J. Austral. Math. Soc. (Series A) 38 (1985), 55-64

SOME GROUPS WITH T_1 PRIMITIVE IDEAL SPACES

A. L. CAREY and W. MORAN

(Received 26 November 1982; revised 29 April 1983)

Communicated by J. N. Price

Abstract

Let G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T_1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T_1 whenever G-quasiorbits in [G, G] are closed.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 22 D 10, 22 D 25; secondary 46 L 55.

1. Introduction

Let G be a second countable locally compact group. We denote by $C^*(G)$ the C^* -algebra of the group G and by Prim G the primitive ideal space of $C^*(G)$ (see [3] and [9] for definitions). We are interested in the question of when G has T_1 primitive ideal space, or more precisely, if G has a normal subgroup N with G/N abelian we ask: under what conditions does G have T_1 primitive ideal space? Posed in this generality this is a difficult problem.

The motivation for this note is our observation that implicit in a result of Pukanzky ([11], Lemma 30) is the statement that for a connected solvable Lie group G with N = nilradical, G has T_1 -primitive ideal space whenever the G-quasiorbits in Prim N are closed. (A G-quasiorbit in Prim N is an equivalence class under the relation $I_1 \sim I_2$ if I_1 is in the closure of the G-orbit through I_2 and I_2 is in the closure of the G-orbit through I_1 .) In this case of course N is CCR and

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

[2]

so if G is type I this proves that G is CCR. (Pukanzky also shows that this condition on G-quasiorbits in \hat{N} is equivalent to the condition of Auslander and Moore [1] that G be type R on its nilradical.)

The conjecture suggested by these results of Pukanzky is clearly whether G has T_1 primitive ideal space if and only if G-quasiorbits in Prim N are closed. Without conditions on N and G/N it is unlikely that the conjecture is true. The simplest possible case is covered by

THEOREM 1.1. If G/N is discrete abelian then G has T_1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed.

The proof of this theorem relies on a number of results of Green [6] and uses some ideas exploited by us in another context [2]. The first step in the proof is to "localise" the problem. If ρ is a representation of $C^*(G)$ with kernel some primitive ideal J then ρ determines a representation of $C^*(N)$ (by restricting ρ from G to N), written $\rho|_{C^*(N)}$. This representation may be written as a direct integral over Prim N of representations of $C^*(N)$ with respect to some measure which is concentrated on a G-quasiorbit θ . This quasiorbit is independent of ρ and we say that J restricts to θ (see [5] for more details). If the G-quasiorbits in Prim N are closed then the subset of Prim G consisting of primitive ideals which restrict on N to θ is closed in the hull-kernel topology on Prim G because restriction is a continuous map. Hence it suffices to show that primitive ideals of G are maximal in the subset of Prim G lying over θ . As θ is closed there is an ideal I of $C^*(N)$ such that $A \triangleq C^*(N)/I$ has θ as its primitive ideal space. Moreover the subset of Prim G which restricts to θ is the primitive ideal space of the twisted covariance algebra $C^*(G, A, \tau_N)$ (see [6], Proposition 12). We refer to [6] for the definition and properties of $C^*(G, A, \tau_N)$ although in Section 2 where this C^* -algebra is used to define it by a faithful representation which is rather easily described. Let A be a separable C^* -algebra such that the twisted covariance algebra $C^*(G, A, \tau_N)$ may be defined. Then this localisation argument makes Theorem 1.1 a special case of

THEOREM 1.2. If G/N is discrete abelian then $C^*(G, A, \tau_N)$ has T_1 -primitive ideal space if and only if G-quasiorbits in Prim A are closed.

In Section 2 we establish the "only if" part of the theorem. In the other direction the discussion preceding Theorem 1.2 means that it is sufficient to establish that if A has no G-invariant non-trivial ideals (that is, A is G-simple) then $C^*(G, A, \tau_N)$ has T_1 primitive ideal space (provided of course G/N is discrete abelian).

In Section 2 we establish

PROPOSITION 1.3. If G/N is abelian then there is a natural dual action of (G/N) on $C^*(G, A, \tau_N)$ with the property that when (G/N) is compact $C^*(G, A, \tau_N)$ is (G/N) simple whenever A is G-simple.

A by-product of the proof of this result is an extension of Takai duality to certain twisted covariance algebras (an extension which is, in fact, implicit in [7]).

Given Proposition 1.3 we can now prove the "if" part of Theorem 1.2 and hence of Theorem 1.1. If $C^*(G, A, \tau_N)$ is (G/N) simple (which case we can certainly reduce to using Green's localisation plus Proposition 1.3) then there can only be one (G/N)-quasiorbit in Prim $C^*(G, A, \tau_N)$. By Dixmier ([3]) there exists a minimal primitive ideal I of $C^*(G, A, \tau_N)$. Now for any other primitive ideal J we can find a sequence $\{\gamma_n\} \in (G/N)$ such that $\gamma_n \cdot J \to I$. As (G/N) is compact we can assume $\gamma_n \to \gamma$ for some $\gamma \in (G/N)$. Thus I is in the closure of $\gamma \cdot J$. But I is minimal so $I = \gamma \cdot J$. So J is minimal. Thus all primitive ideals of $C^*(G, A, \tau_N)$ are minimal and hence also maximal. So Prim $C^*(G, A, \tau_N)$ is T_1 .

We isolate from this discussion:

DEFINITION 1.4. We say that $\operatorname{Prim} C^*(G, A, \tau_N)$ is fibered over quasiorbits in Prim A if whenever J_1 and J_2 are two primitive ideals of $C^*(G, A, \tau_N)$ which restrict on A to the same quasiorbit in $\operatorname{Prim} A$, there is a $\gamma \in (G/N)$ with $\gamma \cdot J_1 = J_2$.

Thus the argument above shows that for A G-simple, with (G/N) compact, Prim $C^*(G, A, \tau_N)$ is fibred over quasiorbits in Prim A. This fibering property has proved useful in the study of nilpotent groups [2].

Fibering is unlikely to hold in any generality, although as is easily shown in Section 3, it is sufficient to guarantee that Prim $C^*(G, A, \tau_N)$ is T_1 .

We return in the final part of Section 3 to the motivating example analysed by Pukanzky [12], [11]. By using an abstraction of his setting due to Green [6] (see Pedersen [10]) we prove

THEOREM 1.5. If G is a connected, simply connected Lie group then Prim G is T_1 whenever G-quasiorbits in $\hat{N} = [G, G]$ are closed.

2. Twisted covariance algebras

Let A be a separable C^* algebra with $g \to \alpha_g$ a strongly continuous homomorphism of G into Aut A. Then G acts on Prim A and we suppose that there is a

fixed normal subgroup N of G with G/N abelian such that the stabiliser of every element of Prim A contains N. If there is a map $\tau: N \to \mathfrak{M}(A)$ (the multiplier algebra of A) such that $\alpha_n = \operatorname{ad} \tau(n)$ for all $n \in N$ then we can form the twisted covariance algebra $C^*(G, A, \tau_N)$ as in [6]. Then there is a dense subalgebra $C_c(G, A, \tau_N)$ consisting of continuous functions f from G to A of compact support, satisfying $f(ns) = f(s)\tau_N(n)^{-1}$, $n \in N$, $s \in G$. (The subscript c will always denote functions of compact support.)

We define an action of (G/N) on $C^*(G, A, \tau_N)$:

$$(\hat{a}_{\gamma}f)(g) = \gamma(g)f(g), \quad \gamma \in (G/N), f \in C_c(G, A, \tau_N).$$

We can now form the cross-product of $C^*(G, A, \tau_N)$ by (G/N) which we will write as $C^*((G/N), C^*(G, A, \tau_N))$ (see [9], 7.8.3). On the other hand (G/N) acts trivially on A so we may form $C^*((G/N), A)$ (which is isomorphic to $C^*((G/N)) \otimes A$) and define an action of G by

$$(g \cdot \phi)(\gamma) = \overline{\gamma(g)} \alpha_g(\phi(\gamma)), \text{ for } \phi \in C_0((G/N), A).$$

We can define a twisting map $\tau'_N: N \to \mathfrak{M}(C^*(G/N) \otimes A)$ (the \mathfrak{M} stands for multiplier algebra) by

$$(\tau'_N(n)\phi)(\gamma) = \tau_N(n)(\phi(\gamma)), \quad \phi \in C_c((G/N), A).$$

The twisted covariance algebra $C^*(G, C^*((G/N), A, \tau'_N))$ may now also be constructed. However, rather than give details on the construction, we will identify these algebras with their faithful realisations described below.

We begin with a faithful representation π of A in a Hilbert space \mathcal{H} and note that $\tau_N: A \to \mathfrak{M}(a)$ is a continuous map into the unitaries in the multiplier algebra of A satisfying $\tau_N(n)a\tau_N(n) = \alpha_n(a)$ and $\tau_N(gng^{-1}) = \alpha_g(\tau_N(n))$ for all $n \in N, g \in G, a \in A$. Thus we can consider functions $\psi: G \to \mathcal{H}$ satisfying

$$\psi(ng) = \pi \left(\tau_N(n)^{-1}\right) \psi(g),$$
$$\left\|\psi\right\|^2 = \int_{G/N} \left\|\psi(g)\right\|^2 dNg < \infty$$

These functions define a Hilbert space \mathcal{F} on which $C_c(G, A, \tau_N)$ acts via the representation ρ :

$$(\rho(f)\psi)(g') = \int (M(f(g))V_g\psi)(g')\,dg, \quad f \in C_c(G, A, \tau),$$

where V is the representation of G:

$$V(g)\psi(g')=\psi(g'g), \quad g,g'\in G,$$

and *M* is the representation of *A*:

$$(M(a)\psi)(g') = \pi(\alpha_{g'}(a))\psi(g'), \quad a \in A, g' \in G.$$

All we are doing here is constructing ρ as the representation of $C_c(G, A, \tau_N)$ induced by π so ([6], Proposition 13) ρ extends to a faithful representation of $C^*(G, A, \tau_N)$ as G/N is abelian (and hence amenable). We note there is a representation U of (G/N) on \mathcal{F} defined by

$$U_{\gamma}\psi(g) = \gamma(g)\psi(g), \quad \psi \in \mathfrak{F}, \gamma \in (G/N)^{\hat{}},$$

from which the relation

$$U_{\gamma}\rho(f)U_{\gamma}^{-1}=\rho(\hat{\alpha}_{\gamma}(f)), \quad f\in C_{c}(G, A, \tau_{N}),$$

follows. This shows that $\hat{\alpha}_{\gamma}$ extends to an automorphism of $C^*(G, A, \tau_N)$ and hence that (as in [9], 7.8.3) we can indeed form the cross-product $C^*((G/N), C^*(G, A, \tau_N))$. This cross-product can be faithfully represented via its regular representation on $L^2((G/N), \mathfrak{F})$. We will realize this representation on functions $\Psi: (G/N) \times G \to \mathfrak{K}$ with

$$\int \left\|\Psi(\gamma, g)\right\|^2 d\gamma \, dNg < \infty,$$

$$\Psi(\gamma, ng) = \pi(\tau_N(n))^{-1}\Psi(\gamma, g)$$

and define for $u \in C_c((G/N), C_c(G, A, \tau_N))$ regarded as a function from $(G/N) \times G$ into A:

$$(u \cdot \Psi)(\gamma', g') = \iint \pi(u(\gamma, g)) \Psi(\gamma'\gamma, g'g) \, d\gamma \, dg.$$

Similarly, we produce a faithful representation of $C^*(G, C^*((G/N), A), \tau'_N)$. Consider functions $\Phi: G \times (G/N) \rightarrow A$ satisfying

$$\int \left\| \Phi(g,\gamma) \right\|^2 dNg \, d\gamma < \infty,$$
$$\Phi(ng,\gamma) = \pi(\tau_N(n))^{-1} \Phi(g,\gamma)$$

and define for $v \in C_c(G, C^*((G/N), A), \tau'_N)$

$$(v \cdot \Phi)(g', \gamma') = \int \pi(v(g, \gamma)) \Phi(g'g, \gamma'\gamma) \, d\gamma \, dNg.$$

(We remark that this extends to a faithful representation of the corresponding twisted covariance algebra by ([6], Proposition 13), again using amenability of G/N and the fact that this is nothing more than the representation of $C^*(G, C^*((G/N), A), \tau'_N))$ induced from the regular representation of $C^*((G/N), A)$.)

LEMMA 2.1. $C^*((G/N)^{\hat{}}, C^*(G, A, \tau_N))$ is isomorphic to $C^*(G, C^*((G/N)^{\hat{}}, A), \tau'_N)$. Moreover the isomorphism fixes the copies of $C^*(G, A, \tau_N)$ in the respective multiplier algebras.

PROOF. This is now a routine argument using the two concrete realisations defined above and the method of ([9], 7.9.2). By regarding the multiplier algebras as subalgebras of the bounded operators on the appropriate Hilbert spaces, the second statement is also clear from the proof of 7.9.2 in [9].

LEMMA 2.2.
$$C^*(G, C^*((G/N), A), \tau') \triangleq A \otimes \mathfrak{K}(L^2(G/N)).$$

PROOF. This result is due to Green [7] using the isomorphism $C^*(N, A, \tau_N) \triangleq A$ and writing $\mathcal{K}(L^2(G/N))$ for the compact operators on $L^2(G/N)$.

With these preliminaries out of the way we move on to the main result of this section. There is an action of G on $C^*(G, A, \tau_N)$ which embeds G in the multiplier algebra of $C^*(G, A, \tau_N)$, namely:

$$(\delta_{g'} \cdot f)(g) = \alpha_{g'}f(g'^{-1}g), \quad f \in C_c(G, A, \tau), g, g' \in G.$$

(This is the left multiplication by Dirac measure at $g' \in G$.) Then

$$\left(\delta_{g'}a\delta_{g'}^{-1}f\right)(g) = \left(a\alpha_{g'}^{-1}(f(g))\right) = \alpha_{g'}(a)f(g)$$

So $\delta_{g'}a\delta_{g'}^{-1} = \alpha_{g'}(a)$. If we assume (G/N) is compact then we can define a map *I*: $\mathfrak{M}(C^*(G, A, \tau_N)) \to \mathfrak{M}(C^*(G, A, \tau_N))$ by

$$I(x) = \int_{(G/N)} \hat{\alpha}_{\gamma}(x) \, d\gamma.$$

Clearly I is continuous. Notice that if $f \in C_c(G, A, \tau_N)$ then

$$I(f)(g) = \int \hat{\alpha}_{\gamma}(f)(g) \, d\gamma = \int \overline{\gamma(g)} \, d\gamma \cdot f(g).$$

Thus I(f)(g) = 0 unless $g \in N$ in which case

$$I(f)(n) = f(n) = \tau_N(n)^{-1}f(e) \in A, n \in N.$$

Thus I is just the conditional expectation $f \to f|_N$ so that I extends from $C_c(G, A, \tau_N)$ to define a map from $C^*(G, A, \tau_N)$ into A.

LEMMA 2.3. If J is a (G/N) invariant ideal of $C^*(G, A, \tau_N)$ then I(J) is a non-zero G-invariant ideal of A.

PROOF. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in $L^1(G/N)$ and $x \in C^*(G, A, \tau_N)$. Notice that the function $g \to f_i(Ng)I(x\delta_{g^{-1}})\delta_g$ is actually a function on G/N since $I(x\delta_{g^{-1}}) = f\hat{\alpha}_{\gamma}(x)\overline{\gamma(g)} d\gamma$ using $\hat{\alpha}_{\gamma}(\delta_g) = \gamma(g)\delta_g$. So we can write

$$\int_{G/N} f_i(g) I(x \delta_{g^{-1}}) \delta_g \, dNg = \int_{(G/N)} \hat{\alpha}_{\gamma}(x) \hat{f}_i(\gamma^{-1}) \, d\gamma,$$

where $\hat{f}_i(\gamma) = \int_{G/N} \gamma(g) f_i(Ng) dNg$. If \hat{f}_i is an approximate unit for $L^1(G/N)$ then we have

(2.1)
$$\int I(x\delta_{g^{-1}})\delta_g f_i(g) \, dg \to x \quad \text{as } i \to \infty.$$

Now if J is an ideal in $C^*(G, A, \tau_N)$ it is an ideal in $\mathfrak{N}(C^*(G, A, \tau_N))$ so $x\delta_{g^{-1}} \in J$. But if J is (G/N) invariant then $I(x\delta_{g^{-1}})$ also lies in J. Combining this with (2.1) yields the fact that I(J) is a non-zero subset of $A \cap J$. Using I(a) = a, and aI(x)b = I(axb), $a, b \in A$, it follows that I(J) is a two-sided ideal in A. Finally G-invariance of I(J) follows from the relation $\alpha_g(I(x)) = \delta_g I(x)\delta_{g^{-1}} = I(\delta_g x \delta_{g^{-1}})$. The above argument is taken from ([9], Section 7.9).

Now A is called G-simple if A has no non-trivial G-invariant ideals.

LEMMA 2.4. If A is G-simple then $C^*(G, A, \tau_N)$ is (G/N) simple.

PROOF. Again we follow ([9]). Suppose J is a non-trivial (G/N) invariant ideal in $C^*(G, A, \tau_N)$. Then Lemma 2.3 tells us that I(J) is a non-zero G-invariant ideal of A. Thus the result follows provided I(J) is not dense in A. But any state ϕ on $C^*(G, A, \tau_N)$ which annihilates J necessarily annihilates I(J). However ϕ cannot annihilate A for if $\{a_\lambda\}$ is an approximate unit for A then $\phi(a_\lambda x) \to \phi(x)$ for $x \in C^*(G, A, \tau_N)$. So I(J) is not dense.

Combining Lemma 2.4 with the argument in the introduction completes the "if' part of Theorem 1.2. The converse argument begins with the observation that if (G/N) is compact and $C^*(G, A, \tau_N)$ has T_1 primitive ideal space then a lemma of Moore and Rosenberg [8] implies that the (G/N) orbits in $C^*(G, A, \tau_N)$ are closed. Now Lemma 2.1 says that $C^*((G/N), C^*(G, A, \tau_N))$ is just the imprimitivity algebra for inducing from $C^*(N, A, \tau_N) \simeq A$ to $C^*(G, A, \tau_N)$. Consequently, inducing from A to $C^*(G, A, \tau_N)$ is the same as restricting from the imprimitivity algebra to $C^*(G, A, \tau_N)$. But any primitive ideal of $C^*((G/N)$, $C^*(G, A, \tau_N)$ restricts to a (G/N) orbit in Prim $C^*(G, A, \tau_N)$. Thus inducing a primitive ideal of A up to $C^*(G, A, \tau_N)$ gives a (G/N) orbit in Prim $C^*(G, A, \tau_N)$. Since this orbit is closed and induction is continuous, its inverse image in Prim A is closed. Let $J \in \operatorname{Prim} C^*(G, A, \tau_N)$, then two ideals $\gamma_1 \cdot J$ and $\gamma_2 \cdot J$ in the (G/N) orbit containing J necessarily restrict to the same G-quasiorbit θ in Prim A. Thus a necessary condition for two primitive ideals of A to induce the orbit through J is that they lie in θ . But the set of all such primitive ideals is closed and so contains the closure of some G-orbit in θ and hence contains θ . Thus the inverse image of every (G/N)-orbit in Prim $C^*(G, A, \tau_n)$ is a G-quasiorbit in Prim A and so G-quasiorbits are closed.

It is worth mentioning here one consequence of our results. If G is a finitely generated discrete solvable group then Moore and Rosenberg [8] have shown that Prim G T_1 implies that G is a finite extension of a nilpotent group. So by our result if H is a discrete abelian group acting by automorphisms of Z^n (say a subgroup of GL(n, Z)) then the H-quasiorbits in T^n will be closed only if the semidirect product of H and Z^n is a finite extension of a nilpotent group. On the other hand this also suggests that it will be difficult to produce examples of solvable groups (satisfying the hypothesis of Theorem 1.1) which do not have a nilpotent subgroup of finite index.

3. Remarks on the general case.

Consider the situation where G/N is abelian, N is type I and G-quasiorbits in \hat{N} are closed. If $\pi \in \hat{N}$ we let G_{π} denote the stabiliser in G of π and let σ be the 2-cocycle on G_{π}/N which is the Mackey obstruction to extending π to a representation of G_{π} . Introduce the group

$$K_{\pi} = \{ g \in G_{\pi} | \sigma(\bar{g}, \bar{g}') / \sigma(\bar{g}', \bar{g}) = 1 \text{ for all } \bar{g} \in G_{\pi} / N \}$$

where we use the notation \overline{g} for the coset Ng. Notice first that if Prim G is fibred over quasiorbits in N then Prim G is T_1 for, if $J_1 \subseteq J_2$ with $J_1 \in \text{Prim } G$, i = 1, 2, then $\gamma \cdot J_1 = J_2$ for some $\gamma \in G/N$ so that $J_1 \subseteq \gamma \cdot J_1$. But if J_1 is minimal then $\gamma^{-1} \cdot J_1 \subseteq J_1$ implying that γ fixes J_1 and hence that $J_1 = J_2$. Thus fibering is obviously sufficiently to guarantee that Prim G is T_1 but it is also probably too restrictive an assumption to attempt to prove in general.

To handle the general problem one needs to reduce to the case where K_{π} and G_{π} are constant on quasiorbits. Since quasiorbits are closing, the cutting down argument of the introduction shows that we can reduce to the case where there is a G-simple type I C*-algebra A. The results of Gootman and Olesen [4] suggest (see the remark at the end of the paper) that in this context (that is, G/N abelian) K_{π} and G_{π} are constant on A, that is, on quasiorbits in N.

However even given K_{π} and G_{π} constant on G-quasiorbits there are difficulties in proving the obvious conjecture that G-quasiorbits in Prim K_{π} are closed whenever G-quasiorbits in \hat{N} are closed.

Pukanzky has considered a special case in which these difficulties may be overcome [11]. Following Green [6] and Pedersen [10] we formulate conditions which will enable us to show that Prim G is T_1 whenever G-quasiorbits in \hat{N} are closed. The assumptions are that G can be embedded as a closed subgroup of a second countable topological group \tilde{G} with G/N central in \tilde{G}/N , $[\tilde{G}, \tilde{G}] = [G, G]$ and N regularly embedded in \tilde{G} . If θ is a quasiorbit in \hat{N} and $\pi = \theta$ then one can show easily that K_{π} and G_{π} are constant on \emptyset . We write K_{\emptyset} and G_{\emptyset} for these groups.

Let $X(\emptyset) = \{ \rho \in K_0 | \rho|_N \in \emptyset \}$. If \tilde{G}_{π} is the stabiliser in \tilde{G} of π , let $G_1 = G \cdot \tilde{G}_{\pi}$. The following results is easily deduced following [10] and [12]:

LEMMA 3.1 ([9], Section 4). $G_1 \times (G/N)$ acts transitively on $X(\emptyset)$, the actions of G_1 and (G/N) commute and $X(\emptyset)$ is homeomorphic to the quotient $G_1 \times (G/N)/M$ where M is the common stabiliser of the elements of $X(\emptyset)$.

PROPOSITION 3.2. With the above hypotheses on N, G, \tilde{G} , Prim G is T_1 whenever G-quasiorbits in \hat{N} are closed.

PROOF. Under these hypotheses on N, G, \tilde{G} one can show as in [10] that if $J \in \operatorname{Prim} G$ and J restricts on N to \emptyset then there is an irreducible representation ρ_J of K which induces J. If now $J_2 \supseteq J_1$ are two primitive ideals lying over \emptyset then let ρ_{J_2} and ρ_{J_1} denote the corresponding representations of K. We aim to show that $J_1 = J_2$. Now as $J_2 \supseteq J_1$ we have $\rho_{J_1} \in \overline{G} \cdot \rho_{J_2}$ and since J_1 and J_2 both restrict to \emptyset , which is closed, we must have ρ_{J_1} and ρ_{J_2} in $X(\emptyset)$. If we can show that ρ_{J_1} and ρ_{J_2} lie in the same G-quasiorbit in $X(\emptyset)$ we are through using continuity of inducing. But $X(\emptyset)$ is homeomorphic to the abelian group $(G/N) \times G_1/M$. So we can identify ρ_{J_1} and ρ_{J_2} with cosets h_1M and h_2M . Moreover as $\rho_J \in \overline{G} \cdot \rho_{J_2}$, there is a sequence $\{g_i\}$ in G such that $g_1 \cdot h_2M \to h_1M$. But then $g_i^{-1}h_1M \to h_2M$ which means that $\rho_{J_2} \in \overline{G} \cdot \rho_{J_1}$ and so ρ_{J_1} and ρ_{J_2} lie in the same G-quasiorbit.

The assumptions on the existence of \tilde{G} with the required properties are satisfied whenever G is a connected, simply connected Lie group [12] however they are obviously too special to allow a general discussion of the question raised in the introduction.

References

- L. Auslander and C. C. Moore, 'Unitary representations of solvable Lie groups,' Mem. Amer. Math. Soc. 62 (1966).
- [2] A. L. Carey and W. Moran, in preparation.
- [3] J. Dixmier, 'Points séparé dans le spectre d'une C* algèbre,' Acta Sci. Math. (Szeged) 22 (1961) 115-128.
- [4] E. C. Gootman and D. Olesen, 'Spectra of actions on type I C* algebras,' Math. Scand. 47, (1980) 329-349.
- [5] E. C. Gootman and J. Rosenberg, 'The structure of crossed product C*-algebras: A proof of the generalised Effros-Hahn conjecture,' *Invent. Math.* 52 (1979) 283-298.
- [6] P. Green, 'The local structure of twisted covariance algebras,' Acta Math. 140 (1978) 191-250.
- [7] P. Green, 'The structure of imprimitivity algebras,' J. Funct. Anal. 36, (1980) 88-104.

[10]

- [8] C. C. Moore and J. Rosenberg, 'Groups with T₁ primitive ideal spaces,' J. Funct. Anal. 22 (1976) 204-224.
- [9] G. K. Pedersen, C*-algebras and their automorphism groups (Academic Press, London (1979)).
- [10] N. V. Pedersen, 'Semicharacters on connected Lie groups,' Duke Math. J. 48 (1981) 729-754.
- [11] L. Pukanzky, 'The primitive ideal space of solvable Lie groups,' Invent. Math. 22 (1973) 75-118.
- [12] L. Pukanzky, 'Characters of connected Lie groups,' Acta Math. 133 (1974) 81-137.

Department of Pure Mathematics The University of Adelaide Adelaide, SA5001 Australia