the equilibrium
state. We could trace back to the derivation of the Boltzmann equation to
see where the relevant information was disregarded (and for this reason, we
unfolded that derivation in some detail). However, in practice, we know this extra
term represents fluctuations which may be quantified by a noise distribution,
whose statistics is determined from fluctuation–dissipation considerations; for
some classic implementations of this insight see [LanLif57, LanLif59, FoxUhl70a,
FoxUhl70b, BixZwa69, KacLog76, KacLog79]. The two points we wish to stress
are (1) the incompleteness of the Boltzmann equation which only accounts for
dissipation, and (2) the possibility of using fluctuation–dissipation relation con-
siderations to add fluctuations to the Boltzmann equation, valid for all practical
purposes.

Let us consider the regression of a small deviation δf from the equilibrium
distribution feq. In order to apply the fluctuation–dissipation theorem we must
obtain an expression for the time derivative of δf in terms of the thermodynamic
force

F (x,p) = − δS

δ (δf)
=

1
(2π)3

δf (x,p)
[1 + feq (p)] feq (p)

(2.107)

Writing the linearized equation as
∂f

∂t
+

p
ωp

∇f =
1
ωp

Icol + ξ(X,p) (2.108)

the Γ matrix has an asymmetric part (coming from the spatial gradients term)
and a symmetric part (coming from the linearization of the collision integral).
Only the latter contributes to the noise autocorrelation, and so we obtain

〈ξ (X,p) ξ (Y,q)〉 = −
{

1
ωp

δIcol (X,p)
δF (Y,q)

+
1
ωq

δIcol (Y,q)
δF (X,p)

}
(2.109)

To obtain a crude idea of what is going on, we may keep only those terms in
Icol which are proportional to F (p), as is usually done in deriving the “collision
time approximation” to the Boltzmann equation (also related to the Krook–
Bhatnager–Gross kinetic equation [Lib98, Cer69]), thus we write

δIcol (p) ∼ −ωpν
2(p)F (x,p) (2.110)
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where

ν2(X,p) =
(2π)3

ωp

∫ [ 4∏
i=2

Dpi

] [
(2π)4 δ (p1 + p2 − p3 − p4)

]
TI+ (2.111)

I+ = [1 + feq (p1)] [1 + feq (p2)] feq (p3) feq (p4) (2.112)

Under this approximation we find the noise autocorrelation

〈ξ(y,k)ξ (x,p)〉 = 2δ(4) (x− y) δ (k − p) ν2(x,p) (2.113)

Equations (2.108) and (2.113) are the solution to our problem, that is, they
describe the fluctuations in the Boltzmann equation, required by consistency
with the FDT. Observe that, unlike equation (2.103), the mean square value of
the stochastic force vanishes for a free gas. This does not mean that there are
no fluctuations (equation (2.103) does not vanish) but that in the collisionless
case it is enough to include the fluctuations in the initial conditions, since they
are preserved by the dynamics. It is only in the dissipative case that an explicit
noise term is necessary to keep fluctuations at the required level [CalHu00].
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