
/. Austral. Math. Soc. (Series A) 38 (1985), 55-64

SOME GROUPS WITH Tx PRIMITIVE IDEAL SPACES

A. L. CAREY and W. MORAN

(Received 26 November 1982; revised 29 April 1983)

Communicated by J. N. Price

Abstract

Let G be a second countable locally compact group possessing a normal subgroup N with G/N
abelian. We prove that if G/N is discrete then G has 7", primitive ideal space if and only if the
G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on
connected and simply connected solvable Lie groups where it is equivalent to the condition of
Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's
arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie
group then PrimG is 7": whenever G-quasiorbits in [G, G] are closed.

1980 Mathematics subject classification (Amer. Math. Soc): primary 22 D 10, 22 D 25; secondary 46 L
55.

1. Introduction

Let G be a second countable locally compact group. We denote by C*(G) the
C*-algebra of the group G and by PrimG the primitive ideal space of C*(G) (see
[3] and [9] for definitions). We are interested in the question of when G has 7,
primitive ideal space, or more precisely, if G has a normal subgroup N with G/N
abelian we ask: under what conditions does G have r, primitive ideal space?
Posed in this generality this is a difficult problem.

The motivation for this note is our observation that implicit in a result of
Pukanzky ([11], Lemma 30) is the statement that for a connected solvable Lie
group G with N = nilradical, G has T,-primitive ideal space whenever the
G-quasiorbits in Prim N are closed. (A G-quasiorbit in Prim N is an equivalence
class under the relation /, ~ I2 if /] is in the closure of the G-orbit through 72 and
72 is in the closure of the G-orbit through /,.) In this case of course N is CCR and
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so if G is type I this proves that G is CCR. (Pukanzky also shows that this
condition on G-quasiorbits in N is equivalent to the condition of Auslander and
Moore [1] that G be type R on its nilradical.)

The conjecture suggested by these results of Pukanzky is clearly whether G has
r, primitive ideal space if and only if G-quasiorbits in Prim N are closed. Without
conditions on N and G/N it is unlikely that the conjecture is true. The simplest
possible case is covered by

THEOREM 1.1. If G/N is discrete abelian then G has T, primitive ideal space if
and only if the G-quasiorbits in Prim N are closed.

The proof of this theorem relies on a number of results of Green [6] and uses
some ideas exploited by us in another context [2]. The first step in the proof is to
"localise" the problem. If p is a representation of C*(G) with kernel some
primitive ideal J then p determines a representation of C*(N) (by restricting p
from G to A )̂, written p \c.{Ny This representation may be written as a direct
integral over Prim N of representations of C*(N) with respect to some measure
which is concentrated on a G-quasiorbit 6. This quasiorbit is independent of p
and we say that J restricts to 8 (see [5] for more details). If the G-quasiorbits in
Prim N are closed then the subset of Prim G consisting of primitive ideals which
restrict on Â  to 8 is closed in the hull-kernel topology on PrimG because
restriction is a continuous map. Hence it suffices to show that primitive ideals of
G are maximal in the subset of PrimG lying over 8. As 8 is closed there is an ideal
/ of C*(N) such that A — C*(N)/I has 8 as its primitive ideal space. Moreover
the subset of Prim G which restricts to 8 is the primitive ideal space of the twisted
covariance algebra C*(G, A, TN) (see [6], Proposition 12). We refer to [6] for the
definition and properties of C*(G, A, rN) although in Section 2 where this
C*-algebra is used to define it by a faithful representation which is rather easily
described. Let A be a separable C*-algebra such that the twisted covariance
algebra C*(G, A,TN) may be defined. Then this localisation argument makes
Theorem 1.1a special case of

THEOREM 1.2. / / G/N is discrete abelian then C*(G, A, TN) has Trprimitive
ideal space if and only if G-quasiorbits in Prim A are closed.

In Section 2 we establish the "only i f part of the theorem. In the other
direction the discussion preceding Theorem 1.2 means that it is sufficient to
establish that if A has no G-invariant non-trivial ideals (that is, A is G-simple)
then C*(G, A, TN) has Tx primitive ideal space (provided of course G/N is
discrete abelian).
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In Section 2 we establish

PROPOSITION 1.3. IfG/N is abelian then there is a natural dual action of (G/N j
on C*(G, A, TN) with the property that when (G/N) is compact C*(G, A, TN) is
(G/N) simple whenever A is G-simple.

A by-product of the proof of this result is an extension of Takai duality to
certain twisted covariance algebras (an extension which is, in fact, implicit in [7]).

Given Proposition 1.3 we can now prove the "if" part of Theorem 1.2 and
hence of Theorem 1.1. If C*(G, A,TN) is (G/N) simple (which case we can
certainly reduce to using Green's localisation plus Proposition 1.3) then there can
only be one (G/iV)*-quasiorbit in Prim C*(G, A, TN). By Dixmier ([3]) there exists
a minimal primitive ideal / of C*(G, A, T^). NOW for any other primitive ideal /
we can find a sequence {yn} E (G/N) such that yn • J -»/ . As (G/N) is
compact we can assume yn -> y for some y e (G/N). Thus / is in the closure of
y • / . But / is minimal so / = y • / . So / is minimal. Thus all primitive ideals of
C*(G, A, TN) are minimal and hence also maximal. So PrimC*(G, A, TN) is Tx.

We isolate from this discussion:
DEFINITION 1.4. We say that PrimC*(G, A,TN) is fibered over quasiorbits in

Prim^ if whenever / , and J2 are two primitive ideals of C*(G, A,TN) which
restrict on A to the same quasiorbit in Prim A, there is a y e (G/N) with
y-Jx=J2.

Thus the argument above shows that for A G-simple, with (G/N) compact,
Prim C*(G, A,rN)is fibred over quasiorbits in Prim A. This fibering property has
proved useful in the study of nilpotent groups [2].

Fibering is unlikely to hold in any generality, although as is easily shown in
Section 3, it is sufficient to guarantee that PrimC*(G, A, TN) is Tx.

We return in the final part of Section 3 to the motivating example analysed by
Pukanzky [12], [11]. By using an abstraction of his setting due to Green [6] (see
Pedersen [10]) we prove

THEOREM 1.5. / / G is a connected, simply connected Lie group then PrimG is Tx

whenever G-quasiorbits in N — [G, G] are closed.

2. Twisted covariance algebras

Let A be a separable C* algebra with g -* ag a strongly continuous homomor-
phism of G into Aut A. Then G acts on Prim A and we suppose that there is a
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fixed normal subgroup N of G with G/N abelian such that the stabihser of every
element of Prim A contains N. If there is a map T: N -> <5H(/4) (the multiplier
algebra of A) such that an = ad T ( « ) for all n E N then we can form the twisted
covariance algebra C*(G, A, TN) as in [6]. Then there is a dense subalgebra
CC(G, A,TN) consisting of continuous functions / from G to A of compact
support, satisfying f(ns) = f(s)rN(n)~\ n E N, s G G. (The subscript c will
always denote functions of compact support.)

We define an action of (G/N) on C*(G, A,rN):

(&yf)(g) = y(g)f(g), y e (G/N)'JECC(G, A, rN).
We can now form the cross-product of C*(G, A,TN) by (G/N) which we will
write as C*((G/N), C*(G, A, TN)) (see [9], 7.8.3). On the other hand (G/N) acts
trivially on A so we may form C*((G/N), A) (which is isomorphic to
C*((G/N)) ® A) and define an action of G by

(g • <t>)(y) = y(g) ag(*(Y)), for </> E C0((G/N)\ A).

We can define a twisting map T^: N -> 9H(C*(G/Ar)"® A) (the 9H stands for
multiplier algebra) by

( T ; ( » ) * ) ( ? ) = T * ( / I ) ( * ( T ) ) , * E CC((G/N)\ A).

The twisted covariance algebra C*(G, C*((G/N), A, T^)) may now also be
constructed. However, rather than give details on the construction, we will
identify these algebras with their faithful realisations described below.

We begin with a faithful representation ir of A in a Hilbert space % and note
that T^: A -» 9H(a) is a continuous map into the unitaries in the multiplier
algebra of A satisfying TN(n)aTN(n) — an(a) and TN(gng~l) = ag(TN(n)) for all
n E N, g E. G, a E. A. Thus we can consider functions 4>: G -* % satisfying

U(g)\\2dNg<<».
G/N

These functions define a Hilbert space f on which CC(G, A, TN) acts via the
representation p:

(p(f)+)(g')=J(M(f(g))Vg+)(g')dg, feCc(G,A,r),

where V is the representation of G:

and M is the representation of A:

) ) , aEA,g'EG.
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All we are doing here is constructing p as the representation of CC(G, A, rN)
induced by IT so ([6], Proposition 13) p extends to a faithful representation of
C*(G, A, rN) as G/N is abelian (and hence amenable) We note there is a
representation U of (G/N) on ^defined by

( ( ( ) 9, y E (G/N)*,

from which the relation

Uyp(f)U;x = p{ay(fj), feCc{G,A,rN),

follows. This shows that &y extends to an automorphism of C*(G, A, TN) and
hence that (as in [9], 7.8.3) we can indeed form the cross-product
C*((G/N), C*(G, A, TN)). This cross-product can be faithfully represented via its
regular representation on L2((G/N),^). We will realize this representation on
functions ¥ : (G/N)X G -» % with

and define for u E CC((G/N),CC(G, A, TN)) regarded as a function from
(G/N)X Ginto,4:

(u • *)(y', g') = / /»(«(y, g))Hy'y, s'

Similarly, we produce a faithful representation of C*(G, C*((G/N), A), r^).
Consider functions $:(?X (G/N) -* A satisfying

f\\Q(g,y)\\2dNgdy<ao,

*(«g. y) = "(%(«))"'$(£> y)

and define for v E CC(G, C*((G/N), A), T£)

(v

(We remark that this extends to a faithful representation of the corresponding
twisted covariance algebra by ([6], Proposition 13), again using amenability of
G/N and the fact that this is nothing more than the representation of
C*(G, C*((G/N), A), T^) induced from the regular representation of
C*((G/N), A).)

LEMMA 2.1. C*((G/N)\ C*(G, A, rN)) is isomorphic to
C*(G, C*((G/N), A), T^). Moreover the isomorphism fixes the copies of
C*(G, A, TN) in the respective multiplier algebras.
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PROOF. This is now a routine argument using the two concrete realisations
defined above and the method of ([9], 7.9.2). By regarding the multiplier algebras
as subalgebras of the bounded operators on the appropriate Hilbert spaces, the
second statement is also clear from the proof of 7.9.2 in [9].

LEMMA 2.2. C*(G, C*((G/N), A), T') = A <8> %(L2(G/N)).

PROOF. This result is due to Green [7] using the isomorphism C*(N, A, TN) — A
and writing %(L2(G/N)) for the compact operators on L2(G/N).

With these preliminaries out of the way we move on to the main result of this
section. There is an action of G on C*(G, A, TN) which embeds G in the multiplier
algebra of C*(G, A, rN), namely:

(«g' •/)(*) = «gf(g'-lg), / £ Cc(G,A,r),g,g' e G.

(This is the left multiplication by Dirac measure at g' £ G.) Then

{8g,a8?f)(g) = {aa-g}(f(g))) = ag.{a)f{g).

So 8ga8~} = ag.(a). If we assume (G/N) is compact then we can define a map /:
91t(C*(G, A, rN)) - <$L(C*(G, A, TN)) by

/ &y(x) dy.
(G/N)

Clearly / is continuous. Notice that if / E CC(G, A,TN) then

l(f)(g)=f&y(f)(g)dy=

Thus / ( / ) (g) = 0 unless g E Nin which case

) = / ( « ) = rN(nTlf(e) <EA,nEN.

Thus / is just the conditional expectation f^>f\N so that / extends from
CC(G, A, TN) to define a map from C*(G, A, rN) into A.

LEMMA 2.3. / / / is a (G/N) invariant ideal of C*(G, A, rN) then / ( / ) is a
non-zero G-invariant ideal of A.

PROOF. Let {/}£L, be a sequence in L\G/N) and x e C*(G, A, rN). Notice
that the function g ̂ /(JVg)/(x6g-i)gg is actually a function on G/N since
I(x8g->) = fay(x)y(g) dy using &y(8g) = y(g)8g. So we can write

fi(g)l(x8g->)8gdNg = f
G/N J(G/N)
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where / (y) = fc/Ny(g)fj(Ng) dNg. If/ is an approximate unit for L\G/N) then
we have

(2.1) / / ( x V ' K / ( s ) ^ * as/ oo.

Now if J is an ideal in C*(G, A , rN) it is an ideal in 9it(C*(G, A , TN)) SO
x8gi E / . But if / is (G/N) invariant then I(x8g->) also lies in / . Combining this
with (2.1) yields the fact that / ( / ) is a non-zero subset of A C\J. Using I(a) = a,
and al(x)b = I(axb), a, b E A , it follows that / ( / ) is a two-sided ideal in A .
Finally G-invariance of / ( / ) follows from the relation ag(I(x)) = 8gI(x)8g-\ =
I(8gx8g-<). The above argument is taken from ([9], Section 7.9).

Now A is called G-simple if A has no non-trivial G-invariant ideals.

LEMMA 2.4. If A is G-simple then C*(G, A , rN) is (G/N) simple.

PROOF. Again we follow ([9]). Suppose J is a non-trivial (G/N) invariant ideal
in C*(G, A , rN). Then Lemma 2.3 tells us that / ( / ) is a non-zero G-invariant
ideal of A . Thus the result follows provided / ( / ) is not dense in A . But any state
<f> on C*(G, A , rN) which annihilates J necessarily annihilates I(J). However <J>
cannot annihilate A for if {ax} is an approximate unit for A then <j>(axx) -> <f>(x)
for x e C*(G, A , TN). So / ( / ) is not dense.

Combining Lemma 2.4 with the argument in the introduction completes the
" i f part of Theorem 1.2. The converse argument begins with the observation that
if (G/N) is compact and C*(G, A , rN) has Tx primitive ideal space then a lemma
of Moore and Rosenberg [8] implies that the (G/N) orbits in C*(G, A , TN) are
closed. Now Lemma 2.1 says that C*((G/N), C*(G, A , TN)) is just the imprimi-
tivity algebra for inducing from C*(N, A , TN) ^ A to C*(G, A , TN). Conse-
quently, inducing from A to C*(G, A , rN) is the same as restricting from the
imprimitivity algebra to C*(G, A , rN). But any primitive ideal of C*((G/N),
C*(G, A , TN)) restricts to a (G/N) orbit in PrimC*(G, A , rN). Thus inducing a
primitive ideal of A up to C*(G, A , rN) gives a (G/N) orbit in Prim C*(G, A , rN).
Since this orbit is closed and induction is continuous, its inverse image in Prim A
is closed. Let / G PrimC*(G, A , TN), then two ideals y, • / and y2 • J in the
(G/N) orbit containing / necessarily restrict to the same G-quasiorbit 6 in
Prim A . Thus a necessary condition for two primitive ideals of A to induce the
orbit through J is that they lie in 6. But the set of all such primitive ideals is
closed and so contains the closure of some G-orbit in 6 and hence contains 6.
Thus the inverse image of every (G/N)-orbit in PrimC*(G, A , Tn) is a G-quasi-
orbit in Prim A and so G-quasiorbits are closed.
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It is worth mentioning here one consequence of our results. If G is a finitely
generated discrete solvable group then Moore and Rosenberg [8] have shown that
Prim (7 J, implies that G is a finite extension of a nilpotent group. So by our
result if H is a discrete abelian group acting by automorphisms of Z" (say a
subgroup of GL(n, Z)) then the //-quasiorbits in T" will be closed only if the
semidirect product of H and Z" is a finite extension of a nilpotent group. On the
other hand this also suggests that it will be difficult to produce examples of
solvable groups (satisfying the hypothesis of Theorem 1.1) which do not have a
nilpotent subgroup of finite index.

3. Remarks on the general case.

Consider the situation where G/N is abelian, N is type I and G-quasiorbits in
JV are closed. If m £ JV we let Gm denote the stabiliser in G of IT and let a be the
2-cocycle on Gv/N which is the Mackey obstruction to extending T to a
representation of Gv. Introduce the group

K.= {ge Gw\o(g> g')Mg', g) = 1 for all g £ G./N)

where we use the notation g for the coset Ng. Notice first that if Prim G is fibred
over quasiorbits in N then PrimG is Tx for, if / , C J2 with / , £ PrimG, i = 1,2,
then y • /] = 72 for some y E G/N so that / , C y • /, . But if / , is minimal then
y"1 • 7, C / , implying that y fixes Jx and hence that / , = J2. Thus fibering is
obviously sufficiently to guarantee that PrimG is T, but it is also probably too
restrictive an assumption to attempt to prove in general.

To handle the general problem one needs to reduce to the case where K^ and
Gw are constant on quasiorbits. Since quasiorbits are closing, the cutting down
argument of the introduction shows that we can reduce to the case where there is
a G-simple type I C*-algebra A. The results of Gootman and Olesen [4] suggest
(see the remark at the end of the paper) that in this context (that is, G/N abelian)
Km and Gw are constant on A, that is, on quasiorbits in N.

However even given Kw and Gv constant on G-quasiorbits there are difficulties
in proving the obvious conjecture that G-quasiorbits in Prim Kv are closed
whenever G-quasiorbits in Â  are closed.

Pukanzky has considered a special case in which these difficulties may be
overcome [11]. Following Green [6] and Pedersen [10] we formulate conditions
which will enable us to show that Prim G is 71, whenever G-quasiorbits in N are
closed. The assumptions are that G can be embedded as a closed subgroup of a
second countable topological group G with G/N central in G/N, [G, G] = [G, G]
and N regularly embedded in G. If 0 is a quasiorbit in N and IT = 0 then one can
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show easily that Km and Gff are constant on 0. We write Ke and Ge for these
groups.

Let X(G) = {p E Ke | p \N E 0}. If (?„ is the stabiliser in G of ir, let G, = G • G#.
The following results is easily deduced following [10] and [12]:

LEMMA 3.1 ([9], Section 4). G, X (G/N) acts transitively on X(<8), the actions of
G, and (G/N) commute and X(Q) is homeomorphic to the quotient Gy X (G/N) /M
where M is the common stabiliser of the elements of X(6).

PROPOSITION 3.2. With the above hypotheses on N, G, G, PrimG is Tx whenever
G-quasiorbits in N are closed.

PROOF. Under these hypotheses on N,G,G one can show as in [10] that if
J E PrimG and / restricts on N to 0 then there is an irreducible representation py

of K which induces J. If now J2 D Jx are two primitive ideals lying over 0 then let
Pj2 and pJt denote the corresponding representations of K. We aim to show that
/ , = J2. Now as J2 D Jx we have pJfEG • pj2 and since/, and J2 both restrict to 0,
which is closed, we must have pJt and pj2 in X(<8). If we can show that pJt and p,2

lie in the same G-quasiorbit in X(Q) we are through using continuity of inducing.
But X(6) is homeomorphic to the abelian group (G/N)X Gx/M. So we can
identify pJt and pj2 with cosets hxM and h2M. Moreover as PJ^ELG • pj2, there is a
sequence {g,} in G such that g, • h2M -» hxM. But then g^xhxM -» h2M which
means that Pj2 E G • p7| and so p7| and pj2 lie in the same G-quasiorbit.

The assumptions on the existence of G with the required properties are satisfied
whenever G is a connected, simply connected Lie group [12] however they are
obviously too special to allow a general discussion of the question raised in the
introduction.
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