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ON MAXIMUM MATCHINGS IN CUBIC GRAPHS

WITH A BOUNDED NUMBER OF BRIDGE-COVERING PATHS

GARY CHARTRAND!, S.F., KaPoor, ORTRUD R, OELLERMANN

AND SERGIO Ruiz?

It is proved that if G is a connected cubic graph of order p
all of whose bridges lie on r edge-disjoint paths of G ,
then every maximum matching of ( contains at least p/2- L?r/QJ

edges. Moreover, this result is shown to be best possible.
1. Introduction and historical background

A matching in a graph G 1is a set of pairwise nonadjacent (independ-
ent) edges of ( . A matching with maximum cardinality is a maximum
matehing. If G has order p , then a matching of cardinality p/2 is
called a perfect matching. Graphs with perfect matchings were
characterized by Tutte [5].
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THEOREM A. (Tutte). A graph G has a perfect matching if and only
if for every proper subset S of V(G) , the number of odd components of
G-S does not exceed |S| .

Much research has centred around the determination of regular graphs

that contain perfect matchings. A well known result on this subject is
due to Petersen [4].

THEOREM B. (Petersen). Every cubic graph with at most two bridges
contains a perfect matching.

This result cannot be improved, in general, since cubic graphs
having three bridges but no perfect matchings exist. The graph of Figure 1

is the unique smallest such graph.

Figure 1

Note that the three bridges of the graph of Figure 1 do not lie on a
single path. 1Indeed, since this graph has no perfect matching, this

property is necessary, by a result of Errera [3].

THEOREM C. (Errera). If all the bridges of a connected cubic graph
G lie on a single path of G , then G has a perfect matching.

The goal of this paper is to provide a generalisation of Theorem C
by establishing a lower bound on the cardinality of a maximum matching in
a connected cubic graph all of whose bridges lie on a specified number of
edge-disjoint paths. Towards this end we state the following generalisation

(see [1]) of the aforementioned theorem of Tutte.
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THEOREM D. Let G be a cubic graph of order p and let & be an
integer with 0 < % < p/2 . Then every maximum matching of G has at least
(p - 28)/2 edges if and only if for every proper subset S of V(G) , the
number of odd components of G - S does not exceed |S| + 2% .

2. The main result

We are now prepared to present a bound on the number of edges in a
maximum matching in a connected cubic graph G in terms of the number of

paths containing the bridges of G .

THEOREM 1. If the bridges of a connected cubic graph G lie om »r
edge-disjoint paths of G , then each maximum matching of G contains at
least p/2 —L?r/@] edges.

Proof. suppose, to the contrary, that G contains a maximum match-
ing M with fewer that p/2 - LZP/3J edges. By Theorem D there exists a
proper subset S of V(G) such that the number 7n of odd components of
G- S exceeds |S| + 2L?r/3J . Let |S] =k . since p is even, n and
k are of the same parity, so that

nzk+2\2r/3] + 2. RN 4.

Denote the odd components of G - S by Gl’ 62’ e Gn . Since G is
connected, every component Gi(l € 1 <n) contains at least one vertex

that is adjacent to some vertex of S . Suppose, without loss of generality,

that Gl’ GZ’ ceny Gt denote the odd components of G - S for which there
exists exactly one edge ei joining a vertex in Gi (1 <71 <¢t) toa

vertex of S . For 2 =t + 1, t+2, ..., n , then, there are at least

three edges joining vertices of Gi to vertices of S ; otherwise, for
some Jj(t + 1 < g < n) , vertices of Gj are joined to vertices of S by
exactly two edges, implying that Gj has an odd number of odd vertices,
which is not possible.

Let PJ’ P2,

contain all the bridges of G . Then for every (1 << < »r) , at most two

ey Pr denote r edge-disjoint paths of G which

bridges of G that lie on Pi are in the set {el, €hs +res et} . Hence

t £ 2r . Since at least t + 3(n - t) = 3n - 2¢ edges join vertices of

https://doi.org/10.1017/50004972700003737 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003737

444
G. Chartrand, S.F. Kapoor, O.R. Oellermann and S. Ruiz

V(Gl) U V(GZ) U.eoo U V(Gn) to vertices of S it follows that

3n - 4r < 3n - 2t < 3k . Therefore, 3(n - k) < 4r so that by (*) ,
32| 2r/3| +2) < 4r, that is 3 |2r/3| + 3 < 2r . However,

2r + 1 =3((2r - 2)/3) +3 <3| 2r/3] +3<2r,
which gives a contradiction. O

Another bound (see [Z2]) for the number of edges in a maximum matching

in a connected cubic graph G depends only on the number of bridges in G .

THEOREM E. Every maximum matching in a connected cubic graph of
order p with fewer than 3(% + 1) bridges (% 2 0) has at least
(p - 22)/2 edges.

If the bridges of a connected cubic graph lie on sufficiently few
paths, then the bound provided in Theorem 1 on the number of edges in a
maximum matching is an improvement on the bound provided in Theorem E.

A specific statement of this improved result is given next.

COROLLARY 1. Let G be a connected cubic graph of order p having
m bridges, and let- & 2 0 be an integer such that 32 <m < 3(2 + 1).
If these bridges lie on r edge-disjoint paths, where |2r/3|< & , then
the number of edges in a maximum matching of G is at least p/2 - | 2r/3].

The result in Corollary 1 can be shown to be sharp, which we do next.
Since the case £ = 0 corresponds to the existence of at most 2 bridges
in a connected cubic graph, and sharpness is already known, we consider
2 2 1 to be given, and choose the maximum r with »r = ¢ (mod 3) ,

say r = 3s , such that LZr/3J < & . Then

{ (32 - 6)/2 if & 1is even ,
r =

(32 - 3)/2 if L is odd .
We show that there exists a connected cubic graph G of order p having
m= 32+ J bridges (j =0, 1, 2) all of which lie on r edge-disjoint
paths but no fewer, such that each maximum matching contains p/2- L2r/3J

edges.

We begin by constructing a graph P; (n 2 1) , consisting of graphs

Hl’ HZ’ ceuy Hn » where Hi(l £ 7 £n-1) is obtained by deleting an
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edge of K, and Hn is obtained by subdividing an edge of K4 . Denote

4

the two vertices of degree 2 in Hiﬁl €1 <n-21) by u, and v, and
the vertex of degree 2 in Hn by u, - Then g; is produced by joining

V., and u.

(1 <71 <n-1). Observe that each P*(n = 1) has odd
1 1+1 n

order. Let the graph H be the I12s-cycle Wys Wos eeey Wygos Wy to
which we add 2s new vertices Tys Tgs sees Too s where xi is joined to

(1 <1 < 28) . Consider next the graphs

Ygi-5° Vgi-3 204 Vgi_g
» Iy *
Gl’ GZ’ ey G63—1 s each isomorphic to P1 , and the graph Gﬁs’ where
* . 3
P7+j if & is even ,
GBs =
* . .
P4+j if £ is odd .

The desired graph G is now produced by joining w2i to the vertex
u; in Gi(l < 7 £ 6s) by an edge e, - Figure 2 illustrates the graph

G for and j = 0 .

Figure 2
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Clearly G is connected, cubic, and each edge eiﬂl <1 < 68) is a

bridge of G . Further, since GGB contains 6 +J or 3 + j bridges,

depending on whether £ is even or odd, respectively, it follows that G
contains exactly 68 + 6 +jJ or 68 + 3 + j bridges, according to
whether & is even or odd. Since the bridges of G 1lie on r = 38 edge~
disjoint paths, Corollary 1 implies that every maximum matching of G

contains at least p/2- LZr/SJ edges.

It remains to be shown that every maximum matching of G contains at
most p/?-LZr/SJ edges. We use Theorem D to prove this statement., Let
= . <1 . =
5= {u,, |1 << s6s}u {x, s st} Then |S| = 8s , and

_ * * . N
68K, v (6s 1)P1 v P7+j if & is even ,

G-8=
- * * i i
68K, v (68 - 1)P} v P4+j if % is odd .
Therefore, G - S contains 128 = |S| + 4s odd components. Theorem D

now implies that every maximum matching of G contains at most
p/2-28 =p/2 - L2r/3J edges. Hence every maximum matching of (G contains
exactly p/2 - L2r/3;| edges.

1l (mod 3) or r = 2 (mod 3) can be handled in
1 (mod 3) , the maximum r with LZr/3_| <8

The cases where r

a similar manner. If »r
is given by
(38 ~ 4)/2 if & is even,

(3 - 1)/2 if £ is odd.

Further, the maximum r for »r = 2 (mod 3) and L2r/3J < 4 satisfies
(3% - 2)/2 if & is even,

(32 + 1)/2 if 2 is odd.

Then using a construction similar to the one described for r = O(mod 3)
we can show, for the above choices of r , that there is a graph &
having m + j bridges (j =0, 1, 2 and 32 sm < 3(% + 1)) all of
which lie on » edge-disjoint paths and where every maximum matching of
G has p/2 - L2r/3J edges. Consequently, the result stated in Corollary
1l is the best possible.
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